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ABSTRACT

This paper describes a set of programs used to perform
boundary-analysis in the VISIONS scene-analysis system. These
programs lead the data through a sequence of transformations:
preprocessing, differentiation using a very simple operator,
relaxation using case-analysis, and postprocessing. The output
of the system is a set of labelled line-segments for which
features such as length and confidence are computed. The lines
and associated features will be passed to other portions of the

VISIONS system for further analysis.
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INTRODUCTION

1. Goals of Low-Level Vision

A primary goal of visual scene analysis is to extract a
description of the scene in question, and in particular, to
isolate and describe the objects which appear. Because of
the enormous complexity of the problem, a comprehensive anal-
ysis of any complex scene will involve a large system [1];
otherwise only certain aspects of the problem can be tackled.
It is inevitable that semantic knowledge must be used to per-

form this task effectively. However, it is by no means clear

at what stage or stages of the computation this knowledge should

be applied. This paper is written in the context of a scene
analysis system called "VISIONS" ([1,2] which consists of two
subsystems, one performing a low-level and the other a high-
level analysis.

The low-level system seeks to perform a segmentation of
the scene, that is, a description of the scene in terms of
lines and regions. Boundary (also referred to as 'line")
analyses have been concerned with discontinuities in some
feature or set of features such as measures of textures, light
intensity, and distance (determined through the use of range-
finders). Region-analyses, on the other hand, look for con-
tinuities in these features. Neither analysis typically uses
high-level or semantic knowledge. It would be the job of the
high-level system to identify the objects in the scene by
interpreting the lines and regions as parts of the boundaries

and surfaces of these objects.
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For this phase of our system development it is exclu-
sively the high-level system which uses semantic information.
It should be noted, though, that there are systems which in-
tegrate segmentation with object identification [3,4,5].
Ultimately, we would like to provide a couple of major feedback
paths to direct refinement of an initial segmentation by the
more abstract semantic hypotheses.

This paper, then, is concerned only with the nonsemantic
line analysis part of a low-level vision system. The visual
feature that will be employed in all examples in this paper
is intensity, or brightness. The scene will be presented to
the system as three data arrays consisting of the red, blue,
and green components of the scene digitized on a rectangular
grid, and the average of these three values will define the
feature of intensity.

It is the contention of this paper that a line-analysis
system should be constructed in a way that conforms to the
following rules:

(1) The nature of the input data to the system should
be determined as fully as possible.

(2) The problems that heset line-analyses should be
laid out and isolated, if possible.

(3) A set of modules or transformations which when
applied in series will convert the input data to
the desired output form should be constructed.
These modules should be such that, as far as
possible,

(a) it is known exactly how they process their
inputs. 1In this way it may be determined what
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preprocessing steps are required to convert
the data into an effective (or optimal) form
for their use. Properties of the inputs of

the modules may also be determined easily.
(b) The modules each perform a single transformation.

(c) There is limited coupling between the modules.
This will restrict the size and number of inter-

mediate data structures.
If these guidelines are followed, the flow of information through
the system will be easy to trace. This will lead to easier de-
bugging, modification, and comprehension of the system.

We describe in this paper a set of programs that are used
to perform the boundary analysis of outdoor scenes. These
programs are all computationally inexpensive; they are small
and are fairly fast (see Implementation). Due to their modular
nature, they can easily be '"unplugged" and replaced by more
sophisticated versions, or left out altogether, if desired.
This is made possible because the state of the data at each

stage is well-defined.

2. Overview of the System

There are conceptually four stages to the line-finding
process. Each of these is implemented as one or more computa-
tional modules.

(1) PREPROCESSING: This stage cleans up the raw data.

(la) UMMIX corrects for '"mixed pixels" introduced
in digitization.

(lb) CONDITIONAL AVERAGE smooths out random noise
and fine microtexture.




(2) LINE-FINDING: This is the heart of the whole process.

(2a) DIFFERENTIATION finds the apparent edge-strength
at each point in the image.

(2b) SUPPRESSION removes 'multiple edges' formed on
differentiating gradients.

(2c) RELAXATION drives the probability of an edge
at each point to 1 or 0 on the basis of local
support or inhibition.

(3) GROUPING: This stage joins edges into line segments
and finds features of these lines.

(3a) BIND joins contiguous edges together to form
line-segments, and each line segment is given
a unique label.

(3b) FEATURE EXTRACTION of features such as length,
contrast, location for each line-segment.
(4) POSTPROCESSING: This final stage cleans up the results.

(4a) TRIM removes selected line segments on the basis
of features extracted previously (e.g. short,
low contrast lines).

(4b) Many other more global organizing processes are
now possible.

3. Tuning the System

Tuning a complex system is a notoriously difficult task.
Even if the algorithms are regarded as fixed and it is only
the parameters which are to be adjusted, the interactions be-
tween them, especially nonlinear interactions, cause many dif-
ficulties. These difficulties are considerable in a system
with feedback. In a serial system, though, they are much
easier to deal with since there is no "circularity of effect."

It will be shown that there are not many parameters in-
volved in the above sequence of processes. It has been found that

those which do exist can very easily be adjusted to a satisfactory
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value, so tuning is not a great difficulty. One of the newer
and more interesting tasks in this area is the development of
heuristics for the TRIM process. In the relevant section of
this paper we will present some simple criteria for line-removal

and suggestions for further experiments.

I. Stage 1--PREPROCESSING

We start with the image digitized into three arrays
containing the red, green, and blue components of the scene.
These are now averaged to form the black and white intensity
image. Prior to differentiation, this image undergoes two
preprocessing stages which provide the black and white image
upon which the line-finding process works.

(Step la) UNMIX: The first process is designed to

eliminate what is known as the '"'mixed-pixel'" problem. This
problem occurs whenever images are digitized, and is due to
the fact that boundaries in the image will not in general fall
in register with the digitization grid. Thus, the intensity
recorded at a pixel might overlap two regions adjoining a
boundary, representing a weighted average of them (see Figure
i

The procedure must test to see if a two-step intensity
gradient occurs at the same place in all of the three colored
images. If it does, then a mixed pixel is assumed to have
been formed. It is consequently '"unmixed' by assigning to it
the values of its nearest neighbor along the direction of the
gradient. This has the effect of shifting the boundary by a

fraction of a pixel (see Figure lc).
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Figure 1: The "mixed-pixel'" problem. 1(a) digitization grid
superimposed upon a portion of an image. 1(b) intensity values
recorded in this grid. 1(c) "UNMIX" correction applied to 1(b).
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(Step 1b) CONDITIONAL AVERAGE: The second process is an

adaptation of a smoothing process [6] which helps e¢liminate
noise in the image. In this process, the intensity value at
each point is replaced by the average of itself and its neigh-
bors, except that if the difference between the value of the
point and a neighbor is greater than a certain value T that
neighbor is not included in the average.

For the neighborhood {Ni} of the point N_. in Figure 2, its

0

updated value is given by:

e ;
NO n 5 I\i
N.eS
i
where S = (N, : |Ni - NOI < T} and n is the cardinality of S.

Note that S always contains N This procedure has the fol-

0
lowing effects:
(1) Within a (nearly) homogeneous region, it smooths

out the small noise.

(2) Near a region boundary whose contrast is greater
than T it includes no points across the boundary
in the average. This allows a smoothing of the
points on either side of the boundary without
blurring the boundary as a nondiscriminatory aver-

aging process would do.

(3) Within an intensity gradient, the process averages
a point with roughly as many other points that have
smaller intensity as greater. This will smooth
noise within the gradient but will not destroy the

gradient .

(4) In a textured region, if the texture elements differ

only slightly in intensity, they they will be smoothed
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Figure 2: Neighborhood considered in CONDITIONAL AVERAGE .
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into a homogeneous region. If the texture ele-
ments differ by more than T, then no averaging
will occur, except perhaps within the texture

elements themselves.

Figure 3 shows the results of using the differential

operator (to be described later) on images that have selectively

undergone the UNMIX and/or CONDITIONAL AVERAGE passes. It is

seen that an application of both gives the cleanest results

without losing any important lines, or gaining extraneous ones.

II. Stage 2--LINE FINDING

IT.1. DIFFERENTIATION (Step 2a)

Differentiation is the most drastic transformation that
the data undergoes, so it needs careful attention. Ideally,
edges should be placed only between regions that differ with
respect to some feature (in our case intensity), and nowhere
else. In practice, problems occur due to texture within a
region, blurred edges, and gradients, etc. However, our
simple preprocessing of the data will reduce the impact of
these problems. Let us consider the three cases separately.

(1) Texture within a region. Fine low contrast micro-
texture will have been largely eliminated by the conditional
averaging process. Very distinct texture elements of high
contrast will be prominent, and so will produce edges. At
this point it is not the task of the differentiator to deter-
mine whether the cdges are boundaries of texture elements or

the boundaries of a textured region. Texture edges may be

removed by a subsequent process which eliminates short and/or
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low contrast boundaries, or one that detects texture patterns
if necessary. This will be performed when more reliable
global information is available [7].
(2) Blurred edges. Many of these will have been cor-
rected (or reduced) by the "UNMIX'" process. Some of those
that were introduced through noise or some other means and
were not corrected will give rise to two adjacent parallel
edges; one of the pair will be eliminated through SUPPRESSION.
(3) Gradients. This problem is a more general version
of (2), where the change in intensity occurs over several pixels.
One procedure for detecting gradients is to use a hierarchy of
increasing-sized masks [3,7,8,9]. While this procedure can be
shown to work in simple cases, it is difficult to make it work
in general. Many masks of different sizes at varying distances
from a boundary can detect that boundary, and it is difficult
to organize them consistently. In addition genuine gradients
are indistinguishable in a digitized image from three or more
parallel one-pixel-wide regions with intensity monotonically
varying across them. For an example refer to Figure 4. Since
there is no way that this distinction can be made without using
very high-level knowledge, the system will treat all such
cases as gradients. We will accept the fact that such one-

pixel-wide regions will be lost.

IT.2. Representation of the Lidge Image

The input consists of an array of numbers representing
the light intensity of each position in the image. Since each

of these pixels is in some region, it is reasonable to
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Figure 4:

GREY

WHITLE

BLACK

An example of a l-pixel-wide region that is

intermediate in intensity between that of its neighbors.

} The grey strip is a real region,
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Figure 5:

Figure ba

and not a gradient.

Figure 5b

Representation of edges. The shaded area in 5a is

I el S i

a region, and the outline in 5b is its boundary.




constrain the boundaries of regions to fall only between pixels.
This representation of the image on a rectangular grid and the
constraints of edges between pixels imposes a boundary that
consists entirely of horizontal and vertical edges [19,11]. This

greatly facilitates further processing.

I1.3. The Differentiation Operator

The standard technique for differentiation is to convolve
edge masks with the image. It can be gencralized to apply a
set of masks, and to compute the output as some function of
the results of these masks, often the maximum response.

For sharply defined boundaries, the simplest mask possi-
ble is all that is necessary (see Figure 6a). We will call
this a 1x2 mask. In this and subsequent diagrams of masks, a
heavy line indicates the edge position to which a mask's output
is associated. On long straight boundaries a better response
might be achieved using a 3x2 mask (see Figure 6b), since the
information from three 1x2 masks in a line is used to average
out the presence of occasional noise points. However, the
relaxation processes that follow should be able to fill in
such an edge, and we belicve it will render the benefits of
the 3x2 mask unnecessary; its limitations are described below.

Diagonals and corners can be detected by using diagonal
masks (Figure €c). This mask might be used in the computation
of the edge strength of a vertical section of a diagonal. Note
that application of this mask alone would give a positive re-

sponse when applied to a horizontal edge (see Figure 7a and 7b).
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Figure 6: Typical masks. 6a: 1x2, 6b: 3x2 straight,

6c: 3x2 diagonal,
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6d: 3x4, 6e: expanded 3x2, 6f: expanded 5x2.
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Figure 7:

between two regions.
The response is seen to be (20+20+5 - (5+5+5))/3 = 10,

which is significant, since it happens to be 2/3 of the difference

above).

between the regions.
corner of a dark region. 7d shows the spur produced by this mask

and a smiliar horizontal mask in a neighboring position.

7a shows a 3x2 diagonal mask on a horizontal boundary

7b shows the output of this mask (if used

7¢ shows a 3x2 straight mask overlapping the
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Therefore, the difference between its output and that of its
mirror image should be used. This will give strong response
iu diagonals, but not to horizontal or vertical edges. Other
masks may be used to detect gradients; for example, the masks
depicted in Figures 6d to 6f can be generalized into a hierarchy
of mask sizes [7,8].

The more varied the collection of masks [11], the more
guarantee there is of detecting the edge. However, using
large masks has unfortunate consequences in positions where no
edge is desired. Figure 7c shows a 3x2 straight mask superim-
posed upon a corner of a region. 1In this position there will
be a response, albeit weak, giving rise to a '"spur'" in the
differentiated version. A horizontal mask will cause the same
problem, giving a result as shown in Figure 7d.

Larger masks will give more and longer spurs, which cause
serious problems. During relaxation, it is possible for them
to grow lines where none ought to exist; if they are close to
other spurs formed similarly, they can get linked together
during grouping processes., The results of the whole process
begins to get quite ill-defined.

A comparison of these different combinations of some of
these masks is presented in Figure 8. It can be seen that the
1x2 gives fairly good results; the absence of spurs is quite
noticeable in contrast with some of the other masks. For this
reason, we decided to use a simple 1x2 mask as our differentia-

tion operator.
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I1.4. SUPPRESSION (Step 2b)

The weakness of a 12 mask is that it will be proné to
missing boundaries of wider gradients. llowever, most of the
boundaries in the several scenes examined in this paper were
detected. Of course, the probler of gradients still must be
dealt with since the system will be blind to edges, such as
wide shadows on a cylindrical surface. Ideally, the total
strength of the wide gradient edge ought to be collected [3],
which is the goal.of employing masks of increasing size.
Rather than deal with some of the problems discussed in the
last section, here instead we seek means to suppress multiple
parallel indications of edges.

While the UNMIX procedure will eliminate some narrow
gradients, others will inevitably remain and give rise to
parallel multiple indications of the same edge. These can be
removed by what is known as multiple edge suppression [3].
Consider the image in Figure 9a representing brightness and
its derivative in 9b representing the strength of the gradient.
The suppression technique works as follows: Consider three
pixels in a vertical line as in Figure 10. Let p,q,r be the
horizontal gradient at the lower boundary of these three cells.
If it happens that either

lal s |r]
or
lal < |pl
with q the same sign as r or p respectively, then q is set to

zero. A similar operation is applied to vertical gradients in
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a horizontal row of cells. Hence, in Figure 9b the row of
10's will be set to zero, resulting in Figure 9c. This type
of suppression is restricted to the cases where the pair of
edges have the same gradient sign. Therefore, in Figure 11 the
suppression process does not remove either of the boundaries
of the one-pixel-wide region.

An improved version of the SUPPRESS procedure requires
an increase in the values of the local maxima of gradients by
the sum of those values that were suppressed in a direction
perpendicular to the gradient. Thus in Figure 9b, the 10's
will be set to zero, and the 15's will be set to 25 as in 9d.
This more accurately reflects the strength of the boundary

&

since it is between regions of intensity 15 and 40.

II.5. RELAXA: N (Step 2c¢)

IT.5.1. Background

The output of the differentiation process is usually far
from being clean. If the strengths of edges are viewed as
probabilities of the existence of edges, usually few of them
would be considered to have probabilities of 0 or 1. An edge
probability that is neither O nor 1 is effectively an ambiguous
interpretation of the entity concerned. A relaxation process
allows the local context around each edge to update the prob-
ability so that ultimately the ambiguity is reduced and inter-
pretations are locally consistent. In this scheme, a label 2\
is assigned to each position with an initial probability P(X).

The set of labels A would be a set of edge-descriptors, such

e - A S —
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Figure 9:

9c¢ the top line in 9b has been suppressed;
9b has been suppressed and its strength added in to the bottom line.

Figure 10:

9a intensity values;

Three horizontal edges in a vertical column.
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as "horizontal edge,' '"vertical edge,'" etc., and usually
including a special label, the "null edge'" which is an as-
sertion that there is no edge at that point. [Lach probability
for every label on every object is then updated in parallel
according to its compatibility with the labels on neighboring
objects (in some predefined neighborhood). Under quite re-
stricted conditions convergence can be guaranteed [12], al-
though not necessarily to any meaningful global interpretation.
Consider the relaxation model described in [13] and sum-
marized above. This kind of relaxation, for reasons noted
below, will be called "homogeneous relaxation.'" An implementa-
tion is described in [14] and will not be treated in detail in
this paper. The relaxation scheme is summarized by the follow-
ing equations. Let P(k)(x) be the probability of label ) on
object a after the kth iteration. If er(A,A') is the com-

patibility of label X on ay with A' on ajk then

pi(k)(x) 1+ q‘®

Pi(k+l)(k)

£ By S 1 e g P ))
A'

where q(k)(x)

]

; k),
Eody [i'rij(x,x ) PN,

The dij serve to select the neighborhood of Pi and weight the
contributions of the P, according to distance (or some other
property of the neighborhood).

The heart of the scheme is in the setting of the compati-

bility coefficients rij' The aim is to set these weights so

that the following goals are achieved:
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(1) Neighboring edges which can form a consistent line
continuation should support each other. Edges lost
through local noise should be brought back in-line

through support from neighboring edges.

(2) Edges locally introduced through noise should be
eliminated through lack of support from neighboring
edges (or from inhibition through the neighboring
"null'" label).

(3) Multiple indications of the same boundary due to
either the inaccuracies of the digitization process,
or through gradients, should be eliminated through
mutual inhibition of parallel edges.

The beauty of the process, then, is that it seemingly ac-
counts for all these conditions through the use of a single
formula applied iteratively. The trouble is that there are
drawbacks to this kind of processing due to just that fact.
Consider the case where the neighborhood of a point is the
3x3 window of points centered upon it, and a point can have
three labels: horizontal edge, vertical edge, and no edge
(the '"null" label). There are many weights to be specified
if one considers the relationship of the surrounding horizontal
and vertical edges to the given edge (in fact, §:%:§ = 18,
subject to symmetry). More labels (e.g. diagonal edges) and
a larger neighborhood give rise to many more relationships.
Although relative angle between a pair of edges could be used
to provide a simple measure of their mutual support [14], it
will run into many cases when the relative spatial positions
of the pair of edges is taken into account (i.e. relative angle

is not enough unless the edges are restricted to having a common

joining point).

—— ey = g - -
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Not only are there many weights needing to be set, but
due to heavy interdependence of effects there is no direct
correlation between the setting of an individual weight and
the performance of the system. Thus, tuning can be very dif-
ficult, since it requires optimization of many variables si-
multaneously. Furthermore, there is no guarantee that it is
possible to set weights such that all the desired effects can
be achieved simulatneously. White it is fairly straightforward
to set the weights so that some of the more obvious cases are
taken care of, there is rarely enough leeway to adjust them so
that the more awkward cases, such as #3 above, are managed
correctly. Indeed, it is difficult to determine where the
system is failing, or how it is achieving its results.

It appears that one source of these difficulties arises
from the fact that the updating process employs a single
formula that is used to take care of the various very differ-
ent cases that arise. In the next section, an alternative
scheme is proposed which will deal with each of the afore-

mentioned problems separately, in a clearly structured manner.

11.5.2. A Different Representation for Relaxation

In the scheme just described, a set of labels are com-
peting for each point in the image. Thus for a point on a
diagonal boundary, both horizontal and vertical labels will
be competing. In our representation, we can allow both labels
to coexist at a pixel since we are placing edges at interpixel

boundaries, not on top of the pixel. Therefore, at each

=
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vertical pixel boundary the only labels we need to consider

are ''vertical edge'" and '"no edge,'" and similarly for horizontal
edges. In this way, the set of two probabilities at each edge
location {Pi())|A € A} can reduce to a single parameter Pi.
The probability of an edge at position 1 is Pl, while the
probability of the null label "no edge.' at position i is

1 - Pi. Relaxation is very much simplified as a result ol
this representation.

We will use the notation of Figure 12 to describe the
edge-configurations under consideration. An open rectangle
represents the edge to be updated. A dotted line represents
an edge-position with no edge present, a thick solid line an
actual edge, and 2 thin solid line an edge of undetermined
strength.

The algorithm employed may be summarized as follows:
Every edge position may be defined by its two end-points, and
every end-point has three other edge-positions incident upon
it. Each edge-position will have a value associated with it,
indicating the probability of an edge at that position. cach
edge end-point will be classified as one of four "vertex-
types' according to the strengths of the incident edges. The
vertex types of the end-points of the edge-position under
examination will then determine how the edge-strength is to
be updated.

The homogeneous form of summing the contributions inde-
pendently has the advantage of being easy to formulate, but

it is often difficult to comprehend what is actually happening
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Figure 12:

12a 12b

12c 12d

Notation. 12a. edge position with no edge; 12b. edge

position with edge; 12c. edge to be updated; 12d. edge of unknown

strength.

Figure 13:

Edge to ke updated has strong local support.




I T W . MR ..

e R S A A o bR S A R et i o o o

in the process. In clear-cut situations, such as the one
shown in Figure 13, it is easy to figure out what is happening
internally and to know that a proper setting of the weights
should definitely cause Pr(e) to be increased. However, in
more '"cluttered'" situations, it is unclear what will happen.
One approach is to set the weights so that all the "obvious"
cases produce the clearly desired results.

Consider the three cases in Figure 14. Suppose edges
a, b, g, and h where indicated are strong, and edge e is weak.
It is probably the case that in 14a and 14b it is desirable to
have e come up as a strong edge and thus link the edge segments
on the left and right sides of the diagrams; yet in case l4c,
the opposite is true. No linear combination of weightings can
accomplish this.

This is not to say that iterative processes should not be
used. Indeed, they allow local information to propagate and,
in essence, provide a wider local '"window'" or context than
is actually being used locally. To use large windows directly
can be prohibitively expensive computationally, since the
number of different configurations possible within a window
increases exponentially with the area of the window. Further-
more, iterative processes lend themselves very well to machines
capable of processing large arrays in parallel. Such an archi-
tecture is ideally suited to the kind of processing required
in a low-level vision system. So while relaxation is considered
to be a worthwhile process, additional structure in the proces-

sing is required.
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14a

14b

l4c

Figure 14: 1t is clear that edge e should have its probability
increased in 14a and 14b, but not in 1l4c.




It may be argued that in order to take care of the inter-
dependency of the surrounding edges, combinations of these
edges should be taken as units entered into the relaxation
scheme. For example, the maximum of the three edges adjoining
each endpoint of e could be used in the relaxation formula.
However, in order to take care of all the interdependencies,

a large number of these combinations needs to be evaluated,

and there still remains the problem of setting the weights.

I1.5.3. Cases for Updating Edges

A different iterative procedure for updating the proba-
bilities 1s described below. The following notation is used
to depict the neighborhood characteristics (or state) of e;
the symbols i-j denote that configuration i is at one end of
central edge e, and j is at the other. A configuration of n
edges to one side of e will be considered equivalent no matter
what their positions in the three possible edge positions to
that side of edge e. The four types are depicted in Figure 15.
Obviously i-j = j-i, so we need only consider the cases 0-0
through 3-3 shown in Figure 16. These are the cases i-j where
i < j. The determination of which vertex types are present is
computed as a function of the probabilities of the three edges
to either side and is discussed in Appendix A.

In states 0-0, 0-2, 0-3, one can quite confidently say
that there is no good support for e, and in 1-1, 1-2, 1-3 one

can quite confidently say that there is. However, if e is in

— e ——————p—— e T ————
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Figure 15 Classification of "vertex-type" of

left-hand end-point
of edge e. 15a. Type 0; 15b. Type 1; 15c.

Type 2; 15d. Type 3.
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state 0-3, for example, it is conceivable that the situation
is really as in Figure 17. In such a case, the current
strength of e may be a determining factor.

Two points may now be made. First, in some of the above
conditions it is clear how edge e should be updated. There-
fore, the updating process could explicitly modify the edge
strength as an increase or decrease rather than adding a
quantity e which is calculated by a complicated formula in-
volving local edge strengths and many weights. Secondly,
as information may need to organize and propagate for some
period of time, updating increments (decrements) should not
drive the probabilities to one (zero) too quickly. Rather,
the increase (decrease) should be some small amount on each
iteration.

So in cases 1-1, 1-2, and 1-3 we will let e increase
(see Figure 18); and in cases 0-0, 0-2, 0-3 we will let e
decrease (see Figure 19). 1In all other cases there is really
not much help to be derived. Leaving aside case 0-1 for the
moment, we see that in none of cases 2-2, 2-3, 3-3 (see
Figure 20) is the presence or absence of e critical for the
continuation of a neighboring edge since they have alternative
directions for continuation. It will not introduce or elimin-
ate 'cracks''--edges terminating at an indeterminate point.
Whether e should exist or not depends largely upon its
strength--continuity of properties to either side--and little

else, at least until higher level knowledge is applied.
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Figure 17: Edge e is classified as being type 0-3. I its

strength is high, it is likely that edge a will Join up with it.

The desirability of this effect is not so clear if e is weak.
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Figure 18: Cases for incrementing edge.




Figure 19: Cases for decrementing edge.

Figure 20: Uncertain cases.
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Case 0-1 is really the only problem. The neighborhood
on one side strongly supports e, the other suggests that e
should be absent. As no sensible decision can be made, no
action is taken here, or in cases 2-2, 2-3, and 3.3. This is
a very important decision. It implies that in the updating
process, the 0-1 case remaining constant wil! prevent lines
from growing into noise or from being eaten away at its end-
point .

The operation of the systems in updating an edge is then
as follows:

Increment: e &—— Min (1, e + k)
Decrement : e &—— Max (0, e - k)
Uncertain: e &— . @€

where K is a constant. A large K gives fast convergence, but
does not permit information to propagate very far before edges
survive or decay. For small K the opposite is true. A value
of about .15 to .20 was found to be suitable. Typical results

of using this relaxation process are given in Figure 21].

III. GROUPING

II1.1. BIND (&tep 3a)

The next stage is to decide which neighboring edges will
link up to form extended line segments. It is clear that those
points in the current representation which have 1, 3, or 4
edges entering them are natural termination points, i.e. end-
points or vertices, for these line-segments (see Figure 22).

This tends to break boundaries into boundary segments which lie
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Figure 2la. Intensity
after preprocessing.

Figure 21b. Differenti
version of 2la. Edge
strengths have been
thresholded at .25 for
display purposes only.
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Figure 21d. Differentiated version of Figure 3b.
Edge strengths have been thresholded at .25 for
display purposes only.




Figure 2le. Results after &
applied to Figure 21d.

iterations

of relaxation
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between only two regions. This was a major design considera-
tion in the RSE representation of low-level output in the
VISIONS system [1].

It will be possible for an edge to be absent at position
e in Figure 23, while at the same time the features associated
with points C and D to be sufficiently different that a vertex
should be introduced. This case can occur when the information
organizing the boundary between C and D does not get enough
global support to survive. Note that C and D could be regions
larger than a single pixel. The logic underlying this analy-
sis is that if C is sufficiently different from D then the
boundary between region A-B and C is a different entity from
the boundary between A-B and D, and so the two should not be
grouped together.

As it happens, this computation is of theoretical inter-
est only since in this implementation the only feature we are
using is light intensity. Thus, no information will be ac-
crued that wasn't present in the differentiated image. How-
ever, if some other features were examined here, for example,
those that are difficult to differentiate like color (hue),
then this would be a valuable technique.

The first stage of the binding process, then, is to
mark as vertices all those positions with the characteristics
of the configurations in Figures 12 and 13. Following this
computation, it is straightforward to track all segments be-

tween vertices and assign a unique label (line-number) to each

boundary segment.
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Figure 22: Three kinds of vertices. (a) Order-1; (b) Order-3,;
(c) Order-4.

23a 23b

Figure 23: A,B,C, and D are intensity values. If C is significantly
different from D along some feature axis, then a vertex should be
introduced as in 23b.
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I1I.2. FEATURE EXTRACTION (Step 3b)

For each unique line-segment a set of properties can be
established, some requiring recourse to the original intensity
image, or at least, the intensity image that was differentiated.
Typical properties to be associated with the segment label are:

(1) coordinates of end-points;

(2) N-length (defined as the number of edges that com-
prise the line);

(3) E-length (defined as the Euclidean distance between
the end-poirts);

(4) frequency with which the edges that comprise the
line change direction;

(5) mean and variance of contrast across the line,
computed along its length;

(6) mean and variance of difference between neighboring
points on either side of the boundary computed along
its length.

Properties 2 and 5 can be used to give a measure of confi-
dence for the line. Property 6 gives an indication of the
homogeneity of a thin peripheral strip of the regions that the
line bounds. Properties 1, 2, 3, 4 can be used to compute

a measure of the straightness of the line. These properties

are important for later use in the high-level system.

IV. POSTPROCESSING

IV.1. TRIM (Step 4a)

These techniques will clean up the low-level segmentation
prior to passing it to the high-level system. While there
are limitless criteria that can be developed from the features
listed earlier, one of the simplest was tested and found to

give very satisfactory results. This operation is described
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below and is followed by a discussion of other criteria that
may typically be applied.

A terminating point of a line-segment will be considered
to have order 1 if there is only one edge (of the four possible
edges) incident upon it; this type of line termination will
be called an end-point. The criterion we use is quite simply
to eliminate all edges of length 3 or less that have at least
one end-point. This will then remove all the small (< 3 units
of length) '"cracks'" or '"spurs' in the image. Figure 24 shows
the result of applying this process to the output of the

RELAXATION stage.

IV.2. Other Clean-Up Techniques

It may so happen that long continuous line-segments are
broken by the introduction of vertices, as shown in Figure 23.
This might occur because of variations in region properties on
one or both sides of the line. However, if the breakage is
due only to local effects (e.g. noise points), the situation
can easily be remedied. Consider Figure 25. If the statistics
gathered in the binding phase indicate that the regions above
and below line Ll have similar characteristics to those above
and below L2, the vertex may be removed and the lines merged
to form a single line-segment.

Let Iﬁu be the mean of some property k of line Ln’ and

k
no

1 be the corresponding standard deviation. Then, a reason-
able measure for merger of a pair of contiguous segments might
be

114, = I | s k(I + I

lu 2u 20)
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Figure 24. Postprocessing. The short edges and most of
the smallest (l-pixel) regions have been removed. This
represents only the first set of clean-up techniques
which are currently under further development. Figures
24a and 24b show this post-processing applied to the data
in Figures 2lc and 2le respectively.




p
e ————— ¢




I

42

where k is a constant between, say, 1/2 and 1. Of course,
the references to '"'above'" and "below'" are conveniences used
in conjunction with Figure 25 to facilitate the description.
The directions in which the regions lie depend upon the
orientations of the lines.

Removal of edges can also improve the output. Sometimes
a weak boundary segment grows (or rather survives) because it
is between two other strong lines. This situation is depicted
in Figure 26. 1If L3 is very short and has low confidence
(because regions C and D have smiliar characteristics, and so
there is little contrast, if any, between them), it is a

signal for the possible removal of L A further

3"

A further condition for the removal of edge L3 is the

degree to which region A = region B, and region E - region F.
If these conditions call for L3 to be removed, its end-points
will no longer be considered as vertices, with L1 merged with
L2, and L4 with L5.
There are many other possible approaches. For example,
"bubbles," i.e. single pixels surrounded on four sides by
edges, are not meaningful regions, and may be removed by

eliminating some or all of the edges concerned, according to

context. However, since there are so many such heurstics to

be tried, we will postpone a thorough analysis for another paper.
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Figure 25: If the properties of lines L1 and L2 are sufficiently
alike, the vertex can be removed.
A B
3 ®
|
C 1 D
I
L4 O Ls
E F

Figure 26: Configuration for possible clean up. See text.
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APPENDIX A

Computation of Neighborhood Pattern

We would like to classify the configuration of edges to
each side of e as one of the four vertex types given in Figure
15. Consider first the left end-point in Figure 27. We will
assume that the numerical values associated with edges are in
the range 0-1, representing probabilities of the presence of
an edge.

Since we are treating perpendicular continuation as
equivalent to straight-line continuation, a and c¢ have exactly
the same effect on e as does b, we can assume without loss of
generality that

i ol
Assuming independence of the edges (unfortunately, often a

bad assumption), a simple calculation would give for vertex

types 0-3:
Pr(type 0) = (1l-a)(l-b)(1l-c)
Pr(type 1) = a(l-b)(1l-c¢)
Pr(type 2) = ab(l-c)
Pr(type 3) = abc.

The case with the highest probability is then chosen as being
the '"'state" of the left side of edge e.

However, in cases where, for example, b and ¢ are very
low and a is considerably larger than them but perhaps not
close to 1, we would like a strong indication of a type 1
vertex (see Figure 28a). The remedy would be as follows:

Instead of subtracting a, b, and ¢ from 1 to form the no-edge
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probabilities, we can subtract from m, where m = max(a,b,c) =
a in this case. m thus represents at a very local level the
probability of a high-confidence edge.

Thus we have:
Pr(0) = (m-a)(m-b)(m-c)
Pr(l) = a(m-b)(m-c) ... etc.
There is one difficulty with this formulation. It a as

much larger than b or c¢ but this time is very close to zero
itself (see Figure 28b), then Pr(l) wiil be larger than Pr(0)
when type O should actually be selected. This can be easily
fixed by anchoring m to some minimum value, (say-l). We need
a lower bound for m because there is always a chance that a
stronger edge should be present. This will guarantee type O
to be the most probable edge when all incident edges have very

low strengths. Thus, the final definition of m is

m = max(a,b,c,.1) and
Pr(0) = (m-a)(m-=b)(m-c)
Pr(l) = a(m-b)(m-~c)
Pr(2) = abtm=c)

Pr(3) = abc.

As it happens, we do not need to normalize these probabilities
so that they sum to 1. We only need to know the relative sizes

of Pr(i) since we will select type i, where Pr(i) = max[Pr(j)].
J
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Figure 27: The neighborhood of e, the edge which is to be updated.
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Figure 28: Two configurations depicting low-probability
neighbors of e; vertex-type 1 is indicated in 28a, and vertex-
type O in 28b.
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