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1. Introduction

This report describes the mathematical analysis on which

- ~: the program modifications to Fotonap are based. Implementation of
S.

the option not to compute the covariance matrix of the solution

vector did not involve any new analysis and therefore is not

described here. It did , however, involve the programming of a

completely new back-substitution subroutine (INVRTC). The time

saving achieved when this option was exercised was also quite

significant, the time taken to obtain the solution of the normal

equations matrix being reduced from 1 hour 50 minutes to 20 minutes

for a typical run using photograuimetric measurements. The main

part (Section 2) of this report describes Geoceiver measurements.

Section 3 deals with the Hopfield tropospheric refraction

correction formula. Although the formula used in Fotonap is

F algebraically similar to the NSWC version of the Hopfield model, it

is computationally rather different. Also, in the Fotonap version

of the Hop field model , default values for temperature and pressure

are adjusted for station height.

The Fotonap User ’s Guide has been modified to be consistent

with the new version of the program. The changes to the User’s

Guide are described in Section 4.

As the changes to Fotonap to handle Geoceiver measurements -

had to be fairly extensive, some changes to the program structure for

computing predicted measurements (involving subroutines PRTIAL,

MEASUR, MESOLD) were made in order to facilitate such changes. In

order to check that these changes did not introduce errors in the

computation of existing measurement types , a test case involving all

— 1- 
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different measurement types was devised. Interestingly, this revealed

errors in the computation of some of the partial derivatives of

the old version of the program . The analysis for these changes

to program are not included in this report , but are based on the

analysis in reference 9.

-2-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - _ _ _ _



F --.— .--

~~~~~~~~

_-

~~~~~~~

.-- .-

~

--

~~~ 
---.--.—-.-— -

1

2. Ceoceiver Measurements

Although geoceiver measurements may be regarded as

measurements of range differences , the correspondence between the

two is exact only in the absence of an atmosphere between the

transmitter and the receiver. In practice, of course, the atmos-

phere cannot be removed. However , the atmospheric effect may be

removed. The two parts of the atmosphere, the ionosphere and the

troposphere, have quite different effects on the measurements and

must therefore be treated separately. The ionospheric effect,

which is frequency dependent, may be estimated through the use of

a two-frequency transmission . The tropospheric effect may be

cr ~ited with the aid of a tropospheric model. In order to do

~ever, it is necessary to know the geometrical relation-

~~~~~~~~kiS between the transmitter , the receiver and the troposphere.

For that reason, tropospheric corrections are usually computed

in an orbit determination program rather than in a preprocessor.

(Section 3 of this report describes the NWL-Hopfield tropospheric

model and how it is used in Photonap to compute tropospheric

corrections.) In the following description of geoceiver measure-

ments it will be assumed that atmospheric corrections have been

made to the data. For this reason no further mention will be

made of the atmosphere.

A satellite transmits a constant frequency signal that

is received by the geoceiver. The received frequency will,

because of the motion of the transmitter relative to the receiver ,

differ from the transmission frequency by the (one-way) Doppler

frequency .

-3-

~~~~~~~~~~~ ~iz~i 
~~~~~~~~~~~~~~~~~~~~~~~~~~



.— - -

Let R(t) denote the retarded range of the transmitter

relative to receiver at time t. In other words, R(t) is the

length of the signal path for a signal being received at time t. - ‘

Furthermore, let ft(t) denote the derivative of R(t) with respect

to t , and let c denote the transmission velocity . Then clearly

~t(t) = ~~~~t) (2 1)
C ‘V 0 

-

where ‘V~ is the transmission frequency , and ôv(t) is the Doppler

fr equency at time t. Integrating the above equation between times
(t - T) and t, we deduce that

g(t) = R(t) - R(t-T), (2.2)

where the geoceiver measurement g(t) is given by

g(t) = ~~ fT~~v(t  + t - T) di. (2.3)

The geoceiver equipment may be either ground based or carried by

a satellite. The first case is the more common one and will be

considered first.

2.1 Satellite-to-Ground Measurements

Let X50 (t) denote the satellite position vector at time

t in the ‘Mean of date, 1950.0’ coordinate system. (This is the -

inertial coordinate system used by Photonap for all orbit computa-

tions.) Also, let R D5 denote the rotation matrix transforming

vectors in the ‘1950.0’ system to the ‘true of date system’ at

time t. Although R05 obviously is a function of time, it may be

regarded as constant over a period of about a minute. The rotation

-4-
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matrix R~D(t), 
which transforms an ‘of date ’ vector to an ‘Earth

fixed ’ vector is defined by

cosA(t) sirLA(t ) 01
I~f D( t )  = -sinA(t) cosA(t) 0 (2.4)

0 0 ii ,

where A(t) is the Greenwich riour angle, and A( t )  = w , the Earth’s

rotation rate .

The inertial satellite vector i~(i ,t) is defined by

= RFD (t) R05~c50 (t) (2.5)

Equation (2.5) can be seen to represent the satellite vector in

an inertial coordinate system that coincides with the ‘Earth

fixed ’ coordinate system at time t = t.

Denoting the ‘Earth fixed’ station-vector by ~~~~ , the

retarded range , R(t), must , by definition , satisfy the equation

R(t) = \ J f i~~~~ T ,t)].[~~F~~~~~~i(T ,t)], (2.6)

where, = t - R(t)/c (2.7)

The simultaneous equations (2.6) and (2.7) cannot be solved

explicitly . However, on account of R(t)/c being small, the

equations can very easily be solved using an iterative technique . -

The predicted geoceiver measurement is then computed

using equation (2.2).

-5-
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2.1.1 Measurement Partial Derivatives

Let ~~(t) be defined by

~~(t) = -
~
j. ~c5o (t ) (2.8)

where p is any parameter affecting the orbit. (p may , e.g.,

be a component of the initial position vector or a coefficient

of one of the spherical harmonics of the gra - ”ity field. Photonap

computes a vector ~ for each unknown parameter affecting the orbit.)

Squaring both sides of equation (2.6) and differentiating

with respect to p we obtain

R(t) .
~~~~ 

R(t) =[i(t,t) - 
~~~~~~~~~~ 

i(~r ,t) + ~~ i(~ ,t) .~.I} 
(2.9)

Writing

~ ~~~~ - ~FJ /R(t) (2.10)

and

= ii - .
~~~~~

- i~(i ,t) (2.11)

we find with the aid of equation (2 .7)  that

R(t) = ii - f~
. i~(t ,t) + 

~
.o {- 

~ ~~ 
R(t)] (2.12)

It hence follows from the above and equaUons (2.5) and (2.8) that

-h R(t) = R~ (t) R~~~(i) , (2.13)

where

= ii/(l + I~.o/ c). (2.14)

-6-
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Differentiating the square of equation (2.6) with respect -

to the station vector ~~, we similarly obtain

R(t) 
h

R(t) = [i(r~ t) - SF] 
.{
~

- i(t,t) .~~~]_ [i(T ,t) SfJ

whence

= 

~ [- ~~ ~~~R(t)] - ii.

We hence deduce that

= - iio (2.15)

To obtain the time derivative ft(t), we similarly deduce

from equation (2.6) that

R(t)f~.(t) =[i(t~t) 
- 

~
]. [

~ 
i(t,t) + ~~~~~~ i~(i ,t)

whence by equations (2.10), (2.11) and (2.7)

~t(t) = * h i~(i ,t) + a0[l - ~~~

From the above equation it follows that

k(t) = i’..~ / ( l  + ho/c) + ilo . 
~~~~~~ i~(t ,t) (2.16)

It may readily be verified that with the rotation matrix RFD given

by equation (2.4)

1 ol
R F D R~ 

= wI- l 0 0 ~ (2.17)
D 0 0 0

Since it follows from equation (2.5) that

~~ i(r , t) = R
PD
(t) RD . X50 ( T ) ,

—7—
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and R05 X~~o (i) = R 1
~ (t) i( i , t ) ,

we deduce with the aid of equation (2.17) that

I x2(i,t)l}.- x ( t , t) = w ~-x i ( T , t ) I  (2.18)
t

Furthermore, since

(x1 —S i)x2 — (x2 — S 2 ) xi = (xl — S l ) S 2  —

it follows from equation (2.16) that

R(t)  = R0/(l + ito/c) + W [( UO ) i  S2 - (Uo)2 s1] (2.19)

2.2 Satellite-to-Satellite Measurements

In this type of measurement the ground station is replaced

by the satellite and the satellite is replaced by another satelLite ,

whose orbit in general can be considered known. In this case ,

equation (2.6) is replaced by

R(t)=V
~
x5o (t) - ü50 (i)]

. 
[i~ (t) - U50 (i)] (2 .20 )

where ü50 (t) denotes the position vector of the transmitting

satellite, and r satisfies the equation

= t - R ( t )/ c  (2.21)

2. 2.1 Measurement Partial Derivatives

Similarly to the satellite-to-ground case, we find that

-8-
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- ( R(t) R(t) = ~~~so (t) - U so (~r)~ 
. ~~(t)+ U5~

Hence, writing

= [u~ (T )  - i~~ (t ) ]/R (t ) , (2.22)

and

R
~ 

= (2 .23)

we deduce that

.~~~~. R(t) = -
~~~~~~ 

. ~ (t) (2.24)

where

= ~/ (1 + R5/c) (2.25)

Corresponding to equatior. (2.8), we define

~ (t) ~ — U~ Q (t) . (2 .26)
$ PS

It then follows that

~~~R(t) = -
~~~ 

. [_ ~~~(~ ) - ü50 (-r ) (- ~~~j~ R(t))].

i.e. ,

R(t) . 

~~~ 

(t )  -
~ ~~5(~~ -

~j 
R(t))

Hence ,

~~~R(t) = -

~
‘

~~ ~~~~(i) (2.27)

[Note that if both satellites are functions of the same parameter, -

such as a gravity coefficient , so that p and p are the same para-

meter , then the partial derivative is simply the sum of the right
-9-
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hand sides of equations (2. 24) and ( 2 . 2 7 ) ]

Differentiating equation (2.20), we obtain for the time

derivative

= - - us 0 (i) ( l  - ~ k(t))] ,  
—

i. e . ,

it (t )  = - . X 5 Q + R411 - ~~ R(t)] .

Consequently ,

ft(t) - X 5 0  + f~~/ (l  + 1t5 /c) . (2.28)

_ _ _  

-~~~~~-:~~~~~~~. 
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3.0 The NWL-Hopfield Model for Tropospheric Refraction of

~~çIio Ranging Signals

3.1 The Index of Refraction

The NWL-Hopfield model , like many similar models , is

based on the Smith-Weintraub formula (reference 1)

N = 
77.6 + 4810 

~
], (3.1)

where

N is the refractivity (N = (n-l) l06 , where n is the
refractive index},

T is the temperature (degrees Kelvin) ,

p is the total pressure (millibars) ,

e is the partial pressure of water vapor (millibars).

Smith and Weintraub claim that for frequencies below 30,000 MHz

the formula is accurate to within 0.57~ for te~rperatures between

-50°C and 40°C, pressures between 200 mb and 1100 nib , and par tial

water vapor pressures between 0 nib and 30 nib .

It is interesting to note that the formula is derived

from the three-term expression

N = k 1 ~~~+k2~~~+ k 3~~ 2 , (3.2)

where , “the first term expresses the sums of the distortions of

electronic charges of the dry gas molecules under the influence

of an applied electromagnetic field, the second term the distor-

tion for water vapor, and the third term the effect of the

orientation of the dielectric dipoles of water vapor under the

influence of a field.” Consistant with equation (3.1) k1 = 77.6.

-1.1-
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k2 and k3 were determined by Birnbaum and Chatterjee (reference 2),

who obtained k2 = 72.0 , k 3 = 3.75 x iO~ . Since the total pressure

p = p~ + 
e, equation (3.2) may be rewritten in the form

where k 3’ = k3 - (k1-k2)T. Since k1 and k2 are nearly equal , the

temperature variation of k3’ is so small that for the region of

applicability of the formula this may be neglected. Formula (3.1)

thus results.

3.2 Pressure and Temperature Variation with Height
- 

. In this section the derivation of the required formulae

will closely follow that given by Hopfield (references 3, 4, 5).

Theoretically, a~ , the rate at which the temperature of dry air

decreases with height (the dry adiabatic lapse rate) is given by

= ~ ~~, (3.3)

where g = 981 cm/sec2 , is the acceleration due to gravity

m = 29.0 grams , is the mass of a mole of dry air, and

R. = 8.31 x lo7 ergs/ (mole) (deg Celsius) is the Universal
Gas Constant.

The theoretical rate, 9.8°C/km , is rather higher than the observed

rate, which is closer to 60C/km. The observed rate does, however,

fluctuate. Hopfield realized that if she could choose a lapse

rate a, which is an integral fraction of (gm/R), then her tropo-

rpheric model would be much simplified. The Hopfield value,

6 .840 C/kin, corresponds to

a = ~~~ ~~~~. (3.4)

________ 

- . 

-12-
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The temperature lapse rate is assumed to be constant so that

T = T0 - czh (3.5)

where T0 is the surface t emperature and h the height above the

surface. Since, clearly the temperature cannot drop below absolute

zero , the Hop field troposphere must possess an upper limit , h 1,

given by

= T
0

1a ( 3. 6 )

Assuming the earth to be flat and the acceleration due to, gravity

to be constant, we deduce that

= — pg, (3.7)

where p is the density of air . Writing the gas equation PV = RT

in the form

p =
~~~ , (3.8)

I 

we obtain with the aid of equation (3.5)

. = - gm/R(T 0 - ah),

whence,

p = p0 (l - h a/T 0)~~ (3.9)

I . From the above and equations (3.4) , (3.5) and (3.6) we obtain

p = p 0 (l - h/ h 1) 5  (3.10)

and

T = T0(l - h/h 1) (3.11)

I -13-
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Since 0°C corresponds to 273.16°K, it follows that equation

(3.6) may be written as

h1 = (273.16 + T~ )/ c t ,

where T is the surface temperature in degrees Celsius . Using

the value of cz from equation (3.4) we would obtain

= (39.3 + 0.146 Tc)km .

The actual formula employed by the Hopfield model is

= (40.1 + 0.149 Tc) kTLI . (3.12)

3.3 The Zenith Integral for Dry Air

The zenith integral is defined by

= 1

h 3 
N dh, (3.13) 4

where h1 is the upper limit of the modeled atmosphere. Since -

e = 0 for dry air it follows from equations (3.1), (3.10) and

(3.11) that 

h1
= 

77.6 P0 
f 

(1~h/hi)kdh ,

i.e.,
77. 6 p h1

5 T 0 
( .

It is interesting to note that if h1 were given by equations

(3.6) and (3.4), equation (3.14) reduces to

= 77 .6  p0R/gm, (3.14’)

so that the zenith integral i~ a function solely of the surface

-14- 
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pressure. Assuming that the Earth is spherical and that the inverse

square law of gravitation applies , this result may also be deduced

as follows. If r denotes the radial distance from the Earth ’s

center, then for static equilibrium the net surface force on a

small element of volume must balance the body force. Hence,

d I r2 \ _  ( r 2 \I r02 \
~~ ~P 

~~~~~~~~
) - - ~P~~~Y) ~~~~~~~~~

where g0 is the acceleration due to gravity at distance r0 from

the Earth’s center. Integrating the above equation between r0 and

~, the upper limit of the Earth ’s atmosphere , we deduce tha t

çr

J pdr = p0/g0

It follows from equations (3.1) and (3.8) that the ‘dry ’ ref ractivity

is given by N = 77.6 pR/ni , whence the zenith integral

= 77.6  p0R/g0m. (3.14”)

C 
It can thus be seen that the result is fairly general and is not

a function of the temper ature distr ibutio n within the atmosphere .

However , h 1 in the Hop f ield model is given by equation

(3.12) rather than by equation (3.6). The corresponding zenith

integral I , is given by

1 + T /269
= 2.28p

0 1 + T
:

/273 km , (3.15)

thus , showing that in the Hop field model the zenith integral

increases with temperature .

-15-
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FIGURE 3.1

The Transmitter to Receiver Straight Line Path

/
X

• /
- -  

v
_v

o
I-I

C.

O is the location of the receiving station

C is the center of curvature at the point 0,

X is the location of the transmitter ,

OC r0, the radius of curvature

QC r

OQ = s, the path length

angle QOH = E 0 ,  the elevation ang le at the station

angle OAC = %ir .
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3.4 The Range Cor rection

The computed range correction is given by
r0 +h 1

= 
f (n-i) dr, (3.16)

where r0 is the Earth’s radius of curvature at the receiving

station and ds is an element of path length. The error in performing

the integration along the geometric straight line rather than

along the actual path is small (reference 3) “reaching l07~ of 1~s

at the horizon but becoming neglibly small at elevation angles

above 3°or 4O~~t

Referring to Figure 3.1, it can easily be seen that

OA = r0 sin E0 and CA = r0cosE0. Since by Pythagoras

QC 2 = AQ2 + CA2 it follows that

r2 = (s + r0sinE 0)2 + (r0cosE0)2.

Hence r = (s + r0sinE0)~~ ,

r
— 

/r~ - (r 0 cosE0) 1 .

Since N = (n-i)l06 , it follows from equations (3.1), -

(3.10), (3.11), (3.16) and (3.17) that the computed ‘dry ’ correction -

t~SL, is given by
r0+h1 (1-h/h 1)4 r dr

A s1 = 77.6 X 10 1 /r 2 -(r 0 cosE 0 )2  
, (3.18)

where

h r - r0 * (3.19)
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Writing ,

= r 1 - r0, (3.20)

equation (3.18) may be re-written as

A S1 = 77.6 x l0_6 ~~~f (ri r r dr (3.21)T0 
r0 knI roI ~‘r

2-(r0 cosE 0)2

As pointed out by Yionoulis (reference 6), equation (3.21) may be

integrated in closed form, but the numerical solution, even in

double precision, is inaccurate at high elevation angles. Yionoulis ’

answer to the problem was to produce two separate solutions, one

being valid for all elevation angles except the low ones , the other

for all angles except the high ones. A simpler solution is

obtained by using the NWL approximation (Reference 7). This will

now be described.

Let N1 = 77.6 p0 /T0 106 (3.22)

Since,

r1- r (r12_ r2
~~(rj+ ro

’
1 (3.23)r1- r0 \r1

2_ ro2Jt~r 1+ r /
and since (ri + r0)/r1 + r) is approximately equal to one, it

follows that L~s 1 is approximately equal to

r1
t~s1 = N1 

‘
~o ~~~~ 

/r~_ro Z cosZEo 
(3.24)

A more rigorous justification for the NWL approximation (3.24) is

given in Appendix B.

Making the substitutions

x = r 2 - r02 cos2E0

x~ = r12 - r02 cos 2E 0 (3.25)

= r 02 - r 02 cos 2 E 0
-18-
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we deduce that
x l

As 1 = ~N 1 f 
(x1 _x \ ~ (3.26)

x0 \ X 1 XO)  ~~~~

A closed form solution for- the above integral (reference 7) is

easily obtained. However , if As 1 is computed by the usual method

of evaluating the solution at both limits , then the result will

be numerically inaccurate , par ticularly at high elevation angles.

A better way to evaluate the integral is given in Appendix A.

It follows from equations (3.26) and (3.25), and equations (1), (3),

(12) and (13) in Appendix A that,

* 

As 1 = N110(1 + ~t + ~~~ + ~~~~ + ~~~~~~~ (3.27)

where -

= (ri-ro)(r 1+ro)/d 
1

d = ,‘(r1-r o)(r1+ro) + r02 sin 2E0 + ro sinEoI. (3.28)

t = 10/d J
since d2~~- (r1-r o)(r1+ro), and r1-r0~~ O ,

if follows that

0<t~~i (3.29)

Since the last term on the right hand side of equation (3.27) con-

tributes less than 0.5% to the total integral, it may be neg lected .

We may therefore write As in the truncated form

A s1 = .
~
. N1 10 (1 + ~.t + ~.t

2 + ~~t3) (3.30)
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3.5 Adjustment for Station Height Above Sea-Level

Let h0 denote the station height above sea-level ,

and p~ and T. the pressure and temperature at sea-level. In

accordance with equations (3.10) and (3.11) we must then have

p0 
= p. (1 - h0/h1)5 (3.31)

T0 = T,(l - h0/h1). (3.32)

Since by equation (3.12)

h 1 = [40.1 + 0.149 (T, - 273)] km

it follows that

- h0 [(40.1 - 0.149 X 273)(l - h0/h1)+O .149 Tc]km

i.e.,

h1 - h0 = [4o .l + 0.6 h0/h1 + 0 .149 T~]km (3.33)

Since h 1 is of the order of 40km, the ra tio h 0/h1 is

small and may be ignored. Following O’Toole (reference 7) we

• thus obtain

- h0 = [40.1 + 0.149 Tc]km , (3.34)

In other words , the height of the atmosphere above the

station is independent of t’ie station height above sea-level.

Taking station height into account, equation (3.21) must

be modified to

As1 = 77 .6 x iO~~ 
~~ ~~ 0±hç~~~~~ 

/r2_ (ro+ho)2cos 2i

-20-
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whence , by equations (3.31) and (3.32)

A s1 = 77.6 x l0 6 
~~~~~~( 

(ri-r I h1’ r dr (3 .35)
Toj ~ri-r o/ (h1-h0) /r2-(ro+ho)2cos2E0r o+ho

Let s0 = r0 + h0, and k1 = h1 - h0 (3.36)

Since , by equation (3.20), h1 = r1 - r0, it follows that

h1 — h0 = r 1 — s0. (3.37)

We hence deduce that

As1 = 77.6 x 1O_6 2~2. 1
’ 

2 
r dr 

2 • (3.38)
T0 J ~r1-s0j /r -(s0cosE0)

so

Comparing equations (3.34) , (3.37) and (3.38) with

equations (3.12), (3.20) and (3.21) we see that the only difference

between the equations is that the radius of curvature r0 has

been replaced by the new radius of curvature s0. Since , further-

more , the range correction is compara tively insensitive to

variations in the radius of curvature , we conclude that as long

as the pressure and temperature are obtained at the station ,

the station height above sea-level may be ignored.

3.6 The ‘We t’ Correction

The partial, pressure of water vapor appearing on the

right hand side of equation (3.1) is computed as a function of

the fractional relative humidity hr (hr 1 corresponding to

100 percent relative humidity) and the saturation water vapor

pressure e5 . It is given by the formula

e hr e8 (3.39)

-21-
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where

e
~ 

= exp (l.80910 + 17.269425T ~) . (3.40) 1

Equation (3.40) comes from the National Climatic Center in Asheville ,

N.C., (Hopfield , Priva te Communication , 1976) .

• It was observed by Hopfield (reference 4) that “at

heights of 9 or 10km, the atmospheric pressure is still almost

one third of its surface value, but the par tial pressure of water

vapor is nearly zero”.

Seemingly without any theoretical justification , Hopfield

then went ahead to give the ‘wet ’ correction in a form similar

to the ‘dry ’ correction , equation (3.12) being replaced by

h2 = 12.0 km, (3.41)

and equation (3.22) by

N2 = .373 e/T02 , (3.42)

the remaining equations being left the same except for the

• subscript 1 being replaced by 2.

In the original Hopfield model , the ‘wet’ atmosphere

was assumed to have a ceiling of 12km above sea level. In the

O’Toole version the ceiling is at 12km above the station s The

problem is really that it is ex tremely difficult to modify a

model whose coefficients do not have a clear physical meaning .

In photonap the ceiling is also taken at 12km above the station .

- .- - 
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3.7 The Radius of Curvature

It is well known (see, e.g ., reference 8) tha t the

radius of curvature , RA , at a point on the Earth’s surface , must

satisf y

~~~
— = k.— cos2A + ~~

— sin~A , (3.43)

where
- -  

RN ~ a(l-e 2 ) ( l - e 2 sin 2 L ) 3 ~ ,
• R~ = a(1_e 2sin2L) ½ ,

a = 6378km is the semi-major axis

e = 0.081813 is the eccentricity

L is the latitude, and

A is the azimuth.

It can thus be seen that the radius of curvature is a

maximum (denoted by RMAX ) at the pole and a minimum (denoted by

R M I N ) in the North-South direction at the Equator . We find that

RMA X = a(1_e2)_½ = 6400km (3.44)

RMIN = a(l-e2)  = 6335km (3 .45)

The average radius ~ is given by

= a(1-e2)~ = 6371km (3.46)

In considering the Earth ’s curvature we observe that (i)

it has no effect on ray paths through zenith, and (ii) the

proportional effect increases as the elevation decreases . The

maximum effect can therefore be seen to occur at zero elevation

angles. It can be seen from equation (3.28) that for E0 = 0,
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Io = /r12 -r02 and t = 1,

whence we deduce from equation (3.27) and equation (19) in Appendix

A that the correction

A s1 = N1 v’r 12 -r 02 
~~~~~~~~~~ 

(3.47)

Since r1-r0 = h1 it follows that

As 1(ro) = N 1v’h1(2r0+h1), (3.48)

where we have written the left hand side in a form that indicates

that it is a function of r0. Differentiating equation (3.48)

logarithmically we obtain

As 1(ro) ~~~ s1 r0 — 
2r0+h1

From the above we deduce that approximate relationship

5[Asi (ro)J = 
or 0 (3 50)tisi (ro) 2r0+h1

choosing r0 to be the average radius R given by equation (3.46),

we see from equations (3.44) and (3.45) that ~Sr0 must be numerically

less than 36km for any point on the Earth’s surface. We hence

deduce that if we assume that the radius of curvature is a constant

then the proportional error (the left hand side of -equation (3.50))

is less than .003. In other words, taking

= 6371km (3.51)

leads to an error that does not exceed 0.3 percent.
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3.8 Summary

The following equations are required for the computation

of the range correction .

N1 = 77.6 x l 0 6  p0/To, (3. 22)

where p~ 
is the total atmospheric pressure

in mullibars, and T 0 is the temperature
• (degrees Kelvin)

N2 = .373 e/T02 , (3.42)

- 

: 

e = h, exp (1.80910 + ~~,
2~942~Tc) (3.39)

where h~ is the fractional relative humidity ,
and T~(=To-273.l6) is the temperature(degrees Celsius)

h1 = 40.1 + 0.149 T~ 
(3.12)

h2 = 12.0 (3.41)

As = As 1 + As2, is the total correction , where

As1 N 1 d , t~ (~~+ ~~t1 + ~~~~~~~t~~~
2 + ~~t;~~), for = l,2,(3.30)

where,

d~ = ih~(2r0+h1) + (ro sinEo)2 + (r0sinEo) (3.28)
(3.20)

= h~ (2r 0+h1 )/d~
2

= 6371, (3.51)

and E0 is the elevation angle of the transmitter as seen from

the station.

Rahge corrections, computed for different elevation angles

and temperatures, are given in Table 3.1.
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TABLE 3.1

TROPOSPHERIC RANGE CORRECTIONS (HOPFIELD MODEL)

~levation ‘Dry ’ correction_(meters) 
____  

‘We t ’ correction ,çmeters)
Angle ~~~U0~~ ..3oUc 0~C I 30°C 40°C -30°C 0°C 30 C 40°C

- 

- 
0° 

- 

94.2 88.3 83.4 79.2 78.0 0.5 4.8 27.3 44.4

10 63.9 61.3 59.0 57.0 56.4 0.3 2.7 15.1 24.6

2° 46.6 45.4 44.2 43.2 42.9 0.2 1.8 9.9 16.1

3
0 36. 0 35. 3 34.7 34.2 34. 0 0.1 1.3 7.2 11.7

4° 29.0 28.7 28.3 28.0 27.9 0.1 1.0 5.6 9.1

6° 20.6 20.5 20.4 20.3 20.2 0.1 0.7 3.8 6.3

8° 15.9 15.9 15.8 15.8 15.8 0.1 0.5 2.9 4.8

10° 12.9 12.9 12.9 12.9 12.9 0.0 0.4 2.4 3.8

15° 8.8 8.8 8.8 8.8 8.8 0.0 0.3 1.6 2.6

C 200 6.7 6.7 6.7 6.7 6.7 0.0 0.2 1.2 2.0

30° 4.6 4.6 4.6 4.6 4.6 0.0 0.1 0.8 1.3

40° 3.6 3.6 3.6 3.6 3.6 0.0 0.1 0.6 1.0

60° 2.7 2.7 2.7 2.7 2.7 0.0 0.1 O..5 0.8

900 2.3 2.3 2.3 2.3 2.3 0.0 0.1 0.4 0.7 
-

The ‘dry ’ correction (As 1) has been computed for a pressure of 1013mb.

For other pressures the corrections should be adjusted proportionately.

The ‘wet ’ correction (As2) applies for 100 percent relative humidity .

Trte total correction (As) is given by

As = As 1 + h As2

where hr is the fractional relative humidity.
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4.0 çhanges to_th e Photonap User ’s Guide

The most important changes to the User ’s Guide s tem from

the added capability to process geoceiver measurements. Geoceiver

measurements have been assigned measurement type number 27 (see

Appendix IV). Photonap has the capability to process both ‘satellite-

to-ground ’ and ‘satellite-to-satellite ’ geoceiver data, the User having

to specify the type, which is being processed (see category 701 card,

key 8). Photonap computes ‘satellite-to-ground ’ tropospheric corrections

using the NWL-Hopfleld model. The User may be content to use default

values for meteorological data or he may input his own (see category

610 card . The category 610 card is also used to specif y the geoceiver

time interval). The geoceiver time interval may also be specified

as part of the observation record (see Appendix I) .  Geoceiver data

C 
(see Appendix IV) may be used to recover orbital parameters, station

locations, refraction parameters, measurement bias , measurement timing

bias , measurement drif t  rate and measurement scale .

Some relatively minor changes from NAP 3.lF, which give

Photonap a Mon te Carlo capability , have been added to Photonap

- (for more details, see Appendix B of the ‘Use of the GPS Satellite -

System for the Determination of the MAGSAT Position’ NAS5-23587,

Georg Morduch, Old Dominion Systems, September 1976). Affected

cards are 601 cards (Note 9) and 604/605 cards .

The User may , in the current version of Photonap, request

that the covariance of the solution not be computed (see Category

105, set 2).

Description of the mode 2 discrete thrus t has been

clarified (see Category 208 card).
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APPENDIX A
EVALUATION OF THE INTEGRAL

The integral ‘n is defined by
X

1
I~ 

= 

~~~~~~~~~ (~~
-
~~~

) 
(1)

Let

° (2)
y,~~i

_ v’i
~~

and

(3)

Differentiating equation (2) we obtain

,‘i~ (,‘5~~ - V~~ ) (4) 
-

From equation (3) we deduce that

2 v’~~.
(1 + t)/t= 1 (5)

if~~j -~~~ o

It hence follows from equations (2) and (3) that

[y _ l]Iy _ l+(l+t)/t] = , (6)
I

whence,

______  = [y - l][l + yt] (7)

Changing the variable of integration from x to y we obtain with

the aid of equations (2), (4) and (7),
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= ( - ) f (l-y)~ (1+yt)~ dy (8)

Since

( l+yt)’~ = s !(n-s) ! 
~~~~~~ (9)

s=O

• and 

(l-y)~ y
S dy = 

~~~:~l) 
(10)

it follows that

In ~~~~~~~ (n-~~~Rn+s+l) l t
s (11)

( Note that the definit e int egral of equation (10) is the well

known Beta function and is denoted by B(n+l,s+l) ]

Evaluating equation (11) for n = 0, 4 and 5, we find that

10 = ./~~ , - ,‘
~~ 

(12)

14 = .~.I0(1+~~t+~~t
2 +~~~t~ +~~~~

.
~.t4) (13)

[5 
= 3.10(1 + ~t + ~~~~ + ~~~ t 3 + ~~ t” + ~~~

.
~~t 5) (14)

For the special case t = 1, equation (8) becomes

= 1~iJ (l-y)~~(l+y)~ dy (15)

Since (1-y)(1+y) is an even valued function, we may also write

equation (15) in the form

~~~~ 1, _ fl (1~~~~~ dy (16)
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Making the substitution

u = ~.(l+y)

we obtain

I 
= 2~

ul un(l_ u)n du (17)

The integral on the right hand side of equation (17)

is the form of equation (10). We therefore conclude that if

t = l ,

• ‘n = 

~~i 
22~ (n!)2/(2n+l) ! (18)

In particular

(19)

I
4 -31-
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APPENDIX B

ThE NWL APPROXIMATION TO THE HOPFIELD INTEGRAL

In this appendix it will be shown that equation (3.24)

is a valid approximation of equation (3.21). Denoting the

difference by D, we find that

D = Nif 
[(r

i~~~r) 
-(

~~~~~o)i/
2
~~~~~~

o 2E 
(1)

= NlJ fr1
_ r
~~ 

r dr 
~, (2)

\r12 _ r o2/Ir~_ r oL cos1E 0

* 
where

G = 1 - [ri+ro]’ (3) 

1:
Since r ~ r0, it follows that

0<  
~~~~~~~~~~~~~~~~~~~~ 

1, (4)

whence G~~~O~~~d

D > O  (5)
b

To obtain anqi~~er bound of D, vJe write G in the - form

G= [1 + 
(
~~1~~~o)2][l+ ~~~~~~~~~~~~~~~~~~~~~~~

i.e.,
Iri-ro + (r -r 1)

ri + r o  
(6)

But

~~~ri) 
= 

(r 2 ...r i2) 
~~~~ = (ri -ro)
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Hence,

~~~ ‘~~~ ~ (~~~~~~~~ ) [
~ 

- 

~~~~~
2.

ro
2 ]  (7)

It hence follows for equations (2) and (7) that

~~~~~~~~~~~~ (:::z~:2~j  
(8)

Making the substitutions

x = r2 - r02 cos2E0, x0 = r02 -r 02 cos 2E0, x1 r12 -r o2 cos 2Eo,

inequality (8) may be written in the form

D < 4N1(~~~~ 0) [ii. - i~] 
, (9)

where

i = 
1 [ 1 1 n 

(10)
n v’~ L’~~’~°Jxo

Since the total correction As 1 may be written in the form

Asi N1 I~+ , (11)

it follows that the proportional error in the correction 6s f, (D/As 1)

must satisfy

Os~ < 4  
(

~~~~1~~~~~~~
o) [i 

- 

~~~
.] (12)

From equations (13) and (14) in Appendix A , we obtain

— 5(1 + a1t + a2t 2+ a3 t3 + a~ t’ + a5t 5
— 6(1 + b1 t + b2t’+ b3 t5 + ~~~~ + b5t~ 

(13)
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where a1 = 5/7, a~ 
= 5/ 14, a3 = 5/42, a4 1/42, a~ = 1/462,

b 1 = 2/3, b2 = 2/ 7 , b3 = 1/14 , b4 = 1/126 , b5 = 0.

Since for each s , a
~ 

> b5, it follows that the ratio 15/14 is

an increasing function of t. Consequently , 15/14 ~ 5/6 , and

6s 1 < 4(~~:~~~)(l 
-

i.e.,

o 2(r1—r0) 14S 1 3(r 1+r0)

Since r1 > ro , we finally obtain

Os~ < 
(r~;r~ (15)

Using the values r1-r0 = 50km , r0 = 6000km , we conclude that the

NWL approximation to the Hopfield formula is accurate to at least

one third of one percent.
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