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1. Introduction

This report describes the mathematical analysis on which
the program modifications to Fotonap are based. Implementation of
the option not to compute the covariance matrix of the solution
vector did not involve any new analysis and therefore is not
described here. It did, however, involve the programming of a
completely new back-substitution subroutine (INVRTC). The time
saving achieved when this option was exercised was also quite
significant, the time taken to obtain the solution of the normal
equations matrix being reduced from 1 hour 50 minutes to 20 minutes
for a typical run using photogrammetric measurements. The main
part (Section 2) of this report describes Geoceiver measurements.

Section 3 deals with the Hopfield tropospheric refraction
correction formula. Although the formula used in Fotonap is
algebraically similar to the NSWC version of the Hopfield model, it
is computationally rather different. Also, in the Fotonap version
of the Hopfield model, default values for temperature and pressure
are adjusted for station height.

The Fotonap User's Guide has been modified to be consistent
with the new version of the program. The changes to the User's
Guide are described in Section 4.

As the changes to Fotonap to handle Geoceiver measurements
had to be fairly extensive, some changes to the program structure for
computing predicted measurements (involving subroutines PRTIAL,
MEASUR, MESOLD) were made in order to facilitate such changes. In

order to check that these changes did not introduce errors in the

computation of existing measurement types, a test case involving all

wle




different measurement types was devised. Interestingly, this revealed
errors in the computation of some of the partial derivatives of

the old version of the program. The analysis for these changes

to program are not included in this report, but are based on the

analysis in reference 9.
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P Geoceiver Measurements

Although geoceiver measurements may be regarded as
measurements of range differences, the correspondence between the
two is exact only in the absence of an atmosphere between the
transmitter and the receiver. In practice, of course, the atmos-
phere cannot be removed. However, the atmospheric effect may be
removed. The two parts of the atmosphere, the ionosphere and the
troposphere, have quite different effects on the measurements and
must therefore be treated separately. The ionospheric effect,
which is frequency dependent, may be estimated through the use of
a two-frequency transmission. The tropospheric effect may be
c 1ited with the aid of a tropospheric model. 1In order to do

wever, it is necessary to know the geometrical relation-

ps between the transmitter, the receiver and the troposphere.
For that reason, tropospheric corrections are usually computed
in an orbit determination program rather than in a preprocessor.
(Section 3 of this report describes the NWL-Hopfield tropospheric
model and how it is used in Photonap to compute tropospheric
corrections.) In the following description of geoceiver measure-
ments it will be assumed that atmospheric corrections have been
made to the data. For this reason no further mention will be
made of the atmosphere.

A satellite transmits a constant frequency signal that
is received by the geoceiver. The received frequency will,
because of the motion of the transmitter relative to the receiver,

differ from the transmission frequency by the (one-way) Doppler

frequency.




Let R(t) denote the retarded range of the transmitter
relative to receiver at time t. In other words, R(t) is the
length of the signal path for a signal being received at time t.
Furthermore, let R(t) denote the derivative of R(t) with respect
to t, and let c denote the transmission velocity. Then clearly

R(t) _ sv(t)

Cc Vo

£2.1)

where v, is the transmission frequency, and év(t) is the Doppler

frequency at time t. Integrating the above equation between times

(t - T) and t, we deduce that

g(t) = R(t) - R(t-T), (2.2)
where the geoceiver measurement g(t) is given by

g(t) = g; fTGv(‘r +t - T) dr. (2.3)
0

The geoceiver equipment may be either ground based or carried by
a satellite. The first case is the more common one and will be

considered first.

2.1 Satellite-to-Ground Measurements

Let Xso (t) denote the satellite position vector at time
t in the 'Mean of date, 1950.0' coordinate system. (This is the
inertial coordinate system used by Photonap for all orbit computa-
tions.) Also, let R,s denote the rotation matrix transforming
vectors in the '1950.0' system to the 'true of date system' at
time t. Although R,s obviously is a function of time, it may be

regarded as constant over a period of about a minute. The rotation

iy




matrix R (t), which transforms an 'of date' vector to an 'Earth

fixed' vector is defined by

cosA(t) sinA(t) O]
(2.4)

Rep(t) =|-sinA(t) cosA(t) O
0 0 1
where A(t) is the Greenwici: hour angle, and A(t) = », the Earth's

rotation rate.

The inertial satellite vector x(t,t) is defined by
x(T,t) = Rep(t) Ropsxso (1) {2.5)

Equation (2.5) can be seen to represent the satellite vector in
an inertial coordinate system that coincides with the 'Earth
fixed' coordinate system at time T = t.

Denoting the 'Earth fixed’' station-vector by S¢, the

retarded range, R(t), must, by definition, satisfy the equation

R(t) 5V4§s - i(T,tﬂ -[§; - i(r,t)], (2.6)
where, T =+t - R(t)/c (2.7)

The simultaneous equations (2.6) and (2.7) cannot be solved
explicitly. However, on account of R(t)/c being small, the

equations can very easily be solved using an iterative technique.

The predicted geoceiver measurement is then computed

using equation (2.2).




2.1.1 Measurement Partial Derivatives

Let q(t) be defined by

Ble) = = EeolE) (2.8)

ap

where p is any parameter affecting the orbit. (p may, e.g.,

be a component of the initial position vector or a coefficient
of one of the spherical harmonics of the grawity field. Photonap
computes a vector q for each unknown parameter affecting the orbit.)

Squaring both sides of equation (2.6) and differentiating

with respect to p we obtain

R(t) = R(t) —[x(r t) - ],[Q_ (v, t) 4 S x(* t) ] (2.9)

Writing

& =[x(r,t) - 5,]/R(D) .

and

Bo = 0 ‘g‘f 2(T,t) .

we find with the aid of equation (2.7) that

13

LR =@ - &R, + Re[- £ 3 r(o) 2.
It hence follows from the above and equations (2.5) and (2.8)
35 R(E) = 8o * Reo(t) Resd (1), 2.

where
4o = u/ (1 + Re/c). (2.

10)

11)

12)

that

13)

14)




Differentiating the square of equation (2.6) with respect

to the station vector S, we similarly obtain

R(t) %g—'R(t) =[§<(r,c) - §,][-§—T %(T,t) Q—F]-[i(r,t) = Q,],

93
whence
3 T o 5 i
3§;R(t) = Ry [ = a§FR(t:):| u
We hence deduce that
S_R(t) = -1 (2.15)
ag 0 . 7/

To obtain the time derivative R(t), we similarly deduce

from equation (2.6) that
R 2 _lz a 9 = d = 9T
(t)R(t) -Ex(r,t) - SF]- ['5{ x(t,t) + % x(T,t) 5{],
whence by equations (2.10), (2.11) and (2.7)
R(t) = T - a—:’c(-: t) + R l—lR(t)]
ot 2 g c 3
From the above equation it follows that
R(t) = Ro/(L + Ro/e) + T + 3= X(1,t) (2.16)

It may readily be verified that with the rotation matrix R given

by equation (2.4)

. I =
RroRro i

oH+HO
oo+

0
0 (2.17)
0

Since it follows from equation (2.5) that

%E x(t,t) R,Jt) R xs0 (1),

-G




and Ros ®so (1) = RI (£) X(x,t),
we deduce with the aid of equation (2.17) that

P) = . Xz(T,t)
—a'—t- X(T,t) = Ww —}0{1(T,t) (2-18)

Furthermore, since
(x:-81)%2 = (X2-S2)x; = (x,-51)S2 - (X2-S2)81,
it follows from equation (2.16) that

R(t) = Ro/(l + Ro/e) + m[(uo)l S, - (uo)2 s,] (2.19) |

2.2 Satellite-to-Satellite Measurements

In this type of measurement the ground station is replaced
by the satellite and the satellite is replaced by another satellite,
whose orbit in general can be considered known. In this case,

equation (2.6) is replaced by

R(t)=\/[iso (t) - uso (r)]'[iso (t) - uso (r)] (2.20)

where U5, (t) denotes the position vector of the transmitting

satellite, and 1 satisfies the equation

T =t - R(t)/c (2.21) 4

2.2.1 Measurement Partial Derivatives

Similarly to the satellite-to-ground case, we find that




R(t) %—5 R(t) = [iso (t) - uso (T)] '[‘T(t)‘“ ‘;150 % gg t)]

Hence, writing

% =[50 (1) - %o () |/r(o), (2.22)
and
R, = ¥ - . (2.23)
we deduce that
| 55 R = V0 - 3 (O (2.24)
| where
Yo = V/(1 + RS/c) (2.25)

Corresponding to equation (2.8), we define

2

%P, uso (t). (2.26)

q (t) =
S

It then follows that

] i - = 19
P, REE) & v = [-q's (1) - uso (1) (' T 36, R(t))]»
i.e.,
9 _ - - s (1 3
_8—53 R(t) = v - qs (1) - RS(E 'a—-ps R(t)) :
Hence,
g‘@“‘t’ =% - § @ (2.27)

[Note that if both satellites are functions of the same parameter,
such as a gravity coefficient, so that p and ) are the same para-

meter, then the partial derivative is simply the sum of the right
-9-




hand sides of equations (2.24) and (2.27ﬂ

Differentiating equation (2.20), we obtain for the time

derivative
R(t) = - ¥ - [Xs - Gs (0 - g R(t))].
R(t) = - ¥ « Xso + Rs[l - %:iz(c)].
Consequently,
R(t) = - Vo - Xso + R;/(L + R /c). (2.28)




3.0 The NWL-Hopfield Model for Tropospheric Refraction of

Radio Ranging Signals

3.1 The Index of Refraction

The NWL-Hopfield model, like many similar models, is

based on the Smith-Weintraub formula (reference 1)

77.6
N = -—Z-T—-[p + 4810 %], (3.1)

where

N is the refractivity {N = (n-1)10°, where n is the
refractive index},

T is the temperature (degrees Kelvin),

p is the total pressure (millibars),

e is the partial pressure of water vapor (millibars). ;
Smith and Weintraub claim that for frequencies below 30,000 MHz
the formula is accurate to within 0.5% for temperatures between

-50°c and 40°c, pressures beztween 200 mb and 1100 mb, and partial

water vapor pressures between 0 mb and 30 mb.
It is interesting to note that the formula is derived

from the three-term expression

=+ Ky 52, (3.2)

where, "the first term expresses the sums of the distortions of
electronic charges of the dry gas molecules under the influence
of an applied electromagnetic field, the second term the distor-

tion for water vapor, and the third term the effect of the

orientation of the dielectric dipoles of water vapor under the

influence of a field." Consistant with equation (3.1) k, = 77.6.

-11-




k, and k; were determined by Birnbaum and Chatterjee (reference 2),
who obtained k,=72.0, k; = 3.75 x 10°. Since the total pressure

P = p. + €, equation (3.2) may be rewritten in the form

N=k1%+k3' %2:

where k;'= k3 - (k,-k;)T. Since k, and k, are nearly equal, the
temperature variation of k;' is so small that for the region of

applicability of the formula this may be neglected. Formula (3.1)

thus results.

3.2 Pressure and Temperature Variation with Height

In this section the derivation of the required formulae
will closely follow that given by Hopfield (references 3, 4, 5).
Theoretically, a;, the rate at which the temperature of dry air

decreases with height (the dry adiabatic lapse rate) is given by

= 2gn
al—7R: (3-3)
where g = 981 cm/sec?, is the acceleration due to gravity
= 29.0 grams, is the mass of a mole of dry air, and
R = 8.31 x 107ergs/ (mole) (deg Celsius) is the Universal

Gas Constant.
The theoretical rate, 9.8°C/km, is rather higher than the observed
rate, which is closer to 6°C/km. The observed rate does, however,
fluctuate. Hopfield realiZed that if she could choose a lapse
rate o, which is an integral fraction of (gm/R), then her tropo-
epheric model would be much simplified. The Hopfield value,

6.84° C/km, corresponds to

& = ,15 ) (3.4)

]2
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The temperature lapse rate is assumed to be constant so that

T = To - oh (3.5)

where T, is the surface temperature and h the height above the
surface. Since, clearly the temperature cannot drop below absolute
zero, the Hopfield troposphere must possess an upper limit, h,,

given by
h1 = TO/G (3.6)

Assuming the earth to be flat and the acceleration due to gravity

to be constant, we deduce that

$ = - o 3.7

where p is the density of air. Writing the gas equation PV = RT

in the form

o= Fr. (3.8)

we obtain with the aid of equation (3.5)

=R = - g/R(T, - oh),
h ,
wnence %ﬂ
P=p,(L-halT)" (3.9)

From the above and equations (3.4), (3.5) and (3.6) we obtain

P = p,(1 -~ h/hy)? (3.10)

and

T= To(l ~ h/h,) (3.11)

=13
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Since 0°C corresponds to 273.16°K, it follows that equation

(3.6) may be written as
h, = (273.16 + Tc)/a,

where Tc is the surface temperature in degrees Celsius. Using

the value of o from equation (3.4) we would obtain
hy, = (39.3 + 0.146 T )km.

The actual formula employed by the Hopfield model is

h, = (40.1 + 0.149 T )km. (3.12)
s 3.3 The Zenith Integral for Dry Air
| The zenith integral is defined by
h,
I = f N dh, (3.13) {
‘ o

where h, is the upper limit of the modeled atmosphere. Since

e = 0 for dry air it follows from equations (3.1), (3.10) and

‘ (3.11) that
f h,
, £ LS8y f (1-h/h,)*dh,
z To o
L€
77.6 phi
e R (3.14)

It is interesting to note that if h; were given by equations
(3.6) and (3.4), equation (3.14) reduces to

Iz = 77.6 poR/gm, (3.14")

so that the zenith integral is a function solely of the surface

-14-
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pressure. Assuming that the Earth is spherical and that the inverse
square law of gravitation applies, this result may also be deduced
as follows. If r denotes the radial distance from the Earth's
center, then for static equilibrium the net surface force on a

small element of volume must balance the body force. Hence,

d i O r? ro?
dr (p f;f) % -(proz) (go rz)’

where g 1is the acceleration due to gravity at distance T, from

the Earth's center. Integrating the above equation between r and

r, the upper limit of the Earth's atmosphere, we deduce that

X
[ pdr = po/g° g

To

It follows from equations (3.1) and (3.8) that the 'dry' refractivity

is given by N = 77.6 pR/m, whence the zenith integral
Iz = 77.6 poR/gom. (3.14")

It can thus be seen that the result is fairly general and is not

a function of the temperature distribution within the atmosphere.

However, h, in the Hopfield model is given by equation
(3.12) rather than by equation (3.6). The corresponding zenith
integral I, is given by

1+ Tc/269
IZ e 2.28po mgm km, (3.15)

thus, showing that in the Hopfield model the zenith integral

increases with temperature.

=}5e




FIGURE 3.1

The Transmitter to Receiver Straight Line Path

) c \

(0} is the location of the receiving station

is the center of curvature at the point O,
X is the location of the transmitter,
oC = r,, the radius of curvature
QC = r
0Q = s, the path length
angle QOH = E,, the elevation angle at the station

angle OAC = X%m.

-16-




3.4 The Range Correction

The computed range correction is given by
Yo +h1

ds
As = f (n-1) 5= dr, (3.16)
T dr

where r, is the Earth's radius of curvature at the receiving
station and ds is an element of path length. The error in performing
the integration along the geometric straight line rather than
along the actual path is small (reference 3) ‘'reaching 107 of As
at the horizon but becoming neglibly small at elevation angles
above 3%or 4°."
Referring to Figure 3.1, it can easily be seen that

OA = r, sin E, and CA = r,cosE,. Since by Pythagoras

QC? = AQ? + CA? it follows that

r? = (s + rosinE,)? + (r,cosE,)?2.
_ * ds
Hence r = (g + r031nE°)a;,
and ds _ I
G /" < (f,CO08E.)" 3.17)

Since N = (n-1)10°, it follows from equations (3.1),
(3.10), (3.11), (3.16) and (3.17) that the computed ’'dry’ correction

As,, is given by
r°+h1
As, = 77.6 x 10-° Pf— /

(1-h/h,)* r dr

vr? -(r,cosEy)? ’

(3.18)

where

h=r -r, . (3.19)

«17e




Writing,

hi = ;3 -~ T, (3.20)

equation (3.18) may be re-written as

O,

) y
Asy = 77.6 x 107° g—/ o L = (3.21)
S ¥ vr?-(r,cosE,)?
o

As pointed out by Yionoulis (reference 6), equation (3.21) may be
integrated in closed form, but the numerical solution, even in
double precision, is inaccurate at high elevation angles. Yionoulis'
answer to the problem was to produce two separate solutions, one
being valid for all elevation angles except the low ones, the other
for all angles except the high ones. A simpler solution is

obtained by using the NWL approximation (Reference 7). This will

now be described.
Let N, = 77.6 p,/T, 10° (3.22)

Since,

r;-r _[xr> r?)[rit+ x, (3.23)
ri- I, r&L o2 - O 5
and since (r: + ry)/r, + r) is approximately equal to one, it

follows that As1 is approximately equal to

I 4
2 2 dr
as =N, f ! L 3.24
: : . (r,z- o’ vxrZ-ro%cos?E, ( ;

A more rigorous justification for the NWL approximation (3.24) is
given in Appendix B.

Making the substitutions
2

x = r? - ro?cos?E,

X; = 2~ ro?2cos?E, (3.25)

Xo = To? - ry? cos?E,
-18-




we deduce that

X,

1 L
As,; = %N, f (Ho) dx (3.26)

/X

A closed form solution for the above integral (reference 7) is

Xo

easily obtained. However, if As, is computed by the usual method
of evaluating the solution at both limits, then the result will

be numerically inaccurate, particularly at high elevation angles.

A better way to evaluate the integral is given in Appendix A.

It follows from equations (3.26) and (3.25), and equations (1), (3),
(12) and (13) in Appendix A that,

Ay = % NI (1 + %t + %tz + %zta + T%Et“), (3.27)
where
Io = (r1-ro)(xri1+ro)/d
d = /(xr1-ro)(r1+ro) + r¢’ sin?E, + rysinkE, (3.28)
t = Io/d
since d? 2 (r1-ro)(ri1+ro), and r,-ro, =0,
if follows that
O<tgl (3.29)

Since the last term on the right hand side of equation (3.27) con-
tributes less than 0.5% to the total integral, it may be neglected.

We may therefore write As1 in the truncated form

As, = %Nllo(l + %—t + %t:2 + —%—4{3) (3.30)

19




3.5 Adjustment for Station Height Above Sea-Level

Let h, denote the station height above sea-level,
and p, and T, the pressure and temperature at sea-level. In

accordance with equations (3.10) and (3.11) we must then have

i

P p. (1 - ho/hy)°? (3.31)

0

To = T, (1 - ho/h,). (3.32)
Since by equation (3.12)
h, = [40.1 + 0.149 (T, - 273)|knm
it follows that

R S [(40.1 - 0.149 x 273)(1 - ho/h,)+0.149 Iu]km

By = B =[40.1 0.6 Wylhy + 0.149 Tg]km (3.33)

Since h, is of the order of 40km, the ratio hy/h, is
small and may be ignored. Following O'Toole (reference 7) we

thus obtain

hy - hy = [40.1 + 0.149 T.]kn, (3.38)

In other words, the height of the atmosphere above the
station is independent of tlhie station height above sea-level.
Taking station height into account, equation (3.21) must

be modified to

r,
P Iy
Asy = 77.6 x 107° = jf (s;:z) r dr
1 Ts T1=Lp /rz-(ro+ho)2COSZEo
ro+ho

=20=




whence, by equations (3.31) and (3.32)

X
S -6 Po o a3l AR Ty r dr 3.35
T (rl-rJ (hl'hO)“/rz-(ro+ho)Zcoson( :
rotho
Let Sg = ro + ho, and k] = h1 = ho (336)
Since, by equation (3.20), h, = r;, - ro, it follows that
h1 = ho SNEG S g (337)
We hence deduce that
X 4 4
= -6 Po r,-r Elis : (3.38)
bsy = 77.6 x 10Bs f (rl_SO) P T
So

Comparing equations (3.34), (3.37) and (3.38) with
equations (3.12), (3.20) and (3.21) we see that the only difference
between the equations is that the radius of curvature r, has
been replaced by the new radius of curvature s,. Since, further-
more, the range correction is comparatively insensitive to
variations in the radius of curvature, we conclude that as long
as the pressure and temperature are obtained at the station,

the station height above sea-level may be ignored.

3.6 The 'Wet' Correction

The partial pressure of water vapor appearing on the

right hand side of equation (3.1) is computed as a function of

the fractional relative humidity hr (hr = 1 corresponding to
100 percent relative humidity) and the saturation water vapor

pressure e_. It is given by the formula

(3.39)




where

b 17.269425T.
eS = exp(l.80910 + Wﬁ . (3.4‘0)

Equation (3.40) comes from the National Climatic Center in Asheville,
N.C., (Hopfield, Private Communication, 1976).

It was observed by Hopfield (reference 4) that "at
heights of 9 or 10km, the atmospheric pressure is still almost
one third of its surface value, but the partial pressure of water
vapor is nearly zero'.

Seemingly without any theoretical justification, Hopfield
then went ahead to give the 'wet' correction in a form similar

to the 'dry' correction, equation (3.12) being replaced by

h, 12.0 km, (3.41)
and equation (3.22) by

N,

i

.373 e/Tq?, (3.42)

the remaining equations being left the same except for the
subscript 1 being replaced by 2.

In the original Hopfield model, the 'wet' atmosphere
was assumed to have a ceiling of 12km above sea level. In the
0'Toole version the ceiling is at 12km above the station! The
problem is really that it is extremely difficult to modify a
model whose coefficients do not have a c¢lear physical meaning.

In photonap the ceiling is also taken at 12km above the station.
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3.7 The Radius of Curvature

It is well known (see, e.g., reference 8) that the
radius of curvature, R,, at a point on the Earth's surface, must

satisfy
P ik 2 1 2
"D = R cos A+ RC sin?A, (3.43)

where
Ry = a(l-e?)(l-e?sin?L)-¥%,
Re = a(l-e?sin?L)-%,

a = 6378km is the semi-major axis
e = 0.081813 is the eccentricity

E is the latitude, and

A is the azimuth.

It can thus be seen that the radius of curvature is a
maximum (denoted by Ryax) at the pole and a minimum (denoted by

Ruyivn ) in the North-South direction at the Equator. We find that

a(l-e?)~% = 6400km (3.44)

Rumax

Rmin

a(l-e?) = 6335km (3.45)
The average radius R is given by
|
R = a(l-e?)® = 6371km (3.46)

In considering the Earth's curvature we observe that (i)
it has no effect on ray paths through zenith, and (ii) the
proportional effect increases as the elevation decreases. The
maximum effect can therefore be seen to occur at zero elevation

angles. It can be seen from equation (3.28) that for E, = 0,




I, = /rlz'roz and t = 1,

whence we deduce from equation (3.27) and equation (19) in Appendix

A that the correction

As, = Nl/rl =Yy %%% (3.47)

Since r;-ro = h; it follows that

ASl(ro) = %%% Nl/h1(2r0+h1), (3.48) ]

where we have written the left hand side in a form that indicates
that it is a function of r,. Differentiating equation (3.48)

logarithmically we obtain

1 d " 1
T 5y &, As,(xy) = TP (3.49)

From the above we deduce that approximate relationship

8[As (xro)] _ 8x,

Asi1(xo 2r0+H1 (3'50)

choosing r, to be the average radius R given by equation (3.46),

we see from equations (3.44) and (3.45) that 6r, must be numerically
less than 36km for any point on the Earth's surface. We hence
deduce that if we assume that the radius of curvature is a constant
then the proportional error (the left hand side of equation (3.50))

is less than .003. In other words, taking

ro = 6371km (3.51)

leads to an error that does not exceed 0.3 percent.




3.8 Summary

The following equations are required for the computation

of the range correction.

N, = 776 X 10-6 po/To, (322)
where p, is the total atmospheric pressure

in millibars, and T, is the temperature
(degrees Kelvin)

N, = .373 e/Tq?, (3.42)

X 17.269425T.
e =h, exp (1.80910 + JE2e942] ) (3.39)
where h, is the fractional relative humidity,
and T. (=T¢-273.16) is the temperature
(degrees Celsius)
h, = 40.1 + 0.149 T. (3.12)
h, = 12.0 (3.41)
As = As, + As,, is the total correction, where
As, = N, d; t; (%— + %st; + %——t;z + 71—0ta3), for i =1,2,(3.30)
5 where,
d; = \/hi (2ro+h|) + (roSinEo)z + (roSinEo) (3.28)
(3.20)
t = hi (2ro+h;)/d;2
ro = 6371, £{3:.91)
and E, is the elevation angle of the transmitter as seen from
the station.
Rahge corrections, computed for different elevation angles
and temperatures, are given in Table 3.1.
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TABLE 3.1
TROPOSPHERIC RANGE CORRECTIONS (HOPFIELD MODEL)

[Elevation [}'Drv’' correction (meters) 'Wet' correction (meters)
Angle ~60°C [ -30°C_[ 0°C 30°C [ 40°C | [F30°C[_o0°C 300C [ 40°C
o 94.2| 88.3 |83.4 |79.2]78.0 0.5 4.8 27.3 | 44.4
e 63.9| 61.3 |59.0 |57.0]56.4 0.3 27 15.1 | 24.6
; 2° 46.6 | 45.4 |44.2 |43.2]42.9 0.2 1.8 9.9 | 16.1
3° 36.0| 35.3 |34.7 |34.2]34.0 0.1 1.3 7.2 |11.7
4° 29.0| 28.7 |28.3 |28.0]27.9] |o.1 1.0 5.6 | 9.1
6° 20.6 | 20.5 |20.4 |20.3]20.2 0.1 | 0.7 3.8 6.3
8° 15.9]| 15.9 |15.8 |15.8] 15.8 0.1 0.5 2.9 4.8
10° 12.9] 12.9 |12.9 |12.9]12.9 0.0 | 0.4 2.4 3.8
15° 8.8 8.8 8.8 8.8]| 8.8 0.0 0.3 1.6 2.6
, 20° 6.7 6.7 6.7 6.7] 6.7 0.0 0.2 5.2 2.0
F 30° 4,61 4.6 || 46 | 4.6 4.6} 0.0} 0.1 0.8 | 1.3
40° 3.6 3.6 3.6 3.6 3.6] 0.0 | 0.1 0.6 1.0
60° 2.7 2.7 2.7 e 0.0 | 0.1 0.5 0.8
| 90° 2.3 2.3 2.3 2.3] 2.3 0.0 0.1 0.4 0.7

5 The 'dry' correction (As;) has been computed for a pressure of 1013mb.
For other pressures the corrections should be adjusted proportionately.

? The 'wet' correction (As.) applies for 100 percent relative humidity.

The total correction (As) is given by

As = As,; + hrAsz

where hr is the fractional relative humidity.




4.0 Changes to the Photonap User's Guide

The most important changes to the User's Guide stem from
the added capability to process geoceiver measurements. Geoceiver
measurements have been assigned measurement type number 27 (see
Appendix IV). Photonap has the capability to process both 'satellite-
to-ground' and 'satellite-to-satellite' geoceiver data, the User having
to specify the type, which is being processed (see category 701 card,
key 8). Photonap computes 'satellite-to-ground' tropospheric corrections
using the NWL-Hopfield model. The User may be content to use default

values for meteorological data or he may input his own (see category

610 card. The category 610 card is also used to specify the geoceiver
time interval). The geoceiver time interval may also be specified

as part of the observation record (see Appendix I). Geoceiver data
(see Appendix IV) may be used to recover orbital parameters, station
locations, refraction parameters, measurement bias, measurement timing

bias, measurement drift rate and measurement scale.

Some relatively minor changes from NAP 3.1F, which give
Photonap a Monte Carlo capability, have been added to Photonap
; ‘ (for more details, see Appendix B of the 'Use of the GPS Satellite
System for the Determination of the MAGSAT Position' NAS5-23587,
Georg Morduch, Old Dominion Systems, September 1976). Affected
cards are 601 cards (Note 9) and 604/605 cards.

The User may, in the current version of Photonap, request
that the covariance of the solution not be computed (see Category
105, set 2).

Description of the mode 2 discrete thrust has been

clarified (see Category 208 card).
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APPENDIX A
EVALUATION OF THE INTEGRAL In

The integral In is defined by

X n
5 1 ifx -x; dx o
n 2 = X -Xg L

Let
VX
(]
¥R e (2)
VX
and
/Ei-/io

e (3)
/:'Ei+/i v

Differentiating equation (2) we obtain

7 3— X (VRp - VxQ) (4)

From equation (3) we deduce that
2/%,

(l+t)/t = ———— (5)
xl'/io

It hence follows from equations (2) and (3) that

[y = 1][y X % (1+t)/t] - Z7§;§7§f§? , (6)
whence,
iii ::, - [y - [r + v )

Changing the variable of integration from x to y we obtain with

the aid of equations (2), (4) and (7),
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1
I - (&i - &o) -/o' (1-1" (1+yt)"dy (8)
Since -
o) = 3 grllgr 5° (9)
s=0
and 1
f -0 ¥* dy = By (10)
0
it follows that
" 2
N n! S
I, = (&i-&o) Z (n-é)!)(n+s+l)—l € (11)
s=0

[Note that the definite integral of equation (10) is the well
known Beta function and is denoted by B(n+l,s+l) ]

Evaluating equation (11) for n = 0, 4 and 5, we find that

Ky = 0, = I%, (12)
I, = %-Io(l + %—t + %—tz i %:z;tﬁ + Tlfgt“) (13)
Is = %Io(l * -‘;t + -%th 2 %Zt’ o %—Zt" & Z;%—Zts) (14)

For the special case t = 1, equation (8) becomes

1
I, = /% / (1-y) " ()" dy (15)

0

Since (l-y)(lt+y) is an even valued function, we may also write

equation (15) in the form

1
L=3% [ aptam® ey (16)
g =8
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Making the substitution
1
u = 7(l+y)

we obtain

i
{
|
i

1
I = 220 /ii/ W (1-u)® du (17)
0

n

The integral on the right hand side of equation (17)

is the form of equation (10). We therefore conclude that if

I = /% 220(n1)2/(2n+l) ! (18)

In particular

I, = %%% /E. (19)
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APPENDIX B
THE NWL APPROXIMATION TO THE HOPFIELD INTEGRAL

In this appendix it will be shown that equation (3.24)
is a valid approximation of equation (3.21). Denoting the

difference by D, we find that
)

s Nl/ r,2-r’\* [r;-r \* r dr (1)
r,2-ry Tri=To | l/yr?2-r 2 cos’E,
To v
T 4
ou N]/ rlz -r2 r dr G (2)
To r12 -roz V-1 COSon

where
A _ It |
G=1 [r1+r ] » (3)

Since r = ry, it follows that

r1+r0
0 < = £ 1, (4)
whence G > 0 Q4
ry D>0 (5)

To obtain an _upper bound of D, we write G in the form

i ri+re)? ratre\| [ -xo
G [1 ® (r1+r )][1 * (r1+r )] [r1+r ]’

&

i.e., 56
4 [rl-r;1++(:o—rlz] 6)
But
s R e G e
ré-1
. -32-
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Hence,

< r,—ro) W r;z -Zl’.'2
G<4 (———rl+r0 s (7
It hence follows for equations (2) and (7) that

) Y 5
B « 4Nl(r,-ro) r dr [Ejz-rz B e o (8)
r,+ry - /rz-rozcosonLr12-roz rlz_roz

Making the substitutions

x = r2 - re2cos?Ey, Xo = To?-ro?cos?E,y, x;, = r,?-ro?2cos?Ey,

inequality (8) may be written in the form

D <« 4N1(':::—i__%2—) [Iu - Is] : (9)
where : %, 3 k)
= __X_ X1~-X
Ia = '2'_/ = [xl-xo] (10)
Xo

Since the total correction As; may be written in the form
Asy; = Np I, (11)

it follows that the proportional error in the correction &s;, ED/As;)

must satisfy

r,-r I
88, < & (;;—5-%)[ = -I—i-] (12)

From equations (13) and (14) in Appendix A, we obtain

Is _ 5(1 + a;t + art?+ ast® + ast* + ast® ) (13)
T, ©6(I ¥+ b,t ¥ b,tZ¥ bst? + b,t” + bst® )
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5/14, a3 = 5/42, a, = 1/42, as
2/7, b3 = 1/14, b, = 1/126, bs =

1/462,

5/7, a:
2/3, b2

where a,

|
o

i
I

b,

Since for each s, a; > bs, it follows that the ratio Is/I, is

an increasing function of t. Consequently, Is/I, = 5/6, and
r1-Xy 1 5
oo < 4fz2)( - 2)

sar < SRS )

Since r; >ry, , we finally obtain

Y, -T9
§s, < = (15)

Using the values r;-r, = 50km, r, = 6000km, we conclude that the

NWL approximation to the Hopfield formula is accurate to at least

one third of one percent.




