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\{\ clastic and linear visco-elastic behavior, and a capability for specifying arbitrary impact loads

and boundary conditions. A special modification of the isoparametric element is shown to be
particularly suited to simulation of the dynamic response of nearly incompressible brain
matter.

A preprocessor enables automatic mesh generation of a skull model consistent with a
prescribed set of geometrical data supplied by the user. Either complete three-dimensional
skulls or skulls symmetrical with respect to the midsagittal plane can be specified in the mesh
generation processs Additionally, scale factors can be prescribed which modify existing skull
meshes and achieve parametric control on size and shape. A postprocessor facilitates the
reduction of the large ambdynt of data that is typical of a head impact simulation. The scope
and limitations imposed by the assumption of linearity are discussed. The results demonstrate
that while some minor changes appear indicated, the model predictions yield useful insight
into the mechanical causes of skull and brain injury.

Volume 1 of this report also contains Appendix A, a clinical description of head injury.
Volume I contains Appendixes B through G covering the computer programs for skull
modeling.
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INTRODUCTION

Fvaluation of head injury received from direct blows is necessary for development of
adequate protection systems for the head. The need for biomechanical models that predict
head injury has been expressed by both the engineering and the medical community: e.g.,
to aid safety specialists in developing protection standards for vehicle occupants; to aid
engineers in choosing military aircraft and other vehicle designs for crew and occupant
safety; to improve the capability of neurosurgeons in managing brain trauma. Irrespective
of 1ts professional application, clinical-pathological-mechanical correlation of head injury is
what is sought. Srtatistics compiled by the National Safety Council reveal that the vehicle
accident is a major cause of death in this country. Recent reductions in maximum speed
limit and construction of safer roads in this country are improving upon the highway death
rate and at the same time are making the crashworthiness design of automobiles more fea-
sible than in the past. Fatalities went from 56,000 in 1973 to 46,000 in 1975" . It has been
estimated! that in 1975 the Interstate Highway System saved 4,400 lives. Relative reduc-
tion in fatalities was twice as great on those roads affected by the speed limit reduction to
55 mph as on those roads which were not affected”. The goal should be to make all crashes
survivable. With regard to transportation in aircraft, both commercial and military. the goal
cannot be so optimistic, but improvements in the crashworthiness design of aircraft are def-
initely justifiable and warranted.

Statistical studies of injury during aircraft crashes have shed some light on the incidence
of head injury. Two difficult questions have to be asked of the data: “Were the crashes in
question survivable?”” and, “In fatal instances, could death be attributed to head injury?” A
survivable crash has been defined as one in which the forces transmitted to the occupant
through his scat, restraint system, or surrounding components do not exceed human toler-
ance’ . Though it is the best we have, this definition is only preliminary because it includes
the phrase “human tolerance.” Certainly one of the goals of head injury research, as exem-
plified by the model studies discussed herein, is to determine the levels of human tolerance
to impact.

Some statistics regarding injuries in rotary wing aircraft crashes are germane; reference 3
reports on 2,546 helicopter accidents studied. It was determined at the outset that 93% of
these crashes were survivable. Then it was computed that 40% of the total number of fatal-
ities occurred in the survivable group (this amounted to 439 deaths that should not have
occurred). It was further determined that 23% of the preventable deaths were due to head
injurv alone and that 29% of the 2,699 survivors sustained head injuries.

i 2 -
National Satery Council Accident facts. Chicago, linois, 1976

)
“Natonal Highway and Transportation Safety Agency. NHTSA DOT-US 801715 Etfect of the fuel shortage on travel
and highway safety, by F. C. Cerrelli. Washington, D.C., Aug 1975

3 o : 9
S. P. Desjardins. “Vehicle crashworthiness,” Numerical and Computer Methods in Structural Mechanics, ed. S. . Fenves,
ctal. New York, Academic Press, 1973, pp 557-584
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Impact energy associated with fixed wing aircraft crashes is generally expected to be
higher than that associated with rotary wing aircrafi crashes. For that reason, the percent
age of survivable crashes in fixed wing aircraft accidents is expected to be less, but crash-
worthiness of these aircraft must be improved as well.

The head receives basically two kinds of dynamic loads: (1) a direct impact involving
hard, localized, contact-impact forces appl#d directly to some portion of the skull and (2)
an indirect impact involving forces transmitted from the neck to the base of the skull, pos-
sibly with additional nonlocalized, soft contacts to the head. The first type commonly in-
volves the impact of heads with windshields, instrument panels, sidewalls, and seat backs.
The second occurs when the occupant’s restraint system (seat belts, air bags, etc.) prevents
his reaching surrounding structures. Space for occupants is always at a premium; therefore,
it is not always feasible to remove structural components from the occupants’ strike zone* .
I'he only alternative is to design the occupants’ immediate environment so that if contact
occurs the effect is minimized. Energy-absorbing structures and sometime protective helmets
are essential components of crashworthiness design. Their effectiveness should be evaluatcd
in conjunction with a head injury model® | along with other surrogates of the head.

Approaches to Head Injury Prediction

The prediction of head injury can be approached in many ways; various injury or <:ver-
ity indices that offer attractive expedient solutions have been proposed. These are u.ually
based on data derived from experiments with cadavers and human volunteers. This data
naturally possess limitations. Often little agreement exists among these methods of injury
prediction because each method choosen fits the experimental date with a different curve,
but the primary objection to these methods is that they, by definition, must either simplify
many variable relationships or fail. As a result parameters are often conarived that have no
fundamental basis for measurement, but which are critical to the accuracy of the method.
Results, therefore, vary, depending upon how these parameters are measured or estimated.

In any approach to head injury prediction, the final usefullness of the derived injury
prediction data depends on how conveniently it can be synthesized and formatted for assim-
ilation. Primarily because of the computer, this convenience requirement does not preclude
a more rigorous approach to obtaining useful injury prediction information
which accounts for the many engineering variable relationships present in the problem.
IFurther, if the more rigorous approach is successful, more is obtained than an estimate of
injury hazard; it also provides insight into the clinical-pathological-mechanical causes of
head injury. This is why many investigators have chosen mathematical modeling as an ap-
proach to head injury prediction. It is a more instructive approach and can result in a useful
and convenient data base of head-injury prediction.

4 . " . . v
Army Air Mobility Rescarch and Development Laboratory. TR 71-22: Crash survival design guide. Fort Eustis, Va,
()\‘ “'7‘

5 . . . “
7K. J. Saczalski, et al. A critical assessment of the use of non-human responding surrogates tor satety system evaluation,
in Proceedings of the Twentieth Stapp Car Crash Conference, SAE, 1976.




Objective

This research was to develop a computer program, based on the laws of mechanics, for
simulating structural deformation response and for predicting impact injury throughout the
head. The model was intended for use in:

(1) understanding injury mechanisms

(2) defining tolerance envelopes

(3) predicting dynamic responses to specific accidents

(4) conducting sensitivity analyses
I'he specific objective was to compute the time histories of displacement, strain, and stress
throughout the skull-brain system induced by arbitrary head impacts. F'urther, a similar pri-
mate model was to be constructed for correlating the response to that measured in animal
Impact experiments.

Scope

Requirements of the head-injury model (HIM) included three-dimensional skull-brain
geometry simulation, taking ful’ advantage of symmetry about the midsagittal plane in the
generation of the geometrical construction. Neck-related injury was not included, though
arbitrary boundary conditions at the base of the skull could be specified to approximate the
influence of the neck on the skull-brain response in any simulation. Thus, the model per-
tained to closed brain injury and skull fracture exclusive of any mitigating neck influence.
Arbitrary initial conditions in the form of either initial displacements or initial velocities
could be specified.

A major part of the investigation was the computation of impact forces existing at the
interface between the skull model and arbitrary simulated targets. The variation in contact
forces and arcas over which the forces act (contact area) were sought as a function of time.
Non-lincar geometry and constitutive behavior were to be included in the contact problem
as well as in the skull/brain model.

I'his research represents 3 years of study under contract DOT-HS-289-3-550IA for the
Department of Transportation, Work Request N0020375WR00142 for the Naval Aerospace
vicdical Research Laboratory Detachment, New Orleans, and Work Request NOOO1476WR -
60083 for the Office of Naval Rescarch.




1. BACKGROUND

The relatively high incidence of head injuries occurring in automobile and survivable
aircraft crashes, combined with the potential seriousness of these injuries, has been respon-
sible for the preponderant concentration of biomechanics research in head impact. Experi-
mental research has sought to generate data in support of head-injury model development.
Engineers who construct models must be cognizant of these experimental results. Basically,
models must be capable of (1) accepting as input the mechanical properties of the head,

(2) including both experimentally and statistically observed mechanisms of injury, and (3)
simulating live primate impact tests and correlating the resulting measured data.

Many attempts have been made to develop biomechanical models for predicting mechan-
ical phenomena responsible for head trauma. Head injury studies can be divided into two
classes: primarily experimental and primarily theoretical. Experimental studies utilize an-
thropomorphic dummies, cadavers, animals, etc., and require expensive and time-consuming
rescarch programs. On the other hand, theoretical studies utilize the laws of mechanics to
predict mechanical responses of the head and can provide an efficient tool for investigating
head injury phenomena. Fundametally, only two kinds of mathematical approaches - ana-
Ivtical and numerical-have been demonstrated in head injury modeling; both are determin-
istic.

Analytical Models

The analytical models appeared first. Examples of these models are one-dimensional
fluid-filled, rigid containers® and two-dimensional, axisymmetric, fluid-filled, elastic
spheres™ ® . Their solutions were usually in the form of truncated infinite series, and assis-
tance from the computer was required to obtain data. These models have provided useful
msight into pressures and pressure wave propagations within a continuum of contained com-
pressible fluid. However, they are necessarily limited to analytically simple modeling para-
meters; for example, they can neither simulate recognizable skull gecometry nor loading his-
tories and boundary conditions for head impacts typical of those presented in vehicle
accidents. :

OF. Hayashi “Study of intracranial pressure caused by head impact,” Journal, Faculty of Engineering, University of

lokyo, 1969, pp 30-59

"AC L Enginand Y. King Liu. “Axisymmetric response of a fluid-filled spherical shell in free vibrations,” Journal of
Biomechanics, vol. 3, no. 1, Jan 1970,

By. ¢ Lee and S 1L Advani. “Transient response of a sphere to torsional loading - a head injury model. Math,” Bio

sciences, vol. 6, 1970, pp 473 486




Numerical Models

I'he beliet expressed herein is that only the numerical models have the potential for pro-
viding all three of the necessary and basic ingredients stated above and thus otfer greater
potential for reliable prediction.

Finite Difference Method. The finite difference technique falls within this category;
but, in spite of some noteworthy efforts, this technique has demonstrated little potential
beyond axisymmetric simulation. Reference 9 describes a one-dimensional finite difference
model in which the importance of including the various layers of different cranial materials
and their influence on dissipation of cnergy as stress waves travers the layers was investi-
gated. This particular work was then extended to a two-dimensional, axisymmetric
sphere! V; others, too, have discretized axisymmetric fluid-filled shells with spherical' ! and
clliptical' 2 shapes. Geometrical zoning in the finite difference technique is potentially very
flexible, but further extensions to three-dimensional head injury models are difficult to en-
vision. For short load durations typical of wave propagatiorn regimes, however, the finite
difference methods are attractive, especially when nonlinear behavior and axisymmetric
skull configurations are considered.

lll

Finite Element Method. The finite element method! * ' *, on the other hand, is an es-
tablished three-dimensional modeling technique and is, therefore, eminently suited for
modeling the general head impact. Therefore, the following review will mention only those
cfforts based upon the finite element method. A more thorough examination is made in
Reference 15. Excellent reviews of head injury models based upon alternative approaches
can be found in Reference 16.

9 A S %
Naval Air Development Center. Report No. NADC-CS-7113: Impact analysis of the skull-brain system, by Stephen | .
Gordon. Warnunster, Pa, Dec 1971,

10 4 : . .
Interim Report No. NADC 73065-40: Analysis of head impact, by Stephen L. Gordon. Warminster, Pa, Apr 1973,

11 y : .
J. V. Benedict, I H. Harris, and D, U, von Rosenberg. “*An analytical investigation of the cavitation hypothesis ot
brain damage,” Journal of Basic | ngineering, vol. 92, Sep 1970, pp 597-603.

12 .
Anthony James Crispino. A dynamic analysis of ¢lastic model of the human head, M. S. thesis, Department of Mech-
anical Engineering, University of Washington, Seattle, Wash, 1972,
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0. C. Zienkiewicz. The finite element method in engineering science. London, England, McGraw-Hill, 1971,
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Richard H. Gallagher. Finite element analysis: Fundamentals, Englewood Chffs, N.J., 1975,

SShugur‘ T A Mmulatmg and Modeling the Human Head's Response to Impact,” Aircrafr Crashworthiness, Eds
K. Saczalski, G. T. Singley 11, W. D. Pilkey, and R. Huston, University Press of Virginia, Charlottsville, 1975,
pp 213-234.
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mgton, D.C., Feb 1975, (AIAA paper no. 75-272)




The first suggestion that finite clement techniques could be advantageous in head injury
modeling appeard one decade ago' 7, but feasibility of a three-dimensional model at that
time 1s doubtful. Axisymmetric computer codes were available, however, and could have
casilyv been applied toward solving the fluid-filled, spherical shell problem. The method was
not applied until some years later' ® . This application was significant because it attempted
to deal with actual skull geometry, and, in doing so, a primary advantage of the finite cle-
ment technique in head injury modeling was demonstrated for the first time. The analysis
was limited to an empty skull and static loading but did conclude that the sandwich nature
of cranial bone should be modeled as a layered structure.

Axisymmetric Finite Element Model. An axisymmetric finite element model was con-
structed to demonstrate the effectiveness of the method as a potential head injury investi-
gatory technique' . Spherical configurations were assumed to be useful head injury
models; and, if the finite element model correlated well with experimental data obtained
from an instrumented spherical aluminum shell, the model was assumed to be reliable.
Computed strains were about 20% higher than measured strains on the aluminum surface.

A subsequent attempt at axisymmetric, finite element modeling of the skull was con-
ducted with more success®”. The axisymmetric configuration was more justifiable when the
analysis of protective helmets was undertaken. Rotational symmetry is a convenient and
reasonably accurate configuration for evaluating a variety of helmet parameters, even
though the head itself is not rotationally symmetric. Furthermore, when a two-dimensional
analysis can accomplish the objective sufficiently, it is to be preferred over a fully three-
dimensional analysis. Findings regarding helmets will not be discussed in this report, but
such work does offer some significant points regarding head injury modeling with the finite
clement method. An inviscid fluid was reported as being employed for brain material char-
acterization during analyses with one axisymmetric code. A second computer code capable
of specifying linear viscoelastic properties, but which apparently could not also specify the
fluidity alluded to carlier, was eniployed in the simulation of an empty spherical shell. The
consitutive relation for the shell was an exponentially decaying relaxation modulus devel-
oped experimentally from impact load data on bone samples. The experimental data from
which the relaxation modulus was derived were characterized by load durations in the
microsecond range and were applicable to impact loads with durations of approximately
50 usec and less. Rather good correlation was shown in a comparison of computed and
measured data for the axisymmetric configuration. The axisymmetric trest setup displayed
support conditions which were rotationally symmetric. The spherical aluminum shells were
covered with a nested set of spherical shell caps which simulated the helmets.

17w, Goldsmith. *“The physical processes producing head injury,” in Proceedings of the Head Injury Conference, Lippin-

cott, Philadelphia, Pa, 1966, pp 350-382.
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It is significant to note that when the axisymmetric finite clement results were com-
pared with experimental data obtained from a cadaver head fitted with a helmet, the corre-
lation deteriorated. The reasons stated were that the boundary condition or geometry of
the cadaver experiments were not faithfully duplicated and that correct material behavior
was not sufficiently simulated.

Spherical and ellipsoidal models were constructed in a more recent two-dimensional
tinite clement analysis study? ! to devise a better model —one that would reveal the ctiology
of head injury due to impact. The ellipsoidal model seemed to be a slight improvement over
the spherical model: nevertheless, the results were stated to be inconclusive, The computed
intracranial response was based on a viscoelastic core material, which was specified in the
form of a Voight solid for the shear moduli; the bulk moduli were specified as elastic con-
stants. An uncertainty was expressed concerning the viscous component constant.

Another interesting feature of this finite element study was the manner in which the
temporal integration of the system equations of motion was carried out. The iterative
method is not commonly employed in the mainstream of dynamic finite element analysis.
[t holds some promise for large nonlinear systems, but currently suffers from two objec-
tions” . First, convergence to required accuracy has been found to be slow for general
applications, making them inferior to direct integration methods. Second, it is impossible
to repeat solutions for a different set of loading conditions without once again sustaining
the cost of the iterative integration process. The result is that the iterative method can be
more expensive than the more common direct integration methods for linear systems. The
study docs, once again, demonstrate the utility of the finite element method in head injury;
in this case the effects of geometry and duration of impact were casily examined. Also of
importance is the choice of a computer code that allows for viscoelastic behavior.

A three-dimensional finite element model of the brain applicable to prescribed transla-
tional acceleration of the skull symmetrical about the midsagittal plane was constructed? .
A rigid skull was assumed and, therefore, was applicable to brain injury in those cases where
skull deformation does not contribute to the injury. Obviously the model cannot directly
relate to skull fracture. More recently the model has been extended to account for rota-
tion”*. This work demonstrates the detail which can be achieved in simulating geometry.

2
s« han. “Mathematical model tor closed head impact,” in Proceedings of the Ligheeenth Stapp Car Crash Confer-

ence, Ann Arbor, Mich, Dec 1974, pp 557-578.

22p st Schrem. “Computer implementation of the finite<lement procedure,” Numerical and Computer Methods in
Structural Mechanics, ed. S J. Fenves, et al. New York, Academic Press, 1973, PP 79-117.

“( C. Ward. A dynamic finite element model of the human brain, Ph. D. thesis, Department of Engineering, University
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Mol Ward and R. B. Thompson. “The development of a detailed finite element brain model,” in Proceedings of the
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Various intracranial structures were discretized in an extremely painstaking fashion. Fore-
most among them were the falx and tentorium membranes that divide the cranial vault into
separate cavities. In this work a Poisson’s ratio of 0.48 and a Young’s modulus of 10 psi
were specified for brain material. At first glance, these numbers appear insignificantly dif-
ferent from published values but in fact, result in a bulk modulus of approximately 80 psi.
This value represented a compressible brain material characterization whose resistance to
volumetric change was over three orders of magnitude less than the reported value of
305,000 psi®® . No provisions were made for the inclusion of viscoelastic material charac-
terization. A modal analysis or eigenvalue approach was employed to solve the equations of
motion.

25 it 5
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2. ORGANIZATIONAL PLAN

The problem of developing a head injury model is of a complexity different from that
usually encountered by engincers. A cautious and deliberate approach was therefore taken.
Scveral rescarch groups were ultimately involved in the development of the head injury
model. To facilitate a discussion of their participation a schematic diagram of the head
mjury model development program is presented in Figure 2-1. The sponsoring agencies
NHTSA, NAMRI and ONR* —gave CEL overall responsibility for carrying out the various
rescarch tasks, cach of which is designated with a box and located within the dashed line.
I'hese tasks were either performed in-house, or a subcontract was let to an outside research
group.

Simulation of the cranial anatomy as closely as possible was first necessary. This re-
quirement superseded all other requirements in the model development because it distin-
guished this head injury model effort from all previous efforts. However, reasonable limits
exist for geometrical simulation in any model development. A subcontract was thus ini-
tiated to delineate those areas of the skull/brain anatomy clinically known to have a higher
frequency of involvement with head trauma. More attention was to be given those areas
during the process of discretization. Clinical descriptions of head injury mechanisms were
obtained so that, where possible, the model could be constructed to accommodate such
mechanisms. The Los Angeles County/University of Southern California (LAC/USC) Medi-
cal Center furnished this information; their report is included as Appendix A.

Developing a three-dimensional discretization proved to be a difficult task and required
more cffort than originally expected. Manual discretizing of the skull continuum was ini
tially attempted in an cffort to be extremely responsive to geometrical detail. However,
measuring difficultics and uncontrollable element aspect ratios prevented success. Instead,
automated procedures proved to be the optimal method, although some accuracy may have
been compromised in the simulation of geometry.

The skull/brain module was to be actually the end product of the discretization process
and entails more than the automatic mesh generation scheme. For example, it includes
parametric control on size and shape of the skull being discretized, a mesh checking scheme,
mass distribution computation capability (skull inertia tensor), and several default options,
all of which attempt to facilitate the user in his effort to construct a three-dimensional
discretization.

The deliberateness of the approach was perhaps nowhere else more apparent than in the
construction of successive models. The development of one-dimensional (actually a pris-
matic assemblage of three-dimensional elements) models and the gradual increase in the
complexity of two-dimensional, axisymmetric and plane strain models instead of concen-
trating on a three-dimensional model from the start, was the intent of the successive model

*National Highway Tratfic Safety Administration, Naval Aerospace Medical Rescarch Laboratory Detachment, Michoud
Station, and the Office of Naval Rescarch
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approach. In spite of their obvious spatial differences the models were closely related nu-
merically, and because of this the successive model approach is especially effective in an
orderly development of the tinal three-dimensional model. A relatively new, general pur-
pose, finite element analysis program (FEAP)? ¢, developed at the University of California
at Berkeley (UCB), was employed in the successive model approach. In the process, cach
model was composed of elements from the same family of isoparametric finite element for-
mulations, and cach was integrated in the time domain by the same method; 1.¢., the same
implicit integration operator was employed throughout the development. Therefore, infor-
mation and experience gained from exercising the preliminary models were ultimately appli-
cable to the numerical behavior of the three-dimensional model.

It was recognized carly that the basic FEAP code would have to be modified in two
arcas to facilitate development of the three-dimensional head injury model. A linear visco-
clastic capability was thought to be highly desirable in view of the large volume of literature
on viscoelastic properties of biomaterial’” 3% A subcontract was let to the University of
California to incorporate into the code the capability of prescribing linear viscoelastic mech-
anical properties for the skull/brain materials.

It was also recognized that a finite element head injury model would be relatively ex-
pensive to operate parametrically. Computer costs associated with dynamic, three-dimen-
sional models of any kind are known to be high; but, add to that, construction of a model
where geometrical detail is of high priority and costs are pushed even higher. To effect
modifications which would improve the FEAP code’s efficiency, a subcontract was let to
Engineering/ Analysis (E/A) Corporation of Redondo Beach, California. A summary of the
modifications is presented in Appendix B (Volume I1). E/A also provided a bandwidth
minimizer program which optimally reorders the nodal point numbering system for any
skull/brain discretization prior to its use as input data for the head injury model code.

206, .
University of Calitorma, Department of Civil Enginecring, Finite element analysis program, by R. 1. Taylor. Berkeley,
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A comprehensive program of head injury model validation was developed in consonance
with NHTSA. CEL, though not involved directly with the experimental work itself, helped
establish the validation test plan requirements for experimental data so that the kinds of ex-
perimental tests conducted could also be simulated. NHTSA contracted with the Highway
Safety Rescarch Institute (HSRI), University of Michigan, to design and conduct experi-
mental tests, the data from which would constitute the primary means for verifving the ac-
curacy of the head injury model. The types of experimental tests included (1) static load
detlection measurements of dry rhesus monkey skulls, (2) dynamic tests with strain gages
affixed to the same skulls, and (3) impact tests on anesthesized rhesus monkeys instru-
mented with both strain gages and pressure transducers.

\fter completion of the validation cffort a sensitivity analysis or parameter study was
conducted wherein a series of dynamic simulations were made using the displacement
boundary conditions at the base of the skull as the parameters. Among the many alternative
parameter studies that could have been conducted, this particular study was found to be
more uscful because the head injury model does not possess a neck discretization and, there-
fore, cannot simulate directly the influence of the neck on the base of the skull during im-
pact. However, by investigating the sensitivity of the skull bone structural response and the
intracranial pressure response to changes in the prescribed displacement boundary condition
at the skull base, the limits of the neck’s influence can be established.

l'o satisfy the requirement for a nonlinear head injury model the linear FEAP code had
to be extended to the nonlincar regime. Though some provision was made for nonlinear
behavior in the original code it was decided to proceed with a lincar model development and
to subcontract the noniinear code development. This work was eventually accomplished by
the original IF'EAP code author at UCB.

I'wo additional requirements of the head injury model were associated with the nonlin-
car development. A nearly incompressible, nonlinear finite element had to be added to the
clement library to model the intracranial contents. Also, a general contact/impact force
computation capability needed to be developed to predict accurately the stress histories
existing at the interface between the skull and an arbitrary target. Individually or collec-
tively, these requirements suggested a basic research project, as contrasted with the lincar
model development, and as such were ultimately handled separately by subcontract to UCB.
Much progress was reported in a series of documents **#7 | and the final code implementa-
tion of the developed theoretical concept has been completed in two dimensions.
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3. THEORETICAL CONSIDERATIONS

In this section the governing matrix equations of motion for dynamic linear viscoelas-
ticity are developed beginning with the theorem of virtual work. Then, before their solution
is described, two separate discussions are given which describe: first, how the HIM code
deals efticiently with viscoelastic history vectors, and second, how the nearly incompressible
property of brain material 1s handled.

Principle of Virtual Work and Equations of Motion

I'he principle of virtual work states:
If a structure 1s in “equilibrium™ under a set of external forces and if the
structure is given a virtual displacement consistent with the constraints of
the structure, then the external work done is equal to the internal virtual
work done.
I'he word equilibrium is placed in quotes because it can refer to either static or dynamic
cquilibrium. Strictly speaking, with the latter form we are dealing with not the original
principle of virtual work, but with D’Alemberts’ extension of the original version which in-
cludes the inertial forces. The principle of virtual work applies to viscoclastic constitutive
relations as well as linear clastic constitutive relations. In this presentation the inertial terms
and the constitutive relations are included in generalized form for completeness because the
head injury model possesses dynamic capabilities and both linear elastic and linear visco-
clastic materials capability.
I'he virtual work principle may be expressed for a body as

SW| — 8Wp = 0 (3-1)

where 6Wpand 6W: are the internal and external virtual work expressions, respectively.
Ihey are defined as follows

b“/l — | vb{(}’l.{()}tl\’ (3"2)

swi. = fystat{thav + ses{d} H{phas (33)

where {( };m\]{u} are the strain and Stress vectors, l'('\p('c“\‘g'l\

V is the volume of the body v
{d}the displacement vector

{f kis the body force vector containing the inertia forces

i pf the external surface traction vector prescribed over the surface S
6 ) the first variation of ().




At this point it is convenient to discretize Equation 3-1 in developing the finite element
formulation. However, this can be done in either of two ways. The first is to discretize
Equation 3-1 exactly as it is; i.e., pertaining to the whole body. An alternative way is to re-
write Equation 3-1 for a single finite clement and presume, for the time being, that the
body’s virtual work can be expressed legitimately as a summation of all elements of the vir-
tual work contribution from cach clement. The latter approach is convenient in this case
because it takes full advantage of the finite element method’s ability to account for the pre-
scription of different constitutive relations within the skull/brain continuum.

I'he basic finite element chosen in constructing the head injury model is the eight-node,
isoparametric element and is shown in Figure 3-1 together with its assumed linear displace-
ment function.

The X-Y-Z axes form an inertially fixed reference system. The displacements u, v, and
w are defined with respect to this system. The £-n-¢ axes define the local element coordi-
nate system. The displacements within an element and on its boundaries are functions of
the local coordinates in the form of shape functions N; and the nodal point displacements
at the corners ug, v;, and w;.

A general definition of strain is given by Green’s strain tensor for which ¢ and ¢
two examples of the six independent components of{e}. These two components are

, dre

defined as

9

- \ S 3o \2 S
( du T (wu> . (v_\_) N (‘,“> (3-4)
e X 2 X X dX
and
1you v ou\ fou av\ /ov ow\/ow _
YRR (rotin ot d | (el | i St oo | onem! B Gt (e (3-5)
e 2{dy OIx dxJ\0y dx J\oy ox J\Ov

lFor a lincar analysis, it is assumed that the strains are small and their products (second-order
terms) may be neglected. To this small strain assumption is added a small displacement as-
sumption. Practically, this means that the geometry of the elements remain basically un-
changed during the loading process and that first order, infinitesimal, lincar strain approxi-
mations can be used. In this way Equations 34 and 3-5 reduce to

au
X

L (3-6)
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and

¢ =4 (3-7)

Because the displacement components are functions of the local coordinates. the partial
differentiation indicated must be carried out using the chain rule. The differentiation will
result in a strain-displacement matrix [B] whose components are functions of the local co-
()rdin;ltcs; i.(‘.,

“i
fe} = BGERH! ) Vi (3-8)
Wi
i
where the generalized nodal point displacements are
Al ,
Vi )= l.“] Uy ., . “8: ViVy ... vx: Wi Wy .wa (3-9)
w; I I

We may now express the body force vector for the element in terms of the corresponding
generalized acceleration as

S
{6} = (o) {d} =11 iN) § Vi (.-10)
Wi
i
and the external traction orce vector as
Pxi
Pyi :
{pt= |byi (3-11)
‘ Pzi

Fquation 3-1, the virtual work cquation, may now be written using the generalized dis-
placement and the strain-displacement relationship for the eight-node clement as follows

(-
ou;
1

bv;
i bw: W
i

¢ : o 'S“i

n
v OW

I f)ui I .“l hu]- I r\\l
(B Hobav + o i b NIVl N Vi pdv- 7 40vi } {Pyi fds = 0
i Psi
: (3-12)
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where the superseript n refers to the volume or surface area of the nth ¢lement of the body
At this point we can either specify a lineir elastic or lincar viscoelastic re itionship be
tween stress ’u} and strain 3( } :
I'he linear elastic constitutive relationshin between stress and strain is giv n by

{o} = (D] {e} (3-13)

|
where ‘U} Lu\\u\\u“u\\u\/r)‘\/J

-
[D] A\ + 2G) A R0 O (3-14)
(N +2G) X008 0

k+2G6) 0 0 O

2G O 0
symmetric 2G 0
z(l
L. J

I'he Lame constant A and the shear modulus G can be expressed in terms of the more
common bulk modulus K and Poisson’s ratio v as follows

3Kv 3 K(1-2p)
NG (3-15)
1 +v 2(1 +v)

If Equation 3-13 is substituted into Equation 3-12 and the arbitrary virtual displacements
tactored out, we have

lli u; P\‘l

Vigdve iy INTTl NIV dv - gy, {Pyigds]=0  (-13)
S p/1

Wi Vv Wi
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I'he stiffness matrix [k] ™ and mass matrix [m] " of the n

and

th

clement are defined as

(k1™ = 7, (B T(D] (B]dV

V

[m]™ = [,

\%

IN] T[p] IN]dV

Carrying out the integration in local coordinate space we first make use of the relationship
between elemental volumes in the two coordinate svstems

dV = dXdY dZ

and rewrite the stiffness and mass matrices as

{851 51

] dé dn d¢
|71

(k1™ = 7 7 7 (BIV(DI(B] | )] d dn dg (3-14)
2

and

1
m]™ =
1

1-1

1 1

-1

S INTV () INT | J] dg dn dg (3-15)
1

For Equation 3-13 to be satisfied for arbitrary virtual nodal displacements the expression in
parentheses must vanish. Invoking this condition yields the equation of motion for element
n which can be written using Equations 3-14 and 3-15 as

[m] D

Ll n y
llI u
—._'.'— n —\'—'—
©e B Sl

i Wi
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Equations of Motion for Linear Viscoclasticity

It instead of Equation 3-13 we specify a linear viscoelastic relationship between stress
and strain, considerably more complications will result, but the complexites can be sur-
mounted by approximate means. The result is that the head injury model code can approx-
imate the time-dependent relationship between stress and strain exhibited by biological
materials when such a mechanism is justified.

Since considerable attention has been devoted to the viscoelastic nature of biological
materials, it would be expected that a head injury model must possess the ability to account
for viscoelastic materials. What follows is a detailed description of how viscoelastic material
characterization is implemented into the equations of motion. This work is largely due to
Laylor %

Viscoelastic materials are often called “memory’” materials; that is, the current state of
stress in the material is determined not only by the current deformation, but also by all past
deformation states. Moreover, the memory exhibits a fading phenomenon in that past
deformation states influence the current stress state to a lesser degree than do more recent
deformation states. These characteristics are reflected in the constitutive model for visco-
elasticity by the Stieltjes integral; i.c.,

{o} = S [D(tn)] %{cm}dr (3-17)

where gu(t)} is the stress vector at current time t, {e(T)} is the strain vector for 0 < 7 < t, and
[D(t-7)] 1s the constitutive matrix composed of two independent relaxation functions for
isotropic materials. This constitutive model may now be combined with the eight-node
finite element by substituting into Equation 3-17 the corresponding strain-displacement
relations given in Equation 3-8. Thus we have

R
{o} = /L ID(en)] [B) ‘)— Vi ) dr (3-18)
oT

38 . o
KoL Taylor. “An approximate method for thermovisco-elastic stress analysis,” Nuclear Engineering and Design, vol. 4,

1966, p. 21
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Proceeding as before, this expression for iu(t)} is substituted into the virtual work equation
for an element n (Equation 3-12); with the virtual displacements factored out, the following
is obtained

Su; | u; 'L'xi
0 : o
B Fn SSIBITD@EN] B] — 1Yif drdv + [ INIT o] IN] {Vi] dv
Sw or W _\'I"'
1 VvV 1 Vv 1
_T)_\i
fio € P ds 0 (3-19)
B
S Z1

\gain invoking the arbitrariness of the virtual displacements in the above equation we can
write the equation of motion for a viscoelastic element as

o i i 1 5 fif "
m]® 9L+ g kten]®"— (%[ dr = {lyi (3-20)
\:\'i o7 WJ' _f;]_
| G T e
where [k(e-n)]™ = [ [ [[B] l“)([-T)] [B] |j| dé dn d¢
-1 -1 -1

and [m] ™ is as defined in Equation 3-15. Hence, to solve the general linear viscoelastic
problem (Equation 3-20) utilizing the finite element method requires the solution of simul
tancous lincar integral equations. Without further restriction the numerical solution of in-
tegral equations of this form requires extensive effort. The following section shows a
method whereby effort can be greatly reduced without undue restriction on the class of
problems that can be solved.

Solution of Integral Iquations

Consider a typical integral equation governing the motion of a single-degree-of-freedom
svstem with viscoelastic behavior

o RS du ]
mi + | E(t+ tr)— dr f(t+" 1) (3-21)

o0 oT




if the body is in equilibrium until time zero, Equation 3-21 becomes

t+At ou
miu + E(t+ t)yu(o) + [ E(t+4t-7) TdT = f(t+/1) (3-22)
o ar

If the relaxation modulus for the material is characterized by a Prony series, a simplification
to the solution by step forward time integration will be shown to result. Therefore, write

: ; s 70 ¥
E(t) = E, + '.‘_ll:ic : (3-23)
=

where nv is the number of terms in the series.
Substituting Equation 3-23 into Equation 3-22 we can write

4 b L8 R | A(t+at)/x; U3 2/ du .
mi + Eju(t+'t) + I | Ee + Ee [ e '—dr| = f(t+50)
1=1 0 o7
(3-24)
I'his equation is simplified by defining the last term on the left-hand side as I 1.e.,
R (3723972 PRARRLIS /5 ¥ 1 .
Lilertt) = Eie | ¢ — dr (3-25)
o ot
and can be expanded for subsequent computational advantage as
LU\ IR (530970 VM /0 VO [ <
I(t+40) ¢ L(e) + l'.ic | ¢ =— dr (3-25a)

t

F.quation 3-25a is a recursive equation for step-forward integration of Equation 3-24, pro-
vided the integral on the right-hand side of Equation 3-25a can be solved numerically. To
do this it is assumed that the displacement u varies linearly over cach time increment. In
this way

i)\_{ ¢ ‘u(t+ t) - 1:(1) ) u(t)

a7 7 Ot At

is treated as a constant over the interval t<r<t+/t,




t+4t
T/\; (t+2t)/N;  t/\;
and f e ldr = )\i [c Lo ']
t

I'hus, the integral 1;; can be written in recursive form as

/A u(t) /A
ety = ¢ L) + Biki——(1 - ) (3-25b)
t
One further computational simplification is made for I, by defining
N U,
hyat) = — (1 - e
¢
and rewriting the recursive formula as
BN
[[(t+01) = e L(t) + hy(at) Sult) (3-25¢)

Making use of Equation 3-25¢, the equation of motion (Equation 3-24) can be written

as
nv N _Ag/.
mi + |E +Z |1i("~t) Zu(t) = f(t+ 4t) - Eou(t) - Z e 'li(t) (3-26)
1=1 =
where I;(0) = I~'.iu(())
and u(t + 2t) = u(r) + Su(r)

The fomulation given above for a single-degree-of-freedom system holds also for a sys-
tem of equations for any viscoelastic finite element. That is

»-l? ii n = n ;/;u- n t_\ l n uit )_ n
(m] ™Y i+ (lk(,] + I [k(a0)] By = }lyi k1™ u(e)

w: i=1 P o T

1 ““W Z1 \\'(t)
'\lv\ "t/)\l
% 1;(t) (3-27)
=1
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where history integrals are now defined by

“u(t)
NV A/ SV
{L(t+50)} =1 Ze "Lt + [k@o] | o) (3-28)
i1 oy
“w(t)

and [k,] and [kil are viscoelastic element stiffness matrices. They are defined in the same
manner as clement stiffness matrices for elastic materials (see Equations 3-14 and 3-20).

Normal and Reduced Integration of Element Stiffness Matrix

FFor some time it has been known that in the application of finite element methods for
ncarly incompressible (v = 0.5) or incompressible materials (v = 0.5), numerical problems
will be encountered with the usual displacement theory. To discuss how such materials are
dealt with in the ordinary displacement formulation of finite element analysis it is neces-
sary to discuss the method of evaluating the integrals defining the element stiffness matrices
shown in Equations 3-14 or 3-20. The procedure is equally applicable to elastic or visco-
clastic materials. In actual practice the integration over the element volume is carried out
numerically using the method of Gaussian quadrature. The numerical form of Equation
3-14 for an element n becomes

n o e i1
k] =Z X Z H,I[B]" [D] [B] ]I (3-29)
J:l J:l J:l

In this triple summation, terms on the right-hand side arc evaluated at specific points
within the element known as Gauss points. The H; are weighting factors and their values
are shown in Table 3-1. Ordinarily fer eight-node, isoparametric elements, such as those
employed for the skull bone in this investigation, two-term (nq = 2) quadrature is employed.
This implies eight Gaussian points. The eight Gauss points include two cach on the plus and
minus sides of the three local coordinate axes (sce Figure 3-1). However, evaluating the cle-
ment stiffness matrix for nearly incompressible materials is another matter.

Fried * has provided mathematical insight into why the normal two-term quadrature
would be incorrect for nearly incompressible materials. He shows that a reduced integra-
tion must be used for those terms involving the Lamé constant in Equation 3-29. With the
eight-node isoparametric element, the correct reduced integration is one-point Gaussian

39 - "
I Fried. “Finite element analysis of incompressible matenial by residual energy balancing,” International Journal of
Solids-Structures, vol. 10, 1974, pp 9931002,
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I'able 3-1. Abscissac and Weight Coefficients of the
Gaussian Quadrature Formula

1S S nqg nq nq
I 1 [ flen$)de dn dS = i... \.:. .\.: —“iii'(alj ;lzj Ll3j)
-1 -1 -1 1=1 j=1 j=1
Number Abscissac, Weight Cocfficients, ]
of Terms, 3 H
ng
1 0 2.0000 0000
2 0.57735 02691 89626 1.0000 0000
0.77459 66692 41482 0.555 555 555
3 0.00000 00000 00000 0.888 888 888
quadrature at the element centroid. Naylor * has also demonstrated the necessity of re-

duced integration in several finite element analyses of nearly incompressible materials. This
is the basic technique employed for brain material by Shugar and Katona*! in the HIM
code. Though it can be employed either way, the HIM code currently specifies reduced in-
tegration for terms involving both A and G in Equation 3-29. No instability due to energy-
less shear modes has been observed when using reduced integration involving all terms and
when the elements are enclosed or confined.

Solution of the Equations of Motion

In this section an account is given of the method by which the HIM code integrates the
dynamic equations of motion for the skull/brain system when cither direct or indirect im-
pact loadings are specified. The method is termed a step-by-step or direct integration tech-
nique and is suited to large systems of equations such as those which would emanate from a
three-dimensional discretization of the head.

40
Do ). Naylor. “Stresses in nearly incompressible materials by fimite elements with application to the calculation of ex
cess pore pressures,” international Journal for Numerical Methods in | ngincering, vol. 8, 1974 pp 4434060

41 ’ 4 . "
I A Shugar and M. G Katona, “Development of finite ¢lement head injury model,” Journal of Engineering Mechanics

Division, ASCE, vol. 101, EM3, Jun 1975, pp 223-239




In the realm of dynamic finite element computer codes, much has been written concern-
ing the most advantageous method of numerically integrating the equations of motion. The
objective in this investigation was to canvass the available integration techniques and evalu-
ate them in the context of criteria developed for large three-dimensional finite clement
models. An carly selection of an operator was desirable so that it could be employed
throughout the successive model development and its behavior under various conditions
could be scrutinized for better understanding of its strengths and deficiencies.

I'he criteria for selecting a solution scheme are much the same for all finite element
codes* - the nature of the problem to be solved, particularly the size of the problem and
the load-time characteristics.

I'he first step is to choose between a modal superposition approach or a direct integra-
tion technique. The tormer approach is not feasible for large problems unless only a few of
the lower modes are desired, which implies that the loading is sluggish and only excites the
lower modes **** In the casc of the head injury model the problem is very large. Within
the realm of direct impact loading, short load durations are the rule rather than the excep-
tion and one can reasonably expect to encounter the wide spectrum of frequencies. Thus,
the loading can excite substantially a number of the higher modes. Furthermore, the mode
superposition approach presumes linearity. Therefore, because the system is large, because
the loads will possess short durations, and because an extension to nonlinear behavior is en-
visioned, the modal superposition approach was discarded in favor of a dircct integration
technique. This decision also related to the selection of a finite clement computer code for
modeling the head. A modal analysis capability was not considered relevant in the code
sclection process

I'he choice is then reduced to that of either an implicit or an explicit integration tech-
nique. The explicit method has the advantage of being extremely fast computationally for
cach time step because no triangularization is involved. However, the time step size is re-
stricted by the Courant stability criterion. That is, the time step must be less than the
smallest sonic travel time across any element. Unless some means is provided within the
code to control the time step size during execution, the user runs the risk of an unstable
solution. For codes dealing with large three-dimensional discretizations intended for re-
peated use in parametric studies, the possibility of instability is to be avoided. EFven with

42 . . e
KS Dunham, R FNickell, and D€ Sackler. “Integration operators for transient structural response,” Computers
and Structures, vol 2, no. 172, Feb 1972 pp 116

3 @
7 R.W. Clough and ] Penzien. Dynamics of structures. New York, McGraw-Hill Book Company, 1975 p. 271,

“R. . Ccook. ¢ oncepts and apphications of finite element analysis. New York, John Wiley and Sons, Inc., 1974 pp

292-253
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permissible time steps an exorbitant number would be required to span typical load dura-
tions. These considerations, which are primarily practical in nature, reduce the selection to
one of the implicit integration operator techniques. Some of these techniques are uncondi-
tionally stable and provide control over computer costs by allowing a choice of time step
size independent of the Courant stability criterion.

Among the implicit schemes, the Newmark (y = 1/2, 3 = 1/4) operator®’ | the Wilson
averaging operator *® and the Houbolt operator*” are more prevalent. The accuracy of
these methods was studied to decide which would be more suitable for the head injury
model

Inherent in all implicit schemes is the tendency to artificially attenuate the response and
to artiticially clongate the period and shift the phase of the response during integration of
the equations of motion.

Response attenuation for each operator was investigated with a simple 1-degree-of-
freedom lincar oscillator. This procedure was first used to study stability of finite differ-
ence solutions*™ and has been used contemporancously by others*” in evaluating the rela-
tive merits of integration operators. Only a heuristic account of the evaluation procedure is
presented in this paper. More complete information is contained in the references cited.

I'he free response of a single-degree-of-freedom linear oscillator is governed by the dif-
terential equation of motion

¥+ w2u=0 (3-30)

where s the displacement and w is the natural circular frequency. The procedure begins
by substituting the integration operator expressions presented in Table 3-2 into Equation
330 atume t,, . In this way a numerical form of the equation (also shown in Table 3-2)
tor cach operator is derived, and it will be necessary to find the expression for a typical

45 4 %
Nathan M. Newmark. A method of computation for structural dynamics,” Journal of the | ngineering Mechanics

Division, ASCE, M3, Jul 1959

46,
University of California. SESM Report 681 A computer program for the dynamic stress analysis of underground
structures, by oL Wilson. Berkeley, Calit, Jan 196K,

47 "

" John €. Houbolt A recurrence matnix solution for the dynamic response of elastic aiceratt,” Journal of Aero Science,
vol 17,1950, p. 540
4

8 v
PoD Lax and ROD. Richtmeyer. “Survey of the stability of hnear finite difference equations,” Communications on
Purc and Apphied Mathematics, vol 9, no. 2, May 1956

19 Ve
Robert 1 Nickell. “On the stability of approximaton operators in problems of structural dynamics,”” International
Journal of Solids and Structures, vol. 7, 1971, pp 301-319
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Velocity

Equation 1

Displacement
Velocity
Equation 1
Velocity
Acceleration

. quation 1

, 2
“I'or the Newmark operator, q = w/(1+w

Table 3-2. Integration Operator Description

Newmark?
u u, + At + (0.5 - Bl At + Bid t
n+1 n n ; ST i ol |
l"n+l = My, * (1 - “/)'lin't + 7iin+] t
lineq + qluy + G0t + (0.5 -Piise?] = 0
Wilson Averaging”
Upep = Up + OO + (g + 20)52/6
ey = Uy + (U + 8002
g + (1 - (3+q07t)30] 0y, - (07 ti,+u)g/0 = 0
Houbolt
: 1 T
Bt ()——r (11ug,q - 18uy + u, 4 - 2u,5)

- Su, + -I-un_l - upyo)

x 1
Ul = ,;2 (Qupy n

Su, + 4u“_1 - un_2)+ wzuml =0

1
-tZ(ZunH LT

2’~t2p') where g = 1/4, v = 1/2

y y . _ 9
P or the Wilson Averaging operator, q = 60)2/[(#((,)() )] where 0 =2

response up 4 for cach. After the particular operator under evaluation has been introduced,
the resulting numerical equation of motion is then cast into a difference equation of motion
by using difference approximations to the derivatives. The oscillating component of the
solution (in polar form) of this difference equation is,

Un+ 1

el [f\lciu(nﬂ) ) ‘,\2(.-ia<n+1>] (3-31)
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fhe terms p and a are the polar modulus and polar phase, respectively, and the constants

\; and A, are determined from initial conditions.

I'rom Equation 3-31 it is scen that the response will grow without limit and therefore

be unstable if p

However, if p -

I the response will be attenuated continuously. Each

of the operators will vield a different function for the modulus p in terms of a parameter

¢ which in turn is the product of frequency w and time step size t. Although attenuation

occurs for p -

1, this condition is preferable to instability and is the requirement for a

stable integration operator. The results of this investigation are presented in Figure 3-2,
where the moduli p are plotted as a function of ¢. It is seen that all three operators are un-

conditionally stable; i.e., p -

1 for any time step size "t

Further, 1t 1s seen that the New-

mark operator possesses no attenuation and, on that basis, is the choice among the three

operators investigated.  This conclusion is corroborated in Reference 42 which states further
that the Newmark operator is also a good choice for nonlincar applications.

Other considerations could be important criteria, depending on the investigator’s objec-
tives. FFor example, computer time (number of numerical operations) is important although

it is believed that the rhree operators studied are economically equal. Furthermore, an

evaluation based on a single-degree-of-freedom system may be inconclusive inasmuch as

subsequent application of the operator is with highly complex systems. To the writer’s

knowledge there are no reliable evaluation techniques which account for system complex-

ity. The Newmark operator (8= 1/4, v

more complex than one-degree-of-freedom (i.e., general systems).

1/2) will evidence numerical damping in systems

Instead of the entire complex system of the skull, the mathematical tocus here will be

on the integration of the equations associated with two typical arbitrary mass points (or
nodes) within the global system, as shown in Figure 3-3. From this, the salient features ot
the solution process can be illustrated without direct reference to the remainder of the

\)'S[L‘IH.

DIRECT IMPACT

I'he governing equations of motion for arbitrary mass points i and
i+1 at time step S+1 when subjected to specified direct impact torces F(7) are
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Figure 3-2. Results of Numerical Damping Evaluation
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Figure 3-3

Global Displacement of Skull-Brain Model Relative to Inertial Reference Svstem

29




I'he mass terms m; and my 4 represent lumped masses at the two nodes in a diagonal mass
matrix. The global stiffness terrts K; j arc obtained in the direct stiffness method' by an
appropriate summation of clement stiffness terms from Equation 3-29. That is, Kii=
Z.'l\”. I'he displacement vector and acceleration vector composed of U; and U; terms, re-
spectively, are unknown at time step S+1. By definition, they are referred to the inertial
reference system. By choosing sufficiently small time increment “t, it is possible to predict
the aceeleration tcims ai step S+1in terms of known quantities from previous time steps
and the unknown L'i(S* D The particular prediction algorithm or integration operator em-
ployed, as previously described, is the Newmark ¢ method.

2l o)
pot”e pote

L.i(s) 2 L‘,im b Ui(Sm'tZ (3-33)

Substituting Equation 3-33 into Equation 3-32 and combining the unknown U; terms on the
left-hand side and taking the known terms to the right-hand side, the following equation
results.

(S+1)
< i | [ ! 3
| | |
| | ' - H
(omy 2 : i - se1) . 1Sy Lo (S) e vy
O i\l;,l e e U; K + : Ut +U; 't + U™ got
T el : Bot
LG ) r f = (S+1) mic (ST L (S)iA N f
K. + Kestaag | [ 1 ' +——(U Y +U, 't +U N gat
symmetric ( 2l w2 ] : : ! ':’ i+1 por2 :ul i+1 i+1
) ' ,
L ~ ) L : -
—

(3-34)

The modified force vector on the right-hand side has been updated with the addition of in-
ertia forces.  The modified stiffness matrix on the left-hand side never requires updating tor
lincar analyses with constant time increments. It, therefore, needs to be inverted only once
(at the beginning, prior to stepping through time). The left- and right-hand sides of Equa-
tion 3-34 arc then premultiplied by the inverse to obtain the solution for unknown dis-
placements at step S+1. However, inverting and multiplication by the inverse as described
here i1s only symbolic. In actual practice, the matrices are too large for inversion to be
cconomical, and instead the procedure of Gaussian elimination is employed to solve Equa-
tion 3-34 for the unknown displacements.
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INDIRECT IMPACT. To simulate indirect impact loads the displacement-time history
resulting from impact is specitied instead of force histories. For example, if the forces in

Figure 3-3 are assumed zero and the displacement U;

assumed known, | quation 3-32 may be written as,

(5+1) (5+1) (5+1)

Kl.l K o

L+ 1 g

K”l_lo] l\l‘l.l‘: 0

symmetric

= >

+1(0 of the i+1 degree of freedom is

(3235

Using the Newmark operator by substituting Equation 3-33 into Equation 3-35 we obtain,
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Isolating the ith cquation of Equations 3-36 and rewriting it by placing all the known terms
on the right-hand side, we obtain

m m . N .o . —
R LTS L {ui®) + G 2+ G pae? ) - k5, TSHD (3.37)
> 1l 1 g2 1+1
o pets

Since U; ¢ is known, the equation associated with it (the second of Equations 3-36) can
be ehiminated from the system and Equation 3-36 may be rewritten as

(S+1)
e : -/ i i
i I : I & ( i \
| : i ’
| i ‘
m ! | m; . .- 1 P - (S+1)
- r. | j L1 (S) (S) A (SYpga2) - K. - J
~ l t Ky Ki i1 : 1| Yi » 2 <L‘i +U; el it o t) Kii+1 L”l
el . > 34
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symmetric | : |

|
| f

e oo [ ! J

(3-38)

Again, in practice, Equation 3-38 is solved for the unknown U, by Gaussian elimination
rather than by actual inversion of the square matrix of the left-hand side.

When [ is assigned a value of 1/6 in Equation 3-38, the integration of the equations of
motion will be only conditionally stable, and the linear acceleration method results. Al-
though the parameter § is optional in the HIM code, a value of 1/4 has been exclusively used
in the development of the head injury model. In this case, the method is unconditionally
stable and 1s termed the average or constant acceleration method. In general neither method
1s considered morce iccurate than the other. With the use of § = 1/4 the analyst does not run
the risk of having the solution grow without bound for an arbitrary “t.

The direct integration technique also provides flexibility in handling a variety of arbi-
trary impact loads whose frequency content may be quite varied and extensive. It is this
frequency content that determines which skull/brain modes need to be integrated accurately
and, hence, what size of time step is required.
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4. PRELIMINARY MODEIL STUDY

At the beginning of the head injury model development program, no documented evi-
dence existed to indicate that the finite element method was a suitable analysis tool only
the suspicion that it might contribute to the study of head injury due to its innate ability to
structurally model solid forms with complicated shapes and constitutive propertics
Many uncertainties about its applicability to head injury modeling existed, not the
least of which was due to the known semisolid or fluidlike makecup of brain matter.

Consistent with a cautious philosophy, a series of one- and two-dimensional models were
constructed and numerically studied prior to attempting a three-dimensional model. These
studies are reported in this section, however some readers may wish to skip directly
to the three-dimensional studies presented in section 5.

One-Dimensional Models

Since it was originally envisioned that an assemblage of eight-node brick finite elements
would constitute the final three-dimensional model configuration, the eight-node brick ele-
ment was chosen to comprise the basic one-dimensional model used in this study.

With the proper choice of bulk and shear moduli, a Poisson ratio of zero can be obtained
and, in cffect, produces a one-dimensional model from a prismatic stack of three-
dimensional clements as shown in Figure 4-1. Alternatively, boundary conditions can be
employed to establish the same effect and retain the freedom to specify arbitrary bulk and
shear moduli values. The first of these methods was employed in this study to facilitate an
cevaluation of the eight-node brick by comparison with classical one-dimensional wave propa-
gation theory. The second method was used in the latter part of the study where the use of
realistic skull/brain material properties was necessary. Specifically, boundary conditions
were assigned to restrain, completely, lateral deformations (transverse to direction of load-
ing) in the one-dimensional stack of elements. This was necessary to prevent physical in-
stability induced by the zero value assigned to the shear modulus for brain material. The
stack of three-dimensional eight-node brick elements was subjected to short stress pulses
typically found in stress wave problems. It is important to point out that pulse durations
typical of head injury are very often larger, producing wavelengths much in excess of cranial
dimensions. As a result, the head injury problem belongs, most often, in the vibration do-
main, and the code’s ability to propagate stress waves accurately is not of primary signifi-
cance. Nevertheless. many engineers heretofore have investigated the dynamics of head
injury from the stress-wave standpsoint; their main concern being the potentially injurious
ctfect ot discrete tensile waves in brain matter it and when they occur (again, they owe their
existence to 12latively small pulse durations). Because of the influencing nature of these
past investigations and because it is conceivable that small pulse durations may be found to
exist among causative head injury loads, it is desirable to know how well the intended for-
mulation performs in such instances.

An individualized summary of cach model used in the study follows. The information
includes geometry, material properties, input loads, acoustic velocity and critical time step
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values as well as the computed stress wave results. [t is believed that a one-dimensional
model does not adequately represent the cranium; thus, no conclusions contained in this
section are intended to be applicable to head injury.

k- quilibrium Model. The primary objective of the equilibrium model was to verify that
the FEAP code and particularly the eight-node brick were operating correctly. An equili-
brium check in finite element work is usually the means used to make such a verification. If
a 1.0-psi step pulse load is input as shown in Figure 4-2, the computed clement normal stress
0y should take on the value of -1.0 psi. Figure 4-3 shows this stress plotted against time
for three different time steps and for each of the four elements of the equilibrium model.
Ihese results, especially those for element number 1, demonstrate that the code is indeed
operating correctly. Oscillation of the computed stress about the theoretical value is to be

expected with any numerical integration scheme whether it is implicit or explicit.

Because the stress wave is reflected (with the same sign) from the fixed end face of the
modcl, stresses are correctly showing a tendency in elements 2 through 4 to increase to a
value of -2.0 psi.

More importantly, the effect of time step size on accuracy is illustrated. Given suffi-
cient time (1 second) after the initiation of loading, data for the larger time step “t = 0.8
second (approximately twice the critical value) appears as accurate as data for smaller time
steps. In fact, the greater numerical damping associated with this larger time step actually
appears beneficial in damping the oscillation.

Reflection/Refraction Model. Because it is of interest to know how well the FEAP code
handles layered media, a simple model composed of two materials was numerically tested
prior te using more realistic values for material and material layer thickness. The model is
shown in Figure 4-4.

Accozding to onedimensional stress wave theory, a wave incident upon a material inter-
face where the characteristic impedance changes abruptly will be both reflected and re-
fracted. This theoretical behavior applied to the present model was computed and is shown
as the dashed line response in Figure 4-5.

It can be observed that the computed solution is responsive to the reflection and refrac-
tion of waves. In Material 1, the average of the three greatest computed values for times of
2.4, 3.2 and 4.0 scconds appears to oscillate about -1.3 psi, which is close to the magnitude
of the returning (reflected) wave. Since Material 2 involves a steep wave front, agreement is
not good, but still the average of the computed refracted wave increases with time toward
the theoretical value.

Numerical Damping Model. This model was intended for investigating the numerical
damping which will occur with the Newmark g method when it is employed in systems more
complex thari a single-degree-of-freedom system. The model is shown in Figure 4-6.

I'he results of this model clearly show the numerical damping effect of large time steps
on the stress wave solution. Figures 4-7, 4-8, and 4-9 cach illustrate the stress wave solution
at various times as computed by the FEAP code for three different time step sizes; they are
time steps equal to the critical value, twice the critical value, and four times the critical
value.
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2. Reflectuion/refraction tests on a nominal one-dimensional dissimilar material model
with step loading showed that, on the average, the FEAP code captured well the reflected
wave magnitude. Results for the refracted wave were less accurate due to the severity of the
wavefront but the tendency to capture it was evident,

3. Investigation of the effect of time step size on a one-dimensional brain model with a
triangular pulse loading of short duration showed that critical time step sizes yield results in
excellent agreement with theoretical prediction. However, as the prescribed time step size
increases, significant numerical damping increases and adversely affects the solution. Also,
the use of larger time steps resulted in a retardation of wave propagation speed and an in
crease in noise in the trailing portion of the waves.

4. The addition of elastic layered bone caps to the one-dimensional brain model had
negligible effect on the stress wave response in the brain.

Axisymmetric Model

I'he objective of this model was to determine whether or not the finite element method
was able to function as a head injury modeling technique. Many investigators have used,
and arc still using, axisymmetric analytical models for head injury modeling, and it was felt
that if the finite clement method could duplicate some results previously obtained from the
models it too could be used as a viable analysis tool and be, in principle, casily extended to
more realistic head injury modeling. Even though the geometry is simplified in the axisym-
metric form, the ability of the finite clement method  to handle a very soft material en-
capsulated by a very stiff (albeit not rigid) material was of primary concern and required
demonstration.

A finite difference study by Merchant and Crispino®” was used in the comparison with
the finite clement analysis. These investigators, in turn, found good agreement between
their model and the closed form work of Engin’!.

I'he design of the axisymmetric finite clement model was somewhat affected by con
flicting requirements: on onc hand, the objective was to compare with a finite ditference
solution; on the other, it was desired to demonstrate the model as a valid head injury study
tool in its own right. The finite difference study contained a two-lavered skull. The present
writer believed that a three-layered skull representing the table/diplo¢ complex was manda-
tory, based upon the work of Hardy and Marcal'™® | and therefore implemented the three-
layer simulation. Despite the difference, the models are believed to be of sufiicient similar-
ity for comparative purposes since the diameters, degree of discretization, and the material
properties were the same for both models.

0
Umiversity of Washington, Department of Mechameal Engineering. A dynamic analysis f an elastic model of the human

head, by Howard €. Merchant and Anthony | Crispino. Seattle, Wash, 1972

51
AL Engin The axisymmetric response of a thad-filled spherical shell to a local radial impulse - a model for head

injury,” Journal of Biomechanics, vol. 2, 1969, pp 325-341
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I'he finite element model can be seen in Figure 4-12. The brain mesh was obtained by
means of a Laplacian generation scheme where ail unspecified nodal points are computed
iteratively until they are uniformly spaced and consistent with specified node points for the
skull. This technique is discussed in more detail in section 5.

Material properties are summarized in Table 4-1. Different dimensional systems were
emploved, but all values are equivalent. The tabulated mechanical and physical properties
for hard bone and brain are traceable to Goldsmith®? . However, for diplo¢, material proper-
ties were computed as suggested by Melvin, et al.>* . Namely, bulk and shear muduli were
calculated by multiplving their respective values for hard bone by the weight density ratio
between diploe”and hard bone. In this case the ratio was one-tenth and the resulting bulk
and shear moduli for diplo€’are 1.333 x 10° psi and 0.80 x 107 psi, respectively. Note that
with this ratio technique the clastic sonic velocity is the same for both hard bone and
diplo¢”

Prior to conducting dynamic studies with this model, a static axisymmetric load was ap-
plied radially at one pole of the sphere while restraining the opposite pole against all dis-
placement. A computed hydrostatic pressure state was expected in this simulation but did
not occur despite the mechanical properties for the internal elements being specified as
those for a fluid (sce Table 4-1). What was computed was a highly variable and random
pressure distribution (predicted magnitudes varied from +6 to -194 psi) within the sphere.
I'his apparent anomaly was really a misinterpretation of the simulation because the outer
brain elements are attached everywhere to the inner skull elements, in contrast to the actual
behavior of fluid that would not attach itself to the skull efements: Thus, the computation
was correct but the initial interpretation of the simulation was incorrect since, in this case,
the desire was to create a hydrostatic pressure. Means were sought to eliminate the inherent
and troublesome displacement continuity between the skull and brain finite elements. The
difficulty was that bending and shear modes were being transferred from the shell elements
into the interior elements because of nodal point compatibility at the shell/interior inter-
face. It was believed that the model must include a mechanism to simulate the apparent
discontinuity between the skull and brain that arises due to the presence of the subarach-
noid space. Therefore, the model must either relinquish compatibility between the nodes of
the shell and the nodes of the core or provide a substitute mechanism. Detaching or co-
alescing nodes at a common interface in thefinite element method can become difficult and
expensive where a large number of nodes ark concerned. Therefore, an alternative approach
was taken which resulted in the development of a brain element.

52
PEW. Goldsmith. “Biomechanics of head injury,” Biomechanics, Its Foundations and Objectives, ed. Y. C. Fung, N, Per
rone, and M. Anliker. New York, Prentice-Hall, 1972, pp 585-634

53 2 5 e
TT1W o Melvin, P.M Fuller, and 1T Baradawala. “The mechanical properties of the diploe layer in the human skull,
i Proceedings of Spring Meeting, Soaety for | \pcnmcnml Stress :\nal)wn. Westport, Conn, 1970
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Figure 4-12. Axisvmmetric Fluid-1alled Spherical Shell Model
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Fable 4-1. Mechanical and Physical Properties for Axisymmetric Models

][

Engin and

Crispino and

Property Goldsmith? Merchant? CEL
a. Bone (inner and outer layer)
3 3 -4 “)f-SZ
o 0.0772 Ibm/in. 2.14 g/cm 2.0x 10—
(2.]4g/cm3) 2
K (1333 x 100 psi) 9.23 x 10% pars 1333 x 100 psi
(1.333 x 10° psi)
[ G 0.8 x 100 psi) 5.53 x 10% bars 08 x 100 psi
(0.80 x 100 psi)
O (109,500 in./s 278.5 cm/ms 109,500 in./s
(109,500 in./s)
b 2 x 100 psi 2 x 100 psi) 2 x 100 psi
0.25 (0.25) 0.25
i b. Brain
|
’ o3 3 4 Ibt-s
P 0.0362 Ibm/in. 1.0 gm/cm 0937 x 10
(1.0 g/cms) n.
K (0.305 x 109 psi) 1.96 x 10* bars 0.305 x 109 psi
(0.084 x 100 pst)
G (0) O 0
Cy 57,100 in./s 144 cm/ms 57,100 in./s
56,700 in./s
gb (0) (0) 0
9 (0.5) (0.5) 0.5
b - 2 x 106 psi is for hard bone; for diplo¢, E = 2 x 103 psi (assumed).

4Values in parentheses are converted from authors’ values.
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'he material characteristics of brain matter have been reported and are generally ac
cepted as exhibiting a nearly incompressible, constant bulk modulus, and a very small tinie
dependent shear modulus.

In Reference 54 the use of a very compressible, “effective,” bulk modulus for brain
material i1s discussed. In many cases of finite element modeling, the use of effective material
property constants is justifiable because the actual values are either unknown or because,
through their specification, the solution becomes intractable. If brain injury is to be
modeled, the correct and umque value relating a state of strain to a state of stress in brain
material is desireable. This relationship can be provided by a high (liquid) bulk modulus
(=305,000 psi). An “effective” bulk modulus which results from observed distensibility of
the entire central nervous system, or even the cranial compartment itself may not necessar-
ily be required. The distensibility mechanism can be provided, for example, by simulating
a compressible subarachnoid space.

The characteristics of an ideal fluid imply the presence of hydrostatic stress proportional
to volume change and the absence of shear stresses. FFrom a classical mechanics viewpoint,
a fluid can be characterized very simply by specifying the appropriate bulk modulus and
setting the shear modulus to zero for those regions representing the fluid. However, when
employing the finite element technique, further precautions must be taken to avoid erro-
ncous results. Specifically, the standard use of high order numerical integration techniques
to obtain the clement stiffness matrix must be replaced by a reduced numerical integration
(in this case, a first-order integration) capable of determining the volume change of the ele-
ment independent of the assumed interpolation functions for the displacements.

I'he reason for this reduced integration is to insure that the strain energy of the element
responds only to deformation modes that are associated with volume change rather than
deformation modes such as shear and bending. Not only did this approach work well but
also proved a very inexpensive coding modification. From this, it was learned how a brain
clement could be provided. In summary the brain element was constructed from the stand-
ard linear isoparametric solid element with a specified bulk modulus and zero shear modu-
lus; and, in place of the standard 2 x 2 Gaussian integration scheme, one point at the ele-
ment center was used.

When this element was incorporated into the code, another attempt was made at exe-
cuting the axisymmetric model; this proved successtul and verified the viability of the ele-
ment. No distortional components were transferred into the interior elements, and the ele-
ment pressures compared favorably with a hydrostatic distribution (pressures varied from

3.4 to 4.0 psi throughout the interior elements).

54 : ' 7 . "
YK L UDiscussion of Paper No. 751163 The development of a detailed finite element brain model,” SAL Trans-
actons, Jan 1977
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I'he applied load used in the finite difference study was not typical ot skull impact
loads. Ornginally, Engin applied a step pulse: for comparison, Merchant and Crispino chose
the same load magnitude as Engin. However, they terminated the pulse at 0.0614 ms, as
shown in Figure 4-13 which was far below typical load pulse durations. (The initial disturb
ance reached only two-thirds of the sphere diameter by the time the pulse was terminated.)
Nevertheless, this load was used in the present comparison study. It was applied uniformly
over a half angle of 7.5 degrees (equivalent to 0.5F square inches of surface area) and was
directed radially inward (see Figure 4-12)

Pressure history comparisons are shown at two points (see Figure 4-12) along the axis
colincar with the load. The comparisons of results are shown in Figures 414 and 4-15. The
time step size employed was 3 us and is approximately twice the critical time step size re-
quired for the finite difference study. Finite element data shown has been sampled every
three time steps.

Surprisingly good overall agreement can be seen for the pressure-time history within the
brain clement nearest the pole (Figure 4-14). The primary difference appers to be a time
shift or lag between the two responses. Also noted is a difference between the responses for
the peak compressive and peak tensile pressures. These differences are minor considering
the dissimilar manner in which the skull bone was modeled and the dissimilarities in the
finite clement and finite difference techniques.

Pressure magnitude decreases considerably for points away from the pole as shown for
point 2 (Figure 4-15). At the same time, agreement between the two responses deteriorates
fwo explanations are offered beyond those already mentioned. First is that perhaps the
coarse sampling rate of the finite clement data prevented better agreement. Second, and
probably more significant, is the effect of the two areas of ill-conditioned finite clements
along the z-axis (sce Figure 4-12). In the proximity of these elements, finite element pres-
sure values appear to be amplified with what must be regarded as numerical noise. The fi-
nite difference mesh was better conditioned and did not exhibit these errors. It is therefore
believed that by increasing the sampling rate of data and by improving the mesh the agree-
ment would be improved.

With regard to computation of wave speeds in the spherical model, finite element data
agrees well with wave propagation speeds computed by finite difference and by analytical
methods. For example, taking a diametrical path through the brain material, the first dis-
turbance at the counterpole is expected at about 0.11 ms. Taking a circumferential path
through the skull bone material, the first disturbance should arrive at the counterpole in
about 0.09 ms. Results of the finite element model show that both the brain wave and skull
wave have arrived at the counterpole at 0.12 ms.

l'o study the influence of time step size on computed dynamic response, the axisym-
metric model described above was employed. A more realistic load was applied so that the
model’s performance is more properly evaluated. Patrick, et al.>> measured force histories

55 ’ "
TLoM Patnick, HL o Mertz, e, and CO KL Kroell “Cadaver, knee, chest, and head impact loads,” in Proceedings of the
Fleventh Stapp Car Crash Conference, Oct 10-11, 1967,

51




Pressure (bars)

0.0

(1 bar

14.7 psi)

0.0

Figure 4-13. Short-Duration fL.oad Pulse.

Time (ms)

52

0.0614

e e—




bars)

Pressure

—_—

Note: 1 bar 14.5 pa

Finite difference

Finite clement

4 | ) l i I } l
-+ 1 1 T 1 i ! b
002 006 010 014 .18

Fime (ims)

Figure 4-14. Pressure Lhstory Comparison at Pomnt 1




Pressure (bars)

Note: 1 bar 14.5 psi

Finite difference

Fintte clement

]
-
M
| | ] | |
T LG = T i
002 006 0. 10 014 018

Fime (ms)

Figure 4-15. Pressure History Comparison at Point

54

A




trom skull collisions against padded force transducers. I'rom this data a force of 2,650
pounds with a duration of 10 ms was selected as a typical head injury load. An equivalent
pressure (distributed over 0.530 sq in.) was computed and applied to the model. This equiv-
alent pressure-time history is shown in Figure 4-16.

Results of this study were encouraging for two reasons. First of all working with typical
load pulse durations, the computed finite element data was found to be smooth and not ob-
scured by jagged response data as was seen tor the short duration pulse. Second, accurate
results were obtained with very large time steps, and thus analyses of typical load pulses are
expected to be economical and suited to the finite element method.

Since no changes in the axisymmetric model were made, the critical time step size re-
mained the same; about 0.0026 ms. Computer runs were made for each of the following
specttied time step sizes: 0.005, 0.1, 0.2, and 0.4 ms. Thus, ratio values of specified to
critical time step size of about 2, 40, 80, and 160 were investigated.

IFigure 4-17 shows the compressive stress in the outer table bone layer directly bencath
the site of the applied load. No noticeable difference in the stress response is observed
among the investigated time step size parameters. Also the results indicate that the model
satisties equilibrium. Figure 4-18 shows the pressure history response within the brain at
points 1 and 2 (see Figure 4-12). Again no noticeable difference is observed. These results
demonstrate that no accuracy loss occurs due to the use of very large time step sizes.

Although in this study the main intent was to demonstrate only the applicability of
tinite clement modeling to head injury study, some data pertinent to head injury was col-
lected and is shown in Figure 4-19. Stress profile data were collected tfrom the computer
run associated with the largest specified time step size, 0.4 ms. The buildup and decay of
compressive and tensile pressures within the brain at the pole and counterpole, respectively,
can be observed. Note that there is no indication that tensile pressures exist at the poles
directly beneath the applied load. This is contrary to the data shown previously (Figure
4-8) and is ascribable to the relatively long, but more typical, duration of the load pulse
apphied in this study

o verity the predicted or computed rigid body motion of the axisymmetric model, the
theoretical rigid body displacement solution was first generated in the manner of particle
dynamics. Knowing the composite mass properties of the model (Table 4-1) and the forcing
function applied to the model (Figure 4-15), a closed form expression for the acceleration
can be written and then integrated twice.

I'he results of the comparison are shown in Figure 4-20. It can be seen that the finite
clement data is in good agreement with the theoretical rigid body displacement solution at
those times when the applied load is nearly terminated (£>0.008 second). Prior to that time
the periodical displacement component is significant, and since averaging finite clement data
tends to nullify this component the agreement can’t be expected to be as good. Alternative-
ly, neglecting the periodical component in the theoretical solution produces good agreement
at all times.

I'he foregoing results from the axisymmetric model enable the following conclusions
regarding the applicability of the finite clement modeling technique in head injury studies.

(1) Acceptable agreement between finite element and finite difference results for an
axisymmetric head injury model was achieved for a short duration load pulse.
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(2) Specitied step sizes associated with the implicit integration scheme of about 2, 40,
80, and 160 times critical time step size exhibited nearly identical results. This is indicative
of the efficient utility of the implicit scheme in head injury studies with typical applied load
durations.

(3) The time history of rigid body translation was predicted accurately for the axisym-
metric head injury model.

(4) Simulation of brain material was achieved successfully be degenerating the isopara
metric clement’s spatial integration to one-point quadrature at the element center, and by
specitving the shear modulus and the bulk modulus value for brain material.

(5) To the extent that an axisymmetric, spherical shell is a valid head injury model, the
finite element method is shown to be an accurate method for head injury analysis.

(6) These results and the versatility of the finite element method encourages its appli-
cation to more geometrically complex head injury models.

Plane Strain Model

Of interest in this model study was the influence of more realistic gecometry on skull
bending and on distribution of intracranial pressures. Knowledge acquired of these para-
meters could contribute to what has been learned previously concerning head injury from
axisymmetric models and also intimate what can be expected in the eventual extension to
three-dimensional modeling.

A plane strain model was constructed to simulate the geometry of a unit slice of the
midsagittal plane of the human cranium. This model is shown in Figure 4-21. The geom-
ctry was developed from measured data taken from the plane of symmetry of a plastic rep-
lica of the human skull. A total of 420 four-node quadrilateral elements and 469 nodes con-
stitute the discretization. As in the axisymmetric model, the skull bone is simulated with
three layers of elements through the thickness, and the reduced quadrature ¢lements charac-
terize the encapsulated brain matter. Loading was prescribed as a uniformly varying pres-
sure with a variation in the form of a haversine function. The duration of loading was 10 ms
which is typical of durations in vehicle accidents. A timc step size of 0.4 ms was cmployed
in the integration of the cquations of motion. Boundary conditions were chosen to simu-
late restraint against large rigid body motions at the base of the cranium near the neck junc-
ture. In this model the skull was treated as a closed container.

Previous experimental measurements of pressures in the midsagittal plane have indicated
pressure gradients to be lincarly varying from compression to tension in an anterior to pos-
terior (A-P) sense. Results of the plane strain model demonstrate that this could only be
true for pure translation of the skull in the A-P direction. In actuality, for the same blow,
the pressure profile will be determined by the neck constraints and the resulting relative
“mixture” between translation and rotation of the head. In Figure 4-22 the pressure pro
files are quadratic in the A-P direction with considerably more tensile pressure than would
result from a hnear profile. Figures 4-23 and 4-24 show the pressure histories in the brain
and the stress histories in the outer table bone, respectively.

I'wo additional computer runs were made with the two-dimensional plane strain model
of the midsagittal plane. The objective of these two runs was to evaluate the influence of a
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viscoclastic shear modulus characterization of brain matter. The geometry possessed a
“vented,” instead of closed, skull configuration by providing an opening at the foramen
magnum. Constraints were provided against translation and rotation near the opening, and
the dvnamic load was applied to the forchead region just as for the previous runs with this
model. The material properties for the brain shown in Table 4-2 were chosen so that the
shear modulus was strongly viscoclastic; thus, the initial shear modulus value was 15,500
pst and at the end of 10 ms the shear modulus decayed to 2,242 psi. While the shear re-
sponse was made strongly dependent on time, the buik modulus was considered as elastic.
I'o establish a basis for comparison, a completely elastic characterization of brain matter
was employed in the second computer run. Figure 4-25 shows the stress histories for both
computer runs. Initially, no dirfcrence in the response was noted, but eventually the inher-
ent damping properties of the viscoclastic material manifest themselves by dissipating the
energy at a continuously increasing rate with time. At 7.5 ms, for example, approximately
onc-half the elastic stress response has been damped by the viscoelastic characterization.
Figure 4-26 shows the bending stress history in the outer fibers of the skull bone at the site
of the blow. Since the brain is, in effect, softer in the viscoclastic case, the elastic skull bone
must deflect more and develop higher stresses than the elastic brain case.

Obviously a viscoelastic characterization has a great influence. The difficulty is in the
determination of a more accurate and representative viscoelastic shear modulus formulation.
The one used in this analysis, shown in Table 4-2, was arbitrarily based on a Poisson’s ratio
value of 0.475; but from this information an idca can be gained as to the sensitivity of dy-
namic skull response to viscoelastic brain matter. This information will assist in the charac-
terization of brain material properties in subsequent three-dimensional model analyses.

I'he computed bending shape of the skull resulting from the loading and boundary con-
ditions described above is presented in Figure 4-27. Since this is a lincar analysis, only the
shape (as opposed to magnitude) is of interest. The largest bending stresses occurred as
tensile stresses on the inside cranial surface adjacent to the location of applied pressure.
Iensile stresses are known to be conducive to linear fracture in cranial bone. They are indi-
cated on either side of the skull surface where they occur. Note the location of inflection
points which indicate a sign reversal for bending stresses in the cranial bone. Thus, while
the model suggests that the area most conducive to linear skull fracture is on the inside sur-
face near the foading, an alternative location would exist on the ouside surface near the top
of the skull.

All bending stresses in the skull were observed to rise and subside synchronously with
the haversine loading function. Displacement components due to bending, therefore, would
also follow the same time history. However, the resultant movement lagged behind the
loading history. In this instance a very slight counterclockwise rotation of the cranium was
observed as the applied pressure displaced it “up and back over” the restraining support.
Furthermore, this motion occurred while the applied pressure was subsiding and was there-
fore, considered to be an mertial effect.

This behavior is further evidenced by the intracranial pressure data shown in Figure
4-28. Pressure contours continued to form well after the applied load has peaked and begun
to subside (t -~ 5 ms). Contour values normalized on the applied pressure are listed in Table
4-3. Brain damage is often observed clinically to occur on the opposite side of the skull
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Fable 4-2. Brain Material Properties for Plane Strain Model

Characterization

I lastic

Viscoelastic

I luid

()

(1) S,S()()\»'I
G(0) 15.500
r(0) = 0.475
G(0.01) = 2,242
p(0.01) = 0.4988

I'able 4-3. Normalized Pressure Contour Values

Contour Number

e

K (psi)
305.000
305.000

305,000

2t 4 9 700264t

_—

(y (p\H

+
15.500

i
G(t)?
0

Pressure Ratio?,

P/ PAI

0.350
0.265
0.180
0.096
0011
+0.073
+0. 158
+0.243

IMinus sign indicates compression in brain; positive

sign indicates tension in brain
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from site of the blow and is termed contrecoup damage. Fvidence indicates that lesions oc
curring in this manner on the surface of the brain are attributable to negative (tensile) pres
sures which rupture surface capillary blood vessels. Determining the location of negative
pressures is, theretore, an important function of a head injury model. The contours show
that the location of the maximum negative pressurc occurred near the back and top of the
brain. This result is related to the direction of inertia forces which are, in turn, governed by

lar combination of loading, gcometry, and restraints employed. All three of

the particu
these parameters must be simulated accurately in head injury models because, as seen in this
example, they have an important influence on predicting both skull bending modes and

intracrantal pressure distributions.




5. THREE-DIMENSIONAL DISCRETIZATIONS

lhe two-dimensional models discussed in the preceding chapter were intended to be
preparatory for a three-dimensional analysis. Since the finite element method is a viable
three-dimensional analysis technique, there seemed little reason to dwell on the two
dimensional studics after they had served their preliminary purpose, and to proceed toward
the ultimate goal of the project—a three-dimensional model. It is felt, however, that these
simple models can be exploited further —that there is more to learn trom them—and should
not be discarded.

A\ primary consideration in the develop:ient of the HIM code was attainment of accur-
ate geometrical simulation of the cranial anatomy. The term “recognizable geometry™ is
employed to distinguish this feature from previous head injury model studies employing
rotationally symmetric geometry.

I'he effort to develop a recognizable three-dimensional discretization of the skull paral-
leled the preliminary model study effort as pointed out in the ORGANIZATION PLAN
section 2. As expected, it was a very involved procedure, taking approximately 1 year from
start to finish. This chapter describes the procedure and the considerations made during
that time. This description should familiarize potential users of the HIM code with various
parts of the total discretization, the various orders of discretization, and other options bear-
ing on cffective use of the model

Components of the Discretization

[he first consideration in discretizing the skull was to determine which anatomical struc-
tures should be included. Besides the cranial bone and brain structures (obvious compo-
nents of a head injury model), other structures could have required inclusion. Among these
were the neck, facial bones, subarachnoid space, and the major intracranial membranes such
as the falx and tentorium. The inclusion of these structures and other more intricate intra
cranial structures had to be weighed with the added complexity and cost associated with
meaningful discretizations of each. Their relative importance had to be assessed by the ex-
tent to which each participates in common head injury mechanisms. Ultimately, the decid
ing factor, however, had to be whether (for feasibility or economic reasons) certain of these
structures could be included in a finite element model. The result of having omitted some
of these structures could have adversely attected the scope ol the model’s .Ipp“(;lhi“l} ; Lo

obtain reliable intormation, the effort nevertheless had to proceed

Skull Bone Structure. A detailed study of the anatomy of skull sutures was made with
the intent of incorporating their influence on the structural behavior of the skull. Eight
bones constitute the human cranium - frontal, occipital, two temporal, two parictal and two
sphenoidal as shown in Figure 5-1. The sutures shown in Fi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>