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PREFACE
The following report represents the first semiannual review
of research conducted under the auspices of the Associate Joint
Services Electronics Program at the Institute for Electronic Science
at Texas Tech University. Specific fopics covered include, fault
analysis, computer-aided design, stochastic control and estimation,
decentralized control, mathematical system theory, optical noise, and

pattern recognition.
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ABSTRACT

Research covering several aspects of the fault analysis problem for
electronic circuits and systems is reviewed. This includes basic mathe-
matical studies into the concepts of fault diagnosis, fault predictions
and self testing. These ideas are then combined to formulate an archi-
tecture for an approach to built-in testing.

Introduction

The fault diagnosis problem may sub-divide into three fundamental
areas; fault detection, fault diagnosis, and fault prediction. These
areas are closely coupled and all three are required for any practical
test system. The precise manifistation of any one being dependent on
the specific context in which the test system is designed to operate.

For instance, in an off-line (periodic) test system the fault diagnosis
algorithm must be able to cope with components which have deviated a long
way from their nominal values whereas in an on-line (built-in) test sys-
tem one may assume that a failure is spotted as soon as the components
begins to drift away from nominal. As such, a fault diagnosis algorithm
for an off-line test system must be designed to cope with significant
nonlinearities whereas an algorithm for on-line testing may be formulated
in terms of a linearized model.

In the sequel the state of our research in fault diagnosis and fault
prediction is reviewed. These ideas are then used to formulate the archi-
tecture for a built-in test (BIT) system. Of course, the mathematical
theory derived for the fault diagnosis and fault prediction problems is

also applicable to off-line test systems, test systems designed for use




at the end of an assembly line, etc. The evnironment in which such test
systems operate is, however, quite different then that of the BIT systems
and hence the mathematical techniques for fault diagnosis and fault pre-
diction would have to be integrated differently in these other applications.

Fault Diagnosis

For the purposes of doing fault diagnosis we work with a component

connection model for the circuit or system under test which takes for form

T bi = Zi(s,r)ai =102 w5e 50

and a-= L]]b + leu

2- y = Lz]b + L22u

in the frequency domain6’12’12. Here Zi(s,r) is the transfer function of

the ith circuit or system component where r = col(ri) is the vector of
unknown component parameters and s is the complex frequency variable. The
Lij are known connection matrices, a = col(ai) and b = col(bi) are com-
posite vectors of component inputs and outputs respectively, and u and y
are the test input and output signals respectively. In the nonlinear case

the component equations are replaced by the state models

3. Xi

fi(xi’ai’r)
T2 Vs2s woe s

b

i gi(xi’airr)
with the connection equations remaining as in 2. Although these component
connection models for a circuit or system are nonclassical they are widely

used in large-scale system simulation and computer-aided circuit design and

are readily amenable to the "computer speed-up techniques" developed for
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these apph‘cations.]2 As such, they are ideally suited for the fault

diagnosis problem.

Combining 1. and 2. yields the fault diagnosis equation.’
8. S™ = Ly, + Ly (15,1l ) 7 2s,P)Ly,

where Z(s,r) = diag(Zi(s,r)) and S™ is the measured transfer function

relating the input test signal u to the output test signal y. The solu-

tion of the fault diagnosis problem therefore amounts to the solution of
for the parameters vector, r, given s™ and the connection matrices.
hough it is possible to give an analytic description of all possible

12,13 given any fixed value for the complex

solutions to this equation
frequency variable, s, in a "real world" situation the number of unknowns
greatly exceeds the number of equations and, as such, the analytic repre-
sentation of the solution manifold proves to be of little value. This
difficulty is alleaviated via a multi-frequency diagnosis algorithm where-

in one writes the set of simultaneous equations

: -1
3. S(sqs7) = Loy + Ly (1-Z(sy,r)Lyq)  Z(syur)Ly,
S(sz,r) = L22 + LZ](1-Z(sz,r)L”)"]Z(sz,r')L]2

. - . -]

where k different complex frequencies are used in equation 4. simultaneously.
The interesting and somewhat surprising result is that the additional equa-
tions in 5. may be independent thus increasing the number of -equations with-
out increasing the number of its unknowns.7 While the set of simultaneous
equations 5, often have a unique solution no analytic solution technique is

known and we must restort to time consumming numerical solution procedures




carried out off-line.

Although the multi-frequency fault diagnosis equations of 5. do not
admit an analytic solution their numerical solution can be significantly
speeded up by careful analysis of the equations. In particular, a little

6,12

algebra will reveal that

6. ds™

as” 1 dZ(si,r)
drS

. -1
. 1+ L]](I-Z(s1,r)L]]) 1) L]2
J

showing that one can compute the partial derivaties required for the nume-
rical solution to 5. analytically. Moreover, if one observes that the
inverse matrix required to compute the partial derivaties in equation 6.

is precisely the same inverse matrix required to evaluate the multi-frequency
fault diagnosis equations 5. it is seen that the partial derivative informa-
tion is obtained at virtually no computational cost over and above that
required for the evaluation of the equations. In a similar vain one can
reduce the computation required to compute the inverses at different complex
frequencies by intergrating the differential equation

7. d(]-Z(s,r)L1])-] = (1-Z(s,r)L

-1 d(s.r) Ly, (1-z(s,r)L”)“
. 11 ds

using the inverse computed at one particular frequency as a starting po1'nt.2’14

Although of extremely high dimension this equation is easily integrated with-
out the requirement for any matrix inversions. With the aid of these obser-
vations it is therefore possible to carry out an entire interation of a
Newton-Raphson algorithm for the solution of the multi-frequency fault diag-
nosis equations with the aid of only a single matrix inversion.

Although one does not have a "neat" set of equations such as those des-

cribed above for the solution of the fault diagnosis problem in a nonlinear

ol
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circuit or system surprisingly similar computational techniques can be
invoked in the nonlinear case. The key to these techniques is the re-
placement of the multi-frequency information of the linear case by a
family of integral performance measures on the test signals, u and y.
These play exactly the same role in nonlinear fault diagnosis as played

by the frequence information in the linear case, allowing one to formulate
multiple independent fault diagnosis equations from the same test signals.

3,12 is used to

In the nonlinear case the sparse tableau algorithm
evaluate the fault diagnosis equations at each interation of a Newton-
Raphson algorithm. As in the linear case this algorithm allows one to
compute the derivative information required for the Newton-Raphson algorithm
with essentially no additionally computational cost over and above that

required for the evaluation of the equations.3’a”]2

As such, by optimally
exploiting the computational efficiencies inherent in the sparse tableau
formulation for an electronic circuit or system it is possible to obtain
significant computational gains in the solution of the fault diagnosis
equations in the nonlinear case as well as the linear case.

Fault Prediction

Although for any particular device one can collect statistical data
on which to base a fault prediction algorithm in a practical setting where-
in the same fault prediction algorithm is multiplexed through the testing
of many different SRA's it is necessary to use an algorithm which is in-
dependent of the specific properties of the parameter under test. As such,
we employ a curve fitting a]gorithm.zo Although less accurate than a statis-

18,19

tically based algorithm we have shown by computer experiment that such




naw T

— — e

an algorithm can be employed as a satisfactory fault predictor. Such
algorithms are computationally simple thus permitting a single central
microprocessor to be multiplexed through tie testing of a large number
of SRA‘s.]5
Over the past several years we have investigated several approaches

5:15,16,18,19,20

to the fault prediction problem The first is extremely

naive but has yielded surprisingly effective resuits in simu]ation.18’]9’20
Basically, one collects data at periodic intervals, fits the data with a
second order polynomial, and solves the quardradic equation to estimate
the time at which the parameter will go out of tolerence. Although such an
approach might at first appear to be so naive as to be inapplicable, it has

18,19 114< 4s due to the fact that one

yielded surprisingly good results.
is not really interested in the accuracy of the failure time estimate but
only the accuracy of the binary decision (based on this estimate) as to
whether or not replace the SRA. The point is, that this binary decision is
only made when failure is expected in the near future, a regi?n of time in
which a polynomial extrapolation is reasonably accurate. On the other hand,
if failure is estimated to take place in the distant future even though the
polynomial estimate may be in significant error this will not lead to an
erroneous binary replacement decision. I.e., if failure is estimated to
take place in 3 years even if the estimate is off by 90%, the decision to
not replace the SRA at this time will still be correct.

A fault prediction algorithm based on the above described second order
polynomial extrapolation has been extensively studied by Tung and authur

and some 10,000 complete operations of the algorithm have been simulated.]a’]9
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For the most part these simulations were carried out on artifical data
generated by a library of special functions to which a noise term was
added. These special functions included some highly compliex non-monotonic
curves. Additionally, curves based on the empirical drift formula for thin
film resistors were studies (R(t) = At? where a lies between .3 and .5).
In both cases random noise with amplitudes of up to 25% of the tolerence
interval was added to the data. The result of these simulations, which
we believe to represent an environment which is more extreme that the
"real world", was that 99.5% of all SRA's were replaced before on-line
failure at a cost of about 10% of their lifetime.

At the present time a somewhat more sophisticated fault prediction
algorithm is under deve]opment.5 This is still essentially a curve fitting
algorithm though one in which a failure model well founded in modern

reliability theory]

is employed. The basic idea for this algorithm is
as follows. The drifting SRA parameter, r, is assumed to satisfy a

difference equations
8. r(k+1) = r(k) = f(k)

where the "component time" k represents the number of shocks the SRA has
received; switching processes, electrons boiling off a cathode, etc. The
relatiun between component time, i.e. the number of shocks received, and
"real time" is assumed to be a Poisson distributed random variable in which
the probability of the SRA receiving n shocks in a time interval of length

t is

9. P (t) = (ct)"e™t/ |n_
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For the fault prediction algorithm it is assumed that the value of
the parameter, r, is known at a fixed set of points in "real time";

r(t]), r(tz), e r(tm). Using this data we desire to estimate the
unknown failure dynamics, f(k), for the SRA parameter. This is then used
in equation 8. to compute the number of shocks required to cause failure;
i.e. the smallest value of k for which r(k) is out of tolerence. Finally,
this estimate is used to compute the optimal "real time" at which to
replace the SRA so as to miniminze the cost functional

10. J = cfPf + cww

Here, Pf is the probability of on-line failure, W is the average percentage
of SRA lifetime which is wasted by replacing the SRA before its actual
failure and Ce and ¢, are weight factors.

Note that the implementation of the above described Poission shock
based fault prediction algorithm requires that we deal simultaneously with
two unknown phenomena; the failure dynamics, f(k), and the random relation-
ship between "real time" and "component time" given by the Poission dis-
tribution. Although the required analysis is complex a surprisingly
tractable (and optimal in an appropriate sence) fault prediction algorithm
can be formulated. Here, one uses the properties of the Poission distri-
bution to estimate the number of shocks which the SRA has received in the
time intervals [ti’ ti-1]; i=1, 2, ... ,m and combines this data with a
generalized inverse algorithm to estimate f(k). Here, f(k) is approximated
by a jth order polynomial and one must compute the generalized inverse of

an m by j matrix. Fortunately, the algorithm is ideally suited to a
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sequential least squares techniques8 and no matrix inversions need to be
carried out on-line. Once f(k) has been estimated to a satisfactory level
of accuracy (one keeps on increasing the order of the approximating
polynomial until the estimation error is reduced to a prescribed level)
it is used with equation 8. to compute the number of shocks, required for
the parameter to go out of tolerence. Finally, this value is used in
conjunction with the Poission distribution to determine the optimal "real
time" at which to replace the SRA. Although apparently complex this latter
optimization can be reduced by analytic techniques to the solution of a
single nonlinear equation in one variab]e.5 As such, the entire fault
prediction algorithm may be easily implemented, on-line. Unlike the second
order curve fitting algorithm the Poission shock algorithm for fault pre-
diction is still under development and its simulation, hopefully on "real
world" data, is just beginning.
Self Testing

An interesting side effect of running a fault analysis system in a
predicitve mode is that it opens up the possibility of reliable self testing.
The key observation, here, is that to do fault prediction in a digital de-
vice one must test its analog parameters such as rise time, power supply
voltages, clock speeds, pulse widths, etc., since the digital parameters are
either right or wrong and have no gray region within which to extrapolate
trends. Now, if one uses a microprocessor to predict its own failure by
extrapolating the values of its analog parameters as long as the prediction
is made before these parameters go out of tolerence the digital performance
of the microprocessor will still be exact and hence one may use the micro-

processor as a reliable predictor of its own failure.
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The point is that in a predictive mode the microprocessor is still
working at the time it predicts its own failure and hence may be used
reliable in a self testing mode. Of course, once the analog parameters
of the microprocessor have exceeded their tolerence limits it may no longer
be trusted as a digital signal processor and hence the device cannot be
used to diagnose its own faults after failure.

Although the above described self testing concept is purely con-
ceptual and has yet to be implemented nor even simulated it is indicative
of the potential of fault prediction in a BIT system. Indeed, if one can
reliably predict failure before it actually takes place such "far out"
concepts as self repair move into the realm of feasibility since at the
time a replacement decision is made the device under test is still working.

A BIT Architecture

Our basic architecture for a Built-in Test (BIT) system is a two-
level hierarchical structure illustrated in Figure 1. Intuitively, the

overall system may represent a printed circuit board

nanoprocessors —

7077777 ™~
central up// './

Fide A

| <i;—,--bus

%

SEU\':i:L/Jﬂ--_________~

Figure 1: Two-level BIT architecture.
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while the subsystems represent various shop replacable assemblies (SRA's)
such as integrated circuits, power supplies, SCR's vaccumm tubes, etc.
Alternatively, the overall system may represent an entire electronics
system with the SRA's being its consituant PC boards. In either case the
SRA's may be throw-away units or units intended for off-line repair with
build-in test equipment (BITE) designed to detect and/or predict faults
in the SRA. For those units intended for off-line repair the BITE may
also be used as an interface with an external test stand but will not be
capable of isolating the failure within the SRA.

This structure is motivated by the above described research into the
relative computational complexity of the three fundamental problems of

fault analysis; fault detection, fault diagnosis, and fault prediction.9

18,19 but need

The latter problem requires considerable computational power
only be carried out at widely'gpaced test intervals, say one test per hour
(minute, second, ?). As such, a single central microprocessor can be time
multiplexed through the testing of a large number of subsystem parameters
thereby achieving the required computational power for the fault prediction
algorithm while still holding the amount of dedicated test equipment within
reasonable bounds.10
While fault diagnosis can be carried out with considerable success the
process requires significant computational power (at least a mini by today's

Sati i such, fault diagnosis with-

standards) and lenghty computer runs
in an SRA is done off-line ar an external test stand containing the required

mini (or maxi) computer. Each SRA, however, will include sufficient BITE,

i Ye
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say a nanoprocessor, to collect and condition test data on the SRA to be
periodically communicated to the central microprocessor for purposes of
fault prediction and detection.

Fortunately, both of these endeavors may be achieved using a linearized
model of the SRA about its nominal values and hence can be implemented with

= In particular,

relatively little computational power built into the SRA.
for fault prediction one is interested in tracking various internal para-
meters of the SRA as they drift from nominal to their tolerence limit.
Since the tolerence interval is typically only a few percent this can be
achieved with a Tinearized model. For castastrophic errors a linearized
model may be used to detect failures even though it is not sufficiently
accurate for fault diagnosis. As such, the BITE within an SRA may be kept
within reasonable bounds while still delivering sufficient data to the
central microprocessor fof its fault prediction and fault detection tasks.
If needed fault diagnosis within an SRA will, however, be done off-line
with the BITE simply serving as in interface between the SRA and an ex-
ternal test stand.

A final aspect of the BIT architecture is the communication link be-
tween the SRA's and the central microprocessor. Here, one desires to keep
the wiring between the SRA's and the central microprocessor at a minimum
and simultaneously would like to have all data transmitted to the central
microprocessor in a uniform format so as to permit interchangability of
component parts within the system. Although the details of this communi-
cations link have yet to be formalized the existence of an active computing

capability in each SRA gives one considerable flexibility. As such, we

«]2-
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16 Here,

believe that is will be possible to work with a single test bus.
the central microprocessor requests data from the individual SRA's by
transmitting a signal on the bus. This signal is received by the built-in
nanoprocessor in the SRA which, in turn, transmits appropriately condi-
tioned test data back to the central microprocessor on the same bus.
The above described BIT architecture would seem to achieve most of
the requirements for a built-in testing system.
i). Continous on-line fault prediction and detection, up to an
SRA, is achieved.
ii). The system includes an interface for off-line fault diagnosis
within an SRA.
iii). Dedicated test equipment represents a small percentage of the
total system. ‘
iv). Busing is minimized and test data is transmitted to the central

microprocessor in a uniform format thereby facilitating component

interchangability.
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Abstract

The use of continuation methods in the computer-aided analysis of
electronic circuits is surveyed. Such methods are especially suitable
when one desires to compute the solutions to a family of circuit analysis
problems as a function of a continuous parameter. Applications of the
concept to the location of multiple solutions to nonlinear equations,
the computation of input-output characteristics for nonlinear networks,
large-change sensitivity analysis, and the computation of multivariable
Nyquist plots are reviewed.
Introduction

5,9,12,27,33 has become a

Over the past decade computer-aided design
fundamental tool of the electronic circuit designer. Indeed, the design
of integrated circuits containing several thousands of elements is now a
routine procedure in the semiconductor houses, yet one that could not be
successfully carried out without computer aids. The difficulty here does
not lie wholely with the complexity of the circuits involved, though that
is a major justification for the use of computer aids, but also with the
fact that the parasitic effects of the integration process cannot be
readily included in a circuit breadboarded from discrete components. As
such, the experience (and inertia ) of the circuit designer has slowly
given way to the onslaught of the computer.

This same period has seen the development of a number of sophisticated
codes for the analysis of large electronic circuits such as SCEPTRE, NET,
CIRCUS, etc., and an equal number of interactive codes which permit the

circuit designer to interface with his computer aids through some sort of

www - - ——————— s e y A g YT




graphic display. For the most part these codes were developed in in-
dustry under the pressure of a specific application and thus, except for

the use of sparse matrix techniques# (required to handle the large sys-

tems of equations which are encountered), they use routine numerical methods.

In the past several years this situation has begun to change the ad-
vent of new circuit theoretic techniques specifically designed for im-

plementation in circuit analysis codes. Most notable of these have been

the sparse tableau algorithms of Hachtel, Brayton,g’zs’26 and the conti-

nuation algorithms of Bram‘n,7’8 and Broyden,]0 Davidenko,]g’]9

Ushida,]7 for the solution of the sets of simultaneous nonlinear equations

Chua and

arising in the analysis of nonlinear circuits. The purpose of the present
report is to survey these continuation algorithms and a number of related
continuation algorithms applicable to the problems of computeraided analysis
of electronic circuits. These latter include an algorithm for the computa-
tion of the input-output characteristics and/or the AC analysis of nonlinear
resistive networks, an algorithm for the large-change sensitivity analysis
of linear circuits, and an algorithm for the computation of multivariable
Nyquist plots.

The basic idea of all continuation methods is to convert the solution
of a parameterized family of algebraic problems, P(r,), into the solution

of a differential equation.

x (r) = £[x(r), r] 1.

where x(r) is the solution of the rth problem, P(r). Then, if one can find

#This literature has been reported in several contexts. For the general

theory of sparse matrices see references, 9, 24, 26, 37, 43, and 49, for

application to computer-aided design see refs. 2, 6, 20, 22, 25, 27, 30,

2}, 35 2gd 49; and for applications to power networks see ref. 41, 42,
an ,




the solution, x(ro), of an initial problem, P(ro), by classical (or
other) methods, the solutions to the other problems can be obtained
by integrating equation (1) with x(ro) as an initial condition.

Although it appears that we have made our problem harder by con-
verting the solution of an algebraic problem into the solution of a
differential equation this is not the case, and in fact, when the in-
tegration of equation (1) is reduced to a numerical process it often
proves to be less cumbersome than direct methods of solution. Indeed,
this is illustrated by classical quasi-continuation a]gorithm* for the
solution of a set of simultaneous nonlinear equations. Here we desire
to find an n-vector which satisfies

f(x) =0 2.

where f is a continuously differential function mapping R" to R.
Rather than solving (2) directly, however, we integrate the differential

equation4’7’8’]2’23

x(r) = -GDT fx()] 3.
which has a stable equilibrium at the solutions of (2). As such, if we

begin with any initial condition, x(ro), sufficiently close to a solution

the trajectory, x(r), will converge to the solution as r goes to infinity.
Thus, upon reducing the integration of equation (3) to a numerical algorithm,

an algorithm for solving the original set of nonlinear equations is de-

fined in the process. In particular, if Euler integration is used we obtain

*This is not precisely a continuation algorithm in the sense defined above
since the solution of the given problem is the limiting value of x(r) and
we really have no interest in the intermediary values. The underlying
philosophy is, however, the same.
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the iterative scheme
" of -1
x(k+1) = x(k) - h (51) fix(k)] 4.

which will be recognized as the classical Newton-Raphson algorithm for
the solution of the given equation if the step size h is set equal to
one.

Another classical example of the solution of a family of algebraic
prcblems by continuation is the inversion of a family of matrices, M(r),

via the solution of

M r) = - (MM () 6

where M'](ro) is computed by classical means. Indeed, the technique can

be used to compute the inverse of a single matrix, N, by letting
M(r) = rN + (1-r)I 6.

in which case M(0) = I and no initial inverse need be computed. Once
again, however, when the integration of the differential equation is re-
duced to a numerical process a classical series expansion for the matrix
inverse results.

The point is, that even though we have taken a roundabout approach
to formulating our algorithms, the resultant numerical processes are no
more complex than those which might have been formulated directly, Indeed,
in the above example our algorithms coincides with a classical algorithm
for the solution of the given problem. Moreover, in a true continuation

algorithm where one is interested in the entire trajectory, x(r), rather

-20-




than only its final value the resultant numerical processes often prove
to be more efficient than classical algorithms.

Over the past several years such continuation algorithms have re-
ceived considerable interest from the numerical analysis community.
Applications to polynomial root finding, boundary value problems in
ordinary differential equations, parameter identification and eigen-
value problems in differential operators are reviewed in the recent
paper of Nasserstrom48 and will not be discussed here. Other significant
applications of the continuation concept include the solution of LP
optimization prob]ems4 by continuation with the classical L2 solution
taken as an initial condition and the systematic location of multiple
solutions to sets of simultaneous nonlinear equations.7’8’]3

Multiple Solutions of Nonlinear Equations

A systematic search method based on Branin's approach7’8 has recently

13,14

been developed by Chao, Liu and Pan for obtaining multiple solutions

of a nonlinear equation
f(x) =0 7

where f is a continuously differentiable function from R" into itself.
The method is capable of finding all of the solutions provided that the
solution of any (n-1) equations of (7) is a simple curve - a continuously
differentiable curve which does not intersect itself. This technique
serves as the key to the development of several of the continuation

algorithms to be discussed and is hence reviewed here.

ofl=



The algorithm involves numerical integration of a set of associated

differential equations of the form

FLx(0)] = -F[x(0)], £,Ix(0)] =0, i=1,2, ...,n-1
8.

falx(t)] = «f [x(t)], £ [x(0)] = f
or in the x-space

x = (af/3x)"" (-f T U

e [ A 9.

along the space curve, %, defined by the intersection of solution mani-
folds for

fi[x(t)] =0 =0T 25 s, N=l 10.

The transition in sign of fn should be made at the solution points and
points where the Jacobian determinant changes sign. Equation (9) may be
solved by any numerical integration technique. For example, using Euler's

method, (9) reduces to an iterative algorithm

Xea1 = X+ WTHXI-Fy (%) s ooeamfo 1(x)45F, (%))

X4 s ki QRS2 S 11,

It is interesting to note that with only the minus sign and for any initial
Xo not necessarily on ¢, (10) reduces to the well known Netwon"s method.
It is observed from (8) that if X €s the corresponding trajectory x(t)
resulting from (9) remains in 2. Since in computational practice, the fis
for i = 1,2,..., n-1, at each iteration using (9) will not be precisely

zero, their signs are kept at the constant negative to insure that the com-

puted trajectory does not stray too far from 2. If ¢ is simple, we
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can obtain all the solutions by a complete traversal of the space curve
¢. In applying (9) to locate all the solutions, it is thus essential
that there exists such a simple curve. In addition, a starting point
lying on or close to this space curve must be used. Theorems that
guarantee this existance of a simple curve, 2, and the global conver-
gence from any initial guess to a point on 2 are all detailed in 14 and
will not be repeated here. The algorithm is not only capable of finding
multiple solutions, it also efficiently computes the solution of any
(n-1) equations of (7), the distinct property of which is found useful
in many engineering applications.

Input-Qutput Characteristics

Operating points, driving point plots and transfer characteristic
plots are basic concepts of fundamental importance in the analysis of
nonlinear resistive networks. The operating point problem is nothing
but the determination of the solutions of network equations of the form
described in (7). Mathematically speaking, the latter two concepts are
essentially the same; they are input-output characteristic plots showing
the relationship between a driving source uj and a certain output vari-

16,29,34

able xj. Several methods are available for piecewise-linear

analysis of resistive nonlinear networks. Recently, Chua and Ushida]7
developed a switching-parameter algorithm for solving nonlinear equations
and the technique is also capable of finding input-output plots.

15

A technique is proposed ~ for obtaining input-output characteristic

plots for nonlinear resistive networks where the characteristic curve of

23
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each nonlinear element is continuously differentiable. The network

equation, in general, can be represented by
f(x,u) =0 12.

where f is a continuously differentiable function, x is an n-vector of
network variables, the m-vector u denotes the input sources and the
Jacobian matrix 3f/3x is assumed to be nonsingular at the solution
points. Since in finding input-output characteristic plots, all input
sources except one, say u;, are considered to be fixed constrants, the

network equation (12) thus reduces to

f(x,ui) = 0. 13s

Suppose it is now required to find the input-output characteristic plot

x vs. ug, for all u; < u;

g u;. Instead of solving (13) directly, a

set of (n+1) equations consisting of (13) and an auxiliary equation

f = 0 of the form

n+l

f(x, ui) =0

u, - u, =0 14.

is considered. Following the technique described above, a continuous
input-output curve can be traced automatically by integrating a set of

associated differential equations

at =% fIx(0), u(0)] = f(x7, uy) = 0

15.
dfn+1 & - A

4
—at " o (0 =y - =0

where x is a solution of (17) subject ot u; = u?.

-24-
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The initial conditions on f and fn+] are such that the starting

point must 1ie on the solution manifold of (13) which is the desired

TC plot. Since (f, fn+])

is not a function of t explicitly, the chain

rule of differentiation is applied so that in the (x, ui) - space, (15)

reduces to

u. +f

where

af
axX

0

i ] = n+1

16.

17.

Equation (16) may be solved by any existing numerical integration tech-

nique and the sign change should again be made at the Jacobian singularities.

From the solution of (15)

FIx(t), uy(6)] = FIx(0), u;(0)]e™® =0

- a0
frlug ()] = f G lui(0)]e=" = oy gett s

18.

it is seen that for any [x(0), ui(O)] €%, the corresponding trajectory

[x(t), ui(t)] resulting from (16) remains in &. The input-output charac-

teristic curve denoted by % can thus be traced from u;

— pv— S
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The advantage of this method is that the input-output plot is not
required to be either input or output controlled. The only restriction
is that the plot has to be a simple curve.

AC-Resistive Network Analysis

Resistive networks containing one or more time-varying sources are
known as ac-resistive networks. In this case, the network equations can

always be written in the form
flx(t), u(t)] =0 19.

where u(t) is an m-vector of known time-varying sources and the n-vector

x represents network variables. The operating point of the network, which
is the solution of (19), is now a function of t. The presence of the time
parameter greatly increases the complexity of the problem. Theroetically,
the problem can be treated by simply solving the problem at different
instants of time which would probably be a very time-consuming practice.

A continuation algorithm is proposed for finding the solution of (19) for
all t automatically.

Consider a system of differential equations of the form

f=-f,  f[x(0), u(0)]=0
) 20.
u=w, u(0) = Uy
where u is assumed to be continuously differentiable and its time derivative,

denoted by w, is a known function of t. The initial condition on f is such

that x(0) = X, Must be a solution point of (19) subject to u(0) = Uy In

-26-
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the x-space (20) is equivalent to
u=-0""f =570 W, x(0) = x 21.
ou
where J & 5f/ox.

Equation (21) may now be solved by using any numerical integration
technique. If J is never nonsingular at the solution points (as assumed),
then |J| will never vanish along the trajectory of (21). Therefore once
an initial solution point X, is found, the solution of (19) for all t can
be obtained automatically from (21).

W Tix, uo] = 0 has multiple solutions, then all the initial solution
points must be used as initial conditions for (21) in order to obtain a
complete family of solution curves.

A more direct approach may be obtained by differentiating (19) with

respect to t yiedling

R 28,
or
X = —J-](%g) W. 23.

The only difference between the two proposed schemes (21) and (23)
is the appearance of the correction term -J'lf in (21). Theoretically
along the solution curve of (24), f = 0. In actual computation, however,
f may not be identically zero. The use of the minus sign in front of f
in (22) tends to prevent divergence and hence to minimize computational

error.

"
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Large Change Sensitivity Analysis

The sensitivity of system performance is an important aspect of
system design. The system characteristics may vary with environmental
changes, such as temperature or uncertainties in the parameters that
characterize the system. The analysis of a system's sensitivity to
parameter variations is concerned with the determination of changes in
network or system behavior which will be produced by changes of one of
its parameters. The study of system sensitivity to small parameter
variations around a reference position reduces to the well known per-
turbation problem. For large parameter variations, however, it is an
entirely different problem which cannot be treated by perturbation
methods.46 Two approaches for large change sensitivity ana1y51521’63
in two different contexts are discussed below.

Sensitivity to Targe parameter variations, or global sensitivity,
for nonlinear resistive networks can be formulated in a manner similar
to the one of finding input-output characteristic plots.

Suppose it is now desired to find the operating point of the net-
work as a function of a network parameter a. can be written in the func-

i
tional form

f(x, ai) =0 24.

where f, as before, is assumed to be continuously differentiable. Since
(24) is in the same form as (13), the operating point x as a function of

a; can be obtained by integrating (16) with u; replaced by ay.

«28
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Qur second approach40 for sensitivity to large parameter variations

is based on the component connection model for a large-scale system35'36'39
whose explicit algebraic connection equations for a large-scale system
yield analytic expressions for sensitivity analysis. t is assumed that

the system is characterized by a mapping which relates the output y to the

input u in the frequency domain by
y = Su. 25.

The component connection model of (25) consists of writing a set of linear

algebraic equations of the form

g—‘a‘l '—L—” le‘! r_b—!
l l , J 26.
L IR 48

where the Lij are connection matrices and the component input a is mapped

into the component output b by a linear transformation
b = Za. raTke

It can be shown by a straight-forward algebraic computation from (25), (26)
and (27) that S is given by

-1

S = Ly + Ly (1 - ZL]]) ZLy,- 28.

With the assumption that the output is not a function of the input explicitly,

i.e., L22 = 0, (28) reduces to

Ss= L210L}2 29.
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where Q is an intermediate matrix defined by
Q= (I- ZL”)']Z. 30.

In order to derive an algorithm for computing the transfer function
matrix sensitivity to large component variations, we differentiate (30)

with respect to a potentially variable parameter r to yield

QU - )z (8L 11+ L0, 3.

Since for a fixed system connection, L]], Z(r) and hence i(r) are known
analytically, the right-hand-side of (31) can easily be computed for a
given r. We first compute Q(ro) for a nominal value L of the parameter

r by classical analysis techniques and then integrate equation (36) for

all r >r,. Once Q(r) is known, then S(r) can be calculated directly

from (34). Note that if the variable parameter r is chosen to be the
angular frequency w, then the frequency response S(jw) as a function of

w can be computed in a similar manner. Starting with an initial condition
Q(ro), it is seen from (31) that the integration of Q(r) involves only
matrix multiplications and a simple inversion of the usually elementary
component matrix Z(r). Computationally, the technique thus requires much
less time than would be needed to reanalyze the system which would normally
require an inversion at each step of a much more complicated matrix (I-ZL]])
as indicated in (30).

Multivariable Nyquist Plots

Although the classical Nyquist criterion had long been thought to be

inapplicable to multivariable systems Barman and Katznelsonl have recently

.




formulated a Nyquist-like test for such systems. Here, the classical
Nyquist plot is replaced by a plot made up of the eigenvalue loci of the
(open loop gain) transfer function matrix G(jw). More precisely, for
each fixed value of w, G(jw) has n (not necessarily distinct) eigenvalues
Ai(jw). As such, if one lets w evlove one can compute n eigenvalues loci
for G(jw) by plotting the n functions Ai(m) as functions of w. In general
the xi(w) are not unique but they can always be formulated as piecewise
analytic functions.] We form a "multivariable Nyquist plot" from the
Xi(m) by concatenating the analytic segments obtained by plotting the
various Ai(w) to form a closed curve in the complex plane. Using this plot
it has been shown] that the multivariable feedback system with a stable
open loop gain G(jw) will be stable if and only if its multivariable Ny-
quist plot does not encircle -1.

In order to apply the multivariable Nyquist criterion, it is thus
necessary to compute the eigenvalue loci of G(w) as a function of frequency.
For a given frequency, the eigenvalues can be calculated by using classical
techniques. Since the eigenvalues are functions of frequency, normaliy one
would have to repeat the entire computational procedure for each frequency.
In the actual stability analysis, this repetition is, however, impractical.

38

OQur first approach to the formulation of a continuation algorithm for

computing the eigenvalue loci follows directly from that described by Faddeev

21 47

and Faddeeva“ and Van Ness et al The eigenvalues Ai(w) of G(jw) and

their complex conjugates Ti(w) satisfy

G(jw)xi(m) = As(w)X;(w) =y 5 vens N 3L
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and
*

G (jw)vi(w) B i.(w) i = ], 2, ol mig ol 33.

where Xi(w) and Vi(w) are the corresponding eigenvectors of Xi(w) and

i * ) A
xi(w) respectively, and G (jw) is the complex conjugate transpose matrix

of G(jw). We differentiate (32) with respect to w to yield

46 dX; 4y L ad 34,

& TN T MNEe
Taking the scalar product on both sides of (34) with Vj gives

dX. dAi dX.

dw i

dG N
20 T B % SRty ¥

1
A
><
-
<
v
+
>
—
A
.
-
-<
v
w
($a)

Using (33), the identity

dxi dxi
<G =" 4 Vj » = Kj< - Vj> 36.
and letting j = i, we obtain
d, <« LW
d_u‘zA'X. ¥, > ’ 1=]: 2) . » N 37'

Tom s il ey N 38.

In view of the fact that the eigenvectors are unique, one may assume with-
out loss of generality that a5 = 0. The coefficients aij for i # j are
obtained by forming the scalar product with vj on both sides of (37) and

using the orthogonality conditions

< Xi’ Vj g N E S 39.




to yield

X,
el il B
X Vo=

L A ik

) Combining (40) and (41) yields the desired expression for a..

ij
dG
N

ij (xi -xjj}xj,vj>

ij.

a

In a similar manner we obtain

dVi n
e BaaVise 1= a2 0
dw j=] 1] ]
where
dv.
<du1’x'>
B'_zo,s..z—l—J-.f#J
B 15 <Vj, Xj>
’
L]
+
=33~

40.

41.
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Abstract

Once a state model for a stochastic linear plant is obtained, the
analytical aspects of designing a feedback controller can be conceptually
dichotomized. The first part includes: selection of a performance measure
that reflects a-priori design specifications, selection of performance
indices, and selection of a controller via optimization of these indices.
The second part includes selection of post design performance measures and
the attainment of statistical or probabilistic descriptions of these per-

formance measures.

Introduction

We will collectively refer to the first part as design and the second
part as performance analysis. For certain classes of stochastic linear
control systems the performance analysis problem has beern solved; see [7]
and [14]. The purpose of this paper is to present the formulation of a
complete set of statistics of the integral quadratic design performance
measure normally employed in stochastic linear control system design. These
statistical formulations are expressed explicitly in terms of cynamical
variables related to the plant observations and control action. The ultimate
value of these formulations is that they provide the analytical basis for
the selection of design indices which can be used to systematically select
a controller via optimization.

There are many ways of selecting indices and we do not treat this topic
here. In Section II we describe the system, the performance measure and the
contro? objective. Section III contains the development of a complete stecis-
tical description of this performance and Section IV contains the formulation
of these statistics in terms of the filtered estimate of the plant state.

The paper is concluded with comments on how the results might be employed

and suggestions for further research.
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The System Description and Performance

Let R" denote the n-fold Cartesian product of the real line, and let
1 denote the real line interval [to, tf]. We wish to control the noisy

linear system described on T by

XL = a(t)x(t) + B(t)u(t) + &(t), (1)
and

z(t) = C(t)x(t) + o(t), (2)

where the state x(t) eRn, the control action u(t) eRm, and the observation

z(t) eR". The initial condition for (1), x(to), is assumed to be Gaussian
with mean
K E{X(to)} (3)
and covariance
£ o= E{(x(t )-x X" (t )-x"1) (4)
0 LSl L 0o’ "o

where (T) denotes matrix transposition. The state process noise, E(t)

and the observation noise are zero-mean Guassian-white with

E{e(t)e' (1)} = O, (5)
E{[x(to)—xo]ST(t)} = 0, (6)
E{[x(to)-xo]eT(t)} = 0, (7)

ECE(L)E (1)) = 2(+)8(t-1), (8)
and
E(a(t)e' (1)} = o(t)s(t-1), (9)
-40-
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where =(t) and O(t) are positive semi-definite and positive definite, respectively,

on I.
We require that the control action, u(t), be a causal function of the ob-

servation. That is,

ult) = w(t, z(7):telt ,t]) . (10)

where y(t, ) satisfies certain technical assumptions stated in [14]; also
see [15]. A1l matrix functions on I and the mapping y(t,«) are assumed to

be smooth enough to guarantee mean-square continuity of the state process on 1.

For the purposes of design we define a "design-performance-measure",
¢, by
ol te T T
< x (t)sx(te) + s T Ix (Da(t)x(t) + u' (R(E)u(t)]dt, (11)
t
0

where the terminal penalty weighting, S, is symmetric and positive semi-
definite as is the weighting Q(t) on I. The weighting R(t) is symmetric
and positive definite on I, and both Q(t) and R(t) are continuous on T.
These weighting matrices are given values by the designer th;t reflect
a-priori design specifications involving the relative importance of state
requlation and control effort. The design objective is to choose u(t)
in (10) so system performance is "good" in some sense.

The functional, J, assigns a non-negative real number to each sample run
of the control system with small values implying good performance, However,
the question of quality of performance is multiply clouded. First, J is random

so it is only meaningful to refer to J in a statistical or probabilistic sense.

Second, since J is the sum of terms representing measures of state regulation

wll )=

= . LA e T e



and control effort, the individual quality of these measures is not apparent

in a broad statistical description of J. We will demonstrate these subtleties
in another paper. Meanwhile we are content to use J as an a-priori performance
measure upon which we will base our selection of control action, u(t). But,
before this selection can be made we must describe J statistically or prob-
abilistically. Based upon intuition gained in our previous work [7] we choose

a statistical approach.




A Complete Statistical Description of J

Let F_ be the sigma-algebra induced by the observation {z(r):re[to,o]}.

When o = tf we shall write F without a subscript. We will now generate con-
ditional statistics of J . Expand the process modeled by (1) in an orthonormal
series,

¥E) ~ 3 x.¢i(t), tel , (12)
where the xi's are scalar random variables given by

t
x, = x'(tg) So(t) + {f X ()Q(t)e, (t)dt,  ¥i, (13)

&
0
and the nonrandom vector valued functions, ¢i(t), are chosen to satisfy the

orthonormality condition

T(t)s,(t,) + T =5 ¥i, j 14
¢i(tf ¢j f £ ¢1(t)Q(t)¢j(t)dt & ij ’ ’ § ( )
t

0

In addition, we require that the x_,'s be conditionally uncorrelated, that is

i

E{[xi-mi][xj-mj]lF} o Aidij, ¥i, j’ (]5)

where m, is the conditional mean of X4 given by

4 T
m o= E{x (te)[F} So,(tg)

> S | .

+ [ E{x (t)[F}Q(t)¢i(t)dt' ¥l 3s (16)
t
0
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A necessary and sufficient condition for {15) given (13) and (14) is

that ¢1(t) and xisatisfy

(t)dr + F(t,tf) S¢i(tf), tel, W, (17)

tf
Ao, (t) = 7 T(t,0)a(n)e,
t0

where T(t,r) is the smoothed estimate error covariance kernel of the state

process. That is, let the smoothed estimate of x(t) be denoted by
i(t;tf) = E{x(t)|F}, tel, (18)

and let Ir'(t,r) be given by

r(t,t) = E{[x(t) - X(t[t:)] Dx(x) - x(x[t)I[F} torel. (19)

As a consequence of the linear-Gaussian assumptions of Section II and the

technical assumptions on y(t,-), '

r(t,t) = E{r(t,7)} (20)

Therefore each Ai is nonrandom.
Under the assumptions we have made, J is finite with probability one;
see Doob [1]. It follows that the series in (12) converges in the square

integrable sense. That is,

t
£

J = ¥ x24+ 1 o (t)R(L)ult)dt, (21)
i=1 i to

where convergence is with robability one; see Kolmogorov and Fomin [5 ].

-44-
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Since x(t) is conditionally Gaussian each Xy is conditionally Gaussian.

But, we have forced the x, to be conditionally uncorrelated, thus they are

i
conditionally independent as are their squares. The conditional characteristic

function of each x} term in (21) is of the noncentral chi-square type given by,

St e -k BN ORI
CXiIF(Jw) (1-2jw ) “expljwm? (1-2jw X ) ~]. (22)

The conditional characteristic function of J follows as,

i LT
C.i.(Gw) = [T (1-20n )7 - expliw /' u (t)R(t)u(t)dt
J,F s i t

i=1 o

+
o8

jumi(]-ijxi)-l]. (23)

i=1

In our previous work [6 ], [7 ] we have observed that in the Linear-Quadratic-
Gaussian class of systems the second characteristic function generates the
most tractable statistical forms. The second conditional characteristic

function, TJIF(jw)’ is defined as the natural logarithm of CJ]F(jw)’ that is,

TJ]F(jw) = 1n[CJ|F(Jw)]. (24)
The MacLaurin series representation of TJIF(jw) is

Tojetde) = iglKilF(—J:—wli (25)

where the coefficients KilFare called conditional cumulants. Utilizing (23),

it can be easily shown that the first conditional cumulant of J is given by
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t
cre = Boa, + E omle st uT(0)R()u(t)dt, (26)
t

1|F 1

while the remaining conditional cumulants are of the form
k-1 k k-1 = 2
= - |
“|F (e-1)i2™" E a0+ ki2™T EomA , k> 1, (27)

Although the conditional cumulants as given by (26) and (27) are complete in
the sense that any statistic of J can be derived from them (an interesting
exercise) they are not in an attractive form for the control system designer
since they are not expressed in terms of system variables. To accomplish this
we must attack the series expressions in (26) and (27). The first step is to

define "iterated kernels"

(M ) 8 e (28)
and

r6) (e0) & ree, ta) SF(k‘1)(tf,r)

+
o
—h

r(t,0) Q(o)r'* V(o,1) do, k> 1. (29)

It can be inductively shown using (14) and (17) that

(k) R N T
It follows that the expression, 151*5 , can be written as
k (k) b (k)
L x; = TrlsSri™{e..t.) + ' Qle)r'(z,t) €8], k23, (31)
i=} 1 ; a t
0
-46-




where Tr [+] denotes the trace of the enclosed matrix. Utilizing (16), (18)

and (30) it follows that

i = fedled s (e st
S UTAIRE ff T e natnRcele,) de
0
t x(t|t at) r (e, t,)dt sx
tdt Si(t]t,)
0
£t
. {f {f (e e eoric e )drdt, k>1. (32)
[0 ¢ )

For the case, k=1, it is easily seen that

g n? - iT(tfnf)s;(tfnf)
te 1 5
0 x ()t (t]te) (33)
t
0

Consider the last term in (32) and note that it contains a symmetric (in

argument) integrand. Therefore it may be rewritten as

-47-
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f-T (k-1)

X (tltf)Q(t)F (t,r)Q(T);(TItf)drdt

{5

ace) 5k Ve (o]t dvat
t

0 (o]

Define the new n-vector valued variable

I S B L CROT TSP P

ot

and note that
nk-1(to) =
The conditional cunulants can now be written as

T 5 N n
- (eelte) sé(eelte) + T (EEA0RE E)

K
1|F
0
+ ol (R(t)u(t)1dt
te
+ Tr[sT(te,te) + 17 Q(t)r(t,t)dt],
t0
and
Kle =k!2k'][§T(tf|tf)SF(k'])(tf,tf)Si(tfltf)

oF o7
HOSERR R R HUIRLCIN LD
0
v (k-1)12% Vs ()
0
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Equations (37) and (38) provide us with the conditional cumulants of the
design-performance measure, J, expressed in terms of the smoothed estimate
of the process and the correspondinag error covariance kernel. A complete
statistical description of J is now at hand since (as mentioned carlier)
any statistic of J can be expressed in terms of the conditional cumulants.
For example, denoting the unconditional cumulants of J by Ko we have

E{J} = E{k

"
A

1]F!

Var{J}

]
)
"

E{.<2“:}+\,'ar{~<]l } (40)

F

and in general

K, = E{k

K }+ {statistics of lower order conditional cumulants} (41)

k|F

The relationship between noncentral moments, uk,and cumulants is well-known

[4] and given by
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The Filtered Estimate Formulation

Those familiar with the traditional minimum mean LQG problem may
be a Tittle suspicious of equation (37) since it is well known that
E{KIIF} is normally expressed in terms of the filtered estimate and
its corresponding error covariance with precisely the same structure
as (37) under expectation; see [14]. To demonstrate the equivalence

of these two formulations note that in view of (10) the smoothed

estimate can be expressed as

. 5 te Tt |
x(t{te) = x(t|t) + { Kt,t) C (7)o () C(r) v(t|r)dr, (43)

see [ 8], where
x(tjt) = Efx(t)|F ). (44)

AT

K(t,t) = E([x(t) - x(¢|)][x (x) - X' (z]D)]} (45)

and the "innovation" [2], wv(+|+), is given by

v(t|t) = c(t)[x(t) - x(t]t)] + a(t). (46)

The smoothed error covariance can also be expressed as

PCEE) =K{t,z)=T" WKt,alC (o (o) C(o) g (o,1)do (47)

where tvt means max [t,t].
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Substitution of (43) and (47) into (37) and application of expectation

immediately yields

o - LT .
q = Bl ) = B (el)shlt e + SR (tl0R(R (]
0
t
+uT(OR(E)u(0)1de) + Trise(ty) + M a(e)z(t)ae],  (48)
t
0
where .
£(t) = k(t,t) (49)

and we have utilized the fact thatv(:|:) is white noise with covariance

Efu(t|t)v (t]t) = o(t)s(t-1). (50)

In deriving (48) from (37) only one subtlety arises that might be

troublesome to the reader. In particular, two terms of the form

t t
e /T RTe1oa) oF kit ne (e (1)c()vx]t)dt
to t
t t
= 1l A ) At (e () ()EM (DR (E] ) 1drdt]  (51)
15 t

0
arise,

It is well known [14] that under some technical assumptions on the causal

mapping w(t, +) in (10)

t t
x(t]t) = s 6(t,O)v(t|t)dr + 7 o(t,7)B()u(r)dT +o(t,t )x,  (52)
L

0 t0

for some G(t,+), where &(t,*) is the transition matrix associated with

A(t) in (1). Since the control u(+) is assumed to be a causal function

=5]-
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of the observation z(+) which in turn can be expressed as a causal
function of the innovation v(-l-))[ 2], it follows in view of (50)
that the inner most integrand in (51) is zero almost everywhere.
Consequently the terms in question vanish under expectation.

For higher order cumulants things aren't as nice. Define the

following:
~ t ~
oo (0 &L N o, (53)
k-1 0
* te T 1
o (1) & F ke, 0T (o) o (r)v(elo)ar, (54)
t
and
§ 5 (k1)
P-7(t) = { r (t,7)Q(tie (1)dt (55)
0

Then substitution of (43) into (35) and (38) yields

= k12X XTe le,) sotkeT)g

£lts teote)SR(telte)

“k|F

+

T T
PR Bpity M qite) * BRI IS0y (1)

¢ t
F2 Te1e)at)n, L (t)de + 2772 T
. k-1

0 ty
t
s
t

+
~n

(t{t)a(t)o, ,(t)dt

—t

t *
()Q(t)A,_; (t)dt + 277 5 T

t) Q(t)p, _;(t)dt]
t0

Q(t)r(k)(t,t)dt],k>1.

(36)
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The variable ﬁk_](t), defined in (53) can be generated by a physically
realizable linear dynamical system with the filtered estimate as input. Con-
sequently it is implicitly affected by the control action u(t). This system
is of order 2n and the derivation of its dynamical equations is Teft as an
exercise. On the other hand, the variable, p(t), defined in (54) cannot be
produced by a causal system but by a noncausal Tinear dynamical system of
order n operating on the innovation process. Thus, 5(t) is unaffected by
the control action, u(t), as is pk_](t) in (55).

Consequently the conditional cumulants as given by (56) contain four
distinct types of terms:

i. terms independent of the dynamical variables and thus
uncontrollable,

ii. terms containing only causally produced variables that
are controllable,

iii. terms containing only noncausally produced variables that
are uncontrollable, and

iv. terms containing both causally produced variables and
noncausally produced variables.

The conditional cumulant descriptions that we have derived form an ana-
lytical basis for the selection of performance indices which, in turn, can
be utilized in the optimal selection of a controller. This dynamical vari-
able formulation is attractive for such optimization but carries with it a
“"curse of dimensionality" in that system order will increase linearly with
the number of higher order pieces of statistical information included in
any selection of performance indices. The noncausally produced variables
are troublesome. At this point it is not clear how they shoulc< be handled
in optimization while enforcing (10). Such questions are the subjects of

future research.

-53-
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V. CONCLUSIONS

How might these formulations be utilized? There are many possible
answers to this question. For example, let us assume that the design
objective is to select a controller that will keep the variance of J smail
without the mean of J becoming too iarge. Such an objective suggests that
we select a weighted sum of the indices, mean and variance, for optimiza-

tion. Thus we might choose as our criterion

ok :
min LF{KllF} + a(E{Kle;+Var{K1|F}i]

subject to the obvious dynamical constraints. The nonnegative real para-
meter, «, here is simply a design-tradeoff parameter between mean and vari-
ance. Clearly the expressions included in Var{KllF} are rather complicated
(fourth order) and it might be worthwhile to drop this term with the hope
that minimizing the parameterized tradeoff between E{KIIF} and E{Kle}
will achieve the design objective for some value of a.

Future directions of research are clear. We should attack the ques-
tions of index selection and optimization. These questions are fairly
difficult, particularly in the continuous time format. Perhaps the dis-
crete time formulation which has not yet been derived will be more trans-
parent.

We feel that the major observation that we have made is that cumulants
(in this case conditional cumulants) retain the second order nature of the
original performance, J, whereas other statistics do not. The structural

simplicity of the conditional cumulants is the key to our success in the
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derivation. The simple fact that other investigators have not considered
cumulants explains why the formulations have gone undiscovered despite
many years of vigorous research activity in the area of Linear Quadratic

Gaussian control theory.
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Abstract

A study directed towards the development of a special pur-
pose microprocessor architecture for application in decentralized
control is reviewed. Specific emphasis is placed on assembly

language routines for implementing vector-matrix operations on

the microprocessor.

Introduction

Many equations of modern control, digital filtering, Kalman
filtering and related problems involve matrix-vector multipli-
cations which must be calculated to obtain their solution. These

matrix-vector products have the general form shown in Equation 1

a1 12 q1m %]
axi Q23 fas 2om |
22~ : (1)
a a “ " a X
nl n2 nm m
L ot Lokl gt

where A is a n x m matrix and X is a m x 1 column vector. 1In
computing a sclution to problems where the product A x is needed,
considerable time is involved for any reasonable size n and m.
Hence if a real-time, on-line solution to the problems of modern

control and signal processing is to be computed, a method for

-59.




calculating A x efficiently must be developed. The method
developed is to design an appropriate architecture and firm-
ware which will yield an efficient implementation of matrix-
vector product algorithms. The procedure used to derive this
appropriate architecture and firmware is outlined below.

First a machine language implementation of the algorithm
to compute A x is produced so that comparisons of execution
times with subsequently developed microcoded versions can be
made. An algorithm is developed to calculate execution times
for any n, m, and T where n and m refer to the matrix size and
T is the basic machine language instruction execution. Next,
various size matrix-vector products are microcoded. A n x 2
matrix times a 2 x 1 vector microprogram is implemented and
run. A Hewlett Packard HP 2100, minicomputer was used to
determine both machine language and microcode execution times.
Algorithms are developed to calculate execution times and actual
execution times for various size matrix-vector products are
computed for comparison. Finally half-word length (8-bit) ver-
sions of a n x 2 matrix times a 2 x 1 vector and a 4 x 4 matrix
times a 4 x 1 vector are microcoded and run. Algorithms for
execution time calculation are developed and execution times
computed for various size products to compare with the afore-
mentioned machine language and full-word length versions. This
development of micoroutines reveals the architectural charac-
teristics necessary for an effective implementation of matrix-

vector products on microprogram controlled computers.
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Assembly Language Routine

The assembly language routine for an n x m matrix times an

m x 1 vector is shown flowcharted in Figure 1. The routine

was programmed to handle only integers that had been scaled

three octal places, thus actually allowing three octal place

accuracy. No checking for overflow or underflow was made.

The multiplication of integers is certainly justifiable since
the main concern is not to just demonstrate feasibility or

viability of this approach but to develop routines amenable to

real-time, on-line systems applications. 1In such applications,

information into the computer derives from an analog to digital

converter which produces integerized digital values of the

analog signal. Scaling is normally employed between the com-

puter and the system both on imput and output. Checking for an
overflow condition would also normally be carried out, but the

action taken upon an overflow detection is system dependent,

an abort might be necessary, further scaling might be

sufficient, etc. Therefore, the routine developed is suffi-
|

&.0. ¢

ciently general and adequate.
The elements of A, the aIJ's were stored sequentially by (
then a, through a A then Ay etc.

rows, i.e., first, ayq-
The algorithm used for accessing each array element is given in

Equation 2.

Address(aIJ) = (I - 1)N + J + Address(all) B {2)

6]~



The time of execution for this routine can be calculated from

the following equation,

€

. 29.5mnT + 10.5nT + T (3)

where n and m refer to the matrix size and T is the basic
machine instruction execction time, ( 1.96 usec for the HP2100).
Equation 3, along with all other equations igmgﬁiﬁxgaper re-
lating execution times, was determined by actually sﬁﬁﬁing the
times to execute each instruction and noting the dependency

on m and n in processing the algorithm. The times for a 2 x 2
matrix times a 2 x 1 vector, a 4 x 4 matrix times a 4 x 1 vector,
and an 8 x 8 matrix times an 8 x 1 vector which were calculated

for latter comparisons are, respectively,

ty, = 274.40 us
t44 = 1009.40 us
t88 = 3867.08 us (4)

Microcoded Full-Word Matrix-
Vector Multiplication Routines

The flowchart for a microcoded multiplication of an n x 2
matrix times a 2 x 1 vector is shown in Figure 2. To save memory

references and unnecessary programming, x, and X, are first read
—

h
into WCS and stored in registers F and Q, respectively. All
scratch-pad registers are used: S2 and S4 in the multiply sub-

routine to temporarily hold the multiplicand and multiplier as
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are A and B to hold the results; S3 contains the running sum,

and; S1 to count n. Each ary ls retrieved from memory as

A . o e 4
qggdeu, and the result aIl 1 5

The Flag flip-flop is used to determine when this result is

X X, is then stored in memory.

Rz
completed.

The algorithm for calculation of time of execution was de-

termined to be
t, = 1185 00 BE S [ 1) 10 (5)

where n is the number of rows in the matrix and T is the micro-
instruction execution time, (196 ns for the HP2100). The time
to execute this microprogram for a 2 x 2 matrix times a 2 x 1
vector was calculated from Eguation 5 to be 45.688 us. Com-
paring this with the time to perform the same operation in
assembly language, a savings factor of six (6) or about 230 us
is accomplished.

As was demonstrated, all available registers plus the Flag
flip-flop were used to implement this microprogram. Since only
microinstructions and no data (other then eight bit constants
stored in the least significant eight bits of certain micro-
instructions) can be stored in WCS, a severe limitation, this
is the maximum size matrix-vector product that can be implemented
on the HP-2100. However, microprograms of a 4 x 4 matrix times
a 4 x 1 vector, an 8 x 8 matrix times an 8 x 1 vector, and an
n x m matrix times an m x 1 vector were flowcharted and actually

microcoded, but not implemented. These flowcharts are shown in
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Figures 3, 4, and 5, respectively. These routines reguire one
storage register for each element of the vector (4, 8, and m),
two scratch registers plus the A- and B-registers for the
multiply subroutine, one scratch register for the counter for
the square matrices and four counters for the n x m matrix,
and one register for the running sum; or, 8, 12, and m + 7
scratch registers, respectively. As seen, these are more than
are available on the 2100, a limitation that could be overcome
if data could be stored and retrieved directly from WCS.

The time of execution algorithms for the first two of these
microprograms is given as

n-2

t =57 + 7nT + 59n°T + nT § (n - d)
e
d=2
a=1
+ 207 Yin - @ (6)
d=2

where n refers to the (square) matrix size, T is the micro-
instruction execution time, and d is a counter which depends
on the number of decisions to be made (n-dependent). The times

of execution for these programs are

(4 x 4) te 200.116 us

(7)
860.244 us .

1

(8 x 8) to

Comparing these times with those corresponding ones found using
the assembly language routine (i.e., 200.116 us vs. 974.12 us

and 860.244 us vs. 3867.08 us), savings ratio of about 4.8 and

4
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4.5 are effected. The algorithm for calculating execution
time for the n x m matrix times the m x 1 vector micro-

program 1is

m-2
t =27 + SmT + 58nmT + 4nT + nT ] (m - d)
e d=1
m-1
+2nT J (m - d) ¢, (8)
d=2

Proposed Architecture

From the preceeding discussion concerning implementation

of microroutines for matrix-vector products, the limitations

rh

of the HP-2100 for efficiently microprogramming such prcblems
are evident. A proposed architecture to alleviate these limi-
tations and allow an efficient implementation of an n x m
matrix times an m x 1 vector is shown in Figure 9 and des-
cribed in the following paragraphs.

Assuming that the bus structure and microinstruction format
remain fixed, the most severe limitation of the HP-2100 is a
shortage of scratch-pad registers. By providing more scratch-
pad registers, larger size matrix-vector products can be im-
plemented, greater computational versatility results, and the
execution speed of many programs can be increased considerably.
To implement the n x m matrix times m X 1 vector product, m + 7

registers are needed. These m + 7 registers are shown in Figure

6, where m scratch-pad registers are shown as "S-bus" registers
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the other seven are shown as "R-hus" registers. Four of the
"R-bus" registers are labeled as in the HP-2100, i.e., A, B,

Q, F. Providing more registers on the R-bus also results in
greater versatility, a reduction in number of microinstructions
to implement a given function, and hence, a reduction in
execution time. All of these registers are also assumed to be
general purpose registers and not latches as the scratch-pad
registers in the HP-2100 are likely to develop a "race" condi-
tion 1f loaded while being interrogated. This limitation pre-
vents the microprogrammer from specifying the same scratch-pad
register in both the S- and T-bus (in the same microinstruction
which leads to more microinstructions than necessary if these
registers are made general purpose.

Figure 7 also shows several additional five bit counters
the S-bus. These counters are not necessary to implement this
matrix-vector product since the m + 7 registers include the
registers necessary for counting. The counters are shown to
indicate that several of the m + 7 registers may be replaced
by shorter length (5 bit) registers to be used as counters.

Another limitation of the HP-2100 is that only microin-
structions can be stored in and executed from WCS, that is no
data can be directly accessed in WCS. The only data available
in WCS is stcred as eight bit constants in the least signi-
ficant eight bits of microinstructions containing a "CR" or

"CL" micro-order in the S-bus filed. The "CR" and "CL" micro-
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orders direct the computer to read the eight bit constants
stored in bits 0-7 of the microinstruction onto the least
(CR) or most (CL) significant bits of the register specified
in the T-bus field. The feature to read and store data
directly into WCS locations by microprograms resident in WCS
would greatly enhance the capabilities of the machine. How-
ever, the need for this feature is mitigated by the addition
of sufficient scratch-pad registers but if m is large, the
cost of such registers might become prohibitive. So there is
a trade-off here, either incorporating as many registers as
necessary to implement a problem or incorporating several
additional registers and adding the capability to read the
store data into WCS. These features would significantly in-
crese speed of execution of many microprograms and greatly
enhance the computer's overall capabilities--not only for
matrix-vector products but for a wide class of problems.
While the research was implemented on a HP-2100 minicomputer,
the proposed architecture could be fabricated as a single

microprocessor clip using LSI techniques.
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Abstract

This research is concerned with the generalization of fre-
quency domain techniques in network and system theory to non-
Tinear, time-variable, distributed, and digital networks and
systems via the techniques of Non-Self-Adjoint spectral theory.
Specific projects include a study of the underlying mathematical
foundations of the spectral factorization, applications to'gen-
eralized Wiener filters and optimal feedback controllers, and

the formalization of the concept of an Orlicz resoltuion space.

Introduction

The goal of our on-going research project on "Mathematical
System Theory" is to extend the frequency domain technigques of
classical network and system theory to nonlinear, time-variable,
distributed, and digital networks and systems via the methods of
non-self-adjoint spectral theory applied to operators defined on
an abstract resolution space. As such, the research has been
two-fold in nature. One aspect of the work deals with the form-
ulation of the operator theoretic results in resolution space
and/or one of classical L2 spaces while the second aspect of the
research is directed toward the reformulation of classical fre-
quency domain results to aid in their generalization and the appli-
cation of the resultant generalizations in the development of new
frequency domain techniques.

This dichotomas approach is illustrated by our recent work on

the formulation of a generalized Nyquist stability theory. The
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first step was the development of a new proof of the classical
theorem which made the homotopic nature of this theorem explicit.
This, in turn, led to the formulation of a Nyquist-like theorem
for abstract nonlinear operators on a resolution space wherein a
system is shown to be stable if its open loop gain is homotopic
tc the identity operator in an appropriate sense.]9 This condi-
tion has been shown to coincide with the classical Nyquist cri-
terion8 in the linear time-invariant case and is believed to be
“tight" in the general case. Indeed, most of the classical suf-
ficient conditicns for stability including a generalization of
the circle criterion8 can be derived from the homotopy theorem.
Finally, the intuition derived from this general theorem has

led to the formulation of a new, and highly surprising, Nyquist-
like criterion for multi-dimensional digital filters characterized

: : . 6,7
by functions in several comples variables. ’

These results form
a totality which, we believe, illustrates the essénce of our
approach for even though the classical Nyquist criterion could
be derived without an explicit call to homotopy theory8 the homo-
topic formulation was the direct predecessor to the abstract
theorem in resolution space and the mu]tivar{ab1e theorem, both of
which use homotopic ideas in a highly non-trivial manner.

A second and still incomplete aspect of the research has
been the generalization of the spectral factorization theory,
classically employed in frequency domain design techniques, to

abstract operators defined on resolution space. We have previously

demonstrated the existence of a miniphase factorization and ex-
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hibited its fundamental relationship to the theory of repro-
ducing kernel spaces.20 During the past year a number of vari-
ations on this theory have been studied and, in particular, it

has been shown that much of the theory can be extended to Banach
space in such a way that the reproducing kernel space remains a
Hilbert space.24 As such, we have been able to show that the
reproducing kernel space for a Banach space valued random variable
is a Hilbert space and that the scattering representation of a
network with volitage and current vectors defined in Banach space

lies in a Hilbert space.24

Needless to say all of these results

have been motivated by classical frequency domain theory and they

have led us into the study of the spectral factorization of rational

functions in several complex variables. This latter study, which

is just beginning, appears to have significant protential both

theoretically and practically. We have already shown that scalar

rational functions in several comples variables need not have a

rational spectral factorization14 and we are in the process of

developing a design criterion for multi-deminsional digital filters

which will assure that the resultant rational approximation to

the given insertion loss specification admits a factorization

(and hence a miniphase 1r‘ezﬂ1'zat1'on).]4
Two other areas of research which have been undertaken during

the past year include the extension of the resolution space con-

cept to a relativistic time structure2 and the formulation of a

non-standard model for resolution space. In the former case a

theory has been formulated for the case of two-dimensional special

relativity2 whereas in the latter case only partial results have been

obtained.
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Nyquist Theory: To formulate the frequency domain Nyquist theory in

the classical and multivariable cases we require the following notation.

. p = ';(Zlaz2y---1zn) e C 5 :Z! < i f

is termed the n-variable polydisc in the space of complex n-truples and

1(21,22,..., Zn) < Cn; %

1 1

is termed its distinquished boundary. Of course, in Cl, P> and T

reduce to the usual l-variable disc and its boundary. For a functicn, f

in one complex variable, which is analytic in P1 its Nyquist plot is
1

the image of f restricted to T°*. With this notation the classical Nyquist

theorem8 has the following statement.
Theorem: For a function, f, in one complex variable defined as

above the following are equivalent.

C . il
1. T has no zeros in P".

ii. f has no zeros in T1 and IND,f = O.

0
iii. f has no zeros in T1 and is homotopically trivial when

1 .

viewed as a mapping taking its values in C
Here, the index of the complex valued function, f, is defined in the
usual manner13 and the equivalence of ii. and iii. is the classical
result attributed to Hopf13. Although the proof of the theorem can
be obtained as a direct corrollary to the classical argument principa18
in which the homotopic nature of the result is then implicit in the
proof of the argument principal we believe that the homotopic \iew-

point is fundamental to the nature of the theorem and thus have formu-

*Actually it suffices for f to be analytic in the interior of Pl and
continuous on T .
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lated a new explicitally homotopic proof of the theorem.5 In this proof
the necessity follows immediately via a simple continuity argument while
the sufficiency proof requires that one carefully modify the domain of f
to make it a covering map whence the result follows from classical homo-
type theor‘y.]3

The generalization of the Nyquist theorem to functions, f, analytic
in P" takes the following somewhat surprising form.

THEOREM: For a function, f, in several complex variables defined as

above the following are equivalent.

e f has no zeros in P".

ii. f has no zeros in T" and INDOf =0

iii. f has no zeros in T" and f is homotopically trivial when
viewed as a mapping taking its values in C]—O.

Here, f is the function of one complex variable constructed from f

via f(z) = f(z,z, ... , z).

To our knowledge the theorem is sharper than any known stability test for
multivariable digital filters in that the required test is n-dimensional
whereas existing stability tests are at least (n+1)-dimensional. Indeed,
in appiications one often knows a-priori whether or not f has zeros on

™" in which case the remaining part of the test is 1-dimensional.

The proof of the multivariable Nyquist criterion will appear in
reference 8 and will not be repeated here. In essence, one first decomposes
the multivariable polydisc into a continuum of single variate polydiscs
and applies the classical Nyquist criterion to each disc. This then results
in a test composed of a continuum of classical Nyquist tests similar to that

proposed in reference 6. Fortunately, each of the required plots can be
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shown to be homotopic to one of n Nyquist plots and hence this continuum
of plots reduces to a finite number of Nyquist plots. Finally the analy-
ticity of f is used to reduce the remaining n plots to the single Nyquist
plot for f.

Qur final theorem on Nyquist theory extends the homotopic ideas
described above to finite gain nonlinear operators defined on a resolution
space.Z] Here, we let TO and T] be unbiased, finite gain, causal operators
on a resolution space and we say that TO is homotopic to T] if there exists
an operator valued function, T, defined on [0,1] such that: T(t) is causal
and has a finite gain inverse for each t in [0,1] T](O) = TO’ and T(1) = T

THEOREM: Let T be an unbiased, finite gain, causal operator defined

on a resolution sapce which is homotopic to the identity operator.

Then 7! is causal.

This theorem is a natural generalization of our earlier result wherein T']
is shown to be causal if 0 is in the unbounded component of the spectrum
of T.22 Indeed, in that case the required homotopy may be constructed via
a spectral mapping. The proof of the new theorem2 follows from a compact-
ness (of [0,1]) argument quite similar to that used in the earlier theorem.28

Although the above theorem would seem to be quite abstract most known
sufficient conditions for stabih‘ty8 follow readily from the theorem. For
instance one may derive the circle criterion19 by constructing a homotopy
in two stages. First the nonlinearity is contracted to a scalar with the
diameter of the circle being such as to assure the operator is causal and
invertable as every state of the contraction. Then, in the second stage of

the homotopy the remaining operator is deformed to the idenity using the

"non-encirclement" hypothesis.
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Factorization: The factorization problem in Hilbert space is essentially

the problem of factoring a positive hermitian operator, Q, as

* *

3. Q = KK (Q=1L1L)

where K (L) has an appropriate causality structure. This is an abstracti-

fication of several problems commonly encountered in linear system theory
such as the factorization of matrix values functions of a complex variable,
the solution of Wiener-Hopf equations and the solution of matrix Riccatti
equations. As such, a thorough understanding of this problem is essential
to the extension of the ideas of linear system theory to new settings.

In reference 20 we proved the existence of a unique (up to a resolution
space equivalence) miniphase factorization for an aribtrary positive hermitian
operator on a resolution space and, furthermore, showed that the resultant
factor, K, could be represented as the injection operator mapping the re-
producing kernel resolution space for Q into the space on which Q is defined.
The main thrust of our work during the past year has been the extension of
this result to operators mapping a Banach resolution space to its dual.24

THEOREM: Let (B,P) be a (reflexive) Banach resolution space and Q

be a positive self-adjoint operator mapping B to B*, Then there

exists a unique (up to a resolution space equivalence) miniphase
operator, K, Mapping a Hilbert resolution space, (H,E), to (B,P) such
that Q=KK*. Furthermore, K may be represented as the injection
operator mapping the reproducing kernel resolution space for Q into

(B,P).

The proof of the theorem24 follows lines quite similar to the proof of the
Hilbert space theorem of reference 20 as does the definition of the re-

producting kernel (Hilbert) resolution space for a positive hermitian operator
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mapping B to 8.24

The important and surprising resuit of the theorem is that even
when one is working with operators on a Banach resolution space the
factor space is assured to be a Hilbert resolution space. This, in
turn implies that when one applies such factorization theorem to systems
defined on a Banach resolution space the resultant constructions will take
the form of a Hilbert space. Two such applications which we have been in-
vestigating are the reproducing kernel space wherein one may represent a
Banach resolution space valued random variable as white noise (random
variable with identity covariance) in its associated reproducing kernel
Hilbert resolution space. Similarly, we have shown that the scattering
representation for an electric network defined in Banach space is a mapping
between two (possibly different) reproducing Kernel Hilbert resolution
spaces.zd

As indicated earlier the abstract factorization theory subsumes the
classical factorization theory for matrix valued functions of a complex
variable. It, however, neglects the question of structure. For instance,
if Q is represented by a symetric matrix is K represented by a symetric
matrix or if Q is represented by a rational matrix is K represented by a
rational matrix. Although the answer to the latter question is known to
be yes by classical factorization theor‘y]5 we have recently shown that if
Q is represented by a rational matrix in two complex variables the answer

14

is no. Indeed, for rational functions the following necessary and

sufficient condition may be derived by reformulating well known results

. 8
on several complex var1ab1es.]
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THEQREM: Let f(z],zz) be a polynomial in two variables.
then f has a factorization in the form
f(Z], 22) = Q(Z], Zz)h(zlv 22)
2

where g is a polyncmial having no zeros in P~ - h is a polynomial

having no zeros in 02= {(z],zz) oG

$ 321!3J,]22!11} if and only if
1nif(eie|,e102)| has all of its non-zero Fourier coeficients in the
quadrants; i>0, j>0 and i<0, j<O.

Note, that non-polynomial factorizations are possible under weaker hypotheses.

In essence, the theorem gives a condition on the insertion loss function to

permit it to be factored and as a result a corrollary to the above theorem

yields a necessary and sufficient condition for a specified two variable

14

insertion loss to be approximated by a rational miniphase filter.

Relativistic Systam Theory: Over the past year an investigation into the

possibility of formulating a resolution space theory in which a relativistic
space-time structure is employed has been investigated.2 This erdeavor has
been successful in the case of 2-dimensional (one space and one time dimension)

Lorentz space]6 though we have not been able to extend the theory beyond

that case. The basic difficulty lies with the need to generate a semirin923

! from those sets in space-time which are the futures and pasts of points.]6

' 11

In the case of 2-dimensional Lorentz space the ' "diamond sets" suffice but no

such semiring apparently exists in higher dimensional Lorentz space or general

-

relativistic space-times. In the case of 2-dimensional Lorentz space a resolu-
tion space theory closely paralleling the classical theory has been formulated
and will be reported in a forthcoming thesis.9

Non-Standard Anaivsis: Some preliminary investigations into the applicability
17

of non-standard analysis ° to the discretization of resoluticn space have
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been undertaken. Although non-standard analysis is a "logicians game" we
believe that the success of such an endeavor may lead to a highly intuitive
viewpoint from which to study resolution space. In essence, a resolution
space is a "discrete-time" space if the hermitian operator defined by the
spectral measure of the resolution space has pure point spectra. When this
is the case one can show that most of one's intuition derived from 12 is
valid in the abstract space.
Qur main result in this area is a new non-standard proof of a theorem
of Berberian.21
THEQREM: There exists a "faithful functor" from the catagory of Hil-
bert spaces and bounded linear maps to itself which takes each normal
operator to a normal operator in which the entire spectrum is point
spectrum.
By a faithful functor we mean a functor which preserves "most" algebraic
and topological Hilbert space properties. Unfortunately, the normal opera-

tors of the theorem do not have pure point spectrum and hence cannot be

used on our purpose.
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Abstract

What we refer here to as "optical noise" actually encompasses a
number of noise-related problems in optical information processing.
These might include flin grain noise and photoelectronic shot noise
in image processing as well as noise-induced limitations in other
applications of optical information processing. In these épplications
we must come to grips with the inherently signal-dependent nature of
the noise sources]'z, in contrast to the signal-independent noise
models commonly used in statistical communications problems3. It 1s
important to consider the implications of signal-dependent noise models
in the detection of signals in the presence of noise, as well as in
estimating the parameters of signals. Thus, in effect, we must consider,
at the most basic level, the implications of signal-dependent noise
models on the issue of optimal and suboptimal detectors and estimators
for applications in optical information processing. It is significant
to note, moreover, that other (non-optical) noise sources, including
magnetic tape recording noise4 are effectively signal-dependent. Thus
it appears that this work should have applications to a broad spectrum

of signal-processing problems.

Introduction

To date, the majority of work dealing with signal-dependent noise
has been concentrated on rather specialized examples and applications.
Using a Poisson point process noise model, Goodman and Belsher5 have
considered the restoration of atmospherically-degraded images using
lTinear minimum mean squared error filters. Walkup and Cheons modified

the familiar Wiener filter for various additive, Gaussian signal-dependent
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noise modelsz, and Naderi did additional work on this prob]em6. On

the other hand, Hunt and Trussel have derived a nonlinear maximum a
posterori probability (MAP) estimate which can accomodate both signal-
dependent and signal-independent noise mode1s7-8, and have applied this
MAP estimator to restoring noise-degraded images. For such appiications
and in the special case where the images of interest exhibit extremely
low contrasts, conventional restoration techniques perform rather poorly.
Therefore hueristic (ad hoc) algorithms suck as the so-called "noise
cheating" a]gorithmg, have been developed. Other algorithms, which
explicitly include the signal dependence of the noise, as well as incor-
porating pertinent properties of the human visual system, have also been
investigated6. Classical likelihood ratio tests have also been derived

for some rather general models of signal-dependent noiselo

, but the solu-
tions generally require a priori knowledge of the object's exact leccation,
size, intensity, and the additive background present.

In view of the rather specific nature of the topics investigated to
date, it is our opinion that investigations of a more general, basic
nature should be undertaken. As a result we propose to examine a number
of rather general signal-dependent noise models and will address some
basic issues. These will include investigations of the different struc-
tures of various optimal estimators designed for operation in signal-
dependent noise, as compared with the structures of those designed to work
with signal-indpendent noise. Of particular interest here are the issues
of how and when a priori information concerning the "signal" (e.qg. the
undegraded image in an image processing application) will enable

gain additional noise suppression, or achieve a superior dets
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Engineering tradeoffs relating to detectors which do, or do not, take

the signal-dependent nature of the noise into account will be considered.
Applications to particular problems in areas such as image processing,
optical data processing with coherent 1ight, and electronic signal pro-

cessing will be considered where appropriate.

I1lustrative Examples

To illustrate the difference between signal-independent noise pro-
blems and those which are fundamentally signal-dependent in nature, we
will present some examples of particular optimal estimators for rather

simplified noise models. Consider, for example the following two cases:

Case (I) r=s+n,
and

s + ks%n,

Case (II) r

where r represents the received signal, s represents the transmitted
signal, and n represents a noise process. Case (I) is a familiar textbook
example in statistical communication theory courses3. Case (II) comes
from image processing, where the observable quantity is photographic
densityz. The constant k might, for example, be a scanning constant which
would be related to the ratio of the area of an image scanner's aperture
to that of an "average" film grain. In this example we'll assume that s
and n are statistically independent, and that n is Gaussian distributed
with zero mean and unit variance. Since in Case (II) the "noise" is the
term ksgn, it is clear that the noise is signal-dependent.

The effect of the signal dependence of the noise in Case (II) is

readily apparent. The conditional distribution of r aiven s is Gaussian

Bl
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with mean s and unit variance in Case (I), whereas Case (II) yields a
conditional distribution which is normal with mean s and variance kzs.
Let's consider the effect of the signal-dependent nature of the
noise in Case (II) on the structure of the classical maximum 1ikelihood
estimator (MLE). Maximizing the conditional pdf p(r/s) over s, we find

in Case (I) that

w =

=r (1)

where the circumflex denotes our estimate. Maximizing p(r/s) for Case
(I1), however, we find that

A 22%
s=lrf+(5) 1 -

nﬂx'

, (2)

where a negative root was discarded.

This estimator is strikingly different from that of Eq. (1). Note,
however, that as k-0, Eq. (2) approaches Eq. (1).

Now consider a random signal; for example let s be distributed normally

with mean u and variance 02.

The appropriate optimal estimator here is the
maximum a posteriori probability (MAP) estimator. Maximizing p(s/r) we find

in Case (I) that

Q

A 4 2 (3)
8 = + rs 3
02+1 02+1

Note that as s becomes fixed (i.e., 02+0), our MAP estimate becomes
A
gy (4)

which ignores entirely the received signal r. On the other hand, as p(s)

becomes increasingly disperse (i.e., oz»a), we find that Eq. (3) reduces
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to Eq. (1), the signal independent MLE. Maximizing p(s/r) for Case

(I1), we find our MAP estimate to be a solution of the cubic equation
s3 + [932 - u}s2 + %E S - 9353 = Q. (5).

2k 2k

Again note that as s becomes fixed (02+O), the solution of Eq. (5) is

given by Eq. (4) which again ignores the received signal r. Also, as

p(s) becomes disperse (62+m), the solution of Eq. (5) is given by Eq. (2),

the signal dependent MLE.

As another example of the effect of signal dependent noise, consider

the familiar Cramer-Rao bounds. If é is any unbiased estimate of s, then]]
A 321n p(r/s)4.-1
Var [S-s] > {-E [ 1} (6)
3s

Evaluating Eq. (6) for the two cases above, we find that for Case (I)
Var [é-s]_i j (7)

whereas for Case (II) we have the result
2.2

Var [4-s] > 25—§—? K (8)
2s +k

For s >> %E ,» the quantity g%-1‘5 large compared to unity, and the right-
k

hand side of Eq. (8) can be approximated by

2k%s? v 5 (9)
2$+k2
In image processing applications, k2 is often much smaller than unity, so

2
the condition s >> %— is not very restrictive]; thus, except for the very

small signal case, we have
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Var [Q-s] g_kzs - (10)
Note that the lower bound given by Eq. (10) can be smaller than unity,
the lower bound of Eq. (7). In other words, the minimum variance of
our unbiased estimate of s might actually be smaller in the signal-
dependent noise case than in the signal-independent noise situation.
Preliminary results such as these provide ample motivation for further

investigations into these problem areas.

Progress on Image "Clutter"/"Contrast" Investigation

One other subproject of interest in the optical noise area is the
investigation of quantitative measures of the notions of "contrast" and
“clutter" as applied to imagery. During the grant period we have been
developing the hardware and software capability (based on usage of an
image storage tube interfaced to a minicomputer)’of getting imagery into
the computer. Our long-range goal is to test various mathematical
measures of contrast and clutter on the images, and determine, where
possible, those measures which are highly correlated with the subjective
notions of image clutter and contrast. Since these notions are related to
a definite form of psychovisual "noise" in imagery, it is an appropriate
subject for study under the heading of "optical noise". Presumably one
application of such measures of contrast and clutter would be in the area
of evaluating target location and identification assistance techniques.
At present the operating software is 85% complete and the system is

awaiting calibration before the entire system is ready for use.
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Abstract: !
In the following, we present a general model in which many questions
arising in pattern recognition may conveniently be phrased. The intention
hare is to arrive at a realistic model which will allow very powerful
mathematical machinery to be utilized. The central thrust, however, of

this work is to develop a general theory of invariance sufficient to per-

mit recognition over a broad range of deformations from a standard proto-

type of the target pattern.

Introduction

The following symbolism will be used consistently:

Q - the set of patterns;

G - a group of transformations acting on the left of Q;

K - a field of scalars, usually the real or complex
numbers ;

V - a finite dimensional vector space over K;

R - amap R: @ - V, the measurement vector.

In general, if X and Y are sets and G acts on the left of X, then
for each f: X - Y and each g ¢ G we may define a new function gf: X - Y

by the formula
(gf) (x) = F(g™'x) , xeX

In this fashion G acts on the left of the set (F(X,Y)) of functions
from X to Y. Note that G need not act on Y for this construction.
With the above facts and notation we may present the basic model.

The basic idea is that the natural transformations of the patterns are

"
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assumed to be well modelled by the action of elements of the trans-
formation group G. Thus, if w e 2 and g € G, then gw is another
pattern which has been obtained as a transform of w. Finally, we per-
form certain measurements on w, each of which results in a scalar value
x € K. The collection of all such measurements is assembled as a
measurement vector, R{w) e V.

Now, we may give two interpretations. For the first of these, we
regard R as a fixed retina or camera and think of the group of trans-
formations as moving the patterns under the camera. In the second
interpretation, through the induced action of G on F(Q,V) discussed
above, we imagine the group as acting on the camera. Thus, the group
G can serve as a parameter set for the control mechanism associated
with the measurement apparatus. It is important that we observe that
the mathematical formalism is exactly the same irrespective of which
interpretation is applicable to a particular problem. In fact, many

situations involve some combination of both concepts.

Representation Theory

1 1

for wy, w, ¢ 2 let us define WyzgWp if R(g~ Wy) = R(g™

g ¢ G, that is if Wy and W, "look the same" from every possible orien-

WZ) for all

tation. This is an equivalence relation on @ and thus partitions @
into the classes {[w] | w ¢ 2 }, each [w] being one of the equivalence
classes. Now, each class [w] determines a unique map Q :G-»>V, in-

dependent of the representative we [w], given by
2 " -1
w (g) = R(g 'w) ,9¢G

-~

Additionally, we have Wis = W, if and only if W =RWo-

-G8-




In summary, we have represented 2 as a set of functions, each from
G to V. Accordingly, we will refer to amap R : @ - V as a representa-

tion of @ in V.

We have constructed a map w > & from 2 into F(G, V). Let us note

that the following property holds:

]
(fa}
= >
~,
-
o
m
(3]
-
=
™
Q9
-

g w

where g W is obtained from the action of G on F(G, V). This leads us to
introduce the following:
Definition: A functional representation of @ in a class F of functions

from G to Visamapr : @ >~ F, denoted w 1+ wr, such that
gw' = (gu)"
for all g ¢ G and w € Q.

The representation w W induced by R: @ ->V is an example of a
functional representation. We can show that this is not coincidental.
In fact, we have the following:

Theorem: The functional representations r of @ as functions frcm G to V
correspond one-to-one with the representations R: 9+V via the corres-
pondence r « R if and only if w'(g) = R(g']w) for all g ¢ G and
Wwe Q.

The connection established by the preceding theorem is a very natural
one and has significant applications. The maps R and r of the Theorem
will henceforth be assumed related as above.

In effect, this result permits the transfer of structure from the
group G (more or less concrete) to the set o of patterns (an abstract

entity). For example, let us suppose that G is a topological group

-99-
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and that K is the real or comples numbers. We define a representation
R : >V to be continuous provided that each wr, W e Q, is continuous
in the usual sense. Now let CV(Q) denote the set of representations
which are continuous in this sense. It is reasonable to ask if there
exists a topology T on the set 2 such that CV(Q) is precisely the class
of T- continuous functions from G to V, i.e., that Cv(n) = CV(Q,T).
This is indeed the case, and the weakest such T has useful properties
with respect to continuity of the action of G on 2. It is quite likely
that our choice of a camera should be restricted to continuous repre-
sentations. This merits additi?nal consideration.

In general, the representation theorem above, together with the
overall smoothing effect normally found in physical measurements justify
making mathematically useful assumptions about the set of patterns. For
instance, we might begin a particular investigation with "By a pattern
we -mean a continucus function from a topological group G into a finite
dimensional vector space V ...". Likewise, continuity can be replaced
by a variety of other properties such as Haar integrable, differentiable,

etc.

Formulation of Two Classical Problems

I. Template Matching

The idea here is to compare a pattern against a number (usually
finite) of prototypes for goodness of fit. The problem is well worked
over in the literature in many situations. However, the work is some-
what limited in the case in which t'.e object is to match the prototypes
against a possible transform of the pattern. Many investigations do

incorporate a limited amount of correction for such effects as translation




and magnifications. However, rotational effects seem to be generally
avoided.

In the context of our model, where a choice of representation R
allows us to deal with the corresponding functional representation,

the question of matching becomes: given Wis Wy € Q, find g € G such

2
= W, e, Q](g']x) = Qz(x) for all x ¢ G. Then questions

that g w
of goodness of fit become questions of approximation theory.

We anticipate results of two types on the template matching pro-
blem. First, we should be able to determine the existence or non-
existence of a solution for g ¢ G in the equation gw] = v, Hopefully,
we will be able to develop invariant representations or relatively in-
variant representations for which the solution to the matching problem
is straightforward. Finally, we whould be able to show that, in a
random environment, the use of Gaussian statistics can be replaced by
purely analytic methods involving least squares approximation in an
L2 space.

The major tool here will be the Haar integral and the assumptions
necessary for pursuit along the above lines seem to be rather weak.

Perhaps a locally compact group is sufficient.

II. Imbedded Patterns

The idea here is to search a pattern for the local presence
of a predetermined sub-pattern.

This problem appears to be one which gave much impetus to pat-
tern recognition and artifical intelligence during the early 1960's.
However, anticipated success has failed to materialize. Perhaps this is

due to the failure to introduce enough powerful mathematical techniques.
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In the present context we may formulate a simple version of this
problem as follows: Given w ¢ 2 and Ve ¥, find g € G (if possible)
such that wr(g) = Vo' Thus, the problem reduces to the solution of
a functional equation. An analytic structure of some type is in order
for this problem, and we propose the use of Lie groups. Upon intro-
duction of coordinates in G we obtain a system of non-linear equations
and seek a "best" solution.

An attempt to minimize the objective function

¢ (x) = | W(x) - v |1 72

yields the differential equation
* r
x (t) = A (x) [w(x)-v 1, x(0)=x,,

where x ¢ K™ is the coordinate vector of a group element and A(x) is
the derivative of wr(x). This equation can be solved by ordinary
numerical methods, although we need to develop sophisticated methods
which utilize the group structure and avoid the differentiation of

W' (

x). We fine that x* = 1im x(t) gives a critical value for the ob-
jective function, v(x). 2

It is hopeful that some combination of techniques such as hill-
climbing together with the solution of differential equations will pro-

vide a fast and efficient approach to the solution of this problem.

Summary

We hope to further develop the general framework for certain pattern
recognition problems involving transformation groups. Additional work
is to be done with regard to the transfer to topological and analytical
structure from the group to the pattern space. Through the use of in-

variants, relative invariants, Haar integration, and the solution of
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problems of extrema we hope to obtain workable results for use in con-
nection with the template matching problem and the imbedded pattern
problem.

The immediate interest will involve compact groups. This is
partly because the representation theory for such groups is known in
good detail and also because it includes an important special case,
namely the rotation groups, which has not received an adequate treat-

ment in the literature.
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Systems

Principal Agency Title Duration Total Present
Invest. Funding Annual Fund
Saeks AFOSR Resolution Space,.. 12/73-4/78 $ 80,800 $ ‘23,500
Liberty ONR Kalman Filtering 3/74-3/78 93,300 25,000
Saeks ONR Fault Analysis 4/74-12/77 113,000 30,000
Walkup/
Hagler NSF Optical Info. Proc. 6/75-1/77 20,600 14,000
Chao/Saeks  NSF Analysis & Design.. 6/75-11/77 30,000 15,000
Walkup/ Volume Hologram/
Hagler AFQSR Optical Syst. 6/74-9/77 133,000 67,000
Saeks ONR Unified Prg. in Elec..9/76-2/78 200,000 133,000
Gustafson SORF Microprocessors 9/76-8/77 4,500 4,500
Total Annual Funding

in Systems $312,500
Physical Electronics
Principal Agency Title Duration Total Present
Invest. Funding Annual Fund
Gundersen ERDA Pulsed Molecular.. 7/74-9/77 $191,000 $ 75,000
Gundersen NSF Infrared Upconversion 11/75-10/77 35,000 18,000
Reichert NSF Undergraduate Research 3/71 2/77 90,000 16,000
Portnoy NASA Insulated ECG Elect.. 7/71-277 85,000 25,000
Reichert AFOSR Unstable Opt. Res. 10/72-12/76 200,000 50,000
Portnoy SORF Solid State Research 9/76-8/77 5,000 5,000
Williams SORF Quantum Electronics 9/76-8/77 5,000 5,000
Thomas Welch Low Temp Solid State 6/75-5/78 45,000 15,000
Robinson ARO Raman Scattering 9/76-8/77 25,000 25,000
Robinson Welch Transient Studies 9/76-8/79 150,000 50,000
Wilde Welch Solid State Studies 6/76-5/79 51,000 17,000
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Electromagnetics

Principal Agency Title Duration Total Present
Invest. Funding Annual Fund
Kristiansen AFOSR Plasma Heat for Therm 3/71-10/77 $410,000 $100,000
Kristiansen NSR Toroidal Plasma Heat. 6/76-5/77 24,500 24,500
Trost SNF Radio Bursts, Tornado 10/75-5/77 42,500 21,000
Kristiansen SORF Toriodal Plasma Heat. 6/76-5/77 24,500 24,500
Kristiansen NSF RF Plasma Heating 4/71-5/77 205,600 30,000
Total Annual Funding
in Electromagnetics $200,000
Power
Principal Agency Title Duration Total Present
Invest. Funding Annual Fund
Craig TPL Power Systems 1/73-12/76 $ 32,000 $§ 8,000
Burkes AFWL Airborne Power Systs. 2/74-5/77 167,300 57,000
Trost NSWC Magnetic Energy Strg. 12/75-12/76 16,645 16,645
Burkes ERDA E Beam Laser 3/76-1/77 23,000 23,000
Burkes AFOSR Pulsed Power Conf. 6/76-5/77 6,000 6,000
Kristinasen AFWL High Power Switch Dev 9/76-9/77 50,000 50,000
Reichert/ ERDA Crosbyton Solar Power 9/76-7/77 880,000 400,000
Liberty
Total Annual Funding
*Includes sub-contractors funding n Power $560,645
Total Annual Funding
in Electronics and
Related Areas $1,374,145
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SYSTEMS
Computer Laboratories:

CDC 1604 facility: hands-on facility for both education

e I Lo e Ve e R R e 108-EE
Hybrid Computer facility: minis, micros and analog
faC I G e S N e s ate o se e < lsiars sinte 162-EE
Bio-medical Systems: includes instrumentation and microprocessor
application facilities................. 208-EE
Circuits and Systems Laboratory: the think tank............... 258-EE

Optical Systems Laboratories:

Holographic Optics: primarily used for multiplex holography
A o e e o R P e N R e e 110-EE

Optical Signal Processing: research in optical and digital

image processing................. 216-EE
PHYSICAL ELECTRONICS
Laser Laboratory: infrared laser research.................. s~ 202-EE
Solid State Laboratories:
Solid State Physics: basic semiconductor studies............ 34-Sci.
Low Temperature Physics: superconductor studieS............. 58-Sci.

Integrated Circuit: fabrication facility for SSI and
special purpose devices.........ovvvunnn 209-EE

Spectroscopy Laboratories:

Laser Spectroscopy: interaction of light with matter........ 260-EE

Molecular Spectroscopy: semiconductor studies............... 35-Chem.

Picosecond Spectroscopy: transient studies.................. 30-Chem.

X-Ray Spectroscopy: X-ray studies and laser development..... 2-Sci.
ELECTROMAGNETICS

Plasma Laboratories:

Laser/Plasma facility: plasma heating via laser plasma
INCEraCtIoN. « o covnmvvevsinonsvesvusus 113-EE
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ELECTROMAGNETICS (continued)

Plasma Laboratories (continued):

Tokamak facility: radio frequency heating of toroidal
PDRARRG L s e e e e L 117-EE

Electromagnetics Laboratory: nonlinear wave studies........... 111-EE
Antenna Laboratory: radio meteorology and ionspheric
SEUANRS ks g i d s e rm al e West of the
Medical School
Power

High Voltage Laboratory: pulsed power studies...North of Textile Bldg.

Solar Energy Laboratory: another think tank................... 205-EE
High Power Switching Laboratory: electron beam initiated

spark gap....... Trailer west of EE

Bldg.
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Systems - Refereed Publications

Liberty, S., "On the Essential Quadratic Nature of LQG Control -
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No. 3, pp. 276-305, Nov. 1976.

Saeks, R., Large Scale Dynamical Systems No. Hollywood, Point Lobos
Press, 1976. (314 + v pages, edited volume of contributed chapters).

Saeks, R., "Analysis and Design of Interconnected Dynamical Systems,"
in Large-Scale Dynamical Systems, No. Hollywoocd, Point Lobos Press,
pp. 59-79, (with G. Wise and K.S. Chao).

Saeks, R., "The Factorization Problem - A Survey," IEEE Proc., Vol.
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Am. 66, 918 (1976), (with R. J. Marks II and J.F. Walkup).

Hagler, M., "Line Spread Function Notation," Appl. Optics 15, 2289 (1976),
(with R. J. Marks II and J.F. Walkup).

Systems - Conference Papers and Reports

Gustafson, D., "A Microprogrammed Machine Architecture for Efficient
Matrix Multiplication," SIGMICRO Yol. 7 No. 3, Sept. 1976, pp. 56-61.

Walkup, J., "An Improved Coherent Processor for Ambiguity Function Dis-
play," Int. Optical Computing Conf., Capri, Italy, Sept. 1976, (Proc. in
press, IEEE Press) (with R. J. Marks II and T. F. Krile).

Liberty, S. R., "A New Class of Statistical Performance Criteria for
Stochastic Linear Control Systems, " Proc. IEEE Conf. on Decision and
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