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FLAGELLA AND CILIA HYDROMECHANICS

Theodore Y. Wu
California Institute of Technology
Pasadena, California 91125

Abstract

This talk will first make an expository survey on the recent Aoe.nwov-
ment of the low-Reynolds-number hydrodynamics pertaining to micro-
organism locomotion. The scope of interest will be focused on go.ﬁlavq<
modes of swimming in this flow regime, namely the Duwuu—v... and n._.—v.nw.
propulsion. In order to overcome the shortcoming of classical resistive-
force theory, the improved slender-body theory requires an accurate
account of (1) the long-range force field generated by nr.o flagellar motion
(which is invariably of {inite amplitude), (2) the interaction Unnioom— the cell
body and flagella, and (3) the state of self-propulsion. These basic nnvm:nou
interrelate to make the problem interesting, the development of the nn?:o.a
theory challenging, and the improved accuracy being unZ.n<on. for n.rmon.wn—nu—
prediction doubly rewarding to both the fluiddynamicist and microbiologist
for their future joint studies.

INTRODUCTION

In nature the phenomena of locomotion of aquatic nsmg.—: in aqueous
media embraces a great variety of species with different sizes, diffe rent
modes of swimming motion, and with varying biophysical basis of wr<u~o~om<
and metabolism. Of these families of swimming organisms, the size spans
over an impressive nineteen orders in magnitude; their basic mannrws—.u:» of
swimming ranges from the viscosity-dominant, inertialess fluid reactions
for micro-organisms in one extreme to the inertia-based reactive 7«:..:..0-
mecharics for larger animals in the other. In vv«.umo—om,\.. the metabolic
processes vary from the better known conversion of nrna-nuw.nannw‘\ to
mechanical work by means of muscular contractile effort in higher hu:.:u.:
to the not-so-fully understood processes in prokaryotic ﬁuno:w OM anno.:u
in which no enzymatic activities are known to exist. Evidently this uagnmn
is interdisciplinary in nature, and its development would _uo. most rewarding
if cultivated by a joint team of bioiogists and fluid-dynamicists.

The world of micro-organisms that can perform swimming motion may
be classified, according to their modes of movement, into three major

categories.

{. Flagellates. Flagellates, such as the various kinds of spermatozoa and
many flagellated bacteria, locomote themselves by means of ::.&cwmnon,\
movement of a single flagellum or several bundles of D»wnSw‘. in the ....02,:..-:
tion of planar waves (e.g. Ceratium, Ochromonas, v«<3anu.§.? rn.:ni
waves fe. g. Trichomonas, Trachelomonas), or ol three-dimensional waves
of a more gensral type (c. g. in Euglena and Peranema). Further variations
of these basic forms include the spirilla, spirochaetes, and the flagellar-
mastigoneme propulsion system.

2. Ciliates. The ciliates are a class of protozoa which have a large num-
ber of hair-like organelles, called cilia, attached to the cell surface in 2
fairly regular row-and-column distribution, performing a beat pattern in-
herent to ecach species to form a metachronal wave in propulsion. Some of
the common ciliates, whose motion has been more extensively studied, in-
clude Paramecium, Tetrahymena, Spirostomum, and Opalina. The ciliary
mode of pronulsion is found not only in ciliates, but also in some organs of
higher animals such as the muco-ciliary systems in respiratory trachea and
in reproduciive ducts. It is in the latter problem areas that further develop-
ment of ciliary dynamics and physiology will have a most active future.

3. Pseudopods. The temporary protrusion and retractile process of the
protoplasm of a cell for moving about, such as in amoebic movement. involves
certain mechanism of intracellular flow and cytoplasmic streaming. This
mode of movement appears to be the least understood of the three, and, for
this reason, the present discussion will be devoted to the first two types of
propulsive movements.

From the hydromechanical point of view, these movements have three
important features which are essential to our basic understanding. (I) First,
the motion is generally characterized by two small Reynolds numbers, one
based on the mean propulsion velocity and the other on the oscillatory compo-
nent of the motion; they may be expressed as

Rey = Utlv, e =il s (n

w

where U denotes the mean propulsion velocity of a micro-organism of
length {1, « the radian frequency of an undulating flagellum or cilium of
cross-sectional radius b, and v is the kinematic viscosity coefficient of an
aqueous medium (v = 0. 01 cml/sec. ). Typically, ﬁoc ranges from 10-6
for small bacteria to 10-2 for most spermatozoa, and Re is approximately
an order of magnitude smaller. At such low Reynolds numibers, the fluid
motions so produced are dominated by the viscous force while the inertial
effects, of ooth the fluid and the microscopic body, are entirely negligible.
This means that the flow would altogether stop as soon as the propulsive
motion is halted, (II) Further, the velocity field generated by the motion of
a body element has the longest range known in fluid mechanics and the motion
is invariably of a finite amplitude. These features combine to make the
hydromechanical analysis both interesting and challenging. The ratio of the
amplitude, h, of a flagellar or ciliary wave to the wavelength, \, is typically
about 1/7. The recent efforts have been directed primarily to improve the
theory so that the effect of flageilar curvature can be more accurately deter-
mined for motions of such large amplitude. (III) In a broad sense, move-
ment of prokaryotic flagellates and of eukaryotic ciliates and flagellates can
be regarded as self-propelled, i.e. without aid of any extraneous force and
moment of force. The mathematical expressicn ot the state of self-zropulsion
is, symboiizally,

3 forces = 0, and Z moments = 0, (2)
where the s'gn T includes the summation by the limiting process of integra-
tion. This means that while we need to use {orcelets and their moments to
represent tl.e propulsive action of flagella and cilia, the resultant force and
moment must always vanish, even when the micro-organism accelerates
along a rectilinear or curvilinear path, because the inertia of both the fluid
and the body is negligitle. This implies that the fluid at some distance away
from a self-propelling body will already feel no trace of a net force and
moment; it may sense at most certain higher moments of a {orce distribu-
tion. As a cesult, this feature brings forth some unique {low behaviors that
arce by their very nature absent in low-Reynolds-number hydromechanics of
inanimated small objects. In combination, the above basic features of flow
pertaining to> micro-organism locomotion will form an overall basis for the
yresent discussion.
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FUNDAMENTAL FLOW SINGULARITIES

In order to help us appreciate the recent development, in both its bio-
physical and mathematical contents, of this general subject, it is useful to
have an introductory disclosure of the basic tools which have been employed
by the applied mathematician and hydrodynamicist for this class of problems.

Insofar as the inertial effects are negligible, the hydrodynamics of low-
Reynolds-number flows can be prescribed by the Stokes equations

Vsus=s @, (3)
vp = tdww +{({x.t) ., (4)

where u denotes the flow velocity, p the pressure, p the dynamic vis-
cosit coefficient (u = pv, p being the fluid density), and f represents a
generalized distribution of extranecus force which may depend on the radius
vector x and time t. The primary fundamental solution of the linear
system (3) and (4) corresponding to f being a singular point force in an un-
bounded fluid was discussed by Oseen (1927}, Burgers (1938), and called a
Stokeslet by lHancock (1953). The higher-order poles associated with a
Stokeslet have been explored by Batchelor {1370) Blake (1971-74), Chwang
and Wu (1971-76) and others. A brief description of the properties of these

flow singularities can be given as follows.

(i) Stokeslet. — A Stokeslet of strength a(t) corresponds to having

£ = Brug(t) 8(x) , (5)

-

where §(x) denotes the Dirac delta function. Its induced velocity and pres-
sure fields are, respectively,

Uglxia) = a/r +la- x) x/r” , (6)

Puixiay = -2u ¥+ (a/z) , (r = _m: . (7)
It exerts on the fluid a net force

W.m = 8ru a(t) , (8)

which requires an equal and opposite force acting on the fluid at infinity in
oﬁman to maintain dynamic equilibrium. The velocity is seen to fall off like
r™", a rate which is not surpassed by any other known flow singularities.
The evidence of this long-range effect can be detected from the resulting
streamlines (see Fig. 1), showing that fluid is drawn in from bLehind to
approach the singular force and is then thrust forward along divergent paths
with a fore-aft symmetry,.

(i) Rotlet. — A rotlet of strength y(t) is associated with the singular
moment of force s

k-3

= 4mu UXy(t) 8(x) , (9)

the resulting flow velocity and pressure being

/ A

W= N\ou

s

————
T
2

Fig. 1. The streamlines due t
o a Fig. 2. The flow
M“Mwwoau”%h o“. strength 8, shown .—ﬁ a of strength X <»u“—”~-hﬂ“ﬂﬂu~oﬂ.—”~%»~.ﬂ
. n»J.u ane about the axis of to a rotating sphere of small w!n:”—-o Dﬂ
ymm . with angular velocity 9.

Ewnm. Hg = dxﬂkxn. B uum. = 0 5 (10)
It exerts on the fluid a net moment
Mp = 8muy() , (11)

which is balanced by an equal and o
Pposite moment on the fluid i
M”..W“”nuww. the bos.. field of a rotlet may be visualized as »?_M onuo» Mﬂno:ﬂwoqv.
a uvwana of radius a rotating about the y-axis with angular velocity

@ = y/a’ (see Fig. 2). The streamlines areaxiall ymm
the R.ﬂxwu. with flow speed falling off like r-2. i P TI S

iii) St let. —
.M.:..nvm vvwouu et A stresslet is a component of the Stokas force-dipole de-

Usplxie. ) = ~ 8- VUg(x:ia) = Yp + Ugg & (12)

where W.w represents a rotlet of strength Y =BXa, and
: 3
Usstxia, B) = ~(a - B)x/x> + 3(a- x)(8 - x) x/e°, (13)

is the stresslet velocity field. This velocity is

. symmetric with respect
”unnnm.rv:wuo of g and B, and represents a pure straining or nnnon.—vooﬂovuwms
sce Fig. 3). Like the rotlet, the stresslet has its velocity decreasing like

r as T - .

(iv) Mass “doublet. — A mass doublet, of strength B, has the same velocity

field i i
m_nwra”wnmwun of a dipole known in potential flow; it is also the Laplacian of a

Uslxip) o (14)
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stokes dipole rotlet stresslet

Fig. 3. Decomposition of a Stokes dipole into a rotlet and a stresslet.

It has zero vorticity since [ possesses a scalar potential and it carrles
no pressure on account of the negligible inertia effects.

Higher-order flow singularities can be readily derived from the above
fundamental cases; they are useful ir construciion of exact solutions (Chwang
& Wu 1975) and especially when a high degree of accuracy is required
(Chwang 1975).

RESISTIVE-FORCE THEORY

In the general case of flagellar movemaent, approximate calculation of
the highly viscous flow past a slender body, such as a flagellum, can be
carried out by applying resistive-force theory which seeks a definite rela-
tionship between the force exerted by the body per unit length on the fluid
and the local velocity of the flagella. The central concept of the theory is
quite simple. Suppose a segment of a slender flagellum of arc length ds
moves with velocity V(s,t) (relative to the unperturbed fluid far away) so
that its component tangential to the body centerline is V_ and the comple-
mentary normal component is V , The resistive force Exerted by the
segment on fluid has two components dF_ and dF_ in the same two direc-
tions which can be expressed as < =

dF, = C,uV ds, dF = C_uV ds , :3

where C_ and C_ are two dimensionless force coefficients assumed to be
anvo:uo:m only on %he instantaneous body geometry and independent of the
segment position 8 or its velocity. For an elongated body of nearly circu-
lar cross section, the force coefficients assume for a quite general category
of motion the expression

27 _ 4
€ * Tgzarm€; © %t Temamec, (16)

where b is the local or a characteristic cross-sectional radius of the
flagellum and q denotes a length whose value depends, together with the
two numerical constantz Cj; and Cj, on body geometry as well as the type
of flagellar movernent. For instance, for an elongated prolate spheroid with
semi-axes a 2nd b (b « a) (16) is accurate with a relative error of O(b/a)?
(Tillett 1970) if

q = a, n~unu | (1N

The local force coefficients of a flagellum in undulatory movement are
much more difficult to determine accurately. It was Hancock (1953) who
first applied a line distribution of Stokeslet and mass doublet to represent a
slender boay movement, and, based on a limiting result of his analysis,
Hancock proposed the form (16) with

nu:~.n_”nangxuanonx_omuv :3
where f is the length of the filament. Subsequently, Gray & Hancock (1955)
introduced for computing flagellar motions the formula (16) with

1 1 -
q =\, C, = 3 Cy = 3 Ou (Gray-Hancock) (19)

where )\ is the wavelength of a planar or helical flagellar wave. The popu-
lar appeal of this formula is evidently related to the simplicity of the resulting
mathematical analysis. The theory, however, is crude and its accuracy is
insufficient for making more refined studies by our modern standard. Along
this line of development Lighthill (1975b) has recently re-examined the hydro-
dynamics of flagellar locomotion and suggested that for flagellar waves it is
accurate to take

q=0.09\, C,=0, ©€,= w (Lighthill 1975b).  (20)

1 2

To provide an order estimate of the accuracy of these formulas, we re-
call the theory for straight slender bodies (of length 1) developed by Tuck
(1964), Tiliett (1970), Batchelor (1970), and Cox {1970). Based on expansion
of the line-force distribution in terms of a series in inverse powers of
log (1/b), the theory shows that q actually depends on s for arbitrary body
shape except for slender spheroids. But as an approximation, formula (16)
with constant values of p.nf 0~ can still be used (e.g. q = /2,
ﬁ_ = +0. 807, O~ =] = nhu for a'circular cylinder) if we accept that the error
is of order [log” (2/b)] =2 With such errors, the accuracy of the crude
resistance coefficients is generally regarded as insufficient for the scientific
requirements and becomes even more questionable when the body centerline
bends and waves as in flagellar motions.

The need of having an improved slender-body theory was stressed and
extensively discussed, among other basic problems, during the Pasadena
Symposium on Swimming and Flying in Nature (Proceedings edited by Wu,
Brokaw & Brennen 1975). This problem was further pursued at the
Cambridge Symposium on Biodynamics of Animal Locomotion which was
organized by Professor Sir James Lighthill and Professor Torkel Weis-Fogh
(Proceedings edited by Lighthill & Pedley, to be published by Academic
Press). From these rounds of discussion we may single out the following
observations.

Based on a series of experiments using mechanical models, Chwang and
Wu (1975b) found considerable discrepancies between theory and experiment.
Of the significant factors that may contribute to these discrepancies, we have
subsequently identified: (i) the effect of finite curvature of body centerline,
(ii) the wall effects due to the proximity of the container boundary (both in
model and prototype tests), and (iii) the inertia effect that may arise when the
Reynolds number based on the mechanical model length is no longer small
(even when the body centerline is moving perpendicular to itself).

New research has been pursued along these i{dentified directions, The
first test case is the slender circular ring (the only shape with a uniformly
curved centerline yet without body ends). For the Stokes flow involving a
ring in arbitrary motion we have found that the solution can be determined

ptotically to any specified order of accuracy, at least in principle, by
Wing higher-order flow singularities. This ring solution has been
se in guiding us to establish a refined slender-body theory for the
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general case of arbitrary body motion with fin implitude. Development of

flagella and cilia hydromechanics, again no exception like many major fields
Y I Y J

of fluid mechanics, has been full of challenge, perplexity and excitement,

Before I proceed with my report on this task, we conclude this section
by noting that the force calculation must be cornplemented by the considera-
tion of a pure couple (See Chwang & Wu 1971) acting on the fluid by a segment

of flagellum whose surface undergoes a spin with angular velocity 2. paral-
lel to the unit vector g, directec along the body centerline. The corres-
pending moment is 3
2
1 - =
rKa = O?Arv ,nwumu s Oz 4m . (21)

Unlike the force coefficients, this formula remains accurate as the body
length is increased, whatever the value of the Reynolds number based on
f, and body length { may be (Chwang & Wu 1974,

THE STOKES FLOW PAST A SLENDER RING

In order to investigate the body-centerline curvature effect in Stokes
s y

Douf Wu & Johnson {1976) have selaected a siender ring as the primary test
case. Itis of interest to summarize here the new result and to ascertain,
by comparison, the deficiencies vious theories in predictin

< . L . .
sectional forces and moments. The mathem ca) details, however, will be
cartailed sincue they are Ley.ord the presen® scope

The result is presented below separately for four basic modes of motion,
namely (i) broadwise translation, (ii) edge-on translation ( in centerline
plane), (iii) rotation about the central axis, and (iv) on-edge rotation. The
general case of arbitrary motion can be resolved by superposition of these
solutions.

(i) Broadwise rotation — Consider a slender ring characterized by a small
parameter ¢ - b/a « !, where a,b are its major and minor axes, respec-
tively (a being the radius of the centerline circle and b the cross-sectional
radius). When the ring moves with velocity V parallel to its central axis
(z-axis say), the following flow singularities, distributed uniformly along the
centerline, are required to represent the flow, with their line densities:

1 1

Stokeslet (along muw a = M<2r +Mv #

doublet (-e,) B = .w. Gwn )

rotlet (g y © % VBOL-D/L +3) (22)

stresslet (e, ¢e,) A = .M. bae ,

1.2

quadrupole ﬂmw. mnv B = -N« A
Here, (e (PN msv denote the base vectors in the cylindrical polar coordi-
nates (r, 6, z), and L stands for

L log(8/¢) , « = b/la« 1. (23)
We note that the Stokeslet anddouliet are required for the solution of flow
velocity y upto O(L-M) for any positive integer n, and inclusion of the
next three singularities reduces the error of solution for u to O« -ow o),
which i a considerable refinement.

(ii) Edge on translation — When th

g iy P e e ring moves in the x-direction (taken to

Y = mw<: -wm<n > <u = Vcosé , <- =Vsin @,
g . (24)
the required centerline distributions of leading singularities are found to be
1
Stokeslet Am,nv G =3 <==;auv\2..N - W L-1) ,
2 1 5
Stokealet  (-g ) e, = gV,L-3/?-3Ly,
doublet g=- an a ., (25)
3
rotlet Am.nv Yy = N<-v..ﬁ-.~umr+~d—|:=;u-wurn: .
¢ 3
stresslet Amw.Mn. A = 1 <nv.:. - .mmv\:‘u - .W.Pa: »
a 3 1.2
uadrupols (g .9 ) B = -Z2b"A .

The velocity field u represented by th i i
y these flow singularities is acc
"_“ a small error term of O(«2log «). However, it is of .ynrsnunnﬂﬂﬂwﬂhﬂ
at in this case, the resulting force coefficients, C, = c:n-\<
[

C_=8na_/V no longer ass i
a N ume the classical form (16);
n<.m«:2<:a:o:»o the effect of the centerline nuwcuncno.a S e———

(iii) Rotation about the central axis Fo

- r the case when the ri
nvon». »rn. z-axis with angular velocity 2, we have a uniform nﬂhhnﬂwuﬂ»n-
distribution of Stokeslet and rotlet, with strengths

Stokeslet (e c.

e = yRa/(L-2),

(26)

rotlet
e (e,) Y

3bs a(L - 3).
In this case the error of y is also of O?Nmon «).

(iv) Edge-on rotation — In this mode the rin

g rotates about the x-axis with
angular velocity R so that at the instant when the centerl
the y = 0 plane the velocity of the centerline is R e

¥sYs . V, = Rasin® . (27
The corresponding flow -F-_Evlnwo. have the following line densities:
Stokeslet (e,) a = W<U:F ow.. ’
doublet (-e,) = W..No :
rotlet y = bea —m-. cot § - WS. -2) ho~ . (28)
stresslet Po.n.m.nv A = Wv.n ¢
quadrupole (g .e ) B = u.”.v~> .

The above results show that the sectional force coefficients have various

forms depending on the curvature and mod i
es of motion. [
flagellar motion, log(f/b) usually ra o7
\

1 :W.,: from 3 to 5 (correspondine to

i




£/b = 20 to 150). For such moderate values of L, expansion of the
rational functions of L. in the above expressions into series of L-! may
induce unnecessary error. In this sense the present result can provide a
useful guideline for developing the general slender-body theory to be dis-
cussed below. Further, we note that the rotlet y will yield a pure couple;
this contribution may be significant, especially when the net moment of
Stokeslet force is small. The presence of rotlet may even cast new light on
the mechanism of spirochete locomotion as discussed by Chwang, Winet &
Wu (1974).

To exhibit the difference between the new results and classical resistive-
force theory, we present the numerical results in Figures 4-7 for the four
basic modes of torus motion. The comparison shows that while the differ- |

ence is not large for the translational modes (less than about 15% for 1 i 7
€« < 0.1), it is quite significant in the two cases of rotation. This may be
attributed to the feature that in rotation the body velocity has finite variations,
both in magnitude and in direction, along the torus. On physical ground we i ! ! Ly % i & X
may expect that changes in phase along a flagellum or cilium in undulatory (Y 0. 0.2 0.3 0e 0s 0 0.1 02 03 0e 0%
motion would have a similar effect on the force coefficients. € : €

Fig. 6. Torus rotating in its Fig. 7. On-edge rotation of torus.

piane.

GENERAL SLENDER-BODY THEORY

Johason (1976) has considered the general case of a slender body with

circul - i i i
-:uvﬂawnuhmﬂo.: section b(s) of arbitrary distribution but with spheroidal-

1.0 e T T

1.4 =t T T T C 2 2.1/2 2.2
N1orus b= (1" -3 for (1-8"/2°) «1, ¢=
e S : ) ( ) «e=b /Lt «1, (29)
w2l m||lzdoncu os} =l where s is the arc length along the body centerline:
C
&ME@ CNvonus 2 * 5N (-tgsgu), (30)
I 7 Nrorus + L g mz:_._rzrx 7
the movement of x being assumed arbitra
- ry. At each point
3 \—v Mh:”wan“;o inzu”:nm a set of orthogonal base vectors (e vonn ..MM- domﬂﬂ—nh
of = : J 4 the tangential, normal, and binormal direct o e ctiv i
A‘ \ S 5 o3 33 8) i.e. irections, wn-w»n»-co;. (see Fig.
o4 7 1.4 T & T £ Bed
€ = O, /3s, mau-wm-;.. & = g, Xe . (31)
Cs
o3 1.2} T - where a(s,t) is the centerl -1
S enterline radius of curvature, a = _o u.\o-_
The velocity of material points on the bod
2 4 surface is d -
0.2 S 10 . Wmﬂﬂv: of moanonw.so with velocity 8x,/8t, a N:n?no -!..- -ﬂnsﬂonouﬂnonnﬁ_uaﬂ
N angular velocity Q (s,t)e , 2 being arbitra and th
centerli i ; s _ ry. e rotation of
% CYUNGER (COX 1970} | S s MMs_%mn:”_.”n”:-”._”_uﬂhaéo“onﬂn# 8 = g X .wm-\o:. Thus the no-slip bound-
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Fig. 4. Broadwise motion of Fig. 5. Comparison for torus trans- .

torus. lating in its own plane.




Fig. 8. The geometry and coordinates adopted for
arbitrary movement.

where the dot denotes differentiation with re spect to

e = e _cosy +e sing .
=T ~n b

The solution of the resulting Stokes flow ca
distribution of necessary fundamental singularit

as follows:

ies o

a slender-body in

t, and

(33)

n be represented by the

n the body centerline

sty = § (Gg(Rie) + Up(Ri) + U(Biy) # U (Rim) + A Usg (Rie )

-8
o

1

- B UntRiey, e )+ AUsg(Rie e

h
where Wnﬂumoﬁuv. Wn_w_.

-—

i R
U U s U have been given before, U (R :
W,W.pm%om wwavm%u source of strength m, and EDFW.

denotes a quadrupole. The limits of integration,
generalized foci,

1/2 1 2

‘ \IA—cM.-Hs.

2
s, = (1" -Db)

o
The integrand in (34) is mwisama..—
ry «f) at each station s. Upon in -
condition (32), neglecting the terms of Ofa« log ¢},

integral equation for g,

e e - w~ﬁD:~nc .aGC ds,

='Zn' =

(34)

(35)

(8- VIUL(R:Q)
, are given by the

’

;m) = 3w\wu is the contri-
g)=

8
%

(36)

n the neighborhood of the body (i. e. for
tegration and then applying the boundary

we obtain the following

8
o
V. (s,t) =a (s,t)L *% K (R _;a)ds' R (37)

v'=o
-3
o
where
L, = 2[21og(2/¢,)- 1), L =L, =2log(2/e,) +1 ,
a (s',t) {a(s',t)- R_)R D a (s,t)
K,(Ryia) = + e . .
Y R R |s-s*|
o o
D, =2 D =D =1, «=bs/t1-s3}?,
Wo 5 MO?.s ) me:..c i wo-m- * ~~e--.o... ’ ﬂovmv -
als,t) = ae +a e + ae,. (39)

Here, the base vectors e, e , ¢, in the expression (37) assume their
value: at 8 wlere V, ?.3 aauvnr.m:o;. The integral eqi:tion (37) can be
solved by applying certain appropriate iteration schemes or the method of
collocation. These numerical methods have been applied to evaluate sec-
tional force coefficients of a flagellum performing a planar or a helical wave
motion. A similar theory has been introduced by Keller & Rubinow (1976)
for the leading singularities, namely the Stokeslet and doublet, but with their
line densities only approximately determined near the body ends.

WALL EFFECTS

Low-Reynolds-number flow theory has applications in several fields of
growing importance, for instance in biophysical and biomedical applications,
rheology, suspension mechanics, aerosol physics, and micro-organism
motions. In these applications it is often necessary to analyze the motion of
slender bodies such as fibers or organisms in the vicinity of solid boundaries
since their motion is considerably modified due to the wall effects. Of
these phenomena some appear in natural scheme of life (e. g- the muco-
ciliary propulsion system in trachea and spermatozoa transport in ciliated
duct), some are results of artificial design (e. g. the flow of suspensions
during engineering processing), while many others are caused by necessary
pPreparation for microscopic observation. We thus see the importance of
wall effects in low-Reynolds-number flow, both from the standpoint of basic
understanding and data interpretation. The general problem, however, is
difficult, and as a result, only a few relatively simple cases have been
considered.

The image system for a Stokeslet and higher-order poles into a plane
wall can te derived from the classical work of Lorentz (1907), as illustra-
ted by Burgers (1938), and more systematically identified by Blake (1971a,b,
1974), Blake & Chwang (1974). This method has been applied by Brenner
1962) to discuss arbitrary bodies, and by DeMestre {1973) for the case of
circular cylinders near a plane wall, by DeMestre & Russel (1975) to study
rotating rod motions. Further applications have been made by Winet (1973),
Blake & Sleigh (1974), Katz (1974), Katz & Blake (1975), Katz, Blake &
Paveri-Fontana (1975), and by Aderogba (1976) for various studies of ciliary
and micro-organism propulsion. A review of these contributions can be
found in Brennen & Winet (1976). As an overall summary of these results,

o . P S R




the following feature is noteworthy from both the hydromechanical and the
energetics points of view.

Generally speaking, the drag increases as the wall is approached. But
the relative increase in drag of 2 slender body is always smaller in axial
motion than that when the motion is transverse to the longitudinal body axis,
whatever its inclination with respect to the nearby wall, i.e.

«) , ...u ~_+ ,.
Om ruc:‘vovx : Ca O:o, én

0< ou < ma.

(40)
where C and C,o are the axial and normal force coefficients of a given
body in vBBounded flow, (i.e. for vanishing ratio of the body length to the
distance from a wall, f/h = 0), and the relative increments é_ and os
deperd on X\ = f£/h and on the body orientation with respect to %he wall” The
ratioof C_ to C_ is, by (40),

y =G J/C =1C JC M1 +80/M1 £8 )< C FC, =¥y*

(41)

o.ly reduced by the wall eflect,
43 pointed out by Lighthill

n important role in swimming
P and to the

Thus, the fcrce-coefficient rati
and this is a result of especial sig:
(1969), the force-coefificient ratio

propulsion. It relates to the maxirnum forward velocity, <3wx.

N ayr Of 3 flagellum according to
riax

maximum efficiency of locomotion,

v Je = s{l-y) = (L= (42)

n
‘max

where y is the phase velocity of flagellar wave with respect to vomm«,. and
e is reached at V/c, = 1 - /¥ . In unbounded flow, y = 1/2 is the
1ower limit reached only Wé extremely slender spheroids, and, as uo—smma

out by Wu (1975), no swimming in the microscopic world would Uo. feasible

if y could attain the value y = 1. In most cases of micro-organism loco-
motion, y ranges between 0.6 and 0.7. In this rather narrow range of y

in practical operation, we thus see (from(41) and (42)) the possible advantage
for a slender body to swim near a wall since the value of y can nro.u.md< be
somewhat decreased (by about 10 - 15%), giving both higher swimming veloc-
ity and propulsive eificiency.

The general problem of wall effect can be formulated for the case of a
plane wall by incorporating the known image systems. Suppose ».run the
velocity of an unbounded Stokes flow due to a slender body with given move-
ment is known, which can always be expressed as

s
o
% - g} 43
G = M. {2p(x:8.t,) - V[(x-¢)- g] + Ve }ds, (43a)

-5
o

where ¢ = ?J.ew ~ﬁuv and 9, Are harmonic functions and ¢ a constant

-

vector,
Ve = 0, d~eo : B, £ = (c).cp (43b)

Then the flow velocity generated by the same body sha; ent in
the presence of a wall coinciding with the Xy = 0 plane

o
e R T R L Ry (44)
luO
where

Yo = 2,(X) - 2x) , P, (x )X, X3) = @ (%), %5, - X3)

§ o= ool 200 + 28505 (0 (x -9 )49 (xd)]
WCJ.%N,xu, = .NCJ.NN. -xuv .

In the integral representation (43) of the unbounded flow, it is easy to identify
the different terms in the integrand of (43) with various flow singularities.
The representation (44) is obtained by appropriate imaging so that y = 0 at
the wall x, = 0, and y behaves like 4, near the body. By expanding the
integrals in (44) for the near field and applying the boundary condition (32),
we can convert the resulting integral equation into a form similar to (38),

and it can therefore be solved by the same iteration scheme. Numerical re-
sults are being analyzed for a few typical cases.

INERTIAL CFFECTS

Inertial effects will arise to effect changes in sectional force coefficients
when either of the Reynolds numbers defined in (1) becomes no longer small
compared to unity. Such situations may occur in motions of large micro-
organisms or in experiments with mechanical models whose corresponding
Reynolds numbers cannot all be kept small in practice.

A clear explanation of how inertial effects can arise has been provided
by Chwang & Wu (1976) for a prolate spheroid, Even when the translational
motion is directed only along the minor axis, with velocity U say, the
solution is found to depend nevertheless on two Reynolds numbers, F_=Ua/v
and Ry = Ub/v, based on the major and minor semi-axes a and b, Ffespec-
tively.” The solution based on an approximate singular-perturbation method
is shown to agree with the formula of Oberbeck (1876) for the Stokes flow as
long as both wn and WM are small compared to unity, but deviates from
itas R becomes of order unity, and finally approaches the Oseen's
solution for a two-dimensional cylinder as R_ —~ o, being kept small
throughout. This gradual transition thus vnoﬂmo- a cléar physical picture
and explanation for the manifestation of the 'Stokes paradox' known in
viscous flow theory.

It is thus important to have such inertial effects accounted for in making
theoretical predictions and in interpreting experimental results. Develop-
ment of the general slender-body theory along this line is still in its early
stage, but is noted to be underway.




CILIARY PROPULSION
Recent development in cilia propulsion theory has .1na: based on Zum s
‘envelope model!, the ' yer-model', and ‘L.c 'traction-layer rnodel'. e

1 3 T e ! new , s o tensi is-~
historical back ound and principal new results ve been extensively dis

ussed and reviewed by Blake & Sleigh (1374), ller, Wu & Brennen (1975),
:ussed and viewed b lake & ) ] n

M<c {1976), Brennen & Winet (1377), I shall not repeat here what is al-
ready available in the literature. However, I w like to apply again the

'traction-layer model' to make performance predictions on the basis of
optimization calculation.

The traction-layer model is based on the nonnmvm »rm.n the mwunnmﬂ.m
forces of a system of cilia can be represented by an p.ﬂu:uwm:n. n.o:"—ﬂcca
distribution of an unsteady body force within n.rm volume of the ciliary ﬂ<on.
provided the cilia distribution 1s sufficiently dense, ﬂo:<onww01 from the
discrete to the continuum force is based on resistive »:mon.% Errnwrnuywnmu
the original sectional force of a cilium to Wam. wmwcnpg relative to the flow
produced in its neighborhood by the entire ciliary system.

Using this procedure the body force within a plane ciliary layer can be
expressed as

in{kx-wt)

N
s B gl LR B S 143)

o

where N £ o, )\ = 2n/k is the metachronal wavelength, w is the .Mw%w:
frequency, and f vanishes at the cell mcl.mnmq (y = 0) u.:a .m:uo outside the
cilia layer (y >1), I being the cilia length. The arm.:&cn—o: ?:Mm—o:w s
f (y) can be determined by carrying out Em.no:<mnmm0d from the iscrete
Jbntinuum force, Since f (y) are the Fourier nommbn-w:nm of the no:n:.,—:ca
force at fixed y, the above expression for f holds valid for the genera

case of ciliary movements of f{inite amplitude.

The leading term of the expansion, f{ (y), denotes the mean m.onno distri-
bution; it plays the essential role of vwoimw:m the mean velocity field,
u_(y), which satisfies the equation
o

1
dy >
i ili i i lue of
} an propulsion speed of the cilia layer is given by the va
W: mvnmnn. “:W nn;..m .H.m.um nﬂo fu .nZM:u f and u_ also determine the mean rate

of working by ».o on the fluid in aumaﬁu;.nmo;o mean velocity {ield, which is

1
2 (47)
) %, f,(y)uly) dy .

(46)
£y .

o
o

On the other hand, the rate of working by the cilia in producing mo is
1

m.o u M uo?:cn:; m<.

(<]

is tr relocity of cilia. Based on
where u (y) is the x-component of the mean ve . on,
.,nmn.mt...\nnowonon theory, the ciliary force is proportional to the Ooi <M,on.n<
relative to the ciliary segment, i.e. f (y) = pC{u_-u_ ), C being a force

c s
coefficient. It therefore follows that tife problem of n.«mnm::u_:m MO for

Dxma 10Eaac?ﬁo:”noam:ma*um:m E_ for fixed mean square of mo. or
fixed
~

2
D u.m. {0 (y)dy . (48)
(]

Now the first variation of E

5 = rco. A being an undetermined multiplier,
gives

1
§(E_ - \D ) = &. :co -2MM) of () + £,(n) ?o:_:u._ e
o
where n =y/t. Substituting (46), or &f = -t -Nawac v\mJN. in the above

integral and integrating by parts, we obtain for the firsvariation
._.Zmo - rbov = 0 the Euler equation

NullhO AO%5A~v. A§0v

?._o =0 and oaco\mi =0 (at 4 =0,1) . (50)

Hwomoucwmo:ozaov mmnonﬁawnoaﬁnmo:nm::nn (1) = 0 is the eigen-
solution > °

f(n) = pAsink q , k, = :~>§=.:~" nr , (51)

and the relevant solution correspondsto n = 1, w- = m. The resulting
velocity, given by integrating (46) jointly with (51) under condition u (0) = 0
and cwsu:uo. is o

uy(n) = A(t/m)? (nn + sinwm) (0 <n<1), (52)

~

and ¢)?: = const. = =o:~ for n>1. If Uc = Uo:..—N = 1 by normalization,
then A =/2, and the corresponding Wo = Mo\t..w = .W...)};N =3t 0. 304.

The ratic Wo\.u = ..FMO\U%N = 0. 304 gives the minimum energy imparted
to fluid for fixed mean square force; this value is smaller than tne four-term
expansion of the optimum solution obtained previously by Wu (1976) (in the
latter case mo\b = 0.364, corresponding to about 20% more of the mini-
mum specific Work done). The mean force and mean velocity profile,

* 1 -
mo\mu =2t sinmq, co\:“ = ~»a N?.._ + sinwq) , (53)
are shown in Fig. 9. (Here, in physical dimensions, no = tt\EN. and
U, = w/k is the metachronal wave velocity.) The Lo«.oooh :%.1 at y =0,

obtained by integrating (46) across the cilia layer, is related to the force
integral hy

mcoﬂc-

el .ﬂ foly)dy | (54)
(]

o

which asserts that the viscous skin friction at cell surface is counterbal.
anced bv the fluid force acting on the cilia over the same area of cell surface.
The higher-order forcing functions f (y) in the expansion (45) can also be

optimized in a similar manner, but we shall :onnor‘;o.rm-rano»:




preference of self-propulst y bodies
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Fig. 9. The optimum distribution of the average nm:mnv.nno::nccaﬂmonno..
f , giving minimum power rcquired for fixed mean square force, and the

orre sponding velocity profile.

STATE OF SELF-PROPULSION

We have just seen how the ciliary force can be ovlngx m‘...unn_vc‘nam.
when the curvature of the cell surface is zero. To extend this 5<mm3mwnm—o=
to bodies of three-dimzansional shapes, Keller & Wu :oqd have v.nnvoﬂm a
simple hydrodynamic mode!l to determine the self-propulsion of n:_‘vn.m "
..:an.uc-n.qmva. ms and to examine the effect of d.oa.x.mTu..mm mvo: nr.m ,.?oQN !
of propulsion. is model is a further ﬁ..»m.nmfnw:m.vd om. the m3<m.ov_n. mode
adopted by Blake (1971) and Brennen (197 .t.fu,n mo:u:san“:m the M:.ov_” m\,wn
of m.vm,.mnh.nw:«. shaped micro-organisms (originally U..J.u.c: on the vm,mcn m;o:
that the fluid adheres to a material envelope of the cilia ensemble), and is

Iiu

closely analogous to the control-surface model of Blake (1973). F the

jel we consid he ¢ ilia envelopes of a
present control-surface model we consider the class of ¢ g il
d assume that the mean flow velocity may have

rolate spheroidal shape, a
3 3 1 1 and a tar tial component
at the cilia envelope both a normal and a tangentl p nt,

\ i ...-‘om Awwv
u_ = .\u sin 0 , a esn u.

g ] r. E
where V and V are two constants and 6 is the angle Lz=tween M..n m:\mwn
1er _ and V_ . ] ¢ '

tion of nronulsion and the unit outward normal n to the spheroidal contro

i an

+ 10). The above simple relations :._‘:.ou«.:..n .n_r.m leading
general variation in ug and uy long ,.7.,..,:‘»; o:wmﬂ,o. e;
behavior (as to have a normal flow velocity mc n
lope) have been supported by the observation of Che

¥
surface (see |

Fiz. 10.  The rate of ene.gy cost for a prolatc spheroid of constant volume
and different eccentricity e. On the left the geometry of the control-

surface model is shown with the cell body, the cilia layer and the control
surface S.

The Stokes flow satisfying boundary condition (55) can be constructed by
an axial aistribution of Stokeslet and mass-doublet. The resulting energy
expenditure, E, is shown in Fig. 10 for spheroids of varying eccentricity e,
the results being given im:g respect to the reference value of 6wpU2a,
where a and b = a(l - e°)1/2 are the major and minor semi-axes, respec-
tively. It is of significance to notice the following effect of body shape on
energy expenditure. For the spherical shape (e = 0), the rate of working in
moving a rigid sphere, of radius a, at velocity U is at the cost of an
extraneovs force F sothat E = FU = 6m.U2%a. In comparison, a ciliated
sphere with zero normal component of flow velocity (Vq = 0) and with the
tangential component (Vg) so adjusted as to have zero force (with the net
Stokeslet strength a = oJ must spend energy E = -atC- in maintaining
the flow, which is then irrotational. Although the energy expenditure in the
latter case is twice that for the rigid sphere, it does make a drastic distinc-
tion that the sphere with the slip-flow is capable of propelling itself! When
the spheroid becomes slender, the energy required for propelling a spheroid
with a slip flow actually turns out to be less than that for translating a no-
slip spheroid of the same eccentricity e for e > 0. 82. With the additional
freedom of suction and blowing (V_ # 0) the energy cost can be further re-
duced (see, e.g. the curve with <”\C = 0.2 in Fig. 10).

Streamlines of the resulting velocity field in the lab-frame are shown
- ! for the two basically different cases, one with slip-flow and the
satisfying the no-slip condition. In Fig. 12 two time exposures of two

amecia, one self-propelling whereas the other being immobilized and

-
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With this comparison, | hope the contrast is so sharp that it will help

impress.on on the point I wish to make, namely; while there will

mulating problems along the frontier where the scheme of life
r must be careful in scientific experimentation so as not
to lose the basic element of life in its true manifestation.

Acknowledgment

I would like to thank Mr. Robert E. Johnson for his enthusiastic
assistance in preparing the numerical results shown in Figures 4 to 7.
This work was jointly sponsored by the National Science Foundation and
the Office of Naval Research. Their continued support is gratefully
acknowledged.

References

1 Aderogba, K., "On Stokeslets in Two-fluid Space," Journal of
Engineering Mathematics, Vol. 10, 1976, pp. 143-151.

2 Batchelor, G. K., '""Stress System in a Suspension of Force-free
Particles,' Journal of Fluid Mechanics, Vol. 41, 1970a, pp. 545-570.

3 Batchelor, G.K., "Slender Body Theory for Particles of Arbitrary
Cross-section in Stokes Flow,' Journal of Fluid Mechanics, Vol. 44, 1370b,
pp. 419-440.

4 Blake, J. R., "A Spherical Envelope Approach to Ciliary Propul-
sion, ' Journal of Fluid Mechanics, Vol. 46, 1971a, pp. 199-208.

5 Blake, .. R., 'Infinite Models for Ciliary Propulsion,' Journal of
Fluid Mechanics, Vol. 49, 1971b, pp. 209-222.

6 Blake, J. R., "A Note on the Image System for a Stokeslet in a No-
Slip Boundary," Proceedings of the Cambridge Philosophical Society, Vol.
70, 1971c, pp. 303-310.

7 Blake, J.R.,""A Model for the Micro-Structure in Ciliated Organ-
isms, ' Journal of Fluid Mechanics, Vol. 55, 1972, pp. 1-23.

8 Blake,J.R.,"A Finite Model for Ciliated Microorganisms, "
Journal of Biomechanics, Vol. 6, 1973, pp. 133-140,

9 Blake, J. R., ""Hydrodynamic Calculations on the Movements of
Cilia and Flagella. Part]l. Paramecium, Journal of Theoretical Biclogy,
Vol. 45, 1974a, pp. 183-203.

10 Blake, J.R., 'Singularities of Viscous Flow. PartIl. Applica-
tions to Slender Body Theory,'" Journal of Engineering Mathematics, Vol.
8, 1974b, pp. 113-124.

11 Blake, J. R., Chwang, A.T., "Fundamental Singularities of
Viscous Flow. Part . The Image Systems in the Vicinity of a Stationary
No-Slip Boundary,' Journal of Engineering Mathematics, Vol. 8, 1974,
pp. 23-29.

12 Blake, J. R., Sleigh, M. A., "Mechanics of Ciliary Locomotion, "
Biological Reviews, Vol. 49, 1974, pp. 85-125.

13 Brennen, C., '"An Oscillating-Boundary-Layer Theory for Ciliary
Propulsion,' Journal of Fluid Mechanics, Vol. 65, 1974, pp. 799-824.

14 Brennen, C., Winet, H., "Fluid Mechanics of Propulsion by Cilia
and Flagella," Annual Review of Fluid Mechanics, Vol. 9, 1977, pp. 339-
39

15 Brenner, H., "Effect of Finite Boundaries on the Stokes Resist-
ance of an Arbitrary Particle,' Journal of Fluid Mechanics, Vol. 12,

1962, pp. 35-48.

16 Burgers, J. M., "On the Motion of Small Particles of Elongated
Form Suspended in a Viscous Fluid, ' 2nd Rept. Visc. Plasticity Kon. Ned.
Akad. Wet. Verhand., Vol. 16, 1938, pp. 113-184.

77 Cheung, A.T.W., Winet, H., "Flow Velocity Profile Over a
ted Surface. Eds. T.Y. Wu, C.J. Brokaw, C. Brennen, Swimming and
ture. Vol. 1, Plenum Press, New York, 1975, pp. 223-234,




wnolds-Number Flow.
s..“:_.r.ﬁnz....«.:f,.«:ﬁc*

"A Theoretical Mechanism for
y=C ical and Cell Motil

comu

20 Chwang, A.T Wu. T. ¥ A Note on the helical Movement of
wang, A. -8 s s & : N :
. - s Proceedings of the Royal Sociaty of rowu‘mpqw'a!ﬂi—nn\mnm.
Microorganisms, Brocesdings of the Royah Soclety o} beof
7 78, 1971, pp. 327-340. ) :
fO~.N.~ .ﬁI.c AT W, T Y, Hydromechanice of Low-Reynolds-
H awar £ Le, u, . . : B ! A f
Number Flow Part 1. Rotation of Axisymmetric Z..o.awnm Bodies,
y s foen r ~ - A 60T _ 62
”— urnal of Fluid Mechanics, Vol. 63, 1974, pp. 607-624. :
ournal of et "Hydromechanics of Low-Reynolds-
22 Chwang, A.T., Wu, T. Y., Hydrome : v d
Number Flow. Part 2. Singularity Method for Stokes Flows,' Journal
low. art 2

of Fluid Mechanics, Pp- .oq'm,_.;.. e e
23 Chwang, A. Hydrodynamics o: Flagellar } ;
ments, " Swimming ire, Eds. T.Y. Wu, ﬂ.‘u. Brokaw,

C. Bre Vol ¥ xm Press, New York, pp. 13-30.
= Ww.,nPJMNpcu.n(i ».. ) . hanics of Low-Reynolds-
4 z g, A.

-

Number Flow.

lender Bodies in a Viscous

F .r.‘ : rv Joury ~f Fluid Mechanics, Vol. 44,

Fluid. Part l. Jous SR M BChancy,

o Lt i -~ £

sk >¢ .vv.J LM wn N.J "Low-Reyno .urmber Fall of Slender Cylinders

re P LOW= 2ynol A1 ¢ .

26 r@.?.«m re, .5 raal of ¥l 5, Vel 38, 1973, pp. 641-656.

N r anda -~ - “ < i A i i

Near Boundaries, T S Tievaatis Nomtier Trmks
27 DeMestre, N.J., Russe

. n 1 e eerin
11,'" Journal of Enginee g

lation of a Slender Cylinder Near .
: T T 1-91.
Mathematics, Vol. 9, 1975, pp. 81-9

28 Gray, J., '"Ciliary Movement, '' Cambridge University Press,
y. J., "Ciliary ment
Pon.m:u.u. Mud.ww. % ] Norton, London, 1968, 479 pp.
wm n.ww,w. 7., "The Propulsion of Sea-Urchin
s ’

Spermatozoa, ' Journal of Experimental Biology, Vol. 32, 1955, pp. 802-
m:.: Hancock, G.J., "The Self-Propulsion of Microscopic Onwviu«:m
Through H.”mnc.rmm... Proceedings of the Royal Society of London, Series A,
§ i 5 s Sb=Yel: il
<ow.u~~_.~.uv~..w% ,nvmm. , Votta, J.J., "Locomotion of Protozoa, Annual
id Mechanics, Vol. 4, 1972, pp. 93-116.
xo.wwi omoﬁfﬁm_mn Mu.:m.,. ” jydromechanics of Slender mo&pow i,.:..— m.:.:nm
Curvature in mnommm Flow, " Graduate Research Report, California Institute
3 r , 1976. . ) . )
B q.wwnuaﬂmww D. F., "On the Propulsion of Micro-organisms Near Solid
Boundaries A Journal of Fluid Mechanics, Vol m.r 1974, pp. uuu»n.w_. q
wm F xw.ns D. F., Blake, J. R., '"Flagellar Motions Z.mwn.?va. Eds.
7. Y. Wu, C w Brokaw, C. Brennen, Swimming and Flying in Nature,
Vol. 1, 1475, F : lew Yor 173-184.
fol. 1975, Plenum Press, New York, pp. :
(ou.wmw. Katz, D.F., Blake, J. R., Paveri-Fontana, S. L., "On the 7mo<a:
anwn of Zn:m“:. Bodies Near Plane Boundaries at Low-Reynolds Number,
Journal of Fluid Mechanics, Vol. 72, 1975, pp. 529-540. Vol
37 Keller, J. B., Rubinow, S.I., "Slender-body Theory onqom H
Viscous Flow," Journal of Fluid Mechanics, Vol. 75, 1976, Pp- &- »..
38 xo:n.n S.R., Wu, T.Y., "APorous Prolate mvrnwoawﬂ..ﬁo el for
Ciliated Ku.n_‘oo.:.puwww:u. 1t Journal of Fluid Zanrw«:nw. _cd. (in v«mmuw i
..u 9 cller m R., Wu, T.Y., Brennen, C., "A [raction Layer ‘M\w e
for Ciliary Propulsion,' Swimming and Flying in Nature, Eds, T. Y. u,

C.J]. Brokaw, C. Brennen, Vol. I, 1975, Plenum FPress, New York,

M. J "Hydromechanics of Aquatic Animal Propulsion, "
td M = { 1.445
uid Mechanics, Vol. 1, 1909, pp. 413-445.

41 Lighthill, M. J., "Mathematical Biofluidd amics, '’ Society for
Industrial and Applied Mathematics, >a, Philadelphia, 281 pp.

42 Lighthill, M.J., “Flagellar Hydrodynamics,' The John vonNeuman
Lecture, Society for Industrial and Applied Mathematics Reviews, 1975b,

43 Lorentz, I{. A., "A General Theory Concerning the Motion of a
Viscous Fluid and a Few Consequences Derived from it, >¢:u:a_:umo=
Theoretical Physics, Vol. 1, 1907, pp. 1-23.

44  Oberbeck, A., "Ueber Stationtre Fllissigkeitsbewegungen mit
Bericksichtigung der inneren Reibung, ' Journal fiir die Reine und
Angewandte Mathematik (Berlin), Vol. 81, 1876, pp. €2-80.

45 Oseen, C. W., ""Hydrodynamik, " Akademiya, Verlagsgesellschaft,
1927, Leipzig.

46 Sleigh, M. A., '""Cilia and Flagella," Academic Prese, 1974,
New York, 500 pp.

47 Taylor, G.1., "Analysis of the Swimming of M icroscopic
Organismg, " Proceedings of the Royal Society of London, Series A. , Vol.
209, 1951, pp.” 347-361.

48 Taylor, G.1., "The Action of Waving Cylindrical Tails in
Propelling Microscopic Organisms, " Proceedings of the Royal Society of
Londor, Series A, Vol. 211, 19523, pp. 225-239,

49 Taylor, G.1., 'Analysis of Long and Narrow Animals, " Hunoooomwsm..
of the Royal Society of London, Series A, Vol. 214, 1952b, pp. 158-183,

50 Tillett, J. P. K., '"Axial and Transverse Stokes Flow Past Slender
Axisymmetric Bodies," Journal of Fluid Mechanics, Vol. 44, 1970, PP
401-417.

S1 Tuck, E. O., '"Some¢ Methods for Fiows Past Slender Bodies, "
Journal of Fluid Mechanics, Vol. 18, 1964, Pp- 619-635.

52 Winet, H., '"Wall Drag on Free-mowving Ciliated Microorganisms, "
Journal cf Experimental Biology, Vol. 59, 1973, pp. 753-766.

53 Wu, T.Y., "Introduction to the Scaling of Aquatic Animal
Locomotion, "' Scale Effects of Animal Locomotion, Eds. M.J. Lighthill
and T.J. Pedley, Academic Press, London, 1378, pp. 203-232.

54 Wu, T.Y., Brokaw, C.J., Brennen, C. (Eds. ), mi._a.dn.nm and
Flying in Nature, 2 Vols, Plenum Press, New York, 1975, 1005 PP-

Wu, T.Y., Johnson, R.E., "Hydromechanics of low-Reynolds-
number Flow. Part 5. Motion of a Slender Torus, “ Report ES 76-1, 1976,
Californiu Institute of Technology (to appear in publication).




