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Abstract

We consider a regular Markov process with continuous parameter,
countable state space, and stationary transition probabilities, over
which we define a class of traffic processes. The feasibility that
multiple traffic processes constitute mutually independent Poisson pro-
cesses is investigated in some detail.

We show that a variety of independence conditions on the traffic
process and the underlying Markov process are equivalent or sufficient
to ensure Poisson related properties; these conditions include inde-
pendent increments, renewal, weak pointwise independence and pointwise
independence. Two computational criteria for Poisson traffic are devel-
oped: a necessary condition in terms of weak pointwise independence,
and a sufficient condition in terms of pointwise independence. The
utility of these criteria is demonstrated by sample applications to
queueing-theoretic models.

It follows that, for the class of traffic process as per this paper
in a queueing-theoretic context, Kelly's notion of quasi-reversibility
and Gelenbe and Muntz's notion of completeness are essentially equiva-
lent to pointwise independence of traffic and state. The latter concept,
however, is the most general one. The relevance of the theory devel-
oped to queueing network decomposition is also pointed out.

Key words: Markov Processes, Traffic Processes, Poisson Processes,

Queueing Theory, Queueing Networks, Traffic in Queueing
Networks, Decomposition of Queueing Networks



1. Introduction

This paper has grown out of previous work on traffic in certain
queueing networks ([4],[14],[15]) whose state process is a discrete
state Markov process. The paper generalizes several aspects of the
discussion and results in the papers alluded to above. In particular,
a general notion of a traffic process over a discrete state Markov
process will be defined and the feasibility of it being a Poisson
process will be investigated. We shall also exemplify the utility of

the results by applying them to a number of queueing models.

In the way of motivation, we point out that traffic processes in
networks with flow characteristics (e.g. queueing networks, communica-
tion networks, machine repair shops, etc.) are an important operat-
ing characteristic of such models., They are also of major importance
to the study of valid decompositions of such networks. It is common to
postulate, in such models, that the incoming traffic is a Poisson pro-
cess, a fact that often renders a mathematical analysis tractable; it
is also based on many real-lifeempirical data. If, in addition, one
may validly assume that traffic flows within the network are also Poisson
processes, then this could give rise to decompositions of the original
network such that each component subnetwork may be validly studied in
jsolation ([4],[14]).

The treatment of traffic processes in this paper will, however, be

more general—at the level of Markov processes.




2. Traffic Processes over a Discrete State Markov Process

Throughout the paper, {C(t)} will designate a right-continuous

t>a
Markov process with parameter set [a,») for some real a, and a countable

N

"t>a
sition probabilities, so that the associated infinitesimal generator

state set I'. We assume {C(t) to have standard and stationary tran-
matrix Q is time homogenous; its transition rate elements are denoted

q(y,8), Y,6el'. We shall further assume that q(y) = L qly,8)<e
Sel'-{y}

for all yeI', and that the q(y) are bounded as y ranges over I'. Thus the

process {C(t)} is regular in the sense of ?in]ar [6] p. 251.

t>a

Our assumptions on {C(t)} imply that the associated Forward and

t>a
Backward Kolmogarov Equations h;ve unique and identical solutions for
the transition probabilities ([9] p. 475).

Denoting Pt(y) & P[C(t) = y] and premultiplying the matrix form of
the Forward Equations (cf. [8] pp. 240-241) by a row vector initial con-
dition with components Pa(Y) yields a system of equations in the abso-
lute state probabilities

S Py) = T PE)a(E,y) - Py(¥)aly), tra, vel. (2.1)

Eel={y}

We shall say that equilibrium prevails if {C(t)}t>a is in
steady state; equivalently, in equilibrium, g% Pt(Y) 5_0, t>a, for all
vyel'.

Next, let OCFZ-{(y,Y):YCF} be an arbitrary set of pairs of dis-
tinct states. To avoid trivialities we shall always assume that O#¢.
For each yel', O gives rise to the following sets O(y,") e {8:(y,8)e0}
and o(-,y) 6 {B:(B,y)eO}.

Consider the sequence of epoches {Tn}:;o where




, if n=0
=
g inf {t:t>T ., (C(t-),C(t+))e0}, if n>0
induced by 0.

Thus, Tn is the epoch of the n-th occurrence of a jump in

{C(t)} from some yel' to some Sel' such that (y,8)e0. We adopt here

t>a

the view that certain state transitions in the underlying {C(t)} are

t>a
interpreted as traffic due to entities (customers, messages etc.)

moving about in the system.

Instead of studying the traffic point process {Tn}:=0, one may

n=0 ’
defined by

equivalently elect to study the traffic interval process {Tn+]°Tn}

or equivalently again the traffic counting process {K(t)}t>a

0, if t=a
K(t) =

k, if T st<T

k k+1 °

The state space of {K(t)}t>a is NV{0} where N is the set of natural
numbers.

In this paper, we shall adopt the following terminology.

Definition 2.1

A traffic process over {C(t)} is a process {K(t)} induced by some

Ocl‘2 as described above. The inducing O will henceforth be referred to

t>a t>a

as a traffic set.
-
The particular choice of the representation of a traffic process is
a mere technical convenience serving the purposes of this paper. It is
simply due to the fact that a Poisson process can be represented as a

counting process whose state probabilities satisfy a simple system of

e




birth equations.

What can be said about the joint process {(C(t),K(t))} First

?
t>a’
we show (cf. [4], Theorem 1).

Lemma 2.1

The joint process {(C(t),K(t))} is a conservative Markov process

t>a
with bounded transition rates.

Proof

The jumps of {K(t)} are contained in those of {C(t)}

t>a t>a’

Therefore, the joint process is conservative, since {C(t)} is. More-

t>a

wer, the jumps of {C(t)} uniquely determine those of {K(t)}

t>a t>a’

ence for every s<u, K(u)-K(s) is measurable with respect to the

o-algebra o{C(t):s<t<u} generated by {C(t)} Let a<t <t,<...<t <u

s<t<u’
be a partition of the interval [a,u]. Then, for any yjer, kjaNU{O},

T<j<r,

:
PIC(u)=y,K(u)=k| N {C(t;)=v,K(t;)=k;}]

j=1
r
- P[C(u)=y,K(u)-K(tr)=k-kr|;:%{C(tj)=yj,K(tj)=kj}] ’

r
But [K(u)-K(t.)=k-k Jeo{C(t):t <t<u} while (z{K(tj)
J:

, the previous equation evaluates to

=kj}co{C(t):a<t§tr}.

By the Markov property of {C(t)}t>a

= PLC(u)=y,K(u)-K(t,)=k-k.|C(t, )=y .K; =k.]
r
. P[C(u)=Y’K(u)=k|C(tr)=Yr’Ktr=kr]
which verifies the requisite Markov property of the process {(C(t),K(t)}

Finally,boundedness of the transition rates of the joint process

follows from the fact that they have the form

t>a.




q(v,6), if (y,8)e0 and 0<k=2-1
q((v,k),(8,2)) = 4 q(y,8), if (v,6)£0 and k=2 (2.2)

0, otherwise

Denoting P (v,k) £ P[C(t)=y,K(t)=k] and with the aid of (2.2),we
can now derive the equations in the absolute state probabilities for

{(C(t),K(t))},,., analogously to the ones previously derived for

t>a
{€(t)}ysg-

3

5{ pt(Y’k)

= P.(€,k)q(E,Y) +
€¢O%'9Y) t

b Pt(Ysk)Q(Y),
t>a, (y,k)el'x(NU{0}).

% Pt(gak])q(ng)
ceol-»v) (2.3)

The initial conditions are

P.(Y), if k=0
P (v,k) = (2.4)

0, otherwise

since K(a)=0 almost surely.

Eq. (2.3) can be equivalently written as

75 Pelvk)
= 1 Pu(ek)ale,y)-P (y,k)aly)
£el-{y} '

+ nEO%,Y)(Pt(n,k-l)-Pt(n,k))q(n.Y),

t>a, (y,k)erx(NU{0}),

by adding and subtracting Pt(n,k)q(n,y) from Eq. (2.3).

HEO%’,Y)




Finally, denoting Pt(k) = P[K(t)=k] and summing Eq. (2.5) over yel'
gives us

g% Py(k) = ] ’ (P4 (n,k-1)-P, (n,k))a(n,y),
yel' ned( - .y, (2.6)

t>a, keNU{O}.

To interchange summation and differentiation in the above we have used
the fact that the Pt(y,k) have derivatives of every order in t, and that
every countable sum of the P, (y,k) over a subset of rx(NU{0}) is uni-
formly convergent on each compact time interval of [a,»). This fact
will henceforth justify all termwise operations on sums of the Pt(y,k)
such as termwise integration, differentiation etc. ([17], 1.1, 1.7).

Throughout the paper we denote M(t) 2 E[K(t)]. To avoid trivial-
ities we shall, henceforth, restrict the discussion to substantive

traffic processes in the following sense.

Definition 2.2

A traffic process is nontrivial if M(t)Z0, t>a; otherwise it is

trivial.
w-

We now show

Theorem 2.1
t
M(t) = J % Q(n,Y)fPT(n)dr, t>a . (2.7)
Yel' ned\ -,y y

Proof

For every fixed neN sum (2.6) over k>n; then integrate both sides

of the resultant sum thus obtaining




7
)
FIK(t)>n] = ] % q(n,Y)jﬁPx(n,n-l)dr, t>a .
yel' neo(-,y)
a
Eq. (2.7) now follows by summing the above over neN, since {K(t)}t>a is

a non-negative integer valued random variable.

Corollary 2.1

M(t) = At, t>0, for some x>0 iff

% Pi(n)a(n,y) = const., t>a .
yel' ned(-,y)

In particular, M(t) = At, t>a, in equilibrium.




3. Poisson Traffic Processes

In this section we shall give a number of simple characterizations
of Poisson related traffic processes over a Markovian process. We shall
see that only a subset of the ordinary Poisson axioms will here suffice.

To simplify notation we shall henceforth denote

A

m(t) P (n)a(n,y) = 2 M(t) and m(t,y) Pe(n)a(n,y).

Yel nrO%-,Y) neo%',v)

Intuitively,m(t) is the total rate ot expected traffic count,while m(t,y)
is the rate of expected traffic count due to transitions into state vy.

Observe that m(t)= ) m(t,y) and that in equilibrium both m(t) and m(t,y)
yel
are independent of t.

The first theorem characterizes an arbitrary Poisson process over {C(t)}t>a.

Theorem 3.1

{(K(t)} is a Poisson process iff {K(t)} has independent

t>a t>a

increments.
Proof

(=) If {K(t)} is a Poisson process, then it has independent

t>a

increments by definition.

( <) Suppose {K(t)} has independent increments. It remains to

t>a
show that each K(t), t>a, is Poisson distributed. Let ¢t(y) be the

generating function of K(t),and ¢ t(y) that of K(t)-K(s). Then
Opae(¥) = 0p(y) oy 44 (¥), t2a, 0, ly|<1. Differentiating the above

with respect to € and sending e+0 yields

22 0,(y) = 0p(y) 7 0y o (¥), t2a, Iyl<T (3.1)

Next, denote P_ ,(v,k) e P[C(t)=y,K(t)-K(s)=k] and

S,t
P, (k) & PIK(t)-K(s)=k]. The process {(C(t).K(t)-K(s))}

t_>_S 1S a




| Markov process for any fixed s>a, by appeal to Lemma 2.1. Moreover,

Eq. (2.5) still holds with P_ _(y.,k) substituted throughout for

855C
Pt(y,k). Thus, the analogue of Eq. (2.6) with s=t becomes

(P (n’k'])'P (ﬂ,k))Q(n,Y)
’ Yel neO%-,Y) 2 e

-m(t), if k=0
= A m(t), if k=1

0 , if k>1

| S

whence é%'¢t,t(y) = m(t)(y-1). In view of the initial condition (2.4),
I the unique solution to Eq. (3.1) is ¢t(y) = exp(M(t)(y-1)) which
; corresponds to a Poisson distributed process with respective parameters
i; M(t). ™
G The second theorem characterizes a time homogenous Poisson process

over {C(t)}t>a.

\ Theorem 3.2

{K(t)} is a time homogenous Poisson process iff the following

t>a
conditions hold:

i) AT },-o is a renewal process
ii) m(t)=m(a), t>a .

Proof

(=) If {K(t)}t>a is a time homogenous Poisson process then it is
well-known that {Tn}:=0 is a renewal process. Furthermore, the rate of

{K(t)} is é%-M(t) = m(t) = m(a), t>a,as required, due to Corollary 2.1.

t>a
(==) Conversely, suppose that 1) agd ii) hold. Since the renewal
function R(t) of {Tn}:=O is R(t)=M(t)= [ m(t)dt=m(a)t, it follows that

a
{K(t)}t>a must be a time homogenous Poisson process, as R(t) determines




-~

10

a renewal process.

Corollary 3.1

In equilibrium, the renewal process property of {Tn}:=0 is equiva-

lent to the Poisson process property of {K(t)}t>a.

The preceding characterizations give us some information as regards

non-Poisson traffic processes, by way of elimination.

Corollary 3.2

Suppose {K(t)} is not a Poisson process. Then {K(t)}t>a does not

t>a
have independent increments, and, in equilibrium, the respective point
process {Tn n=0 is not even a renewal process (though it may be a delayed

renewal process).




_—r

4. Multiple Traffic Processes over a Discrete State Markov Process

Let {K,(t)}
{C(t)}

. {Kn(t)} be traffic processes over

2 ki t>a

t>a for some fixed but arbitrary neN. For the i-th traffic

process above, the associated entities are denoted Oi for its traffic
set, Mi(t) for its mean function etc.; in general, we append the appro-
priate index to such previously defined symbols. To simplify

notation we shall denote in the sequel K(t) & (K](t), e ,Kn(t)) to
be the vector traffic process, and k 6 (k], A kn) to be a vector

with non-negative integer components.

Lemma 4.1

The joint process {(C(t); K](t), PR Kn(t))}t>a is a conservative
Markov process with bounded transition rates. )
Proof

With the previous redefinitions of the symbols K(t) and k, the

proof of Lemma 3.1 goes through mutatis mutandis for Lemma 4.1.

The transition rates of the joint process are

n
Q(Y$6)’ if (Ya . and Oszﬁ-_z Xi(Y’d)ei

i=1

Q((Y’k)a(éog)) = Q(Y’é)’ if (Ys . and k=2 (4-])

n
G)EU 91
i=1
n
8)¢\J o,
i=1

0, otherwise

(v,k) s (6,2)erx(NULO})"™; in the above x; is the characteristic function

., if (+6)e0;
Xi(Y’G) e

0, otherwise

and ei is the n-dimensional unit vector with 1 in the i-th coordinate.
»

11
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The counterpart of Eq. (2.5) for the joint process

{003 B ) IBRREE 1) | S T

9
gf Pt(Y,k)

= ] P(E.K)alE,y) - Pyly,klaly)
gel-{y}

n
+ ! (Pt(n,k-iglxi(n,Y)ei) - Pe(n.k))alnyy)  (4.2)

n
nEUOi('aY)
i=1

t>a, (y,k)erx(Noh)".
For reasons that will become apparent later on, we shall restrict

the discussion to traffic processes which are disjoint in the following

sense.

Definition 4.1

{K1(t)}t3a’ t>a

cesses if their associated traffic sets 01, sty On are disjoint sets.

S {Kn(t)} are said to be disjoint traffic pro-

-
For disjoint traffic processes, Eq. (4.2) reduces to
9
5{ Pt(Y$k)
= 7 P (EaKk)alEy) - PylvK)a(y)
€€I‘-{Y} (43)

n
+ (P ( ’k' ) = P ( ,k)) ( ) )’
121 ncef(',Y) ¢ (nsk-e; ¢ (n-k))a(n,y

t>a, (y,k)erx(NU{0})".
The initial condition becomes

n
P.(y), if J k,=0
Plvsk) = 4 ° i=1 " (4.4)
0, otherwise .
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The counterpart of Eq. (2.6) is obtained by summing Eq. (4.3) over

yel' thus yielding

_é._ P k) = t j (P ,k- o - P 9k > ]
st Pyl izl Y%F HCOi%',Y) ¢(n.k-e;) = P (n,k))a(n,y) .

t>a, ke(NY{O})".



5. Multiple Disjoint Poisson Traffic Processes

In this section we investigate the possibility that disjoint

multiple traffic processes {K](t)} . {Kn(t)}t>a have Poisson

g e
related properties. In particular, the upcoming discussion applies to

single traffic processes as the special case n=1.

Definition 5.1

The processes {c(t)}t>a’ {Kl(t)}t>a’ g {Kn(t)}t>a are said to

be pointwise independent if for every t>a the random variables

Cit), K](t). ey Kn(t) are mutually independent. The processes above
are said to be weakly pointwise independent if for every t-a and every

sk )e(NUr0))",

(k], P

n
P.(nykqys.-.sk Jq(n,y)
i=1 yel neoi§~.v) L W
n ; v n (5.1)
gl / ) Pl P.(k:))a(n,y).
?.’Y) ¢(n ;I] £(k; q(n,y)

i=1 yel ne;Oi -

Since pointwise independence is of central interest here, the disjointness
assumption is necessary so as not to preclude it a priori.

We begin, however, with a characterization of weak pointwise inde-

pendence.
Theorem 5.1

K](t), Iy Kn(t) have mutually independent Poisson distributions
for every t>a iff {C(t)}tga’ {Kl(t)}tza’ i {Kn(t)}tza are weakly

pointwise independent processes.
Proof
(=) Suppose the Ki(t),]fifn,aredistributed as mutually indepen-

dent Poissons. Then the generating function of K(t) is

14
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O lyqs-nny,) = exp( Z M (t)(y;-1)), t2a, ly,l<1, 1cian | (5.2)

n
whence

3 n

3t O¢l¥qeeeoay,) = q)t(y],...,yn)izlmi(t)(yi-ﬂ, tza, |y;[<1, T<ien

n
(5.3)

On equating coefficients in (5.3) we obtain

P(K) = ] (Py(keey)-Py (K)Im,(£) |

nes—m>3

QL
<-f|°’
L

-y

=4=

(I Py(ks-85 'TfP (k;)) ) % )Pt(n)Q(n,Y) (5.4)

YeT ned; (.Y

-

]
He—3>3

—
.
"

—_

ta, k=(kp... ..k )e(NUEO})" |

where Gji is Kronecker's delta.

Eq. (5.1) now follows by equating the right side of Eq. (5.4) to
the right side of Eq. (4.5), via a straightforward multiple induction on
k=(k],...,kn).

(=>) Assume that Eq. (5.1) holds. Substituting (5.1) into (4.5)
and rearranging terms in the resultant equation yields Eq. (5.4). The
latter is equivalent to Eq. (5.3) whose unique solution is given by
Eq. (5.2), since the initial condition is ¢a(y],...,y =1 |y [<1, l<i<n,
by virtue of (4.4).

Consequently, Pt(k) corresponds to n Poisson-distributed processes

with respective rates mi(t); moreover, the Ki(t) are mutually independent

for every t>a.
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Corollary 5.1

If {C(t)} is in equilibrium and {K(t)}t is a singleton (n=1)

t>a >a

Poisson traffic process over it, then

g

r W% )E%T Pt(n,k)Q(ﬂaY) = (m(t))ﬁ+]Pt(k)
YEI NEYL* .Y

k
= m(a))™) exp(-m(a)t) DAL o

for any %,keNU{0}.

Next we characterize pointwise independence of traffic and state.

Theorem 5.2
{C(t)}tfa’ {Kl(t)}tga’ i {Kn(t)}tza are pointwise independent
processes iff
n n
.Z]mi(t,Y) = Pt(Y).)]mi(t), t>a, for every yel. (5.5)
i= is

Proof
(=> ) Suppose pointwise independence holds. Eq. (4.3) is equivalent

to the generating function equation

2 [Py (V)0 yqaeenayy)]

B gerg{ }Pt({,)¢t(y]9o.-gyn)q(‘c—)s\{)'pt(y)(pt(y],_._,y )Q(Y)
Bt (5.6)

+ Pt(n)¢>t(y],---dn)(y‘-'UQ(nsY)

i=] ﬂ€0i§"Y)

t>a, lyilfl, I<i<n, yel,

n

where ¢t(y],...,yn) = exp( ) Mi(t)(yi-l)) is the generating function of
i=1

K(t) due to Theorem 5.1. We use this form of ¢t(y1....,yn) in differ-

entiating the left side of (5.6) which after some manipulation becomes
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n
2 [P (N0 (yyseesy)] = 0y lyqse-ay,) 5 PP () ] my(0) 1))

Since mt(y],...,yn) may be cancelled on both sides of (5.6), the latter

reduces to

m,(t)(y;-1)

d
ap PelY) *+ PL(y) ) my ;

n

izl
A {5.7)
)

= 2P+ D () ym1)

i=1 |
Eq. (5.5) now follows from the above by equating the relevant coef-
ficients,

(==) Suppose Eq. (5.5) holds. It can be checked directly that

- n
k

Aty g (M, (£

n jT eXp(-M(t)) k'! )

z mi(t) i n g
Pt(Y’k], K ) = i=1 if Z mi(t)>0 (5-8)

i=1
0, otherwise

solves Eq. (4.3) and is consistent with the initial condition (4.4).
An easy proof of this assertion involves the transformation of (5.8)
into the appropriate Pt(y)¢t(y],...,yn) and then working the way back-

wards from (5.7) to (5.6) which is equivalent to (4.3).

Corollary 5.2

a) (C(t)}pq (Ky(t)hgsgs - s (Ky())yg
and {Ki(t)}

are mutually pointwise

independent iff {C(t)} are pointwise independent

tza t>a

in pairs for every I<i<n.
b) Eq. (5.5) holds iff for every I<i<n,
mi(taY)zpt(Y)Li(t)s t:a, Ytr,
for some functions Li(t) depending on t only; in fact for every

l<i<n, Li(t)zmi(t), t>a, necessarily.
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c) Consequently, in equilibrium, Eq. (5.5) holds iff for every 1<i<n,
m. (t,)=P ()L, tza, vel,

for some constants Li; in fact for every I<i<n, Li=mi'

Proof

a) Mutual pointwise independence implies pointwise independence in
pairs. Conversely, pointwise independence in pairs implies for
every ]fifn,mi(t,y)=Pt(y)mi(t), t>a, yel. This becomes Eq. (5.5)

on summing both sides over 1<i<n.

b) If Eq. (5.5) holds,then from a) the condition holds for Li(t)zm.(t).

i
Conversely, by summing both sides of mi(t,y)=Pt(y)Li(t) over vel

we deduce Li(t)zmi(t); summing it over 1<i<n then yields Eq. (5.5).
c) Follows immediately from b) and from the time stationarity of the

mi(t,y) and mi(t).

The relation of Eq. (5.5) and parts a) and c) in Corollary 5.2 to
Gelenbe and Muntz ([10], p. 53) should be noted. A more detailed dis-
cussion, however, is deferred until Sec. 8.

Before proceeding to the main theorem we shall now prove two sup-

porting lemmas. The first one is a generalization of Corollary 1 in [4].

Lemma 5.1

{C(t)} and the multiple traffic process {K(t)}t>a are pointwise

t>a

independent iff for any fixed s>a, {C(t)} and {K(t)-K(s)} are

t>s t>s

pointwise independent.
Proof

(<=) Follows immediately by taking s=a.
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(=) Since {C(t)} is a Markov process, it follows from Lemma 2.1

t>s
that {(C(t), K(t)—K(s))}t>S is also Markovian. To distinguish between
{(C(t),K(t))}

and {(C(t), K(t)-K(s))} we denote the various

tza tzs

mathematical entities associated with the latter by appending tildas to
the corresponding ones in the former.

Thus, Eq. (4.3) is satisfied by ﬁt(y,k) over the domain te[s,»),
subject to the initial condition (4.4) with a=s. Since P (y)=P,(y) for
every yel' and t>s, it also follows that mi(y,t)=ﬁi(y,t) and mi(t)=ﬁi(t)
for any t>s, 1<i<n and yel.

Now, by pointwise independence of {C(t)}t>a and {K(t)}t>a, Eq. (5.5)

holds, whence

Hes— s

m.(t,y) = P, (y)
1] e

nes——13

ﬁi(t), t>s, yel', (5.9)
| 3

i
also holds. The Lemma now follows from (5.9) by applying Theorem 5.2
in the other direction.
.

The second lemma is tantamount to Burke's argument in [5]. (See also

Theorem 3 in [4]).

Lemma 5.2

Suppose that {C(t)} and the multiple traffic process {K(t)}

t>a
are pointwise independent. Then,for every fixed t>a, the o-algebras

t>a

o{K(t)-K(s):s<t} and o{C(u),K(u)-K(t):u>t} are independent.
Proof

Recall that whenever t,<t,, u{K(t2)—K(t])}co{C(t):t]<t§t2}. Let
Aeo{C(u) ,K(u)-K(t):u>t}=0{C(u):u>t}. By the Markov property of

{C(t)}t>a we can write for any s<t, yel' and ke (NU{O})"
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PLA|C(t)=y, K(t)-K(s)=k] = P[A[C(t)=Y]
Now, from the above and Lemma 5.1,

PLA, C(t)=y, K(t)-K(s)=k]
=P[A[C(t)=y, K(t)-K(s)=k]-P[C(t)=y, K{t)-K(s)=k]
=P[A[C(t)=y]-P[C(t)=y]-P[K(t)-K(s)=k]
=P[A, C(t)=y]-P[K(t)-K(s)=k]

whence on summing both sides above over yel',
P[A, K(t)-K(s)=k] = P[A]-P[K(t)-K(s)=k] (5.10)

as required.

Corollary 5.3

If {C(t)}t>a and {K(t)!} are pointwise independent processes, then

t>a

from Lemma 5.2 each {Ki(t)} ,1<i<n,has independent increments; conse-

t>a
quently, each is a Poisson process by combining Theorem 5.1 and

Lemma 5.2.

We shall now proceed to show a stronger independence result,

(cf. Theorem 4 in [4]).

Theorem 5.3

are

Suppose {C(t)}t:a and the multiple traffic process {K(t)}tza

pointwise independent processes. Then the component traffic processes

{K](t)} s TR ()] are mutually independent Poisson processes.

t>a’ n t>a
Proof

In view of Corollary 5.3 it suffices to show that for each partition
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a=t0<t]<t2<...<tr=t of an arbitrary interval [a,t], and for any choice

of non-negative integers kij’]fif”’ 1<j<r, the events
E. .8 [K:(t.)-K.(t.=1) = k.,], 1<i<n, 1<j<r
1,J R A A 172 Mete? e

are mutually independent. The proof is by induction on r.
If r=1, then the Ei , are mutually independent by pointwise inde-
(
pendence among the {Ki‘t)}tza
Assume now that the Theorem holds for r=%, £>1, and show it for

, and the induction base is established.

n £
r=t+i. Since [\ (VE; .JeofK(t,)-K(s):s<t } and
i=1 j=1 '*J :
n
n e [N\E. E+]]LO{C(U), K(u)—K(tQ):u>t2}, we can write by virtue of
i=1 ' :

Lemma 5.2,
[fq\ Rﬁ] W (n )]
p S B 3
i=1 j=1 i) [(iol Q] B o

n 2 n
- p . JPIOE :
th JDlE"J] SALNUE

Finally, applying the induction hypothesis to the first factor

above and Lemma 5.1 to the second factor yields

EK %:g n_ 24
i E, oF= 7T T PIE, ;]
j=1 j=1 ' , o

which establishes the induction step.

In view of Theorem 5.3, we now see that Theorem 5.2 provides us

with a computational criterion as follows.

Corollary 5.4

If Eq. (5.5) holds, then the {Ki(t)} 1<i<n, are mutually inde-

t>a’

pendant Poisson processes with respective rate functions mi(t), t>a.
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Applications of the theory developed thus far are furnished in the

next two sections.




-

6. Atomic Traffic Processes

Consider the class of traffic processes defined by

Definition 6.1

K(t) is called an atomic traffic process if its traffic set O

}tza
is a singleton pair of states.
|

Atomic traffic processes are the elementary building blocks of all
traffic processes, since every traffic process is a superposition of
disjoint traffic atoms.

We shall now exemplify the utility of the weak pointwise independence
concept vis-a-vis atomic traffic processes.

First, however, we show a more general result.

Lemma 6.1
Let {K(t)}t>a be a non-trivial traffic process such that
(Uo(-,&))NUo(g,-)) = ¢. (6.1)

Eel Eel
Then {K(t)}t>a is not a time homogenous Poisson process, moreover, in
equilibrium -1t is not a Poisson process altogether.
Proof

Setting k=0 and letting t+a+ in Eq. (2.5) gives us

o oL ", ) or
;"t Pa(Y) m(a!Y)i V-I-

If neo(-,y) for some yel', then O(-,n)=¢ by (6.1) so that

m(a,n)=0 Hence

9

s 2 . -y
a7t Pa(n.O) 5t Pa(n) for any neO(-,y), yel.

23
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Substituting the above into the left side of (5.1) for n=1 and differ-

entiating yields for t*a+

I 7 e (m0ay) = T I 2P (n)aln,y) = 2= m(a).
yer neo(-,y)°t @ yel' ngo%-,Y)at . "

(6.2)
Now assume {K(t)'t»a is a Poisson process. By weak pointwise inde-

pendence of ';C(t):,c;_a and {K(t)}tza (see Theorem 5.1)

tra+ O

Yt I' neO

= 1in [m(t)-exp(-M(t)(-m(t)) + exp(-M(t))- T m(t)] (6.3)

i )}f P,(n,0)a(n,y) = Tim 2 [m(t)-exp(-M(t))]
8

A comparison of (6.2) and (6.3) gives us necessarily m(a)=0. But
if H((t)}ba is time homogenous, then m(t)=0 from ii) in Theorem 3.2,
which cont;adicts the nontriviality of {K<t)}t>a' Finally, in equil-
ibrium, {K(t)}t>a is necessarily time homogeno;s from Corollary 2.1,
whence the rest—of the Theorem follows.

We can now assert,

Corollary 6.1

None of the nontrivial atomic traffic processes over {C(t)}t>a is
a time homogenous Poisson process. Furthermore, in equilibrium, ;one is
a Poisson process.
Proof

The Corollary follows trivially since every singleton traffic set

={(a,B)} satisfies Eq. (6.1).

Thus, in equilibrium, we have the intuitively curious situation
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where none of the nontrivial traffic atoms is a Poisson process; however,
an arbitrary superposition of traffic atoms may or may not be a Poisson
process. In fact, examples of both cases abound in the queueing-theoretic
literature (see next section).

We point out that if a superposition of point processes forms a
Poisson process, then either all superposed components are independent
Poisson processes or none is. Most superposition results are variants
of the first type (see e.qg. ginlar [7]). What we have just shown is a
nonvacuous example that falls within the scope of the second type.

To further illustrate the utility of Corollary 6.1 we note that the
departure process (exclusive of the loss stream) from an M/M/1/0 queue
in equilibrium is not a Poisson process. In the same spirit we can
deduce that any departure stream of customers from a Markovian queueing
network, such that departing customers leave behind a prescribed network

state, cannot be a Poisson process in equilibrium.




7. Queueing-Theoretic Examples

In this section we demonstrate how Lo apply pointwise independence
to certain traffic processes in a number of queueing networks whose discrete
state is represented by a Markov process. These applications utilize

the computational criterion of Theorem 5.2 as set forth in Corollary 5.4.

Example 7.1: Jackson queueing networks (see Jackson [11]).

A Jackson network consists of J service stations with infinite
line capacities. Each station j houses sj parallel independent exponen-
tial servers with respective rates Oj' Exogenous customers arrive at
the stations according to independent Poisson processes with respective
rates “j‘ On service completion at station j a customer is routed to
station k,0<k<j,with probability Pik (a routing to k=0 designates leav-
ing the network altogether). A1l arrival, service, and routing processes
are mutually independent.

The vector valued process of the J line sizes is a Markov process
with state space F={y=(n],...,nJ):njeNU{O}}. Next, suppose the equa-
tions

J
(SJ. = ay + jz]éipij s 1<3<d (7.1)

have a non-negative solution in the 6j,1fJfJ. This is always the case
when the network is open in the sense that it is possible to Jeave the
network from every node through some finite sequence of routings (see
[14], Ch. 4).

Suppose the network is open such that P 4 6§%T'< 3, 1<j<J. Then
the state equilibrium distribution is Pt(n],...,nj)Jz ;E}Pt(nj)

where

26
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n-
O~J
(]-oj) ﬁlT— , if n.<s
- o
Peing) 0.";
[ep. b il s VF n.ve,
o nj-sj J
'S

(see p. 520 ibid.)

Let {Kj(t)} be the equilibrium traffic process of customers

t>a

that leave the network from station j. Thus Oj={(Y+ej,Y):YeF} and
0.(-,y)={y+e.}.
J( y)={y 3
Denoting oj(ﬁ) & min{l,sj}oj we compute for any y=(n],...,nJ)eF

(t,y) =P (y*e.)o.(n.+1)p.
m;(tsy) = Pi(v+e;)osng+)p,,

P

% BlY) e T o5(n;+1)p50

J

"

Pt(Y)Oj IPig Pt(Y)Gjpjo s 130

Hence, part c) of Corollary 5.2 holds for Lj=6jp 1<j<d.

jo’

It now follows from Corollary 5.4 that the {Kj(t)}t>a, 1<j<d, are
mutually independent Poisson processes with respective r;tes éjpjo,
provided the network is in equilibrium.

<

We point out that this result includes as a special case the well-
known result by P.J. Burke [5] that the equilibrium departure process
from a M/M/s queue is a Poisson process with the same rate as the
arrival process; this result was arrived at by examining the inter-
departure intervals. The same result was later attained by E. Reich [16]
through the use of reversibility. A related derivation was demonstrated

by F.P. Kelly [12] via the concept of quasi-reversibility (see [13])

which is itself related to pointwise independence (see Section 8).
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Kelly's results apply to a wide class of Markovian queueing networks to

be described in the sequel.

Example 7.2: Kelly's networks with random routings (see Kelly [12]).

In this queueing model we have J service stations with infinite waiting
line capacities and I types of customers. Exogenous customers type i,
1fifl.arrive at station j,1fjfd,according to independent Poisson pro-
cesses with respective rates aj(i). Each station j houses an exponen-
tial server with rate ojéj(nj
tomers at station j. The routing probabilities pjk(i) depend on the

),where n, is the total number of cus-

type of customer routed. In addition, the %-th customer in line j is
allocated a proportion fj(l,nj) of the service effort in station j. A
customer arriving at station j is inserted in the 2-th position there
with probability gj(ﬁ,nj+1). A1l arrival, service and routing processes
are mutually independent. The vector-valued process of line configur-
ations is a Markov process with state space F={(c],...,cJ):cjeI*} where
I* is the set of all finite strings cj(1)cj(2),_.cj(nj) where cj(z)

is the type of the %-th customer in station j (I* includes the empty

string). The transition rates of the state process are defined by

q(v,T; ; (v)) = (ni)pjole; (£))F5(2,n5)

g.¢.
JpJ J JuJ J

(i)g.(%,n.+ ‘
tJ(I)QJ( n, 1) ¢

j.L.

"

Q(Y.WTJ.Q(Y))

AT 5 qm(¥)) = 05850505, (5 (2))F5(Lon5) gy (mony +1)

where T is the operator that removes the 2-th customer at station

J.L.
is the operator that inserts a customer of

j from the network; T} 2

type i in the %£-th position at station j; Tjkz is the operator that

m
moves the 2-th customer in station j to the m-th position in station k.




When the network is open with respect to every customer type i, 1<i<I,

Eq. (7.1) has unique solutions :Jf?; for uj=aj(1) and pjkzpjk(l)’
i (1

1<j,k<J, and we denote mj(i) = ~é%7~~ . Under certain conditions

-, T J

(see Theorem 2, ibid.) the equilibrium distribution has the form
J
Pt(c],...,cd) - b }E}Aj(cj) (7.2)

where b is a positive constant and

R pele (L))

S if njzl

377 1, otherwise

Let {Kij(t)} be the equilibrium traffic process of customers

t>a

type i which depart the network from station j. Thus,

oij"{(T.j.Q(Y)’{)'Y'l’ ];nfnj+1; and Oij( ) {T.j.k(y).lgxfnj+l}.
For any Y=(c],...,cJ)eF we now compute using the identity

: p:(1)
Pt(TTj.Q(Y)) = Pt(y) EE%EEITY )
n.+l . .
mjj(t’Y) = 92] Pt(Tfj_z(Y))Q(TTj_Q(Y),Y)
n.+l sl : :
. L Pe(y) 55 ﬁ}}j)Q(T-j.%(Y), TJ‘Q_(T.j'K(\)))
n§+1 §.(1) :
- Pt(Y) ps 035§TEE:TT oj¢j(nj+1)pjo(1)fj(l,nj+1)
. Pt(Y)éj(i)pjo(i), 1<i<I, 1<§<d .

Again, part c) of Corollary 5.2 holds for Lij=6j(i)pjo(i)’ 1<i<I,

1<j<J. It now follows from Corollary 5.4 that the {Kij(t)} are

t>a
mutually independent Poisson processes with respective rates Gj(i)pjo(i),

provided the network is in equilibrium.
-
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Example 7.3: Kelly's networks with fixed routes and gamma-distributed
service (see Kelly [13]).

This model is a variation on the basic setup of J stations and I
types of customers, where we conveniently take oj=1, 1<j<d.  For
1<i<I, customers type i arrive according to mutual independent Poisson
processes with respective rates a(i). A customer traces a fixed route
r(i,1), r(i,2), ..., r(i,S(i)) of S(i) stages through the network and
then exits. At node r(i,s) on the route, a customer requires a gamma
distributed (Erlang) service composed of z(i,s) phases of mutually inde-
pendent exponential services each with mean d(i,s). We require, how-
ever, that szgj for all 1<j<J. All arrival and service processes are
mutually independent.

The state process is Markovian over the state space ' consisting of all
J-tuples Y=(c],...,cJ) where each Cj is a finite (possibly empty) string
over the alphabet {(i,s,p):1<i<l, 1<s<S(i), 1<p<z(i,s)}. Define
55(12s) & ali)dlins)e; (i o) 15329, 1<icl, 1<5<5(i) where B 650
is Kronecker's delta.

Under certain conditions, the equilibrium state distribution is

again given by Eq. (7.2) provided we redefine

i 8.(t(2),s.(2))
P Al J ; .
o et R g

(c.) = 4 2=
AJ(CJ)

1 otherwise

-

where tj(l) and sj(ﬁ) are the type and stage respectively of the 2-th
customer in line confiquration cj, and nj is the length of cj.

Let the {Kij(t)) be as in the previous example. Thus,

t>a
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03 ;71T (¥) 1) :e=(1,5(1),2(3,5(1))), YeT, 1<ten +1} and

0 '(‘ ’Y)={TC-

43 3 ln)ie=(3,5(1),2(1,8(1)) T<tcn 41}

Here ch 0 is the operator that inserts a customer with attribute set

c as above (i.e. a customer type i in his last stage of the route and

last phase in service) into the Z-th position in station j. Observing

8.41,5(1))

that Pt(T?j.Q(Y)) = P(y) 3 631T7~»-we compute
n.t+l
mytt) = 1 Pt(r?j.g(y))q<T?j.2<y>,Y)
n.+l,

"
’I‘I\/La

n—-pr)—— j (n. ‘*])f (2,n. ‘H)

= Pe(v)65(1,8(i)), 1<icl, 1<3<d

We conclude that the {K..(t)}t>0 are mutually independent Poisson

processes with respective rates 6 (i,5(1)).

Analogous results can be similarly obtained for the class of
Kelly's networks in Sec. 3 of [13] where the fj are allowed to differ
from the gj, but the service requirements are constrained to be expo-
nential.

Suppose the rate of type i arrivals is a(i,y); i.e. it is also a
function of the instantaneous state of the system. Kelly ([13], Sec. 5)

considers the case a(i,y) = a(i)- I y(H(y,W)), where y:NU{0}+[0, )
We2l:iew '
I‘
is a given function, and H(y,W) = ) H(y,i) where H(y,i) is the number
i=1
of type i customers in network configuration y. He shows that under

certain conditions the equilibrium state distribution has the form

Pe(v) = b-B(y) TTA (C ) (7.4)
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where
H(y,W)-1
B(v) = TJ T v(n) (7.5)
NCZI n=0
and the Aj(cj) are still defined by (7.3). Thus, in the notation of

Example 7.3,B(Tﬂ,‘.j(w))=8(v)- T w(H(y,W)) for any c=(i,5(i),2(i,5(i))),

W:ieW
whence
P 6:(1,5(1))
P18, $(¥)) » Pt(Y)'(WTDLNW(H(Y,N)))‘6§1HEITY—‘-

It follows in an analogous calculation that

m(tay) = Pt(Y)Sj(i,S(i))'Q?!;wW(H(YsW)) .
Hence, {C(t)}

and {Kij(t)} are pointwise independent iff

t-a

TV w(H(y,W))=L' independent of yel', which is generally not the case.
W:ieW

t>a

Notice, however, that when the product above does depend on yel', this

does not, in general, exclude {Kij(t)} from being a Poisson process,

t>a
albeit pointwise dependent on the state.TA similar phenomenon takes

place in the following.

Example 7.4: The BCMP queueing networks (see Baskett et. al. [2]).
These networks consist of four types of stations, all related to
Kelly's networks in [12]. There are, however, three differences: cus-
tomers arrive according to state dependent Poisson processes; they
require type dependent services which are mixtures of sums of exponen-

tials; and on service completion customers are allowed to change types

t+ A typical case in point is an arrival process to a Jackson network
which is Poisson by definition. However, it can be easily verified

that it is pointwise dependent on the state, say in equilibrium.
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in a Markovian manner.

Based on the equilibrium state distributions derived in [2], it can
be rigorously shown that the mij(t) factor into Pt(y) and another pro-
duct. The latter contains the instantaneous arrival rate as a state

dependent factor. Consequently, the {Kij(t)} and {C(t)}t>a are not,

t>a
in general, pointwise independent when the network is in equilibrium.
However, it can be rigorously checked that the above are pointwise
independent provided the arrival rates are fixed. The latter fact

agrees with Theorem 13 in [10].

The author is unaware of any result in the queueing-theoretic
literature annunciating Poisson departure traffic processes (over a
discrete state Markov process) that cannot be explained by means of

pointwise independence of traffic count and state.




8. Discussion
The class of intuitive traffic processes that can be modeled via
distinguished state transitions in the underlying process {C(t)}t>a
is fairly comprehensive vis-a-vis applications. In particular it-
includes all traffic processes in the queueing-theoretic literature
with the exception of certain feedback traffic processes. In a typical
situation (see e.g. [14] and [15]) one starts out with a set of "gen-

erating" processes {G(t)!} (arrivals, services and routings) which

t>a
give rise to a “state" pro;ess {C(t)}t>a in the sense that the latter
is measurable with respect to the o-a1éebra generated by the former.
Consider a feedback stream of customers that after service comple-
tion in station j immediately rejoin the waiting line to that station
in such a way that the state of the system remains unchanged (notice that
this situation never arises for traffic processes between distinct nodes
or for traffic streams that leave the network altogether). In other
words, we need the concept of a transition from a state to itself, com-
plete with transition rates 0<q(y,y)<=. While this does not affect
Eq. (2.1) (observe that Pt(y)q(y,y) cancels out since it appears with
different signs in the two summations), defining the relevant {Tn}:=0
becomes impossible since a consideration of any traffic set O is insuf-
ficient to determine the epoches in question. Moreover, a direct appeal
to Lemma 2.1 is now invalid, even though the result of the Lemma may be
correct.
To remedy this situation one may attempt to proceed in two ways.
First, it may be possible to modify {C(t)}t>a into a new Markov process
"C(t)‘t)a with state space ' for which all ;eedback epochs correspond to

discernible state transitions. The second approach is to define directly

34
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the requisite joint process {(C(t),K(t))}t)a in terms of the "generating"
processes and to show it to be Markovian b; another technique (e.g. via

a stochastic integral representation as in [14] and [3]). Either way,
chances are that the rest of the theory in this paper would still be

applicable, as was the case in [14] and [15].

A broader class of traffic processes over Markovian processes

{C(t)} may be defined by allowing the traffic epochs {Tn}i=0 to be

t>a

affected by past history of {C(t)} More accurately, the decision

t>a’
whether T=Tn(w) for some n (here w is a sample point), would require

knowledge of the sample path {C(t,w)} or even that of the sample

a<t<t

generating process {G(t,m)}a<t<T; it could not be effected on the basis

of the pair (C(t-,w),C(t+,w)) alone by predicating the decision on
whether or not that pair is in some traffic set O.
To remedy this situation, one may again attempt to redefine a

Markovian "state" process {C(t)} with a modified state space I' in

t>a

such a way that {C(t)} "remembers by state" the relevant information

t>a
in the past history of the old {C(t)}t‘a so that the aforesaid decision

>

as regards t© and w can be made on the basis of (C(t-,w),C(t+,w)) and
its relation to some 0 alone.

The approach and definitions of this paper shed a new light on the
differential equations (2.1). The traditional heuristic interpretation
is that the "probability rate of being in state y" is the difference
between the "flow rate into y" and "the flow rate out of y". On the

other hand, let 0 ={(f,y):&el'-{y}} and O ={(y,&):£el-{y}}. Then
in Yout

clearly for any Yfr,aa P,(y)=m_(t)-m (t),or equivalently upon
i Yin Yout

integration P (y)=P,(v)+E[K  (t)-K  (t)], tza.
Yin Yout
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From this equation it can be easily shown that for any s<t

P (¥)-P(Y) = E[KYin(S,t)-KYout(s,t)]
where K(s,t) 2 K(t)-K(s).
Thus, from a traffic oriented vantage point the probability difference
of being in state y at the extreme points of any time interval [s,t]
equals the expected difference of the number of times the system
entered and left state y in the aforesaid interval.

It is interesting to note how the Markov property of the underlying
{C(t)}

affects the feasibility of {K(t)} b being a Poisson related

t
process. It turns out that various notions of independence play a

t>a

significant role in this respect: independent increments in {K(t)}t>a

already ensure it to be a Poisson process (Theorem 3.1); a renewal

{Tn}:zo and a time invariant m(t) already ensure the same thing

(Theorem 3.2); weak pointwise independence already ensures that dis-

joint K](t), PRt Kn(t), t>a, are distributed as mutually independent

Poissons (Theorem 5.1); and finally pointwise independence already

ensures that disjoint 4K](t)} ,{Kn(t)} are mutually

kg " t>a
independent Poisson processes (Theorem 5.3).

The relation of pointwise independence of {C(t)} and {K(t)]

t>a t>a

to Kelly's notion of quasi-reversibility should be noted. In Sec. 6 of
[13], Keliy describes a queueing network with Poisson arrivals; the
network i -~epresented by a Markov state process {C(t)}t>a in equil-
ibrium,and each departing customer is classified into oné of I groups
depending (perhaps stochastically) on the network's past history. Such
a queue is quasi-reversible if (see p. 428 ibid.):

(a) departures of group i customers, for i=1,2,...,I, form independent




T

37

Poisson processes; and
(b) the state of the network at time t is independent of departures
from the network up until time t.
Suppose the I departure streams can be modeled by traffic processes
{
K, (1)

. {KI(t)} via traffic sets 055 l<i<I. Then quasi-

} ryib
“ta’

reversibility clearly implies pointwise independence of {C(t)

t>a

}t:a and
the {Ki(t)}t>a’ 1<i<I, (Condition (b) above). However, Theorem 5.3
shows that pointwise independence of {C(t)}t>a and the {Ki(t)}

t-a’

1<i<I, already implies Condition (a) above (i.e. (b) implies (a)). It
follows that for the class of departure processes defined as traffic
processes in the sense of this paper, quasi-reversibility is logically
equivalent to pointwise independence (i.e. to Condition (b) alone).

In Sec. 5 of [10], Gelenbe and Muntz discuss Markovian queue with
Poisson arrivals at a fixed rate i; they define such systems to be com-

plete (ibid. p. 52) if the departure process {K(t)}t>a satisfies

At+o(At), if =1

Tim P[K(t)-K(t-at)=1|C(t)=y] = qo(At), if i>1

i 1-AAt+o(At), if i=0
for any yel.

Then, they proceed to give a heuristic derivation of equilibrium
analogues of Corollary 5.2. By virtue of Lemma 5.1, we can recognize
completeness as pointwise independence of {C(t)}t)a and {K(t)}t>a when
the former is in equilibrium. As a matter of facE, for the cla;s of

traffic processes in this paper over an underlying {C(t)} in equil-

t>a

ibrium, Kelly's quasi-reversibility, Gelenbe and Muntz's completeness

and our concept of pointwise independence, all boil down to essentially




—~——

38

the same thing. Although all three concepts are largely equivalent,
the pointwise independence formulation enjoys the generality and
convenience of being stated in purely probabilistic terms without any
allusion to queueing-theoretic context or an underlying equilibrium
assumption.

The utility of the pointwise independence concept is greatly
enhanced by Corollary 5.2 and 5.4. The former provides a convenient
computational test for pointwise independence which, in view of the
latter, serves as a sufficient condition for mutually independent
Poisson processes; its ease of application has been demonstrated in
the examples of Sec. 7.

The utility of the weak pointwise independence concept derives
from Theorem 5.1 and, in equilibrium situations, from Corollary 5.1.
These may serve as necessity conditions for Poisson traffic processes by
checking the actual behavior of 1im g% pt(Y’k) against the hypothesized
one. This approach was demonstrgizg-in Sec. 6; a more substantijve
application of this strategy can be found in [15] concerning traffic
processes on the so-called nonexit arcs of a Jackson network.

The concept of pointwise independence (of traffic and state) has
considerable relevance to the study of queueing network decomposition.
A typical Markovian queueing network is postulated to have Poisson
arrivals, independent servers and independent routing switches—the
above being mutually independent processes. The problem of valid
decompositions arises when one wishes to study one or more subnetworks
in isolation via the theory available for the original network. In

other words, under what conditions does a subnetwork satisfy all the
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postulates of the original network? In the aforementioned typical
queueing network it is required that all incoming streams into subnet-
work nodes be mutually independent Poisson processes which, in addition,
are also independent of the service and routing mechanisms operating
within that subnetwork. Now, certain subnetworks may have a state
process (an appropriately selected subvector of the original vector
valued state process),which still retains the Markov property.

Consider the departure streams from such a subnetwork. As we have
seen in the examples of Sec. 7, these departure streams and the com-
pressed state are quite likely to be pointwise independent, in equil-
ibrium. Consequently, if there is another subnetwork whose incoming
customer streams are either exogenous or from other ones only, that
subnetwork will indeed satisfy all the postulates of the original net-
work, thus constituting an equilibrium original netwcrk in miniature.
The reader is referred to [4] for an example of this situation from the
domain of Jackson queueing networks.

Finally, we point out the plausibility of extending the results
of this paper to traffic processes in Markov processes with time depen-
dent transition rates or with continuous parameter and uncountably
infinite state space. The latter could enable one to treat queues and
queueing networks with more general arrivals and services, such as the

limiting cases considered by Kelly [13] and Barbour [1].
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