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Abstract

We consider a regular Markov process with continuous parameter,

countable state space , and stationary transition probabilities , over

which we define a class of traffic processes. The feasibility that

multiple traffic processes constitute mutually independent Poisson pro-

cesses is investigate d in some detail.

We show that a variety of independence conditions on the traffic

process and the underlying Markov process are equivalent or sufficient

to ensure Poisson related properties ; these conditions include inde-

pendent increments , renewal , weak pointwise independence and pointwise

independence . Two computational criteria for Poisson traffic are devel-

oped : a necessary condition in terms of weak pointwise independence ,

and a sufficient condition in terms of pointwise independence . The

utility of these criteria is demonstrated by sample applications to

queueing-theoretic models.

It fo llows that , for the class of traffic process as per this paper

in a queueing-theoretic context , Kelly ’s notion of quasi-reversibility

and Gelenbe and Muntz ’ s notion of completeness are essentially equiva-

lent to pointw i se inde pendence of traffic and state. The latter concept,

however, is the most general one. The relevance of the theory devel-

oped to queueing network decomposition is also poi nted out.

Key words: Markov Processes, Traffic Processes , Poisson Processes,
Queueing Theory , Queueing Networks , Traffic in Queueing
Networks , Decomposition of Queueing Networks
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1. Introduction

This paper has grown out of previous work on traffic in certain

queueing networks ([4],[l4],[15]) whose state process is a discrete

state Markov process. The paper generalizes several aspects of the

discussion and results in the pape rs alluded to above . In particular ,

a genera l notion of a traffic process over a discrete state Markov

process will be defined and the feasibility of it being a Poisson

process will be investigated. We shall also exemplify the utilit y of

the results by applying them to a number of queueing models.

In the way of motivation , we point out that traffic processes in

networks with flow characteristics (e.g. queueing networks , communica-

tion networks , machine repair shops , etc.) are an important operat-

ing characteristic of such models . They are also of major importance

to the study of valid decompositions of such networks . It is common to

postulate , in such models , that the incoming traffic is a Poisson pro-

cess, a fact that often renders a mathematical analysis tractable; it

is also based on many real-life empirical data . If, in addition , one

may validly assume that traffic flows within the network are also Poisson

processes, then this could give rise to decompositions of the original

network such that each component subnetwork may be validly studied in

isolation (E4],[14]).

The treatment of traffic processes in this paper will , however , be

more general—~t the leve l of Markov processes.



2. Traffic Processes over a Discrete State Markov Process

Throughout the paper , CC(t)}t>a will designate a right- continuous

Markov process with parameter set [a ,~) for some real a, and a countable

state set I’. We assume {C(t)}t>a to have standard and stationary tran-

sition probabilities , so that the associated infinites ima l generator

matrix Q is time homogenous ; its transition rate elements are denoted

q(y,S), y,ôcF. We shall further assume that q(y) ~ ~ócF-{y}

for all y~F, and that the q(y) are bounded as y ranges over F. Thus the

process { C (t) }
t>a is regular in the sense of ~inlar [6] p. 251.

Our assumptions on {C(t)}t>a imply that the associated Forward and

Backward Kolmogarov Equations have unique and identica l solutions for

the transition probabilities ([9] p. 475).

Denoting 
~~~ ~ P[C(t) = y] and premultipl ying the matrix form of

the Forward Equations (cf. [8] pp. 240-241) by a row vector initial con-

dition with components 
~~~~ 

yields a system of equations in the abso-

lute state probabilities

~k = 
~~ P~(~)q(C~Y) - P~(-r )q(i). t>a , ycl’. (2.1)

~cF- {y}

We shall say that equilibri um prevails if 
~
C(t)}t>a is in

steady state; equivalently, in equilibrium , -

~~~~

- P~(y) 0, t>a , for all

ycF.

Next, let OcF2-{(y,y):ycF} be an arbitrary set of pairs of dis-

tinct states. To avoid trivialities we shall always assume that O~~.

For each -yEl, 0 gives rise to the following sets 0(y,’) ~ {ô:(y,6)cO}

and 0(~,y) ~
Consider the sequence of epoches (T~} 0 where

2



3

(1, if n=O

~ ~ inf ft :t>Tn i ,  (C(t-),C(t+))cO}, if n>0

induced by 0.

Thus , T~ is the epoch of the n-th occurrence of a jump in

{C(t)}t>a from some ycF to some ócF such that (y,ó)cO. We adopt here

the view that certain state transitions in the underlying {C(t)}t>a are

interpreted as traffic due to entities (customers , messages etc.)

moving about in the system.

Instead of studying the traffic point process 
~~~~~~ 

one may

equivalently elect to study the traffic interval process {T~~1-T~}~i0
or equivalently again the traffic counting process {K(t)}t>a defined by

(o~ if t=aK( t ) = -j
Lk, if Tk�t<Tk+l

The state space of 
~
K(t)}t>a is NU{0} where N is the set of natural

numbers.

In this paper , we shall adopt the following terminology .

Definition 2.1

A traffic process over {C(t)}t>a is a process (K(t)}t>a induced by some

ocr2 as described above . The inducing 0 will henceforth be referred to

as a traffic set.
U

The particular choice of the representation of a traffic process is

a mere technical convenience serving the purposes of this paper. It is

simply due to the fact that a Poisson process can be represented as a

counting process whose state probabilities satisfy a simple system of
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birth equations.

What can be said about the joint process {(C(t)
~
K(t))}t>a? First

we show (cf. [4], Theorem 1).

Leiiina 2.1

The joint process {(C(t)
~
K(t))}t>a is a conservative Markov process

with bounded transition rates.

Proof

The jumps of {K(t)}t>a are contained in those of

Therefore , the joint process is conservative , since {C(t)}t>a is. More-

‘ver , the jumps of {C(t)}t>a uniquel y determine those of l:K(t)}t>a .

nce for every s<u , K(u)-K(s) is measurable with respect to the

r-alge bra c~{C(t):s<t<u} generated by {C(t)}5<~<~
. Let a<t1 <t2<..

be a partition of the interval [a,u]. Then , for any y,~cF , k~cNU{O}~
l j<r,

r
P[C(u) -y,K(u) k~ fl {C(t.) 1.,K(t.) k.}]

j=l ‘~ ~~ ~

= P[C(u)=y
~
K (U)

~
K(tr)=k~

kr I fl{C(t~)=~ .~K(t~)=k.}]
j=l

But [ K(u) - K( t  ) k k r G{C ( t ) : t r<t<u} whi le 
~~

{K (tj )=k j }ca(C (t):a<t<t r } .

By the Markov property of fC(t)}t>a~ 
the previous equation evaluates to

= P[C(u) ’y,K(u)_K(tr)
k_ k

rjC(tr)y r,Kt kr]

= P[C(u)=y,K ( u ) k j C ( t~) y ~,K~~~k~]

which verifies the requisite Markov property of the process {(C(t)v K(t))}t>a

Finally, boundedness of the trans ition rates of the j oint process

follows from the fact that they have the form
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if (y,ó)cO and 0<k=~-1

q ((y , k ) , ( 6 ,~ )) = q(y ,~ ), if (y , 6)~O and k=~ (2.2)

Lo , otherwise
U

Denoting Pt (y, k) ~ P[C(t)= ’~,K(t)=k] and with the aid of (2.2) ,we

can now derive the equations in the absolute state probabi lities for

~
l(C(t)

~
K(t))}t>a~ 

analogously to the ones previously derived for

{C(t)}t>a~

a
~r 

P~ (y,k)

= ~ P~(~~k)q(C~Y) + ~
~,c0(.,y) (2.3)

- P~(y~k)q (~ ),

t>a , (y,k)crx (NU{0}).

The initial conditions are

(p (y), if k 0
Pa(y~

k) = 
a 

(2.4)
LU , otherwise

since K(a)=0 almost sure ly.

Eq . (2.3) can be equivalently written as

a
~~~~

- P~ (y, k)

= 
~

~cF-{y} - (2.5)
+ ~ (P (~,k—l)-P (~ ,k))q(n,y),
~c0(- ,y)

t>a , (y,k)c rx(NI~ O} ),

by adding and subtracting ~ P~(n~k)q(ri,y) from Eq. (2.3).
r~c0( ,y)
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Finall y, denoting Pt(k) P[K(t)=k] and summing Eq. (2.5) over -yFF

g i ves us

~~ 
Pt(k) 

= 
~ (P~ (n~k-l)-P~ (n~k))q (n1y).ycF ncO - y, (2.6)

t>a , kcNIi{O}.

To i nterchange s ummati on and di fferent i ati on in the above we have used

the fact tha t the Pt(y,k) have deri vatives of every order in t, and tha t

every countable sum of the Pt(y,k) over a subset of Fx(NU{O}) is uni-

formly convergent on each compact time interval of [a ,c~). This fact

will hence forth justify all termwise operations on sums of the Pt(y,k)

suc h as termwise integrat i on , differentiation etc. ([17], 1.1 , 1 .7).

Throughout the paper we denote M(t) E[K(t)]. To avoid trivial-

ities we shall , hencefor th, restrict the discussion to substantive

traff i c p rocesses in the following sense .

Definition 2.2

A traffic process is nontrivial if M(t)~O , t>a; otherwise it is

trivial.

U

We now show

Theorem 2 .1
t

M(t) = ~ ~(n~Y)[P (n)dT. t>a . (2.7)
ycI’ ricO~~,y) a

Proof

For every fixed nc N sum (2.6 ) over k>n ; then integrate both side s

of the resultant sum thus obtaining
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E[K(t)>n] = 
~ 

q(n,y)~~P1(fl ,n-l)dT , t>a
‘~‘cF qcO (. ,y) J —

Eq. (2.7) now follows by summing the above over neN , since fK(t)}t>a is

a non-negat ive integer valued random variable.

U

Corollary 2.1

M(t) E At , t>O , for some X>O 1ff

~ P~(n)q (ri,y) E const., t>a
~~r 

~cO(~~,i)

In particular , M(t) At , t>a , in equilibrium .

U



3. Po i sson Traf f i c Processes

In this section we shall give a number of simple characterizations

of Poisson related traffic processes over a Markovian process. We shall

see that only a subset of the ordinary Poisson axioms will here suffice .

To sim pli fy notat i on we shall hence forth denote

m(t) ~ P (n)q(n,y) ~~~~
- M(t) and m(t ,y) ~ P (n)q(n,y).

ycF nrO( ,~ ) ricO(’ ,y)

Intuitively, m(t) is the total rate 01 expected traffic count ,while m(t ,y)

is the rate of expected traffic count due to transitions into state ~~ .

Observe that m(t)= ~ m (t,y) and that in equilibrium both m(t) and m(t ,y)
~~E F

are independent of t.

The first theorem characterizes an arbitrary Po i sson p rocess over

Theorem 3. 1

(K(t)} t>a is a Poisson process 1ff {K(t)}t>a has independent

increments .

Proof

(=
~ 

) If {K(t)}t>a i s a Poisson process , then it has independent

increments by definition .

~
=) Suppose {K(t)}t>a has independent increments. It remains to

show that each K(t), t.— a , is Poisson distributed. Let q~ (y) be the

generating function of K(t),and 
~~~~~~~~~ 

tha t of K(t)-K(s). Then

= 
~~~~~~~~~ t>a , c>O

, yj <l . Differentiating the above

with respect to L and sending E~O yiel ds

= 
~ ~~~~~ t~a , y~ zl . (3.1)

Next , denote P5~~(-
~
,k) ~ P[C(t)=y,K(t)-K(s)=k] and

P5 t (k) ~ P[K(t)-K(s)=k]. The process {(C(t),K(t)_K(s))}t>~ 
is a

8
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Markov process for any fixed s>a , by appeal to Lemma 2.1. Moreover ,

Eq. (2.5) still holds with Ps t (I
~
.k) substituted throughout for

Pt(~
,k). Thus , the analogue of Eq. (2.6) with s=t becomes

~~ 
Pt,t(k) = ~ ~~~~~~~~~~~~~~~~~~~~~~~~yeF risO~

.,y)

(~m(t)~ 
i t k=O

= -~ m(t), if k=l

Lo , if k>l

whence 
~~ 

= m(t)(y-l). In view of the initial condition (2.4),

the unique solution to Eq. (3.1) is 
~~~~ 

= exp(M(t)(y-l)) which

corresponds to a Poisson distributed process with respective parameters

M(t) . a
The second theorem characterizes a time homogenous Poisson process

over {C(t).}t>a~

Theorem 3.2

{K(t)}t>a is a time homogenous Poisson process iff the following

cond itions hold:

i) ~~~~~~ is a renewal process

ii) m (t)~m(a), t>a

Proof

(
~~~ 

) If {K(t)}t a  is a time homogenous Poisson process then it is

well- known that {T)~~0 is a renewa l process. Furthermore , the rate of

{K(t ) } t a  is -&M(t) = m(t) m(a), t>a ,as required , due to Corollary 2.1.

~~~r)  Conversely, suppose that i) a~d ii) hold . Since the renewal

function R(t) of {T~J ,.0 is R(t)=M(t) rm(-r)dT m(a)t, it follows that

{K(t)}t a  must be a time homogenous Poisson process , as R(t) determines
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a renewal process.

a
Corollary 3.1

In equilibrium , the renewal process property of {Tn}~~0 
is equiva-

lent to the Poisson process property of

a

The preceding characterizations give us some information as regards

non-Poisson traffic processes , by way of elimination .

Corollary 3.2

Suppose {K(t)}t>a is not a Poisson process. Then {K(t)}t>a does not

have independent increments , and , in equilibrium , the respective point

process {T
n
}
~~.0 

is not even a renewal process (though it may be a de l ayed

renewal process).

a



4. Multiple Traff ic Processes over a Discrete State Markov Proce.~~
Let 

~
K1(t )}

t>a~ 
... ~K1,~(t))~>~ be traffic processes over

{C ( t ) }
t>a~ 

for some fixed but arbitrary ncN. For the i-th traffic

process above , the associated entities are denoted 0~ for its traff ic

set , M
~

(t) for its mean function etc. ;  in genera l, we append the appro-

priate index to such previously defined symbols. To simplify

no tation we shall denote in the seque l K(t) ~ (K 1 (t), ... ,K~(t)) to
be the vector traffic process , and k ~ (k1, ... , kn ) to be a vector

with non-negative integer components.

Lemma 4.1

The joint process {(C(t); K1 (t), . .. , Kn (t))}t>a is a conservative

Markov process wi th bounded transition rates .

Proof

W ith the previous redefinitions of the symbols K(t) and k , the

proof of Lema 3.1 goes through mutatis mutandis for Lemma 4.1.

The transit ion rates of the joint process are

n n
(q(y,o), if (y,t5)c~J® .  and O~k=~- ~i=l 1 i=l

= ~~ q(y,~), if (y,~)tUo 1 and k=~ (4.1)

otherwise

(i , k),(o,~)crx (NU{o})
n ; in the above x 1 is the characteristic function

( 1 , if (y ,6)cO .
x.(y,ó) = <‘~ 

1
I L°’ otherwise

and e1 is the n-dimensional unit vector with 1 in the i-th coordinate.

11
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The counterpart of Eq. (2.5 ) for the joint process

t(C(t), K1 (t), ... K1.~(t))}.~>~ is

~~
-
~~

- P~(y,k)

= ~~ P~(~ ,k)q (E~y) — P~ (y~k)q( )
E~c F- { y }

+ 
n ~~~~~~~~~~~~~~~~ 

- P~ (n~k))q(n~i) (4.2)

T1F. U 0.(. ,~)
i=l 1

t>a , (Y,k)CFX (NU{O})
n .

For reasons that wi ll become apparent later on , we shall restrict

the discussion to traffic processes which are disjoint in the following

sense.

Definition 4.1

{Kn (t)}t>a are said to be 
disjoint traffic pro-

cesses if thei r associated traffic sets Ol~ 
are dis joint sets.

a

For disjoint traffic processes, Eq. (4.2) reduces to

~~~~~ P~(y,k)

~ P~(E~,k)q(F~,y) -
E~cF-{y} (4.3)

+ (P t(n,k-e~) 
- ~~~~~~~~~~~~

-= 1

t>a , (y,k)crx (N (J~0})
fl ,

The initial condition becomes

n( P (y), if ~ k.0
Pa(Yi k) 

= 
a 1=1 ~ (4.4)

(~o, otherwise
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The counterpart of Eq. (2.6) is obtained by summing Eq. (4.3) over

ycF thus yielding

n

~k 
Pt(k) 

= 
~~ ~~~~~~~~~~~~~~ 

— P~ (n~k))q( n~~). 
(4.5)1 1  y~F ~cO

t>a ,



5. Multiple Disjoint Poisson Traffic Processes

In this section we investigate the possibility that disjoint

multiple traffi c processes {K 1( t )} t>8 , ... {Kn( t )} t>a have Poisson

related properties. In parti cular , the upcoming discussion applies to

single traffic processes as the special case n 1.

Definition 5.1

The processes {C ( t)} t>a~ 
{K 1( t ) }

t>a~ 
... , fK~(t)}~>~ are said to

be pointwise independent if for every t>a the random variables

C(t) , K 1(t), ... , Kn (t) are mutually independent . The processes above

are sa id to be weakly pointwise independent if for every t>a and every

(k1, ... ,

n

~ 
Pt(r~

,ki,.. . ,k )q(r~,y)
i=l yFF nr01 (,y)

n n (5.1)
= 2. ~ ~1 l  y !~ 11L( )

1 
( ,y) j=l -~

Since pointwise independence is of central interes t here , the disjointness

assumption is necessary so as not to preclude it a priori.

We begin , however , with a characterization of weak pointwise inde-

pendence.

Theorem 5.1

Kn(t ) have mutually independent Poisson distributions

for eve ry t>a 1ff 
~
C(t ) }

t>a i {K i(t)} t>a e ... , {Kn( t ) } t>a are weak ly

pointwise independent processes .

Proof

(
~~ 

) Suppose the K1( t) , l<i<n ,are diStributed as mutually Indepen-

dent Poissons. Then the generating function of K(t) is

14
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p 
n

~t~~l’~ ” ‘~n~ 
= exp (~~~M1 (t)(y1-l)), t>a , j I ~ l , l i<n , (5.2)

whence

~~ ~t~~l’”~ ‘~n~ 
= 

~~~~~~~ 
,y~)~~~m~(t)(y1-1), t>a , ~y~ )<l , l<i<n

(5.3)

On equatin g coeff i cients in (5.3) we obtain

-
~~~~~ 

Pt(k) = 
~~1 t j t )m i (t)

= 
~ (ir Pt(k.-o.1 )_ ffPt(k.)) ~: ~ P~(n)q(ri ,y) (5.4)
i l  j 1 ‘~ ‘~ j 1  ‘~ ycr nc01 (~ ,y)

t>a , k=(k 1,...,k )E(NU~O})’~

where is Kronecker ’s delta.

Eq . (5.1) now follows by equating the right side of Eq. (5.4) to

• the right side of Eq. (4.5), via a straightforward multiple induction on

k= (k1,... ~
kn )~

(=
~‘ ) Assume that Eq. (5.1) holds. Substituting (5.1) into (4.5)

and rearranging terms in the resultant equation yields Eq. (5.4). The

latte r is equivalent to Eq. (5.3) whose unique solution is given by

Eq. (5.2), since the initial condition is 
~~~~~~~ ~

Yn)~
l
~ 

Iy 1~~ l , 1<i~czn ,

by virtue of (4.4).

Consequently, Pt(k) corresponds to n Poisson-distribute d processes

with respective rates m 1 (t); moreover , the K1 (t) are mutuall y independent

for every t>a.

U

-~ - - -~~~ - -~~--- -V - - _ _ _-- V --_- -_ _-
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Corollary 5.1

If 
~
C(t)}t>a is in equilibri um and fK(t)}t>a is a singleton (n=l)

Poisson traffic process over it , then

~~ 

-
~~~~~~~ P~ (n1 k)q(n~i) (m(t))

~~~
Pt (k)

‘y~ F r~cO~~ ,y) t

(m(a)) ~~ exp(-m(a)t) ~~~~~-~-)-!~1 , t>a

for any Q
~,k NU{O}.

U

Next we characterize pointwise independence of traffic and state.

Theorem 5.2

{C(t)}t>a i ~
Ki (t)}t>a~ 

... , {K~(t)}~>~ are pointwise independent

processes iff

= P~(~ )~~~m~(t), t>a , for every ycF. (5.5)

Proof

(
~~ 

) Suppose pointwise independence holds. Eq. (4.3) is equivalent

to the generating function equation

~j 
[P~(Y)~I~(Y 1~ ... 

~~~~

= 

~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r-{y} (5 6)
+ 

.
~~~ 

~~~~~t
(
~1’~~ ~

Y~)(Yj~~)~(nii)i=l r~cO~ . ,y)

t>a , Jy 1 1<l , l<i<n , 1FF ,

where ~~~l ’ ••• 
~~ 

= exp(~~~M1 (t)(y1-l)) is the generating function of

K(t) due to Theorem 5.1. We use this form of ~~~~~~ ‘~n~ 
in differ-

entiating the left side of (5.6) wh i ch after some manipulation becomes
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~~ ~~~~~~~~~~~~~~~~ 
= 

~~~~~~~~~~~~ 
Pt(y)+Pt(y)~~~

m1 (t)(y~
.l)).

S i nce 
~~~~~~~~~~~~~~~~~~~~ 

,y) may be cancelled on both sides of (5.6), the latter

reduces to

~~ +

(5.7)

= P~(y) + ~~m1 (t,y)(y~-l)

Eq. (5.5) now follows from the above by equating the relevant coef-

f i c ients .

(~~~ ) Suppose Eq. (5.5) holds. It can be checked directly that

(M.(t))
kj

~çex p(—M(t)) k t

~ m. (t) 
j=l 3

Pt
(- I , kl , ... ~k~) = 1=1 if ~~m1 (t)>O 

(5.8)

(o. otherwise

solves Eq. (4.3) and is consistent with the initial condition (4.4).

An easy proof of this assertion involves the transformation of (5.8)

into the appropriate ~~~~~~~~~~~~~ and then working the way back-

wards from (5.7) to (5.6) which is equiva l ent to (4.3).

a

Corol lary 5.2

a) (C(t)}t>a v ~
K i (t)}t>a~ 

• ..  , ~K~(t)}~>~ are mutually pointwise

i ndependent 1ff (C(t)}t>a and ~
Ki(t)} t>a are pointwise independent

In pairs for every l<i<n .

b) Eq. (5.5) holds iff for every l<i<n,

m
~
(t,y) Pt (y )L

~
(t), t a , ~ F ,

for some functions L 1 (t) depending on t only; in fact for every

l<1<n , L 1 (t)~im~(t)~ t>a , necessarily.
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c) Consequently, in equilibrium , Eq. (5.5) holds 1ff for every l<i< n ,

t~a , yF.F,

for some constants L
~
; in fact for every 1<i<n , L. m ..

V

Proof

a) Mutual pointwise independence implies pointwise independence in

pa i rs . Con versely, pointwise i ndependence in pairs implies for

every l<i< n
~
m1 (t,y)= Pt(y)m1 (t), t>a , yeF. This becomes Eq. (5.5)

on suming both sides over l<i<n .

b) If Eq. (5.5) holds ,then from a) the condition holds for L1 (t)~m1 (t).

Conversely, by summing both sides of m 1 (t,y)=Pt(y)L~
(t) over ycF

we deduce L
~
(t)Em

~
(t); summing it over l<i<n then yields Eq. (5.5).

c ) Follows immediately from b) and from the time stationari ty of the

m~(t~~) and rn1 (t).
U

The relation of Eq. (5.5) and parts a) and c) in Corollary 5.2 to

Gelenbe and Muntz ([10], p. 53) should be noted. A more detailed dis-

cussion , however , is deferred until Sec. 8.

Before proceeding to the mai n theorem we shall now prove two sup-

portin g l emmas. The first one is a generalization of Corollary 1 in [4].

Lemma 5.1

~
C(t)}t>a and the multiple traffic process {K(t)}t a  are pointwise

i ndependent i ff for any fixed s>a , {C(t)}t>5 and {K(t)_K(s)}t>5 are

pointwise independent.

Proof

( .=) Follows Immediately by taking s=a.
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(=
~‘ 

) Since {C(t)}t>5 is a Markov process , it follows from Lemma 2.1

that {(C(t), K(t)
~
.K(s))1

~ >5 
is also Markovian . To distinguish between

{ (C( t )
~
K(t))}t>a and f(C(t), K(t)_K(s))}t>~ 

we denote the various

mathematical entit ies associated with the latter by appending ti ldas to

the corresponding ones in the former.

Thus , Eq. (4.3) is satisfied by Pt(~
,k) over the domain tc[s,~ )

subject to the initial condition (4.4) with a=s . Since Pt(y)EPt(y) for

every yci’ and t>s , it also fol lows that m
~
(y,t)=

~1 (y~
t) and

for any t>s , l<i<n and y~~.

Now , by pointwise independence of {C(t)}t>a and {K(t)}t>a~ 
Eq. (5.5)

hol ds , whence

n , n
2 m 1 (t ,-() = 

~ ~~(t), t S , 1CF , (5.9)
1=1 1=1 —

also holds . The Lemma now follows from (5.9) by applying Theorem 5.2

in the other di rect i on.
a

The secon d lemma i s tantamoun t to Burke ’ s argument in [5]. (See also

Theorem 3 in [4]).

Lemma 5.2

Suppose that 
~
C(t)}t>a and the multiple traffi c process

are po i ntw i se i ndependent. Then ,for every fixed t>a , the o-algebras

(J {K(t)-K(s):sct} and ry{C(u),K(u)-K(t):u>t) are independent.

Proof

Recall that whenever t 1’t~ , o{ K( t 2 ) -K (t 1 ) } co { C( t ) : t 1<t <t 2 } . Let

Aca~C(u),K(u)-K(t):u~t} o~C(u):u t}. By the Markov property of

{C ( t )} t;,a we can wri te for any s<t , y~:F and kC(N IJ{O}) n

— - - --- -_
~~
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P [AjC( t) y , K(t)-K(s) k] = P [ A j C ( t ) ~~]

Now , from the above and Lemma 5.1 ,

P[A, C(t)=y , K(t)—K (s) k]

=P[A IC( t)=~ , K(t)-K(s)=k].P[C(t)= y, K(t)-K(s) k]

=P[ A I C ( t ) =~] .P[C(t)= ] .P[K(t).K(s)=k]

=P [A , C (t)=~]~P[K(-t)-K(s)=k]

whence on summing both sides above over y~ 1 ,

P[A, K(t)-K(s)=fr] = P{A]~P[K(t)—K(s)=k] (5.10)

as required.
a

Corol l ary 5.3

If {C(t)}t>a and {K(t)}t>a are po i ntwise i ndependen t p rocesses , then

from Lemma 5.2 each {Kj ( t ) }t>a ,l< i<n ,has independent increments ; conse-

quently, each is a Poisson process by combining Theorem 5.1 and

Lemma 5.2 .
S

We shall now proceed to show a stronger independence result ,

(cf. Theorem 4 in [~j’ .

Theorem 5.3

Suppose [C(t)}t)a and the multiple traffic process 
~
K(t)}t>a are

pointwise independent processes. Then the component traffic processes

{ K l( t ) } t > a ~ 
• . .  , { K n (t )}

t a  are mutually independent Poisson processes .

Proof

In view of Corollary 5.3 it suffices to show that for each partition
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a=t0<t 1~ t2
< . . .<t~,=t of an arbitrary interval [a,t], and for any cho i ce

of non-negative integers ~~~~~~~~ l<j < r , the events

E 1~~ ~ [K1 (t~)~K~(t~-l ) = k1~ ]~ 1~ i<n , l~ j~ r

are mutually independent. The proof is by inducti on on r.

If r=l , then the E i r  are mutuall y independent by po i ntwise inde-

pendence among the tK i (t)}t~a~ 
and the induction base is established.

Assume now that the Theorem holds for r~~, Z— l , and show it for
n

r=~+i . Since [ (
~ fl E~ .]c~~K(t )-K(s):s< -t~ } and

1= 1 j= l ‘~~ 
-

A ~ [~~~
E
~ ~~1

]co~C(u), K (u)-K (t):u ~t Q }, we can wr it e by v i rtue of

Lemma 5.2 ,

n ~+l n 2. n
P[(1 f lE~ 1 = P[( (\ (~ 

E~ . )fl( (~ E 1 ~+1
)]

i=l j=l ‘~~ i=l j=l ~ i=1

n n
= P[fl fl E. ].P{ñE. 

~+l~i=l j=1 ~~ i=1

Finally, applying the induction hypothesis to the fi rst factor

above and Lemma 5.1 to the second factor yields

n Z+l n ~-‘- l
P[fl f lE1 .] = 

~~~~ 
TfP[E1 .]

1= 1 j=l ~~~ 1=1 j=1 “~

which establishes the induction step .

U

In v iew of Theorem 5.3, we now see that Theorem 5 .2 prov id es us

wi th  a computa ti onal cr i ter i on as follows .

Corol 1 a~~~5.4

If Eq. (5.5) holds , then the {K
~
(t)}t~~

, l’zi<n , are mutually i nde—

pend.~nt Poisson processes with respective rate function s m
~
(t). t-a.

a
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Ap plications of the theory develope d thus far are furnished in the

next two sections.



6. Atomic Traffic Processes

Consider the class of traffic processes defined by

Definition 6.1

(K(t)}t>a is called an atomic traffic process if its traffic set ~

is a singleton pair of states .

Atomi c traf fic p rocesses are the elemen tary bu i ldi ng b loc ks of all

t raf f ic  processes , since every traffic process is a superposition of

disjoint traff ic atoms .

We sha ll now exemplify the utility of the weak pointwise independence

concept vis-a-v i s atomic traffic processes.

F i rst , however, we show a more general result.

Lemma 6 .1

Let 
~
K(t)}t~~ 

be a non-tr iv ial  t raf f ic  process such that

~J o(~ ,~ ))fl( U o(~,~) )  ~~. (6.1)

Then 
~
K(t)}t a  is not a time homogenous Poisson process; nioreover , in

equilibrium it is not a Poisson process altogether.

Proof

Setting k 0  and letting t~a+ in Eq. (2.5) gives us

‘

~ 

Pa(Yi O) = ‘
t P (y)-m( a ,~ ), ~~ - ‘~~

If r~ o( ,y) for some (IF , then 0(.,~ )=~ by (6.1) so that

m(a,n) 0. Henrp

~ 
Pa (fliO ) 

= 
i~t 

Pa~
1) for any qco(.,y), ~ F .

23
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Substituting the above into the left side of (5.1) for n= I and differ-

entiating yields for t*a+

1 P8(i, O)q(~ ,y ) = 

~ ~ 
P~(n)q(r~,~ ) = 

~~
- m(a).

~ F ~~~ ,~~ 
) y r F  p~~H (. ,~

)
(6.2)

Now assume {K(t)}t a is a Poisson process. By weak pointwise inde-

pendence of {C(t))
~~8 

and (K(t)}t (see Theorem 5.1)

~ 
P~ (n,O)q (ri,y) = u r n  ~ [m( t ) .exp( -M ( t ) ) J

LI rp ( . ,-
~ 

) t-~a+

= lim [m(t).exp(-M(t)).(-m(t)) + exp(-M(t)).~~ m (t)] (6.3)
t-~a+

= 
~~~ 

rn (a) - (m ( a ) ) 2

A comparison of (6.2) and (6.3) gives us necessarily m (a) 0. But

if is time homogenous , then m (t)~ O from ii ) in Theorem 3.2,

which contradicts the nontrivialit y of {K(t)}t>8 . Finally, i n equil-

ibrium , 
~
K(t)}t a  is necessarily time homogerious from Corollary 2.1 ,

whence the rest of the Theorem follows .

We can now ass ert ,

Corol lary 6.l

None of the nontriv i al atomic traffic processes over 
~
C(t ) }t>a is

a time homogenous Poisson process. Furthermore , in equilibrium , none is

a Poisson process.

Proof

The Corollary fol lows t r iv ia l ly since every singleton t raf f ic  set

~~~{(‘ L ,~~ )~~ satisfies Eq. (6.1).

S

Thus , in equ ilibrium , we have the intuitively curious situat ion
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where none of the nontrivial traffic atoms is a Poisson process; however,

an arbitra ry superposition of traffic atoms may or may not be a Poisson

process. In fact , examples of both cases abound in the queueing- theoretic

literature (see next section).

We point out that if a superposition of po int p rocesses forms a

Poisson process, then ei ther all superposed components are independent

Poisson processes or none is. Most super pos i t ion results are var iants

of the fi rst type (see e.g. ~inlar [7]). What we have just shown is a

nonvacuous example that falls within the scope of the second type .

To further illustrate the utility of Corollary 6.1 we note that the

departure process (exclusive of the loss stream) from an M/M/1/O queue

in equilibrium is not a Poisson process . In the same spirit we can

deduce that any depar ture stream of cus tomers from a Markovian queue i ng

ne twork , suc h that depart i ng customers leave behin d a prescribe d network

state , canno t be a Poisson process in equilibrium .



7. Queueing-Theoretic Examples

In this section we demonstrate how to apply pointwise independence

to certain traffi c processes in a number of queueing networks whose discrete

state is represented by a Markov process. These applications utilize

the computational cr iter i on of Theorem 5.2 as set forth in Corollary 5.4.

Example 7.1: Jackson queueing networks (see Jackson [11]).

A Jackson network consists of J service station s with infinite

line capacit ies. Each station i houses s~ parallel independent exponen-

tial servers wi th respective rates a~. Exogenous customers arri ve at

the stations according to independent Poisson processes with respecti ve

ra tes 
~~~~

. On service completion at station j a customer is routed to

station k,0<k<j,with probability 
~jk 

(a routing to k=0 designates leav-

ing the network altogether). All arrival , service , and routing processes

are mutually inde pendent.

The vector value d process of the J line sizes is a Markov process

with state space F={y= (n1,.. . ~nJ ):n3
cNU{O}.}. Next , suppose the equa-

ti ons

J
a .  = ~~~ . + ~~ 61 p~

. , l< j<J , (7.1)
3 ~ j=1 ~

have a non-negative solution in the 6 1 < .i~J. This is always the case

when the network is open in the sense that it is possible to leave the

network from every node through some finite sequence of routings (see

[14], Ch . 4).

Suppose the network i s open such that p. ~~
—

~~
-— < 1 , l<j<J . Then

3 
j i  J 

-

the state equilibrium distribution is P~ (n 1,.. .,n3) E j=l
where

26
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r
( (l-c ~ ) ~

-
~
-j-— 

, if n
3
<s

3
= 3 n~

J (l— ~ .) ~ , if n .>s
I 3 

~~~~~~~~~~~ 3 3
s.!s. ~

(see p. 520 ibid.)

Let {Kj(t)}t>a be the equilibri um traffic process of customers

that leave the network from station j. Thus ®~={(y+e3
,y):ycI’} and

Q (.y ) {y+e }

Denoting o~(2) ~ rnin{ 2.,s.}c. we compute for any y=(n 1,...,nJ )CF

m . ( t ,y ’) E

= Pt(y) min fn l~ s~) 
a~ (n~+l)P~0 

-

Pt(~ )~~ °~~o = , l<~<J

Hence , part c) of Corollary 5.2 holds for ~~~~~~~ l<j<J.

It now follows from Corollary 5.4 that the {Kj(t)}t>a~ l<j<J , are

V mutuall y independent Poisson processes with respecti ve rates

provided the network is in equilibri um.
U

We point out that this result includes as a special case the well -

known result by P.J. Burke [5] that the equilibrium departure process

from a M/M/s queue is a Poisson process with the same rate as the

arrival process; this result was arrive d at by examining the inter-

departure intervals. The same result was later attained by E. Reich [16]

through the use of reversibility . A related derivation was demonstrated

by F.P. Kelly [12] via the concept of quasi-re versibility (see [13])

wh ich is Itself related to pointwise independence (see Section 8).
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Kel ly ’s results apply to a wide class of Markovian queueing networks to

be described in the sequel.

Example 7.2: Ke l ly ’s networks with random routings (see Kelly [12]).

In thi s queue i ng mode l we have J service stations with infinite waiting

line capacities and I types of customers . Exogenous customers type i ,

l< i<I ,arri ve at station j,1<j<J,according to independent Poisson pro-

cesses with respective rates c~3
(i). Each station j houses an exponen-

tial server with rate ~~~~~~~~~~~ n3 
is the total number of cus-

tomers at station j. The routing probabilities Pjk(i) depend on the

type of customer routed . In addition , the W -th customer in line j is

allocated a proportion f~(A ~n~) of the service effort in station j. A

custome r arriving at station j is inserted in the Q-th position there

with probability g~(~~n~+l). All arri val , service and routin g processes

are mutually i ndependent. The vector-valued process of line configur-

ations is a Markov process with state space F={ (c
1~~

...~~cJ
):c~cI*} where

1* is the set of all finite strings c
3
(l)c.(2).. .c.(n.) where c.(2.)

is the type of the .~-th customer in station j (1* include s the empty

string ). The transition rates of the state process are defined by

q (y,T~~ ( y ) )  =

=

=

where is the operator that removes the 2.-th customer at station

j from the network ; T~~9 is the operator that inserts a customer of

type I in the 9..-th position at station i; ~~~~ is the operator that

moves the 2.-th cus tomer in station j to the m-th position in station k.



29

When the network is open with respect to every customer type i , l — i < I ,

Eq. (7.1) has unique solutions o~(i) for ~j=c~j(i) and

l— j, k< J , and we deno te ~~(i) = 
~~~~~~ 

- . Under certain conditions
— - 3 3

(see Theorem 2, ibid.) the equilib rium distribution has the form

Pt(c 1,... ~c~) b ~~~A~ (c~) (7.2)

where b is a positive constant and

cn., j_fl_ ~~~~ , if n~~l

A.(c ) =

‘~ 

~~~ otherwise

Let {Kij (t)}t.a be the equilibrium traffic process of customers

type i which depart the network from station j .  Thus ,

~~~~~~~~~~~~~~~~~~ l<~<n~+l} an d

For any ~=(c1~ ...~ c~)cF we now compute using the identity

. p. (i)
= 

~~~~~~~~~~~ q. (n~+l) ‘

n .+1
m .~ (t~i) 

~~ 
P~ (T 1~~2.(y )) q (T~~~2.(Y),y)

n .+1 p . ( 1)
= 

Z~l ~ ~~~~~~~~~~~~~~ T~~2. (T 1
~~~N)))

n.+1 6.(i)
= 

~~~~ Z~l 6~~~(n~+1) ~~~~~~~~~~~~~~~~~~~~

= P
~
(.Y)a .(i)p

~0
(i)1 l< i<I , l<j<J

Again , part c) of Corollary 5.2 holds for L
~fc5j

( i )PjO(i)~ l~ i~ I ,

l<j<J. It now follows from Corollary 5.4 that the {Kij (t)}
t>a are

mutually independent Poisson processes with respective rates t5~(i)p~0(i)~

provided the network is In equilibri um.
a
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Example 7.3: Kelly ’s networks with fixed routes and gamma-distributed

service (see Kelly [13]).

This model is a variation on the basic setup of J stations and I

types of customers , where we conveniently take a~=1 , l<j<J. For

l~ i<I , cus tomers type i arrive according to mutual independent Poisson

processes with respective rates c~(i). A customer traces a f ixed route

r(i ,l), r(i ,2), .. ., r(i ,S(i)) of S(i) stages through the network and

then exits. At node r(i ,s) on the route , a customer requires a gamma

distri buted (Erlang) service composed of z(i ,s) phases of mutually i nde-

pendent exponential services each with mean d(i ,s). We require , how-

ever , that ~~~~~ for all l< j<J. All arr ival and service processes are

mutually independent.

The state process is Markovian over the state space I’ consisting of all

J-tuples Y =(C 1~ ...~ Cj) where each c3 
is a finite (possibly empty) string

over the alphabet {(i ,s ,p) :1-i< I , l<s<S (i), l<p<z(i ,s)}. Define

5~ (i~ s ) 
~ ~

(i)d(i
~
s)aj r(i s)’ l< j<J , l~ i< I , l<s<S(i),where 

~j,r(i ,s)
is Kronecker ’ s delta .

Under certain conditions , the equi libr i um s tate distri bution i s

again given by Eq. (7.2) provided we redefine

~~~ ~1~~ JV~~~ __

s (2.)) 
f n >0

A~(c~) = ‘~Q=l (7.3)

otherwise

where t~~~ ( I .)  and s~(~.) are the type ind stage respectively of the 2.-th

customer in line configuration c~, and n . is the length of C . .

Let the {Kjj(t)}t>a be as in the previous example. Thus ,
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ycF , 1~~~n .+l } and

o~~(~ ,~){T
C~ (

~ ) :c=(i ,S(i),z(i ,S(i)), l~i~<n .+l}.

Here T’
J 

i s the oper ator tha t i nser ts a custome r w ith at tri bute set

c as above (i.e. a customer type i in his last stage of the route and

las t phase in service ) into the Z-th position in station j. Observing
~.(i ,S (i))

that Pt (T c
j ~~~~ 

= 

~~~~ 
we compute

n
=

n ±1.
3 (1 ,S(i))

= 

~ ~~~~~~ 
~~~~~~~~~~~~~

= Pt(Y)6~
(i
~
S(i))

~ 
l< i<I , l< j<J

We conclu de th at the {K
~~
(t)}t>o are mutually independent Poisson

processes with respective rates

a

Analo gous results can be similarly obtained for the class of

Kelly ’ s networks in Sec. 3 of [13] where the f
3 

are allowed to differ

from the g., but the service requirements are constra i ned to be expo-

nential.

Suppose the rate of type i arrivals is c~(i ,y); i.e. it is also a

function of the instantaneous state of the system. Kelly ([13], Sec. 5)

considers the case ~(i ,y) = t (i). 1T~ ~p(H(y,W)), where ~p:NU {0}-*[0,oD)
Wc21 :icW V

I
is a given function , and H(y , W) = ~i H (y,i) where H(-y ,i) is the number

i= 1

of type i customers in network configuration y. He shows that under

certain condition s the equilibrium state distribution has the form

= b~B(i)•TA~(c~) (7.4)
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where

H( W)-l
B(~) = 

~~~ *~~ (n) (7.5)
Wc2’ n=O

and the A
3
(c.) are still defined by (7.3). Thus , i n the notat i on of

Exam p le 7 .3~B(T~~~~(~ ))=B(i). iT q’(H(y,W)) for any c= (i ,S(i),z(j,S(i))),
W : icW

whence

6.(i ,S( i ))
= ~~~~~~~~~~~~~~~~~~~~~~~

It follows in an analogous calculation that

m. .(t,y) = P~(~ )6.(i 1 S( i ) )~ 1T l~(H(y,W))
13 W:i cW

Hence , {C(t)}t a  and (K•j (t)}t a  are po i ntwise independent i ff

iT t~(H(y,W ))=L’ independent of -ye F , which is generally not the case.
W: icW

Notice , howeve r, that when the product above does depend on ycF , this

does not , i n general , exclu de {Kij (t)}t>a from be i ng a Po i sson p rocess ,

albeit pointwise dependent on the state .~A similar phenomenon takes

place in the following .

Exam_p ie_7.4: The BCMP queueing network s (see Baskett et. al. [2]).

These networks consist of four types of stations , all related to

Kelly ’s networks in [12]. There are , howeve r, three differences: cus-

tomers arrive according to state dependent Poisson processes , they

require type dependen t services which are mixtures of sums of exponen-

tials; and on service completion customers are allowed to change types

f A typical case in point is an arrival process to a Jackson network

which is Poisson by definition . However , it can be easily verified

that it is pointwise dependent on the state , say in equi librium.
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i n a Markovian manner .

Based on the equilibri um state distributions derived in [2], it can

be ri gorously shown that the m .~ (t) factor into and another pro-

duct . The latter con tai ns the i ns tantaneous arr i val ra te as a s tate

dependent factor. Consequently, the 
~
Kij (t)J t)a and {C(t)}t>a are not ,

i n general , pointwise independent when the network is in equilibrium .

However , it can be rigorously checked that the above are pointwise

i nde pendent p rovi ded the arr i val rates are fixe d. The latter fact

agrees with Theorem 13 in [10].

U

The author is unaware of any result in the queueing -theoret ic

literature annunciating Poisson departure traffic processes (Over a

discrete state r-larkov process) that cannot be explained by means of

pointwise independence of traffic count and state.



8. Discussion

The class of intui ti ve traff i c p rocesses that can be modele d via

distinguished state transitions in the underlying process {C(t)}t>a

is fairly comprehensive vis-a-vis applications. In par ticular it

includes all traffic processes in the queueing-theoretic literature

with the exception of certain feedback traffi c processes . In a typical

situation (see e.g. [14] and [15]) one starts out with a set of “gen-

erating processes {G(t)}
~ .

~~ 
(arrivals , services and routings , which

give rise to a state ” p rocess 
~
C(t)}t~~ 

in the sense that the latte r

is measurable with respect to the -algebra generated by the former.

Cons id e r a fee dback s tream of customers that af ter serv i ce comp le-

tion in station j i ntnediately rejoin the waiting li ne to that stat i on

in such a way that the state of the system remains unchanged (notice that

this situation never arises for traffic processes between distinct nodes

or for traffic streams that leave the network altogether). In other

words , we need the concept of a transition from a state to itself , corn-

pl~- tf ~ with transition rates 0<q(-y ,y)~~- . While this does not affect

Eq. (2.1) (observe that P~(()q(-~~() can cels out since it appears with

11 ” rent 51 ~ns in the two summations), defining the relevant

V --
~-s impossible since a conside ration of any traffic set 0 is insuf-

$ cient to determine the epoches in question. Moreover , a direct appeal

Lemma 2.1 is now iiv a lid , even though the result of the Lemma may be

(Jrr ec 1

TI) remedy this situation one may attempt to proceed in two ways.

First, it may be possible to modify {C(t)
~~~ 

i nto a new Mar kov process

(c (tp 
~ 

with state space I for which all feedback epochs correspond to

discernib le state transitions. The second approach is to drfine directly
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the requisite joint , process {‘(C(t),K(t))}t~~ 
in terms of the “generat i ng”

processes and to show it to be Markovian by another technique (e.g. via

a stochastic integra l representation as in [14] and [3]). Eithe r way ,

chances are that the rest of the theory in this pape r would sti ll be

applicable , as was the case in [14] and [15].

A broader class of traffic processes over Markovi an processes

may be def i ned by allow i ng the traff ic epochs {T n}~~ü 
to be

affected b~ past history of fC(t)}t a ~ 
More accura tely , the dec i si on

whether T T~(w) for some n (here w is a sample point), woul d requi re

knowledge of the sample path {C(t ,w)}~ ~~ 
or even that of the sample

generating process {G(t ,a)}a< t<T ; it could not be effected on the basis

of the pair (C(I_ , ).C(~~+ ,14) alone by predicating the decision on

whether or not that pair is in some traffic set 0.

To remedy th is s i tuat i on , one may again attempt to redefine a

Mar kov i an “state” p rocess {C( t ) }t>a with a modified state space F in

such a way that {C(t)}t~a 
“ remem bers by s tate ” the relevant information

in thi past history of the old {C(t)}
~~8 

so that the aforesaid decision

as regards i and ~ can be made on the basis of (C(i- ,),C(i+ ,~ ) )  and

its relation to some 0 alone.

The approach and definitions of this pape r shed a new light on the

differential equati ons (2.1). The traditional heuristic interpretation

is that the probability rate of being in state y” is the difference

between the ilow rate into 
~~
“ and “the flow rate out of y” . On the

other hand , let {(~ ,):~cF- {~ }} and 0 ~~( - y ,~.):çcF-~ y }}. Then
‘in T Out

clearly fu r any yc [’ , ’
t Pt(y)=m (t)-m (t),or equi valen tly upon

11n ~
‘out

integration Pt (y ’)P
~
(y)+E [K (t)-K (t)], t>a.

~in 1out

_ _ _ _ _  - 
-
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From this equation it can be easily shown that for any s~’t

~~~~~~~~~~~ 
(y) = E{K (s ,t)—K (s,t)]

‘in 1out

where K(s ,t) ~ K(t)-K(s).

Thus , from a traffic oriented vantage point the probability di fference

of being in state y at the extreme points of any time interval [s,t]

equals the expected difference of the number of times the system

entered and left state y in the aforesaid interval.

It is interesting to note how the Markov property of the underlying

{C(t)}t a  affects the feasibility of 
~
K(t)}t>a being a Po i sson relate d

process. It turns out that various notions of independence play a

significant role in this respect : independent increments in

already ensure it to be a Poisson process (Theorem 3.1); a renewal

and a time invariant m(t) already ensure the same thing

(Theorem 3.2); weak pointwise i ndependence already ensures that dis-

joint K 1 (t), . . . , K~(t)~ t>a , are distributed as mutuall y independent

Poissons (Theorem 5.1); and finally pointwise independence already

ensures that disjoint K j (t)}t a~ •~~
Kn (t)}t a  are mutuall y

independent Poisson processes (Theorem 5.3).

The relation of pointwise independence of {C(t)}t 8  and {K(tfl t>a

to Kelly ’ s not ion of quasi-re versibility should be noted. In Sec. 6 of

[13], Kell y descr ib es a queue i ng network w it h Poisson arrivals ; the

networ k ~~
‘ ~ep resente d by a Markov sta te p rocess 

~
C(t ) }t a  in equ i l-

i brium ,and each departing customer is classified into one of I groups

depending (perhaps stochastica lly) on the network ’s past history . Such

a queue is quasi-reversible if (see p. 428 ibid.):

(a) departures of group i customers , for 1= 1 ,2,... ,I , form independent
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Poisson processes ; a nd

(b) the state of the network at time t is independent of departure s

from the network up until time t.

Suppose the I departure streams can be mode l ed by traffic processes

via traffic sets ~~~~~~ 1~ i I .  Then quasi-

reversibility clearly implies pointwise independence of {C(t)}
~~8 

and

the {Ki (t)}t>a~ 
l ’i <I , (Condition (b) above). However , Theorem 5.3

shows that pointw ise independence of {C(t)}t>a and the

1 1<1 , already implies Condition (a) above (i.e. (b) implies (a)). It

follow s that for the class of departure processes defined as traffic

p rocesses i n the se n se of th i s paper , quasi -reve rsibility is logically

equivalent to pointwise independence (i.e. to Condition (b) alone).

In Sec . 5 of [10], Gelen be and Muntz di scuss Markov i an queue w ith

Poisson arrivals at a fixed rate A; they define such systems to be com-

plete (ibid. p. 52) if the departure process {K(t)}t a  satisfies

rAAt+o(t
~
t). if i=l

lim P [ K ( t )- K ( t- / V t ) = i ~~C ( t ) =y ]  = ~~o(:~t), i f IA

L~~
t+0

~
t) , if 1=0

for any ~‘uF.

Then , t hey p roceed to gi ve a heuristic der i va ti on of equ i l i brium

analogues of Corollary 5.2. By virtue of Lemma 5.1 , we can reco gni ze

completeness as pointwise independence of {C(t)}t a  and 
~

K(t ) }
~>8 

when

the former is in equilibrium. As a matter of fact , for the class of

traffic processes in this pape r over an underlying {C(t)}t>a in equil-

ibrium , Kell y ’s quasi-reversibility , Gelenbe and Muntz ’s comp leteness

and our concept of pointwi se independence , all boi l down to essentially
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th~ same thing. Althou gh all three concepts are largely equivalent ,

the po intwise independence formulation enjoys the generality and

convenience of being stated in purely probabilistic terms without any

allusion to queueing-theoretic con text or an underlying equilibriu m

assumption .

The utility of the pointw ise i ndependence con cept is greatly

enhanced by Corollary 5.2 and 5.4. The former provides a convenient

computational test for pointwise independence which , in v i ew of the

latte r, serves as a su ffi cien t con dit ion for mutuall y independent

Po is son processes ; it s ~~~~~~~~~ of applicat ion has been demonstrated in

the examples of Sec. 7.

The utili ty of the we ak po i ntwise independence conce pt deri ves

from Theorem 5.1 and , i n equilibr ium s ituations , from Corollary 5.1.

These may serve as necessity condit ions for Poisson traffic processes by

checking the actual behavior of lim 
~~ 

Pt(y,k) against the hypothesized
t-s-a+ -

one. This approach was demonstrated in Sec. 6; a more substantive

application of this strategy can be found i~ [15] concerning traffic

processes on the so-called nonexit arcs of a Jackson network .

The concept of pointwise independence (of traffic and state) has

considerable relevance to the study of queueing network decomposition .

A typica l Markovian queue ing network is postulated to have Pois3on

ar ri vals , independent servers and independent routing switches—the

above being mutually independent processes . The problem of valid

decom pos iti ons arises when one w ish es to s tudy one or more subnetworks

in isolation via the theory available for the original network. In

other wor d s , under wh at con diti ons does a subne twork sat i sfy all the
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postulates of the orig in al network? In the aforementioned typical

queue i ng network it i s requ i red tha t all i ncom i ng streams i nto subnet-

work nodes be mutually i ndependent Poisson processes which , in additic,n ,

are also independent of the service and routing mechanisms operating

within that subnetwork . Now , cer ta i n subnetworks may have a state

process (an appropriately selected subvector of the original vector

value d state process),which still retains the Markov property .

Consider the depdrture streams from such a subnetwork. As we have

seen in the examp les o f Sec . 7 , these depar ture s treams an d the com-

pressed state are quite likely to be poi ntwise independent , in equil-

ibrium . Consequently, if there is another subnetwork whose incoming

customer streams are either exogenous or froni ~r f r  r,~~ only, that

subnetwork will indeed satisfy afl the post~ late of the original net-

wor k , thus constituting an equilibri um origina l rietwcrk in miniature .

The reader is referred to [4] for an example of this situation from the

domain of Jackson queuein g networks.

Finally, we poirt out the plausibility of extending the results

of th is paper to traffic processes in Markov processes wi th time depen-

den t trans it ion rates or w i th con ti nuous parameter an d uncoun tab ly

infinite state space . The latter could enable one to treat queues and

queueing networks with more genera l arrivals and services , such as the

limiting cases considered by Kelly [13] and Barbour [1].
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