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PREFACE

This interim technical report is an account of the work completed at
the McDonnell Douglas Research Laboratories on Viscous Flowfields and
Airframe Forced Induced by Two-Dimensional Lift Jets in Ground Effect,
Contract No. N00014-76-C-0494, from 1 February 1976 to 28 February 1977,
The work was done in the Flight Sciences Department, managed by Dr. R. J.
Hakkinen. The principal investigator was Dr., D. R. Kotansky. Dr. W. W,
Bower pertormed the analytical work and the numerical computations. The
program monitor was Dr. R. E. Whitehead, Office of Naval Research, Arlington,

VA.
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oo INTRODUCTTLON

Severe aerodynamic and propulsive interactions occur in the flight of
VTOL aircraft during takeoff, landing, and the transition to cruise. In the
hover mode, unpredictable forces can be produced on the airframe through the
interaction of the lift jets and the ground, a so-called ground effect
problem. These forces, which occur as the result of the flow induced by the
entrainment of the propulsive lift jets and by the deflected lift jets them-
selves, can be either positive or negative. In the former case additional
lift is provided, but in the latter case, a nominally designed propulsion
svstem may not have sufficient thrust for an adequately controlled takeoff.

The task of determining, either experimentally or theoretically, the
aerodynamic and propulsive interference effects of the lift jet, the air-
frame, and the ground is not a simple one. The numerous variables which
affect the flowfield make it economically difficult to study an aircraft con-
figuration through wind tunnel tests alone. On the other hand, the flow is
so complex that a rigorous analytical treatment of realistic cases is not
possible at the present time.

The objective of the VTOL aircraft flowfield investigation in progress
at the McDonnell Douglas Research Laboratories (MDRL) is to predict and
compute the flowfield associated with a two-dimensional (planar) lift jet in
ground effect. This includes a description of the effect of turbulent jet
entrainment on the induced flow and on the static pressure variation over the
upper surface from which the jet discharges. The two-dimensional, time-
averaged Navier-Stokes equations are presently tractable, and the knowledge
gained through their solution for the planar lift jet in ground effect may
later be applied to the more complex three-dimensional flowfield problem.

[oward achieving this objective, MDRL has undertaken a combined theoret-
ical and experimental research effort. The initial analytical phase, which
was sponsored by the Office of Naval Research (ONR) under the subject
contract, is a solution of the two-dimensional, time-averaged conservation
equations, in conjunction with a one-equation turbulence model, to describe
the turbulent flowfield associated with a single, planar, incompressible
lift jet emanating from a static upper surface and impinging on the ground.

A planar lift jet permits computation of the vectored configuration since




the flowfield remains two-dimensional, whereas the axisymmetric jet becomes
three-dimensional when vectored.

The initial phase of the MDRL experimental effort, which was accom-
plished under the McDonnell Douglas Independent Research and Development
(IRAD) Program, consists of the acquisition of detailed flowfield measure-
ments for the planar jet to establish the validity of the computed flow
variables. Although data have been reported for a single axisymmetric jet

/.
impinging on a ground plzlm-l-q, an extensive set of measurements for the
planar configuration has not been reported.

I'his report describes the analytical technique that is used to predict
the turbulent flowfields associated with the planar lift-jet/airframe/ground
interaction. Computed flow properties are presented as functions of upper-
surface geometry, Reynolds number (based on jet exit properties), and jet
height above ground. Conclusions are drawn with regard to the accuracy of the
flowfield model and the computational technique, and suggestions are made for

future study.
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2 I'HE FLOWFIELD MODEL
2ed I'he Flow Configuration

The planar impinging jet flow of interest in the present analysis is
shown schematically in Figure 1 for the unvectored configuration. The jet
exits from a slot of width D in a contoured upper surface a distance H above
the ground plane. When the jet impinges normal to the ground, the region of
computation extends a distance W on one side of the line of geometric
symmetry. When the jet is vectored, the region of interest extends a dis-
tance W on both sides of the line of geometric symmetry.

I'he jet flowfield can be divided into three regionc: a free-jet region
in which the flow is essentially the same as that of jet issuing into an
unbounded region of the same fluid; the impingement region, in which the flow
changes direction with a large pressure gradient; and the wall-jet region in
which the flow traverses the surface with zero pressure gradient. The fluid
surrounding the jet is entrained at the boundaries of the jet in all three
regions, causing otherwise static fluid to be set into motion. On the upper
bounding surtface, this motion results in locally reduced static pressures and
aerodynamic loads.

2.2 The Governing Equations

For the configuration of Figure 1, a rigorous fluid dynamic analysis
cannot be made by using purely inviscid-flow calculation techniques, even
with the addition of empirical or boundary-layer corrections. In fact, a
turbulent boundary-layver procedure along the ground surface cannot simply be
patched into an inviscid scheme since there are pressure gradients in both
coordinate directions with no single dominant direction of flow. Proper
treatment of the problem requires an elliptic solution of the complete flow-
field with viscous effects.

In the present approach, the time-averaged continuity and momentum
(Navier-Stokes) equations for steady, two-dimensional, incompressible flow
are used to describe the mean motion of the fluid. As a result of the
averaging procedure, unknown turbulent stress terms arise in the time-
averaged momentum equations. To solve for the turbulent shear stress, a
turbulent=kinetic-energy equation is used in combination with a constitutive
equation that relates the square root of the turbulent kinetic energy to the

turbulent viscosity.
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| Figure 1 The planar impinging jet
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2« [ime-Averaged Primitive Equations
b [he governing equations tor two-dimensional,

flow of a Newtonian fluid with no body forces are
mservation of mass and momentum, written below

Conservation of mass:
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Conservation of momentum:

] . u, u .

= + - : (2-3)
Ll DS 5c
) i

Equations (2-1) through (2-3) are written in terms of the primitive
variables of velocity components l—l,], static | ressure 6. mass density p
and molecular viscosity ._, using a space-fixed reference through which the
fluid flows. The overbars in the equations denote that the quantities are
dimensional.

To write the time-averaged forms of Equations (2-1) and (2-2) to
describe a turbulent flow, the usual Reynolds decomposition is used i

which the instantaneous flow variables are expressed as the sum of a m:an

component and a fluctuating component.

Tl.] = <‘_‘i> % G; (2-4)
p =P ytp (2-3)
Ti_] <Ti]> + T;j d (2<6)

The symbol < > denotes a time-averaged component, and the symbol ' denotes
a fluctuating component.
With substitution of Equations (2-4) through (2-6) into Equations

(2-1) and (2-2), the following time-averaged conservation equations are

obtained:




Conservation of mass:

Conservation of momentum:

alGdEp) Gy el - i) |

j i j
The form of the time-averaged equation for the conservation of mass,
Equation (2-7), is the same as that of the instantaneous equation. The form
of the time-averaged equation for the conservation of momentum, Equation

(2-8), differs from the instantaneous form through the appearance of the

Revnolds stress tensor, - ,<nfu,’>. As a result of the latter, the system
L
of Equations (2-7) and (2-8) is not closed. Therc are one scalar equation,

Equation (2-7), and one vector equation, Equation (2-8), but there are the

following unknowns: one m’.x]‘lr,<p>; one vector, <u_ : and one tensor,
J

& _(r‘!'_rl'.>.
5%

l'here are five basic turbulence-modeling techniques which can be used
to close the system of Equations (2-7) and (2-8). These are described in
detail by Rr\'nulds‘) in a current review article and are summarized in
]-If)]\‘ ]

Ihe most familiar representation of the turbulence is the so-called
zero-—equat ion model in which the Reynolds stress tensor is related to a
turbulent (eddy) viscosity, which in turn is related directly to the time-
averaged velocity field, generally using a mixing length. This approach has
had considerable success in the calculation of boundary lavers, as evidenced

5 A7 6
by the results of Cebeci and Smith .

However, the zero-equation model deteriorates in accuracy for flows

with significant turning, high entering turbulence levels, stagnation point

regions, and boundary layer separation. In the problem under consideration in




the present work, all of these flow phenomena must be taken into account.
For this reason, a more complete one-equation model of turbulence has been
adopted.  In subsequent work, a two-equation model may be adopted if the

single equation proves to be unsatisfactory. It should be noted, though,
that Reynolds makes the following statement in his review article of
Reference 5: "However, it may be that one can do better with this sort of
one-equation model in most flows of interest, for it may be easier to

specify the length-scale distribution than to compute it with a partial

differential equation. This would be particularly true if the length scale

really should be governed by the global features of the flow through an

integral-differential equation. Hence, further study of one-equation models

is encouraged."

TABLE 1 SUMMARY OF TURBULENT-FLOW MODELS BASED ON THE REVIEW BY REYNOLDS®

f
Model type Essential feature Advantage Disadvantage
I  Zero-equation Uses only a pde” for Relatively simple and | Fails to handle some important
i the mean velocity therefore extremely effects, such as strong surface
freld and no pde’s wseful in engineering | curvature and freestream turbu
for turbulence analysis lence and 1s inaccurate near
quantities separation and in boundary
layers with strong accelerations
IT  One-equation In addition to a pde Describes the dynam-| Requires knowledge of the
for the mean velocity |[ics of the turbulence | turbulence length scale vari
field, uses an addi kinetic energy and ation throughout the field and
tional pde related to thereby 1s more accu-| requires more computing time
the turbulence tate than model than does model type |
velocity scale type |
11 Two-equation In addition to a pde Eliminates the need Fails to produce sufficient
for the meanvelocity | for specifying the anisotropy in the Reynolds
= field, uses a pde turbulence length stresses for general shear flows
related to the turbu scale as a function of | and requires more computing
| B lence velocity scale position throughout | time than do model types 1
> and a pde related to the flow and IT
} the turbulence
| length scale
P"“\,« IV Stress-equation | In addition to a pde Uses exaci equations | Presents difficulties in satistying
p for the mean velocity | for the turbulent all the constraints which the
fieid, uses pde’s for stress tensor which terms that are used to compute
5 all components of the | are derived from the | the turbulent stress tensor
[ *y turbulent stress Navier Stokes must satisfy
5 tensor equations
V  Large eddy Uses computation of | Eliminates the Involves an uncertainty in the
simulations the three dimensional | number of empirical | effect of the small scale
time dependent constants which are turbulence modeling on the
large-eddy structure required large-eddy structure and
and a low level model requires relatively large com
for the small scale puting times for general
turbulence shear flows

*Partial differential equation

GP77-0343-2




I'he essence of the one-equation model is to derive from the instanta-
neous momentum conservation equations a partial differential equation
describing the turbulent kinetic energy of the flow, k = (1/2) <G;L-x;> The
latter, then, is related through a constitutive equation to the turbulent
viscosity and, in turn, to the Reynolds stress.

In the present work, the turbulent-kinetic-energy equation formulated
by \x‘ull'shu-in7 is used. To arrive at this equation, it is first necessary
to derive an equation for the kinetic energy of the mean motion by adding

the scalar product o <u >.md the time-averaged momentum equation for <u >

to the scalar product of <u > and the time-averaged momentum equation for

G
]/

| AGOGEIGE (s G gy 2D

o { Gu? - §k>)

+
i [
d>
K
G ] o
" < > ka‘_ k (=95
i
"k
When Equation (2-9) is contracted (i = j), the result is the kinetic-energy

equation of the mean motion:

’J"/"'—”<“'i><‘-'i><'_'k>]

% );
e ‘(,l




To obtain the equation for the kinetic energy of the turbulent fluctua-
tions, the scalar product of rli and the momentum equation for l_li [Equation
(2-2)] is added to the scalar product of l—li and the momentum equation for G'l
[Equation (2-2)]. Equations (2-4) through (2-6) are introduced into the
resulting equation, which is time-averaged, combined with Equation (2-9),
and contracted to give the mean-kinetic-energy equation of the turbulent

fluctuations (the so-called turbulent-kinetic-energy equation).

JRIBTED I, 3 /DT ;
e St A =

- - vD
e { = ug
IOx a:(.
k i
oT! Le<i.
R e BT R
i - 1k Ve
oxX X
k k

(2-11)

By rewriting various derivatives and by introducing the conservat.on

of mass equation and the defining equation for 1 Equation (2-11) can be

. ’
ik
shown to be equivalent to the form of the turbulent-kinetic-energy equation

L
used by Wolfshtein

1_12
2% TG TN (AUTRAPET

X e X o
J J ]
) 2
2= Ju
PRI S - : (2-12)
ox., X,
] )i

The terms in Equation (2-12) have the following physical meanings:

—<— Jk Convection of turbulent kinetic
o, = o

0X, energy by the mean motion
)




- -

)<‘ > Production of turbulent kinetic

. —<l—l‘l—l' ____i_‘
¢ i | = energy

X,
]
A |
= _'_'“
.<u_u. > Turbulent diffusion of
s R I T Ce <jag;v>> : .
= - j turbulent kinetic energy
i, 2
]
2- Viscous diffusion of turbu-
- ) ‘k~
= lent kinetic energy
i
)
e )
Ju
= i : ek .
~ U Viscous dissipation
ox
)

2.2.3 Wolfshtein's One-Equation Turbulence Model

It order to establish a relation between the various turbulence proper-

ties and the turbulent kinetic energy, the turbulence modeling procedure of

-

o ; . . P
Wolfshtein will be followed. [t is assumed that a scalar turbulent vis-
cosity W can be defined by

turb ;

Ee NS -
= -< l—l:l-l;> = L_‘(“rh <.i-ll/ i ‘<£J> : e

where the turbulent viscosity is computed from

1) = o Ok 7 (2-14)
turb V] W

In Equation (2-14) c is a constant determined from experiment, - s ddy
¥

'
and 2 is the length scale for viscosity.

\
18

10 x




In addition, it is assumed that the turbulent diffusion of turbulent

kinetic energy can be represented by

A' by m /_|_|2 -
.\u,ui > 1 " -
] 1 - 3 )
- L - - < u',lp'> = — ———_Ulr L3 . (2-15)
X, 2 X k,turb 9x,
)

When Equation (2-15) is added to the viscous diffusion of turbulent kinetic

g e
energy Hu(d9°k)/(dx,”), the result is

]
) i-lturb ok - E)ZE 9 - l-“Lurb ok
—————— e i U e e et et = 3
9% 9% ax. " ox “k, Hx
: )xj \”k,turb )xj )xj x.j k,turb ij
<t (2-16)

By defining an effective transfer coefficient for the turbulent-kinetic-

energy diffusion,

3 - Y
, e ape = R (2-17)
s € ( &)
k k, turb
“is Equation (2-16) can be rewritten as
-
i
‘, T =
¢ 3 - SEur k. 0 = e
- ~= no+ ;91—'1--- LS e U aph £ ,
& - ( = = 5 L
X, k, turb X, X, 7 =
P j j ox .
2
‘re S i : is a conste ter d from data, O =
where ‘)k is unity and Ok,turh S constant determine ta, &, tutb

1.33,




Finally, it is assumed that the viscous dissipation can be represented

by
L
ju
- i -~3/2
| — =S Eee R : 2-12
U - C, Pk™°° (2-19)
IX, 3
) "D
(.I) is a constant evaluated from data, (ID = 0.42, and 7[) is the length scale

for dissipation.
When Equations (2-13), (2-18), and (2-19) are substituted into Equation

(2-12), the result is

o a3 n, r “,> 3 u,
T<l_li> ))‘(A § :Lurb -<-|L—l‘> i i{i].L . <Ul
J)\i dxj dxi «ij

Equation (2-20), the so-called Wolfshtein one-equation turbulence model,
is written in terms of the mean velocity field, turbulent kinetic energy,
and experimentally determined constants and length scales. The latter

will be specified when particular geometries are considered in the analysis.

2.2.4 Non-Dimensional Form of the T ime-Averaged Continuity, Momentum, and
furbulent ~-Kinetic-Energy Equat ions
Equations (2-7) and (2-8) are written in Q, '\', coordinates with the
associated 1-1, v velocity components. The continuity equation has been

used in writing the momentum equations in the non-conservation form shown

below.
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Conservation of mass:

<~> <v>

(2-21)

Conservation of momentum (time-averaged Navier-ftokes or Reyrolds equations):

X-momentum equation:

_<,,> <“> < >_ixl_> r>> s “'<G>

{ ) —L—--—-—-— 4 7
reft ~2 3 -
Iy 5. cX
% !»<IJ__> turb ‘)< 2 turh (2-22)
N Y Yo7
y-momentum equation:
2 G2 K5 <5
5 - B 3 , 7 = i y
pGYBEL Gy B, Ba g, g TNE
- - = eff =
e dy y 0xX
ZOROLINWOL
P o __-‘__'\;7 PRCAN turb p SN ._er_l’
y y "~ ax Ix ax
< > turh
. (2=23)
‘y «W
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Defining equations for the turbulent and effective viscositi
) 19
eff turb
& —1/2-
M Ok i F
turb M

Wolfshtein's one-equation turbulence model, Equation («

es .

—0

, takes the

following form in the x-y coordinate system:
DAY > Kok
e = 0l 1 © il J A4
pen e LEGEY AG)
‘11/4 +.A\'>~:;J aF
- \ - turb T e =
! )y X dy bid
- 2
(3 i
) - J
+2 | —= + ‘ _—
= - k,eff =
)y X <
- -=3/2
) = 1K 1 k
o= . x - (G A . (2-26)
Y k,eff .= D =
v oy
D
-
With the specification of the length scales, the system of equations is
-
closed, subject to the required boundary conditions.
Equations (2-21) through (2-26) are normalized by introducing the
3 following dimensionless variables:
$i?
u = =i (2-27)
v/
Yo
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v = L (2-28)
3
eff «
o f g (2-29)
oV D
“turb
: _ turb (2-30)
turb - =
oV D
x = = (2-31)
D
¥, e (2-32)
D
p = <1>__ (2-33)
(1/2)pV"
(8]
k = ;K» (2-34)
\U

The dimensionless equations are given below.
P Conservation of mass:
u EAY e
¥ — + — =0 (2=35)
? [)4 )y
5
8
&
& 1
&
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omentum:

i i
u + v =
i
+
v-momentum:
v i
U il
“+
Wolfshtein one-equation

turbulence

Teurh

turb
D

B
turb

) )
) u )
| e
eff 2
s Yy
11
v turb
1 =
) )
4~\" 47\'
O
et 2 7
X )y
Y ‘turb
- yv )y
model :
u u
+ — +
1 X )
II\ Al
+ -
IE JI% Y
16

yu
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)X 9X
1
turb
X
2
) Jv
2 e
ik

“turb

(2-36)
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1
9| 200 (2-39)
ett i turb
| turt
) . ) (2-40)
K,eftl . Ke ]
‘ k™ k,turb
oV D
)
Re . (2-41)

2adad an[jviLV/S}jwﬂm—P]mytjpn Form of the Time-Averaged Continuity,

Equations (2-35) through (2-37) are solved in terms of time-—averaged

vorticity and stream function, which are defined by the following equations:

"WV du :
oy AL (2-42)
X dy
) u (2-43)
& v
-
: bt (2-44)
1%
g,
he relations between the dimensionless and dimensional variables w and
are given by
(h'>
¢ B (2-45)
(Vv /D)
(8]
.
i
3y
&
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b
@
e ——— . (3—/4‘))
VD
0
|
\
The vorticity transport equation is derived bv differentiating Equation
| | 2 i
: (2-36) with respect to y, differentiating Equation (2-37) with respect to x,
|
] . 1 1
| and subtracting the former from the latter.
r Vorticity transport equation:
) 3
‘k 1 1y 1 ¥
(1 + Rex) - — Re - 2 +(1*l\(‘) = b RE = WA =
y A y B 2 | SRY §
|
) ) ) ) ) ) ) ) 2] ) 7
) d ) 1~' ) ‘L" i '_' = 3T ) Tk (2-47)
| Re | % 3x3y axay R R O . S g
; ) 1% 5 ) )y 1y ) )X 'y 4
|
]
[he following substitution has been made in the previous equation for
implicity of notation:
/2
K = U = ¢ k e (2-48)
| turb 9! M
-
-
Conservation of mass is ensured through definition of the stream
function, which is determined from a Poisson equation as obtained by
P‘ - combining Equations (2-42) through (2-44).
Poisson equation for stream function:
'
) )
) )
o e T (2-49)
‘:-"A 'y o
H
|
[ |




Equation (2-38) is also written in terms of and

v ey

Wolfshtein turbulence-model equation:

] Rek J K : ] ) i) Pk 1 Rok )k
+o - + Re _ ~ - e ¢ + -
k k, turb ax’ k,turb X v k k,turb
4 ) )
C k 2 q 2 2%
I % W\ ok i “p 44 o 4
+ Re + - = Re - A 4 + t - _4’
3, v I X 1AV X IXAY ; 2
k,turb ' D L X
(2-50)

lhe boundary conditions on w, 1, and k which are applied to Equations
(2-47), (2-49), and (2-50) are specified when specific geometries are con-
sidered.

Once the vorticity, stream function, and turbulent viscosity variations
are computed, the velocity component distributions and the static pressure
distributions must be calculated. The velocity components are readily ob-
tained from the definition of the stream function, Equations (2-43) and
(2-44), The pressure field is computed through a solution of the Poisson
equation for

pressure. his equation is derived by differentiating Equation

(2-36) with respect to x, differentiating Equation (2-37) with respect to y

s
and adding the two equations.
Poisson equation for static pressure:
)
) ) ) ) ) i
) P + ) P A ) Y oY ot U - Ay = Ay A
2 2 2 ; Xy X 0Y )y 9x
i )y e v
) ) ) 5 | ) )
) ) Tk )k )~ x ) Y
ixdy 2 2 IXJy ) } ’
154 1y y X Iy
(2-51)
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Eauat ion (2-51) is solved following the solution of Equations (2-47), (2-49),
ind (2-50); that is, the right-hand-side of the equation is a known quantity.
mplexity associated with the solution of the Poisson equation for static
yressure is that the magnitude of the pressure i not known at the boundaries.
In the present analysis, the pressure level is set at the end point of a

mdarv, and the momentum equation describing the pressure gradient along

the boundary, either Equation (2-22) or Equation (2-23), is integrated to
btain the boundary static pressure variation. l'he constraints which are

imposed on the remaining boundaries are the normal pressure gradients given

mentum equations.
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3« [HE NUMERICAL SOLUTION SCHEME

I'he coupled, elliptic, partial-differential equations that describe
the flow are nonlinear, and a numerical scheme is necessary to obtain a
solution. To solve the flowfield equations for a jet discharging from
a curved upper surface, a conformal mapping technique is used to map
the irregular physical plane into a rectangular computational plane. The
governing equations are then rewritten in terms of the computational plane
coordinates and solved using finite-difference procedures.

In this section, the conformal mapping and finite-difference techniques

are described.

3.1 The Conformal Mapping Technique

o solve the governing equations for a flow with a contoured upper
boundary, which simulates the lower surface of a fuselage, an inverse
conformal mapping, procedure is introduced in the analysis. Details of the

mapping procedure and its application to the flowfield equations are given.

the Mapping Procedure

3.1.1 Description of

lhe mapping technique, which was originally devised at MDRL by Hoffman,
is best explained with reference to Figure 25 [nitially, a finite-difference
computational plane with coordinates (%,n) is specified. The distance
between nodes in the £ direction is a and in the n direction, b, where a and
b are not necessarily equal. Stretching functions are then introduced in

each coordinate direction.

p o= £ (5) (3-1)

With these relations, a mapping plane (ji,%) is determined which permits finer
resolution of the flowfield in regions where the gradients of the computed

variables are severe. Finally, a conformal mapping given by
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coordinate stretching.

introduced which specifies the physical plane (x,y).

follows that both x and y obey Laplace's

Computational plane
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Figure 2 Inverse conformal mapping with stretching

(3~3)

the mapping

equat ion

(3-4)

(3~5)
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I'he boundarv conditions imposed on Equations (3-4) and (3-5) follow from
phvsical constraints when they are known at the boundaries and from integra-

tion of the Cauchv-Riemann relations,

df 9x in 9y

q ‘.\ = tl- ",\ (3-6)
dif 9% _ df 9y )

dv TR duy 3£ ° it

when the x and the y boundary distributions are not known.

The unique feature of the present mapping scheme is that instead of
specifving the coordinate distributions in the physical plane and accepting
whatever computational plane results, a numerically convenient computational
plane is specified, and the corresponding computational mesh within the
specified physical boundaries is computed. For this reason, the mapping
scheme is an inverse procedure.

Equations (3-4) and (3-5) are discretized in unexpanded form using the
central-difference, finite-difference approximations of the derivatives given
in Appendix A and the point-of-the-compass grid notation defined in Figure S

lhe following forms of Laplace's equation result:

< ; .t i = 0 g o=

LY, Lyt Lyt LgYg LpYp ( (3-8)
L% X + L.Xx = = ( 3~

Lgxp * Ly + Lyxy + Lg¥g = Lp¥Xp = O S

where the coefficients are defined by

i 1" (l‘ (l‘ 2
by * & ll’ (1 ‘ p ¥ ‘1) =it}




sl- (14 d?
L + =
W dy ‘ P ( du ' P du l w) (3-11)

4=

2 dr dr
-], (] e v
N8 ax|p (d‘« v YD |\) (2=22)

d d '
- +
p d) I P i 8 (3-13)

{ dr l 42 & ‘ +d_'_;l ) (3-14)
\d» I N dxlp " dxlIs

Finite-difference grid parameters

a, b Normalized grid dimensions in
& and n directions respectively
g ab Ratio of grid dimensions
N
b
|
; .
w O Ot ’
b
S

l

—>
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Figure 3 Five-point finitedifference stencil




When boundary distributions of x and y are obtained from the Cauhy
Riemann relations, Equations (3-6) and/or (3-7) are integrated for x and/or
using a second-order-accurate quadrature scheme. Equation (3-8) is solved
first for the v field using point relaxation, and then Equation (3-9) is
solved for the x field using point relaxation.

In order to determine the accuracy of the numerical mapping procedure,
a test case without coordinate stretching was tried for which the relation
between the mapping-plane and physical-plane coordinates is known exactly.
lhe problem formulation and the functional relations between (x,y) and (L,A)
are given in Figure 4(a).

[n the numerical solution of Laplace's equation for y, y is specified
analvtically along the upper and right boundaries. 'he remaining boundary
distributions of y and all the boundary distributions of x are determined
from physical constraints or the Cauchy-Riemann relations. The latter are
used instead of the analytic boundary values in order to determine the
accuracy of the quadrature scheme in computing the boundary conditions.

Figure 4(b) shows the comparison between the exact and numerical mapping
for the test case with B = /4. With a 41 x 41 finite-difference grid, the

analytical and numerical mappings agree at worst within 10 .,




’ x = cos {3 sinh Bu, y = sin  cosh u
e — —
% 0 X sinh u, cos JA
y sin A y cosh fug sin g
0 > U
x =sinh fu,y =0 Mo
y +ix = sin (BN + i3u)
x = cos A sinh Ju
y = sin 3\ cosh pu
(a) Problem formulation
Analytical mapping, — Numerical mapping, —~
4
41 x 41 gnid
i JAE S X e kit ESu T e L
2 0 = 1 - _11
E=20n=1.0 E=20n=10
16 R - -
16 1.6
0.8 | 08
y 12¢ 12 1 i ) —
06 | 0.6
08 08
04 04
0.8 0.4 1 r 04 ]
- O 4 02 B +- 02 —
- 0 11 1 | ! 1 | \ b 1 | J
0 04 0.8 1.2 1.6 2.0 2.4 0 0.4 0.8 1.2 1.6 2.0 24
X X

GP77.0343-5

(b) Analytical and numerical mapping solutions

Figure 4 Conformal mapping test case
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3.1.2 Application of the Mapping »l’irrnvud}l_rv to the Govern igﬁ_ l-ﬂuj_l_t_ip_n_s

lhe time-averaged conservation equations and turbulence-model

)

equation

derived in Section 2 which describe a two-dimensional incompressible flow can

be written in the Poisson- or transport-equation forms given below.

Poisson equation:

For the Poisson equation for stream function, Equation (2-49),

and for the Poisson equation for static pressure, Equation (2-51),

= D
2 ) 7 4 o
NEREN Y dK  Jw K 9w
g AR S S Ty TN B e D
' I X '«y" IXdy Ix dy )y 9x
) ) )
+ i_hb _ ._‘_: = r§_ _’;, ﬁk ” _3_2 ) '
2 o & dXay 2 Roiil
IX Iy ’ ax Qy
Transport equation:
2 ’ i
) ¢ dp d ¢ dP
g T memee = T eite R0 .
y ’ - ) 3
1 ’XZ & o | ay 3 dy 1
27

(3~15)

(3=ili67)

(3~17)

(3-18)

(3-19)
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For the transport equation for vorticity,

I = 1 + Re
1
N 1k
=-Re | =£-2=%
2 )y )%
1) Ok
= Re - + 2 —
3 (654 ay
2 ) ¥
Iy \ L
o= fh44 9 K ) ¥
] IXOV IXOV 2
10,8
) ) ) )
y ) Tk Y 1 9 K
o t — 8 —
) ) 9 )
1Y 1 X } 1\'--

and for the turbulence-model equation,

k
| Rew
k -

1 9

k k,turb

i

. = Re ;-~L»-
p k,turb

Equat ion

Equat ion

(3-21)
(3-22)
(3=23)

(3-

3]
=~
~

(3-25)
(3-26)
(3-27)
(3-28)




1 1 )
Re b (3-29)

k,turb

- A t R : (3-30)

Applving the conformal mapping procedure with coordinate stretching

described in Section 3.1.1, derivatives of a general variable in the

physical plane (x,y) can be expressed in terms of derivatives in the compu-
tational plane (f{.n) with the formulas for (9¢)/(5x), (V:f)/('xk), (3d)/ (9y),

( 'Jf )/ ( 'y‘i), and ( vzj )/ (8x3dy) given in Appendix B. Using these representations
of the derivatives in conjunction with the Cauchy-Riemann relations, Equations
(3-15) and (3-20) assume the following forms in the computational plane:

Poisson equation:
7L 2 ) )
drs ) "¢ d £ 9¢ dn 0 ¢ d™n 9¢ P
(u‘i e I (1) e ek (3-31)
d¢ du in dx 0

Iransport equation:

’ ) )
= ) =i ) 3 A 4
) L: ) 0 J—ﬁ + : d L Q7+ 1 ( : 1 =T ) JO
d) L . X X )
) du b
vy L4 o )
n\ “ ) i< a - )
3 dn) (3 £ g2l o*
| dA 2 | )
i dA
dn ) A & n i P _ Reo (3-32)
) ‘2 Bx T '3 ¥ i .

In these equations,  is the mapping modulus and is defined by
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) \ 2 2 2 2
Q° - ( 2 ) i ( (—Q‘) % p 2 " (3-33)
X Iy ) X )y

Zquation (3-33) is not convenient for the numerical calculation of

)

Q~ because (x,y) are solved in terms of ({,n). What is needed is Q in
terms of the derivatives [(9x)/(9&), (3x)/(9n)] or [(dy)/(B3E), (3y)/(3n)]
which can be directly written in finite-difference form. Through appli-
cation of the chain rule and the Cauchy-Riemann relations, it can be shown

that

QP ——— (3-34)

Similarly, the mapping derivatives (9u)/(9x) and (9A)/(9x) appearing

in Equation (3-32) can be expressed in the forms
i 2 df 9x e
= Q) =i (3-35)
X (], )
and
)
3 A 2 dn 9x
- (8] - 2 (3-36)
)X *dAh 9u
) ) )

As shown in Appendix B, the derivatives (9 7¢)

(3%}, (3 9)/( iv_ ), and

(57¢)/(3x8y) which appear in the right-hand sides of Equations (3-31) and
) ) 9 )
(3-32) require the calculation of (d"u)/(9x”) and (37X)/(9x7). The latter

are computed with the following formulas using numerical differentiation:
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’ 1 18 Ll ) 11 ) A {7 \ )11
Rl gl T i e (3-37)

‘\. \ i . >, 4 x

"' i d i § A A dn o i A
= = = F e el (3-38)

\,"7 ix d j X ix dA on ) X

Finally, the cartesian velocity components are computed from the

relations

= - 0 B 2 S ,:t' i, s
. ‘ d dy )T )¢ 3& or (3-33)
) )
2 ) B = ) s ) Y > Yy )
v =-0Q =% = e L : (3-40)
du j ) dA irp an

3.2 The Finite-Difference Technigue

I'he Poisson equations for stream function and static pressure can be
solved numerically without difficulty using the conventional central-
difference algorithm. This is not the case for the vorticity transport
equation and the Wolfshtein turbulence-model transport equation. The
coefficients of the first-order derivatives in these equations contain the
Reynolds number as a multiplicative factor, and, as a result, with the
standard central-difference algorithm, the discretized system of equations
is diagonally dominant for only a limited range in the magnitudes of the
coefficients. Diagonal dominance is necessary to obtain convergence in
the iterative solution of the discretized system of equations. Details of
rocedure for solving the

the finite-difference analysis and the iterative

I

discretized equations are given.

J.2.1 Discretization of the Governing Equations
I'he Poisson equation, Equation (3-31), is discretized using the standard
central-difference approximations given in Appendix A and the point-of-the

compass notation defined in Figure 3,
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Poisson equation:

where the coefficients

: 1 df
"E 24
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transport
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cquat ions

(3-41)
(3-42)
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}

where
dE \° 2 /
~ () (3= 0{’)
| di
Y ) ) 3
‘ d & g° 4 95 2 — - T. = (3-50)
2Re 1 2 du i % } Ox
du
X S
v == )
d Q- (3-51)
] dA '
) 3 ]
a5y i Y = I = < (3-52)
I ! i - () + (IA ) dx ] OX
2R« 2 : dA
da
In the present work, Equation (3-48) is written in finite-difference

form using the augmented-central-difference (ACD) algorithm developed by

Hof fman at WUHIH. l'he essence of this method can be illustrated by consider-
ing the derivative of (8¢)/(3%) of Equation (3-48). Using the five-point
difference stencil shown in Figure 3 and point-of-the compass notation, this
derivative can be evaluated at point P using the following truncated Taylor-
series representation and standard central-difference approximation to the

first derivative:

‘,‘ 'E -v ‘}’; ‘I-h B ; a % {353}

i i SR o g B fs avDrags i
In the ACD scheme, the derivative (9 )/{9E") 1is retained and is pressed in

terms of lower-order derivatives by differentiating Equation (3-48) with

Fgquarion (2=48) is represented in

respect to £. The derivative (J9)/(51) in

an analogous fashion with the ACD algorithm.
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With this finite-difference

form given below.

Transport equation:

C. .. # €. ¢
E*E W'W

where the ACD coefficients are defined by the following:

R Z Z
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method, FEquation (3-48) has the discretized

(3-54)

(3=55))

(3-56)

(3-57)

(3-58)

(3-59)

(3-60)




| # E
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] Y i 24 j P )€ P an P P 9f£09n 12 2 9¢ P
(3-61)
e, )
o iy ) P )¢ i !I 3 l
; }.}‘ ‘v‘ ) ) D i r [) 1l i II l) ‘. im [) ‘Z i1 })
(3-62)

Boundary conditions are introduced into Equations (3-41) and (3-54) in
the following manner: When a Dirichlet condition is specified, the known
values of ¢ are imposed on the discretized equations evaluated at the grid
line adjacent to the boundary of interest. When a Neumann condition is im-—
posed, the normal derivative is discretized, and the values of ¢ at the grid
line adjacent to the boundary outside the solution domain are related to the
values of ¢ at the grid line adjacent to the boundary inside the solution
domain. Fhe discretized equations evaluated at the boundary points are
included in the system of equations to be solved.

[he velocity components are computed [rom Equations (3-39) and (3-40)

using conventional central-difference finite-difference approximations.

3.2.2 Solution of the Discretized Equations

The finite-difierence equations are solved iteratively using point
relaxation with the calculating sequence illustrated in Figure 5. LE alil
the computations were performed with a single computer code, the required
computer storage would be excessive. Consequently, three separate codes are
used in series.

With the first computer code, the mapping equations are solved intera-
tively for v and x using a relaxation factor of 1.6 until a local maximum
residual between successive iterations of ]()-h is achieved in the field. The
mapping coordinates and derivatives are stored for use by the second computer
code.

With the second computer code, the flowfield equations are solved itera-
tively for the stream function, turbulent kinetic energy, and vorticity using
respective relaxation factors of 1.6, 0.8, and 0.8 until maximum local

; i : ; i =3 =4 :
residuals between successive iterations of 10 , 10 *, and 10 ', respectively
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is set to zero everywhere in
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~\‘\£l‘.

With the third computer
is solved iteratively using

residual in the field betwee

soluti
the fi
vpassed
and the

butions

code,

on is desired, the turbule

eld, and the solution of t
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n successive iterations is 10 .

set of computations, the velocity components are computed.

All computer codes are

written

in FORTRAN IV for use on

nt viscosity
he turbulent-
'he mapping

t kinetic

third computer
tatic pressure
the maximum

In the final

the Control

Data Corporation CYBER 173 computer of the McDonnell Douglas Automation

Company, St. Louis.
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Figure 5 Calculating sequence




4. I'HE COMPUTED FLOWFIELD SOLUTIONS

In the present work, flowfield solutions have been carried out for
three geometric variations of the planar impinging jet shown in Figure 1.
The first geometry is a free-upper-boundary configuration, so called because
the upper boundary of the solution domain is several diameters below the slot

from which the jet discharges. This configuration was selected since it has

: o .
been analyvzed by Wolfshtein' and offers a means of comparing the MDRL

solutions. The second geometry is a parallel-plate configuration in which
the jet discharges from a slot in the upper surface and impinges perpendicu-
lar to the lower surface. This configuration was included in the study since
it offers a means of evaluating the flowfield model and solution scheme
without the added numerical complexity of conformal mapping. The third
geometry is the configuration of primary interest in which the jet issues
from a curved plate that simulates a fuselage undersurface. Both an un-
vectored and a vectored jet are considered, and in the former case solutions
are presented for two jet-height-above-ground spacings and for two Revnolds

numbers with one of the H values.

+.1 The Free-Upper-Boundary Geometry

Ihe free-upper-boundary geometry is illustrated in Figure 6. A free,
turbulent, symmetric plane jet issues vertically downward onto the ground
plane. Since the problem is geometrically symmetric with respect to the
centerline of the jet, only half of the flow domain need be solved. The
vorticity and stream function are antisymmetric about the centerline, and
the turbulent kinetic energy is symmetric. Thus, the solution domain extends
a distance H above the ground plane and a distance W to the right of the line
of geometric symmetry. No conformal mapping is required since the boundaries
are rectangular, and coordinate stretching is not used. These simplfications
result in x = £ and y = n.

I'he imposed boundary conditions are shown in Figure 6. On the upper
boundary of the solution domain within the jet, the imposed velocity profile
determines the stream function and vorticity distributions, and the turbulent-
kinetic-energy profile is specified. Outside the jet, along the remainder of
the upper boundary, the flow is taken to be irrotational and normal to the

free surface with no turbulent fluctuations. e boundary conditions on
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Figure 6 Free-upper-boundary geometry
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the jet centerline result from symmetry; on the lower surface they result
from the no-slip, impermeable wall constraint. The flow at the right
boundary is taken to exit parallel to the wall with no gradients of turbulent
kinetic energy in the mainstream direction. The dimensionless length scale

s A e
variations used are those proposed by Wolfshtein .

)
v 1 -~ exp —]\’x':\l‘k]/",' (4=1)
L2
p =Y 1 - exp -I\‘u:\“k / 5 (4-2)

where A and A are empirically determined constants with values of 0.016

and 0.21, respectively. Following Wolfshtein, if the magnitudes of the

length scales exceed 0.1, F ; and Ly are set to O0.1.

[he tlow variables were computed with H = 1, W= 1, and a Reynolds
number of 14 600 based on jet properties at the upper boundary of the
solution domain (denoted "i'" state in Figure 6), which corresponds to a
Revnolds number of 11 000 based on properties at the nozzle exit plane
(denoted "n'" state in Figure 6). Computations were performed using a
41 x 41 uniform finite-difference grid.

Contour plots of the normalized primary flow variables are given in
Figure 7. The vorticity distribution shows the convection of w to the right
and the development of the lower wall boundary laver, and the stream
function plot illustrates the entrainment of fluid into the free jet. The
distribution of turbulent-kinetic-energy, which has a peak value of 0.04
imposed at the upper boundary within the jet, shows the convection of k
toward the right boundary and a plateau of maximum k in the vicinity of the

stagnation point, indicating a rate of high turbulence generation in this

region.
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lhe normalized primitive flow variables are shown in Figure 8. T'he
contour plot of the x component of velocity clearly shows the development of
the wall boundary laver and the entrainment of fluid into the jet, and the
plot of the y component of velocity depicts the decay in v as the stagnation
point is approached. The variation of static pressure shows a small normal
pressure gradient through the wall boundary layer and a generally favorabl«
pressure gradient along the wall as the flow accelerates to the right.

The free-upper-boundary geometry defined in Figure 6 has been analvyzed
by '\\'~vll<htvi117 for the case of laminar flow with the results presented in
Reference 9. A comparison of the MDRL laminar-flow solutions with those of
Wolfshtein for H = W = 1 and Reynolds numbers of 1 and 1000 is given in
Figure 9. Wolfshtein's turbulent-flow solutions are not for a solution
domain with H = W = 1, so the corresponding comparison for the case of

turbulent flow is not applicable.
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lhe Parallel-Plate Geometry

varallel-plate geometry is shown in Figure 10. A turbulent,
met ri plane jet discharges from a slot in the upper flat plate and
impinges normal to the ground plane a distance i below. As in the free-

upper-boundary case, the flow is solved only for the half plane (extending

a distance W to the right of the jet centerline) to take advantage of
reometric symmetry.  Again, no conformal mapping is needed since the bounda-

ries are rectanpular, and coordinate stretching is not used; thus,

The boundary conditions for this geometry are illustrated in Figure
10Ca). I'he values of vorticity, stream function, and turbulent kinetic
energy are specified within the entering jet, and along the upper wall they
result from the no-slip, impermeable wall constraint. The conditions
if:l;u)\;rtl n the remaining three boundaries are identical to those used f[or
free-upper-boundary geometry.

For the parallel-plate configuration, the accuracy of the assumption
of no gradients in the flow properties at the right boundarv deteriorates
as the ratio H/W of the solution domain is increased. A more general
right-boundary condition is one in which a normal-pressure-gradient profile

and a turbulent-kinetic-energy profile are imposed. The corresponding

vorticity and stream function distributions must then be computed iteratively

from the Poisson equation for stream function and the y-momentum equation,
where (9p)/(3y) is known. However, presently the required experimental
pressure-gradient and turbulent-kinetic-energy distributions are not known
for the configuration of interest, and the assumption of parallel flow is
invoked.

For the parallel-piate geometry, actual length=scale distributions
are similarly unknown. Consequently, the following constraints based on

simple order-of-magnitude arguments have been used to suggest physically

realistic distributions of £ Ly = L at a wall, X Q: at v = HI{Z,

I
. = H/2 and (d2)/(dy) = 0; and within the region of the entering jet given
by (0 £ x £ 0.25, v = H), £ = 0.5. These conditions are satisfied by the

following polynomials:

g =9 =212 J - (0 + 1) # O-I(l»t'll)
R N H H] " 4 ' (4=3)

0 5 % 5 0:d9
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In the region 0.25 X 0.5, the following combination of & and -‘,)
is used to represent 2
L= 4 [(U,\ =) o e = 0e29) ',]
Q23 Q...
(L=5

Fquations (4-3) through (4-5) are entirely geometric functions and, unlike
quations (4-1) and (4-2), do not contain exponential terms that depend on
the turbulent kinetic energy, Reynolds number, and empirical constants.
Figure 10(b) illustrates the length-scale distributions for a parallel-plate
geometry with H = 2.

Calculations were made with H = 2, W = 4.68, and a Reynolds number of
10 000 based on properties at the jet exit slot.

Figure 11 shows the computed primary flow variables. Vorticity is

convected to the right boundary of the solution domain with development of

an attached boundary laver on the lower surface and a separated boundary
layer on the upper surface. (Separation occurs on a solid boundary where
0, and in the resent configuration this occurs very near the slot edge.)

[he region of recirculating flow is clearly illustrated by the stream

function plot. 'he maximum value of turbulent kinetic energy imposed on the
entering jet is 0.04, and as the contour plot of k reveals, there is a
decay from this value throughout the field. Over the right half of the
solution domain, the turbulent kinetic energy is fairly uniform.

[he primitive flow variables are given in Figure 12. The contour
plots of the two velocity components define in more detail the region of

recirculation between the plates. Th

¢ distribution of

the

X component of

velocity illustrates the upper- and lower-wall boundary layers and the
entrainment of fluid into the jet. The sharp pressure gradient in the
impingement region is shown in the plot of the static pressure, where the
value of pressure at the stagnation point has been set equal to one.
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+.3 The Curved-Plate Geometry

A jet discharging from a curved upper surface and striking a ground
plane is the geometry of major interest in the present study since this
configuration best simulates, in a two-dimensional sense, a lift-jet issuing
from a simulated fuselage undersurface in ground effect. Figure 13 illus-
trates the curved-plate geometry for which vectored and unvectored jet
impingement flowfields are being measured in a MDRIL IRAD test series and

which have been computed in the present contract work.

hix)

e

Flow conditions

Unvectored jet

Equation defining upper surface, h(x)
H W W’ Re ¢

e o ol i = x  2x
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Figure 13 Definition of curved plate geometry and specification of flow conditions
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I'he conformal mapping scheme described in Section 3.1, wi
use o1 stretching functions, wis applied to this geometry, and
were carried out for the flow conditions H}N'r’i? iecd in Figure 1

In all cases, the mapping equations were solved for only
p].n]p; to treat the "umpl(-t(- flowfield for the vectored Tk i

mapping derivatives were reflected about the line of geometric

thout the
solutions
3.

the half-

he required

symmetry.

With regard to the half-plane, W denotes the width of the computational

plane, and W' denotes the half-width of the upper boundary of
plane. The half-width of the model, normalized by the jet slo

4.68, but a convergent solution of the mapping equations coulc

the physical
t width, is

not be

achieved when W' was extended to this value. The mapping procedure requires

that body slopes be finite, but for the curved-plate geometry,

(dy)/ (dx) is

extremely large in the vicinity of x = 4.68. The largest wvalue of W' for

which a convergent solution could be obtained decreased as H w

as reduced.

For this reason, the values of W' specified in Figure 13 are not equivalent

to the half-width of the curved-plate geometry.

he boundary conditions in the computational plane imposed on the

flowfield solution for the curved-plate geometry are shown in

Consider fi st the boundary conditions for the unvectored

Figure 14.

jet, Figure

14(b). Only the right half of the flowfield is solved since the problem is

again geometrically symmetric with respect to the jet centerline. The

vorticity, stream function, and turbulent-kinetic-energy profi

specified within the entering jet. On the upper and lower sur

les are

faces, the

boundary conditions result from the constraint of a no-slip, impermeable

wall. On the jet centerline the symmetry conditions are imposed, and at

the right boundary the flow properties are taken to be uniform
Lo €« It is recognized that this condition becomes increasing
with decreasing W, and in future work experimentally obtained

can be imposed.

with respect
ly inaccurate

flow quantities

Consider now the boundary conditions used with the vectored jet,

Figure 14(c). In this configuration the solution must be carr

ied out for

the entire flowfield with a width 2W in the computational plane.

Within the entering jet, the vorticity and stream function var

iations

are computed from the velocity profile obtained by rotating the profile

imposed in the unvectored case through an angle 9 with respect

line of geometric symmetry. I'he turbulent=kinctic-energy dist

to the

ribution is
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also obtained through an axis rotation of the unvectored k distribution.
Values of w, Y, and k on the solid surfaces are evaluated from the no-slip,
impermeable wall condition. The constraints given bv (4u)/(38) = (8k)/( )&)
= 0 are imposed on both the right and left boundaries of the solution domain:
however, the condition (8)/(3%) 0 is applied only at the left boundary,
and a © distribution (obtained through integration of a specified u profile),
is imposed on the right boundary. This is necessary to evaluate the lower-
wall stream function since 1 can no longer be integrated along the jet
centerline from the upper boundary to the lower boundary, as is done in
the unvectored case.
The length-scale distributions used are those given by Equations (4-3)
through (4-5) with H replaced by Yoous the coordinate of the upper surface.
For the unvectored configuration, 41 grid points were used in both the
and n directions in the finite-difference solution. For the vectored

configuration, 41 grid points were used in the & direction and 21 in the

direction.

4.3.1 The Unvectored Jet

Primary and primitive flow variables computed for the curved-plate
geometry with H = 4, W= 4.68, and Re = 10 000 are shown in Figures 15 and
16, respectively, for the case of normal jet impingement. The flow profiles
are qualitatively similar to those presented for the parallel-plate geometry.
However, in the curved-plate configuration, with the larger aspect ratio of
the solution domain (H/W), the region of recirculating flow does not lie
completely within the confining boundaries.

Solutions were computed for the configuration with Re = 100 000, but
they are indistinguishable from those computed for Re = 10 000. The reason
is apparent from Equation (2-39); for large Reynolds numbers, the normalized
molecular viscosity (1/Re) is a very small contribution to the effective
viscosity. The latter is dominated by the turbulent contribution, which is
controlled by the specified geometric length scales and not by the Reynolds

number based on the molecular viscosity.
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Primarvy and primitive flow variables computed for the curved-plate

geometry with H 2 and W }J.68 are shown in Figures 17 and 18 for Re
1000 and in Figures 19 and 20 for Re L0 Q00 Solutions carried out with
Re 100 000 are indistinguishable from the latter and are not shown.
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Figure 17 Primary flow variables for the curved-plate geometry
(H- 2, W~ 368, Re = 1000)
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\ in initial test case for the computer code used to compute the vec-—
red jet flowfield, a solution was carried out for an unvectored configura-
tion t erifv that in the limiting case of 0° the correct flow pattern i
t ! i 2 presents the primary flow variables for the complete
late geometry with H 2, W }.68, and Re 19 000. Since the
f the lower-surface stream function can be set t ero in this case,
t he robler s solved subject to Neumann boundary conditions on all three
rimar f w variables at both the left and right boundaries. That is, for
the unvectored jet the right boundary condition !]H(?) specified in
i gurs “(¢) was replaced by (3))/ (3%) 0, and the lower boundary condition
(0) wa replaced by & = Figure 22 clearly illustrates the
& f the vorticitv and stream function distributions and the syi ry
¢ Lur jlent-kinetic—energy distribution. The differences between the
I fields d for the full plane (Figure 22) and the half
ire 17) are attributed to the differenc in the finite-difference
1sed. The former were cal Late it ! rset esh to conserve
ting time.
tion was also carried out for tie Y LBTE irved-plate geometry
N 5 N 5 T 10) s and Re 1810 I8 In is vectored ]\'[, geometry
e of the stream function on the lower irface is not known a priori
less a simple horizontal momentum balance is applied issuming inviscid
ingement flow. In lieu of this assumption, the boundary condition imposed

right boundary was evaluated from the x-component-of-velocity computed
¢ unvectored jet with the same velocity profile. The resulting solu-
- t n was an unrealistic flow pattern, which indicates that physically correct

litions must be imposed at the flowfield boundaries. Work is continuing

ion of this flowfield,
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The accuracv of the assumed boundarv conditions and length-scale
distributions will be established through a comparison of the theoretical
flowfields with data obtained in an MDRL IRAD test program. The latter
is devoted to the measurement of planar jet impingement flowfields in close

ground effect for the flat-plate and curved-plate geometries considered

in the present contract work.

s Recommendat ions

Following a detailed comparison of the computed and measured flow

properties, the boundary and length-scale distributions should be improved

as necessarv to provide a more precise model of the flow. If a simple

parametric study cannot be used to provide improved length-scale variations,
1 two-equation model of turbulence is proposed to compute more accurate
length scales. The latter would then be used in the one-equation-model,
eliminating the additional machine computation time required to perform the
calculations with a two-equation formulation of the turbulence field. Using
the improved length scales, the flowfield solutions for the contiguration

of primary interest, the curved-plate geometry, should be carried out for
ranges in values of Re and H in order to establish the influence of the
latter on the turbulent entrainment and the surface static pressure distri-

butions.

With the completion of this etfort for the case of incompressible flow,
it is proposed that the analysis be extended to the case of compressible
flow for the am onfigurations. Such an extension is justified since

in realityv the fluid in the lift jet is at a temperature much higher than

that of the surrounding fluid, and the immediate flowfield has large density

gradients. For a VIOL aircraft in ground effect, this can be significant

f one or more of the following mechanisms:

(1) Density variations between the ambient air and the less dense lift
lift jet have an influence or the entrainment of air at the free
boundaries of the free jet and the ground wall jets.

(2) Mixing of the ambient entrained air with the hot lift jet fluid
thickens the free jet and the wall jet and leads to a decay in
the maximum temperature and velocity with distance from the 11ift
jet exit. The heated wall jet will eventually separate from the

ground because of buoyant forces.




a

analvsis

nt of the hot free jet can appreciably heat the ground

Impin
1rtac
lution the compressible Reynolds equations in conjunction with
nriate turbulence model and thermal energy equation could be used
fundamental understanding of these phenomena. The results of

would be velocity, pressure, density, and temperature

functions of the significant dimensionless parameters.
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PENDIX A: CENTRAL-DIFFERENCE APPROXIMATIONS

FOR THE DERIVATIVES

he second-order-accurate, central-difference approximations used in
retization of the differential equations are given in this appendix.
Pl

, written for a general variable ¢, are

finite-ditference formulas
;

sed in terms of point-of-the-compass notation defined in Figure A-]

both interior and boundary points.

NWW/] NW

. SWW
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Figure A-1 Gnid notation used in the central-difference approximation for the derivatives

r interior points and for upper- and lower-boundary points:

(A=1)
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for left-boundary points:

for right-boundary points:

for interior points and for left-and right-boundary points:

for upper-boundary points:
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NOMENCLATURE

empirical constant in turbulence model

coefficients in discretized form of the Poisson equation

empirical constant in turbulence model
finite-difference node spacing in direction

source term in discretized form of the Poisson equation
finite-differcnce node spacing in n direction

empirical constant in turbulence model

coefficients in discretized form of the transport equation

empirical constant in turbulence model

jet slot width at entrance plane to solution domain
source term in discretized form of the transport eacation

nozzle exit diameter in the free-upper-boundary geometry

east points in the finite-difference grid
conformal mapping function

stretching functions

functions specifying boundary conditions

ratio of finite-difference node spacings, a/b
height of jet entrance plane above ground (height of
computational plane)

function describing curved-plate geomet:y

V=1

turbulent kinetic energy
coefficients in the discretized form of the Laplace

equation

geometric length scales

length scale for dissipation
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mapping modulus

Reynolds number based on

to solution domain
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viscosity

grid

finite-difference grid
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jet properties at entrance plane
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southeast points in the
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velocity component in

velocity vector

jet centerline velocity
domain

velocity component in v
width of computational
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west points in the
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coefficient in general
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coefficient for diffusion

of the transport

of the transport

plane coordinate

term in discretized

the physical

form of

solution

plane

equation

equation;

equation

equation

the




turbulent (eddy) viscosity
mapping plame coordinate
molecular viscosity; mapping plane coordinate

effective viscosity
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- turbulent (eddv) viscosity
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kinematic molecular viscosity
computational plane coordinate
mass density
. molecular Prandtl number
. turbulent Prandtl number
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