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ABSTKACT

une of the major stumbling blocks to the more effective educational
use of computers 1s the lack of a natural means of communication between
the student and the computer. This report addresses the problems of
developing a system that can understand natural language (English) for
advanced computer-tased instructional systems. Training environments
impose the following requirements on a natural language understanding
system: (1) efficlency, (2) habitability, (3) self-teachability, and (U4)
awareness of ambiguitly. The major leverage points that allow these
requirements to e met are: ({) limited domain, (2) limited activities
within that domain, and (3) known conceptualizations of the domain. In
other words, we must know the problem area, the type of problem the student
is trying to solve and the way he should be thinking about the problem in
order to solve 1it.

The notion of semantic grammar 1s 1introduced as a paradigm for
organizing the knowledge required to understand language which permits
efficient parsin%. In semantic grammar, non-terminal categories are formed
on conceptual rather than synLac%ic bases. This allows semantic knowledge
to be integrated into the parsin% Erocess whenever it 1is beneficial. The
semantic grammar also lends itsel o a simple yet gowprful method of
handling pronominalizations, ellipses and other sentence fragments that
arise naturally in a dialogue situation.

The need for a succinct formalism for expressing semantic grammars led
tc the use of the Augmented Transition Networks (ATN). The abilit of
ATN-based semantic grammars to perform satisfactorily in an educatlonal
environment is demonstrated in the natural 1language front-end for the
SOPHIE system.
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Preface

With the advent of knowledge-based instructional systems that can
answer trainees' questions, critique their hypotheses and automatically
provide remedial hints, the need for a man-machine interface that
facilitates rather than hinders a student’s communication with the machine
becomes ever more pressing. This report describes a general technique for
generating "friendly", efficient and robust natural language front ends for
advanced 1instructional systems. The generality of this technique has been
proved by its successful application in a range of instructional systems;
its efficlency has turned out to rival the keywords parsers which underly
most of the classical CAI systems; its robustness has been attested to by
the fact that it has been able to handle nearly every serious query posed
to our electronic instructional systems in the course of a 1lesson or
exercise.

In this report we first discuss the essential properties that comprise
a "friendly" natural language front-end for an instructional system. Next,
we discuss some prior systems that have some, but not all, of the desired
capabilities and then we focus on the technical details underlying
"semantic grammars" -- a new technique for producing the desired
man-machine interfaces. Although there is little emphasis placed an the
analysis of how students wused the capabilities afforded by this kind of
natural language interface (made possible by semantic grammars), a
companion report contains the analysis of nearly twelve thousand natural
language interactions collected fraom students using instructional systems

built around this technique.
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Chapter 1
REQUIREMENTS FOR A NATURAL
LANGUAGE INTERFACE FOR INSTRUCTIONAL SYSTEMS

This research arose from the need for natural language interfaces to
complex instructional systems which underly reactive training environments.
As used here, the term "reactive training environment" refers to flexible
problem sclving, laboratory-like situations that have been implemented on a
computer. The environment is reactive in the sense that the computer can
(in addition to implementing the laboratory) monitor the  student’s
activities and provide tutorial feedback during the solution of problems.
A characteristic of such systems is that the computer-naive students are
involved 4in a training situation in which the computer is merely the
medium. Most certainly these students are not interested 1in state-of-art
man-machine communication; they must be free to concentrate on solving

their problems and learning from their solution paths and errors.

This 4instructional environment places constraints on a natural
language understanding system that exceed the capabilities of all existing
systems. These constraints include: - (1) efficiency (2) habitability (3)
self-teachability and (4) the ability to exist with ambiguity. 1In the
remainder of this chapter we will explore why these are important, and then

provide an overview of the remainder of this report.

Requirements
A primary requirement for a natural 1language processor, 1in an

instructional situation, 1s speed. Imagine the following setting: the
student 1is at a terminal actively working on a problem. He decides that he
needs another plece of information to advance his solution, so he
formulates a query. Once he has finished typing his question, he will wait
for the system to give him an answer before he continues working on his
solutions. During the time it takes the system to parse his query, the
student 1is apt to forget pertinent information and 1lose 1interest.
Psychological experiments have shown that response delays longer than two
seconds have serious effects on the performance of complex tasks via
terminals (Miller 68). 1In these two seconds, the system must understand

the query; deduce, infer, lookup or calculate the answer; and generate a




response. (1)

The second requirement for a natural language front-end 1is
habitability. Any natural language system written in the forseeable future
is not going to be able to understand all of natural language. What it
must do 1s characterize and understand a useable subset of the language.
Watt (1968 p. 338) defines a "habitable" sub-language as "one in which its
users can express themselves without straying over the language boundaries
into unallowed sentences". Very intuitively, for a system to be habitable
it must, among other things, allow the user to make 1local or minor
modifications to an accepted sentence and get another accepted sentence.
Exactly how much modification constitutes a minor change has never been
specified. Some examples may provide more insight into this notion.

1) Is anything wrong?

2) Is there anything wrong?

3 %g Eg:;g :gmggggngw:ggngaith section 37

5) Does it looz to gou li%e section 3 could have a problem?
If a problem solving system accepts sentence 1, it should also accept the
modifications given in sentence 2 and 3. Sentence 4 presents a minor
syntactic extension which may have major repercussions in the semantics but
which should also be accepted. Sentence 5 is an example of a possible
paraphrase of sentence 4 which 1s beyond the intended notion of
habitability. Based on the acceptance of sentences 1-4, the user has no
reason to expect that sentence 5 will be handled.

Any sub-language which does not maintain a high degree of habitability
is apt to be worse than no natural language capability at all. Because, in
addition to the problem he 1is seeking information about, the student 1{s
faced, sporadically, with the problem of getting the system to understand
his query. This second problem can be disastrous both because it occurs
seemingly at random and because it 1s 1ill-defined. In an informal
experiment to test the habitability of a system, the authors asked a group

of four students to write down as many ways as possible of asking a

(1) Enother effect of poor response tlime which 1s critical to 1Intelligent
monitoring systems 1is that more of the student’'s searching for the answer
is done internally (i.e. without using the system). This decreases the
amount of 1nforma{10n the tutorin% system receives and increases the amount
of 1induction that must be performed, making the problem of fiﬁuring out
what the student 1is doing much harder (e.g. the student won’t show his
work" when solving a problem; he will just present the answer).

.




particular question. The original idea was to determine how many of the
various paraphrasing would be accepted. The students each came up with one
phrasing very quickly but had tremendous difficulty thinking of any others,
even though three of the first phrasings were different! This experierice
demonstrates the lack of student’s ability to do "linguistic" problem
solving and points out the importance of accepting the student’s first
phrasing.

An equally d1important aspect of the habitability problem is the
multi-sentence (or dialogue) phenomena. When students use a system that
exhibits "intelligence" through its inference capabilities, they quickly
start to assume that the system must also be intelligent 4in its
conversational abilities as well. For example, they will frequently delete
parts of their statements which they feel are obvious, given the context of
the preceding statements. Often they are totally unaware of such deletions
and show surprise and/or anger when the system fails to utilize contextual
information as clearly as they (subconsciously) do. The use of context
manifests itself in the use of such linguistic phenomena as
pronominalizations, anaphoric deletions and ellipses. The following
sequence of questions exemplifies these problems:

6) What is the population of Los Angeles?
g What is it for San Francisco?

What about San Diego?

The third requirement for a natural language processor is that it be
self-teaching. As the student uses the system, he should begin to feel the
range and limitations of the sub-language. When the student uses a
sentence that the system can’t understand, he should receive feedback that
will enable him to determine why it can’t. There are at least two kinds of
feedback. The simplest (and most often seen) merely provides some
indication of what parts of the sentence caused the problem (e.g. unknown
word or phrase). A more useful kind of feedback goes on to provide a
response based on those parts of the sentence that did make sense and then
indicate (or give examples of) possibly related, acceptable sentences. It
may even be advantageous to have the system recognize common unacceptable
sentences and 1in response to them, explain why they are not in the

sub-language. (See chapter 6 for further discussion of this point.)

3




The fourth requirement for a natural language system 1is that it be
aware of ambiguity. Natural language gains a good deal of flexibility and
power by not forcing every meaning into a different surface structure.
This means that the program that interprets natural language sentences
must be aware that more than one interpretaticn is possible. For example,
when asked:

(9) Was John believed to have been shot by Fred?
one of the most potentlially disastrous responses 1is "Yes". The user may
not be sure whether Fred did the shooting or fhe believing or both. More
likely, the user, being unaware of any ambigulty, assumes an interpretation
that may be different than the system’s. If the system’s interpretation 1is
different, the user thinks he has received the answer to his query when in

fact he has received the answer to a completely independent query.

Either of the following is a much better response:

(10; Yes, it 1is believed that Fred shot John.

(11) Yes, Fred believes that John was shect.

The system need not necessarily have tremendous disambilguation skills, but
it must be aware that mis-interpretationc are possible and inform the user
of its interpretation. 1In those cases where the system makes a mistake the
results may be annoying but should not be catastrophic.

This report presents the development of a technique that we have named
"semantic grammars" for building natural language processors that satisfy
the above constraints. Chapter 2 discusses other systems which attack some
of these problems. Chapter 3 presents a dialogue from the "intelligent"
CAI system SOPHIE, that we wused to refine and demonstrate this technique.
This dialogue provides concrete examples of the kinds of linguistic
capabllities that can be achieved using semantic grammars. Chapter 4
describes semantic grammar as it first evolved in SOPHIE, and points out
how 1t allows semantic information to be wused to handle dialogue
constructs, and to allow the directed 1ignoring of words in the input.
Chapter 5 discusses the limitations that were encountered in the evolution
of semantic grammars in SOPHIE as the range of sentences was increased and
how these might be overcome by using a different formalism -- augmented

transition networks (ATN). Chapter 5 also reports on the conversion of the

- l§ -

bt |




——

SOPHIE semantic grammar to an ATN, and the extensions to the ATN formalism
which were necessary to maintain the solutions presented 1in chapter 4.
Chapter 5 also includes comparison timings between the two versions of the
natural language processor. Chapter 6 describes experiences we have had
with SOPHIE, and presents techniques developed to handle problems in the
area of non-understood sentences. Chapter 7 suggests directions for future

work.




Chapter ¢

RELATED SYSTEMS

In this chapter we will describe a numbter of different techniques that
have evolved from research in the area of natural language understanding as
applied to practical tasks. Our purpose 1s to describe a set of techniques
that have been developed to handle a natural language input throughout a
range of complexity. we also seek to dispel the 1dea that there is a
"natural language" as it applies to inter facing to computer systems, or

that there exists one "best" technique for every application.

KEYWORD SCHEMES

Perhaps the oldest and simplest method of dealing with unrestricted
natural language was through keyword parsing. The technique was introduced
by Welizenbaum (1966a) and has been used and extended by others (e.g.,
Welzenbaum 1966b, Brown et al. 1973, Shapiro et al. 1975, Ceclby 2t al.
1974). Using this parsing scheme, an input sentence 1is searched for "key"
words. Each keyword 1is assoclat2d with a collection of patterns that are
then tested against the complete input. If a pattern matches, an action
associated with that pattern (typically a reassembly rule which constructs
an output sentence by reassembling pieces of input) is executed. This
action represents the "meaning" of the sentence to the system (i.e. the
sentence’s semantics).

Keyword analysis schemes have the advantage of being fast and of
allowing the user great freedom of expression since any number of
extraneous words can be 1included as 1long as the keywords appear. A
particular parser can also be changed easily (by adding new rules) until
such time as the rules begin interacting, at which point it 1is unclear
which rule to use. When interactions do begin to occur, keywords can be
assigned an "importance" number and the rule with the highest number can be
used. However, conflicts may still arise when different keywords of equal
importance appear in the same sentence,.

Keyword techniques werk well in situations where the actions that the
system wishes to take in response to a sentence correspond in a simple way
to the words (i.e. the concepts are not typically expressed as multiple

word phrases, and words do not have multiple interpretations). However,
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they are weak in situations in which  concepts are complex enough to
require embedding or in which quantification(2) is required, since their
semantic interpretation is essentially one level. In these cases, keyword
patterns become more cumbersome and inefficient to use than more structural

techniques. For example, consider the sentence:

(1) I think QY has an open emitter and a shorted base collector junction.

To recognize this sentence requires a very detailed keyword pattern which
could be "keyed" equally well, or equally poorly, off any of the words:
think, Q5, open, emitter, shorted, base or collector. The main failing of
the keyword technique is that 1it’s incapable of capturing any of the

structure of the language it 1s trying to characterize.

PARRY

PARRY 1s a ongoing project to develop a dialogue system that simulates
paranoid behavior (Colby 1973, Colby et al. 1974). The system must respond
to any possible question and must "understand" the questions well enough to
exhibit paranoid behavior. To these ends, Colby has extended the keyword
parsing techniques introduced by Weizenbaum by adding a second level of
matching. After a preprocessing phase collapses compound words,
canonicalizes similar words, performs minor spelling correction and deletes
unrecognized ;ords, the input is segmented at certain keyword
boundaries.(3) Each segment 1s then matched against a collection of
segment patterns. The resulting 1ist of recognized segments is then
matched to a collection of complex patterns. Patterns have reassembly
rules associated with them that construct the response.

Two important restrictions that should be placed on the application of
keyword schemes to avoid mis-understandings (i.e. to avoid having patterns

apply when they shouldn’t) have arisen from Colby’s work. OCne is that, at

(2) Quantificatlon refers to the problem of having a noun Pﬁrase that can
range over a set of values, e.f. "some cars have engines", "all cars have
engines". One of the problems with Qquantification is determinIng the scoge
of the quantification with respect to the rest of the sentence, especially
when the rest of the sentence contains another quantifier.

(3) The fragmentation technique (which is critical to proper ogeration) was
developed by Wilka working in machine translation (1973a, 1973b). ™“e list
of segmentation words includes punctuation marks, sub jur :tives,
conjunctions and prepositions.

w T -




most, one element should be ignored at each level of matching. Segment
matches should account for all but one word. Complex patterns should
account for all but one segment. The other restriction is that patterns
should require that their elements occur 1n a particular order. The
following example (from Colby et al. 1974) demonstrates the usefulness of
ignoring words such as "well" in sentence 3, and the importance of word
order; without word order restrictions, any pattern that matched 2 would
also match 3.

15] fotal aes o

PARRY has demonstrated the capability of dealing with a relatively
large number of concepts at a shallow level. The power in PARRY s approach
lies in 1its ability to tolerate unknown words. As mentioned, this
fuzziness 1is 1implemented by allowing the deletion of single elements from
both levels of matching. Unfortunately the underlying semantics of PARRY's
task, indeed the goals of the task 1tself, are vague, which makes
attributes such as scope and habitability hard to evaluate. Furthermore,
the two-level pattern matching technique lacks the precision required in a
problem solving situation in which many regularities cannot be captured by

one-level embedding.

NLPQ

Heidorn (1972,1974,1975) developed an automatic programming system
called NLPQ which allows users to describe simulation problems in English.
The system takes an English partial description of a problem and fits it
into an internal description language, bullding pleces of the problem.
From the partial internal description, questions are generated that request
missing pleces of information. wWwhen the description is complete, the
system can generate a GPSS program or an English description of the model
it has built from the user’s description. The user can also ask questions
about the present model, and make changes and additions to it. The English
processing 1s done using augmented phrase structure rules. The phrase
structure component 1s syntax-based -- 1t looks for things like noun
phrases -- with semantic restrictions being carried along in features that

are tested 1in conditions on the phrase structure rules. The structure
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building augmentations create semantic/conceptual network structures,
called segments, that represent the semantics of the phrase. Much of the
system’s success appears to be its close match between the structure of
segments and the way English 1s used to describe modelling problems. No
information on the use of NLPQ by naive users nas been published, so it 1s

difficult to evaluate the system’s habitability.

CONSTRUCT

CONSTRUCT 41s a general system to do natural language processing
developed at the Institute for Mathematical Studies in the Social Sciences
at Stanford University (Smith et al. 1974). Its major application 1s in a
text-based, question answering system for elementary mathematics (Smith,

N.W. 1974). The system answers questions such as:

(4) Are there any even prime numbers that are greater than 2?

(5) Is the sum of 5 and 2 less than the product of 5 and 2 but greater
than the difference of 5 and 2?

The semantic basis of the system 1s a collection of procedures for
generating and manipulating sets and numbers. The semantics of question 4
would be "are there any elements in the set created by intersecting the set
of even numbers, the set of prime numbers and the set of numbers greater
than 2?" As all of the sets in the example are infinite, the procedures
know about dealing with intensional as well as extensional descriptions of
sets.

The meaning of a sentence is determined by the following process.
First a preprocess phase occurs during which (1) abbreviations are
expanded, (2) synonyms are canonicalized, (3) compound word and common
phrases are collapsed to a single word representation, (4) noise words are
eliminated and (5) each word 1s replaced by 1its 1lexical category. The
input 1s then parsed with a context..free grammar with the semantic
interpretation occurring in parallel via semantic construction functions
assoclated with each grammar rule. Whereas this procedure is clearly
inadequate if a traditional syntactic grammar is wused -- no reasonable
semantic function could be associated with the rule S := NP VP -- the
CONSTRUCT grammar is built around the semantic rules using categories that

o [




capture concepts 1in the application domain. For example, the grammar
contains the grammatical category SUBST which corresponds to the semantic
concept of a constructive set. This cuts across traditional category
boundaries as seen in the sentences from (Smith et al. 1974):

Is 2 a_factor of 4?

How many factors of 12 are even?
Give me the factors of 12 that are between 1 and 6.

The underlined portions would all be parsed into the SUBST category,
although their traditional categories would be noun phrase, adjective, and

prepositional phrase.

RENDEZVOUS
Codd (1974) is designing a natural language system, called RENDEZVOUS,

to support the needs of casual users of data bases. One problem that Codd
has addressed, which has been neglected in previous systems, is what action
to take if a user’s query is beyond the restricted language unisrstood by
the system. A central notion to Codd’s proposed solution to this problem
is that of a "clarification dialogue" -- a system initiated dialogue that
includes queries about an unacceptable utterance that attempts to arrive at
the user’s meaning. Codd points out that a clarification dialogue must be
embarked upon very carefully. For example, if the system encounters the
unknown word "concerning", one of the worst possible responses is "What do
you mean by the word ‘concerning’?" Almost any response to such a question
would be beyond the capabilities of the system. Any clarification dialogue
must be of "bounded scope" and guided by those parts of the query which the
system can understand. RENDEZVOUS also employs re-statement of a user’s
query to confirm the intent of the query and to point out ambiguities., The
range of language accepted by RENDEZVOUS, indeed even the method used to
extend the range, 1s unclear. The aspect of RENDEZVOUS that is of interest
here 1s the extent to which 1t has been designed as a "friendly" system.

LUNAR
The LUNAR system (Woods 1973a; Woods et al. 1972) 1s a natural

language understanding implementation that combines a general semantic
interpretation mechanism (Woods 1967,1968) with a large scale grammar of
English (Woods 1970; Woods et al. 1972). LUNAR was designed to allow a
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lunar geologist to use English to query the chemical analysis data
collected from the moon missions. Typical questions the system answers

are.

What 1s the average concentration of aluminium in high alkali rocks?

Which samples have greater than 20% modal Plagioclase?

The processing of a query occurs in three major phases. During the
first phase, the syntactic component derives the "deep structure" of the
sentence.(4) The syntactic component uses a general transformational
grammar of English syntax expressed as an augmented transition network (see
Chapter 5). In the second phase a general, rule-driven semantic
interpretation procedure produces the representation of the meaning of the
sentence as a program 1in a formal retrieval language.(5) The semantic
interpretation rules are tree-structured pattern-matching rules that are
used 1in groups to extract the meaning of different pieces of the syntax
tree. The third phase 1s the execution of the formal expression to produce
the answer to the request. The formal query language is a generalization
of the predicate calculus that has been carefully designed to allow natural
translation from English. The strength of the LUNAR system lies in 1its
mechanisms to deal with quantification, conjunction, and relative clauses,
and these are direct results of the carefully designed formal query

language.

Discussion

The notion of an augmented phrase structure grammar provides a useful
base for comparison between these systems.(6) An augmented phrase
structure grammar contains two components. One is a set of context-free

phrase structure rules. The other is a corresponding set of functions,

(4) This 1Is the llngulstic deep structure hypotheslzed by CThomsky (Chomsky
1965) which has a central role in the theory of transformational grammar.
(5) The nction that the meaning of a sentence 1s a program {is generally
called '"procedural semantics". Procedural semantics is in general use for
question answering applications. It does not, however, constitute a
complete theory of meaning. In particular it does not account for such
phenomena as declaratives, uses of temporal references, and belief
structures.

(6) The i1dea of associating additional information with a phrase structure
%SZT?ar has appeared in various forms since early compiling systems (Irons
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sometimes arbitrary, sometimes restricted, augmenting each of the rules
that can be used to block the application of the context-free rules and to
maintain structures. While the paradigm of augmenting phrase structure
grammars is followed by a large number of natural language systems,
important differences exist with respect to what type of information is
encoded in the grammar. For example, the LUNAR system uses a purely
syntactic grammar(7) and uses the augments to perform syntactic operations
such as subject-verb agreement and to maintain the structure of the
syntactic tree. NLPQ uses a syntactic grammar restricted by usually
semantic features and uses the augments to perform parallel semantic
interpretation. CONSTRUCT performs the semantic interpretation in parallel
with a set of context-free rules that are semantically oriented. PARRY s
patterns, 1if viewed as limited, phrase-structure grammar rules, are
directly linked to the semantics of the system. The decision about how
much semantic information to encode in the grammar 1s a trade-off between
efficiency and generality. Each of the systems presented here rnprospnﬁs a
defensible position along this spectrum.

when we Dbpegan developing the SOPHIE system(8) we explored the
possibility of using, intact, the syntactic component of the LUNAR system.
Since the LUNAR syntactic component was buillding a linguistically motivated
description, as oppcsed to the task oriented descriptions being built by
the other systems, we felt its transferability to other domains would be
high. We found the grammar to be very adequate, parsing many of the most
complicated sentences we felt SOPHIE would ever need to understand.
Unfortunately, on simple sentences it provided more information about the
sentence than we needed. For example, tense information was seldom needed
and 1in those cases where needed, 1t could be extracted from the
relationships between concepts. The quantification and relative clause

mechanisms were oriented towards Woods® formal query language which was not

(7) The augmented transltion nelwork Is an extenslon of a recursive
transition network that has tne power of a phrase structure grammar. For
this reason we can classify it here as using an augmented phrase structure
grammar. We will argue later that the transition network has conceptual
advantages over phrase structure rules but this aoes not affect this
discussion whic points out the difference in the kind of information
captured in the grammar.

(83 A SOPHisticated Instructional Environment for Lﬂachiné, electronic
troubleshooting. Chapter 3 provides examples of SOPHIE s language
requirements.
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natural for our use. The use of conjunction 1in our domain is
straightforward and relatively predictable, unlike its use in the LUNAR
domain. All in all we had the feeling of using a microscope when we only
needed a magnifying glass! The underlying semantic structure of our system
could not take advantage of such detail. Added detail is acceptable (it
can always be ignored) except that the perception of such detaill takes
time, which 1s a scarce commodity. The LUNAR system was taking 2 or 3
seconds to syntactically parse a sentence and another 5 to semantically
interpret 1t. This experience led us to explore ways in which the
semantics of the system could be used to speed the understanding process.

The technique we developed (described in Chapter 4) has much in common
with both NLPQ and CONSTRUCT. However, significant differences arise from
the emphasis we have placed on dealing with dialogues, and on the
construction of a friendly system. This has caused us to exploit two uses
of semantics (during parsing) not found in these other systems. One is the
insight provided into the nature of ellipsis and deletion 1in dialogues.
The other 1s the basis provided for characterizing a habitable language.
In Chapter 4, we shall discuss our concept of a semantic grammar and how it
allows exploitation of these two advantages. Before we get into the
details of how this 1s accomplished, we present in the next chapter an

example of what has been accomplished.
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Chapter 3
SAMPLE DIALOGUE

Before delving into the structural aspects and technical details of
the semantic grammar technique, we would first like to provide a concrete
example of the dialogues 1t has supported. This chapter presents an
annotated dialogue of a student wusing the "Intelligent" CAI system
SOPHIE. (9) SOPHIE was developed to explore the use of artificial
intelligence techniques in providing tutorial feedback to students engaged
in problem solving activities. The particular problem solving activity
that SOPHIE 1s concerned with is the troubleshooting of a malfunctioning
piece of electronic equipment. SOPHIE models the piece of equipment and
answers the student’s requests for measurements and other information to
aid him in debugging the equipment. More important, throughout the problem
solving session, SOPHIE can evaluate the logical consistency of a student’s
nhypothesis or generate hypotheses which are consistent with the behavior
the student has thus far observed. (10) In the dialogue, the student’s
typing 1s underlined. Even though the dialogue deals with electronic
jargon, the linguistic issues it exemplifies occur 1in all domains. The
annotations (lower case, indented) attempt to point out these problems and
should be understandable to the non-electronics oriented reader.

WELCOME TO SOPHIE - A SIMULATED ELECTRONICS LABORATORY.

The circuit (Figure 3.1) is based on the Heathkit IP-28 power supply.

The 1P-28 is a reasonably sophisticated power supply with both current

limiting and voltage limitin behavior. These two interrelated

feedback loops make troublﬂshooténg this circuit non-trivial.
>>INSERT A FAULT

The student tells SOPHIE to give him a fault which he can

troubleshoot. SOPHIE randomly selects a fault, inserts it into a model

of the 1instrument and tells the student how the front panel controls
are presently set.

THE INSTRUMENT HAS A FAULT AND ITS PRESENT CONTROL SETTINGS ARE:

C 1, CURRENT CONTROL-FROM 0.0 (MIN CURRENT) TO 1.0
CR HIGH CURRENT RANGE SWITCH, HIGH=1 AMP, LOW=.1 AMP
LOAD 1000 LOAD RESISTANCE IN OHMS

vC 1.0 VOLTAGE CONTROL-FROM 0.0 (MIN VOLTAGE) TO 1.0
VR HIGH VOLTAGE RANGE SWITCH, HIGH=30, LOW=10 VOLTS

(9) The dialogu@ Is Tntended to demonstrate SOPHIE s IIngulstic
capabilities an while it touches upon the major features of SOPHIE, it is
not meant to exnibit the logical or deductive cagabilitiﬂs the system.

(10) The reader 1s encouraged to see (Brown and Burton 1975) for further
examples and descriptions of SOPHIE s tutorial and inferential
capabilities.
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>>WHAT IS THE QUTPT?
QUTPT => OUTPUT
THE UUTPUF VOLTAGE IS 1.2 VOLTS.

SOPHIE corrects the student’s Lypin% mistake.
Notice that "the output" was disamblguated as the output voltage.

IF YOU ARE NOT SURE WHETHER A VALUE IS CORRECT, YOU CAN ASK "IS THAT
VALUE CORRECT?"

The system points out a feature that the student may not otherwise be
aware of. "Correct" here means what it is in a working instrument.

>>1S THAT RIGHT
IN A WORKING CIRCUIT THE OUTPUT VOLTAGE IS 30.1 VOLTS.
THAT VALUE IS INCORRECT.

"That" here refers to the value of the previous measurement. SOPHIE,
in addition to the faulted instrument, has a working circuit which can
be used to take reference weasurements.

>>WHAT IS THE VOLTAGE BETWEEN THE CURRENT LIMITING TRANSISTOR
.. .AND THE CONSTANT CURRENT SOURCE?
THE VOLTAGE AT NO IS 2.08 VOLTS.

In addition to specific part names, SOPHIE recognizes references to
Parts by their section. Notice that although the sentence says
voltagn between x and y", it really means "voltage at z with respect
to ground". The output routines rephrase the input 1n a simpler form
(1.e. between x and y reduces to N4 g

%ngAT 1S IT BETWEEN THERE AND THE BASE OF Q6

Here “it" refers to "the voltage" and "there" refers to NUu.
Also notice that "between" has to be treated differently,
i.e. two nodes are explicit now.

S _THERE ANY RIPPLE IN THE VOLTAGE AT THE BASE OF
LS.

Qu?

))A
I it R

-

Ll

SOPHIE recognizes that the student is moving into an area that it is
unable to handle., This is currently done b% keyword recognition (e.g.
ripple) but points out a technique that ould be incorporated 1n
other aspects of the system as well

>>WHAT IS THE BASE CURRENT OF
Tt ROAMPS.

SOPHIE can answer questions about current, resistance, and power
dissipation as well as voltage. The output and 1input routines know
about unit prefixes.

>>THRU THE EMITTER?
THE EMITTER CURRENT OF Q3 IS -.26 MILLIAMPS.

This 1s a type of sentence fragment that occurs froquontl{ in
dialogues tha we will refer to as an ellipsis. Rather ha
specifying a complete thought, an ellipsis only gives that plece of
the thought which contrasts an earlier thought. Notice that the
referent cannot be determined on syntactic grounds (as is possible
with the ellipsis "the emitter current"; {Pt his 1s the sort of
statement a student might make 1if the last answer had caused a slight
shifting of his thinking.

>>COULD THE PROBLEM BE THAT %ﬁ 1S BAD?
PLEASE BE S S FAULTED.

- 16 =




The student develops an idea about what 1s wrong and asks to have it
evaluated.

>>COULD %T BE SHSRTEQ?
T TRANSISTOR CURRENTLY IMPLEMENTED ARE: ALL

JUNCTIONS SHORTED OR ONE JUNCTION SE" "TED WITH THE OPPOSITE
TERMINAL MODELLED OPEN.

A hypothesis must be completely (or non-ambiguously) specified before
evaluation can take place. Even though the last statement generated
anf orrgr condition, 1t 41s still used to determine possible pronoun
referents.

SHSULD Q5 HAVE ALL JUNCTIONS SHORTED?
>

0
HH%EE gEggINAL SHOULD BE MODELLED OPEN?
>, A
OK, I LL_LET Q5 HAVE ITS EMITTER COLLECTOR JUNCTION SHORTED AND ITS BASE OPEN

At this point, SOPHIE looks back over the student’s measurements to
determine 4if he should have "known better". See (Brown and Burton
1975) or (Brown et al. 1975) for further description.

HMMM, LET ME COMPUTE ON THAT FOR A MINUTE.

When the system knows there maybe a long wait, a "delaying" message 1is
printed to let the student know something 4s happening.

WHEN THE SETTINGS WERE:
CCc=1.0, CR=HIGH, LOAD=1000, VC=1.0, VR=HIGH
THAT FAULT CONFLICTS WITH THE FOLLOWING MEASUREMEN?.
YOU OBSERVED THAT THE VOLTAGE BETWEEN N4 AND N5 WAS 1.28 VOLTS.
IF Q5 HAD ITS EC SHORTED AND ITS BASE OPEN IT WOULD BE 1.1 MILLIVOLTS.
IN A WORKING CIRCUIT IT IS 1.43 VOLTS.

BUT THAT FAULT DOES EXPLAIN THE VALUES YOU OBSERVED FOR
THE QUTPUT VOLTAGE, THE VOLTAGE AT N4, THE VOLTAGE BETWEEN N4 AND N10,
THE EMITTER CURRENT OF Q3 AND THE BASE CURRENT OF Q3.

>>WHAT COULD BE WRONG

The student cannot go further and asks for assistance. SOPHIE
proposes some possible hypotheses for the student to explore.

THERE ARE LOTS OF FAULTS WHICH WOULD EXPLAIN THE MEASUREMENTS YOU
HAVE TAKEN. HERE ARE SOME POSSIBILITIES:

THE RESISTANCE OF R8 CHANGES

THE LEAKAGE RESISTANCE OF CU4 CHANGES

THE BETA OF Q3 CHANGES

R15 IS OPEN

Q6 IS FAULTED

i;IF R8_WERE K, WHAT WOULD THE OUTPUT VOLTAGE BE?

UNDER THE PRESENT SETTINGS, THE OUTPUT VOLTAGE WOULD BE .904 VOLTS.
IN A WORKING CIRCUIT IT IS 30.1 VOLTS.

The student doesn’t believe one of the possibilities so he checks it
using a hypothetical statement. Even though the voltage in this case
and that 1in the case of a faulted clrcuit are not the same, they
qualitatively agree.

- 17 =




>>REPLACE Qb
The student guesses maybe Q6 1s bad and tries to replace it. When the

student replaces a part SOPHIE queries him to insist that he know how
it is faulted.

I AM GOING TO ASK YOU SOME QUESTIONS ABOUT HOW Qu IS FAULTED.
ARF ANY JUNCTIONS SHORTED?

NHICH JUNCTIONS ARE SHORTED?
> ALL

If the response to a query is not understood, further specification of
the expected response 1s given.

PLEASE SPECIFY THE JUNCTIONS AS EC EB AND CB (SEPARATED BY SPACES).

WHICH JUNCTIONS ARE SHORTED?

> EC_ EB AND CB

Q6 IS NOT FAULTED IN THAT MANNER.
The part would be replaced if any of the junctions had been shorted.
SOPHIE would normally have criti?ued the student’s hypothesized fault.
This was not included in the dialogue to save space.

Q6 NOT REPLACED.

>>VOLTAGE DROP ACROSS RE
Tt G -.028 MILLIVOLTS.

Some noun phrase utterances are recognized as questions.

>>WHAT ABOUT R;?
1y S8 R3 IS 71.6 VOLIS.

Another ellipsis. The context of the previous question {is wused to
determine "what" about R3.

>>REPLACE Hi

IS K3 R SHORTED OR DOES IT HAVE THE WRONG VALUE?
> IT IS OPEN

R3 REPLACED

>>1S THERE ANYTHING ELSE WRONG

A
NU

After fixing the fault, the student uses SOPHIE to explore other
aspects of Lh° circuit s behavior.

>>1F C2 WERE LEAKY, WHAT WOULD THE VOLTAGE ACROSS IT BE?

The referent to "it" in this case occurs earlier in the same sentence.
1% IT OKaf IF I USE 10000 FOR THE LEAKAGE RESISTANCE OF C2?
/7
IF THE LEAKAGE RESISTANCE OF C2 WERE 10000
UNDER THE PRESENT SETTINGS, THE VOLTAGE ACROSS C2 WOULD BE 26.3 VOLTS.
IN A WORKING CIRCUIT IT IS 28.9 VOLTS.
>>WHAT HAPPENS IF C1 SHORTS?
U

O S
CC=1.0, CR=HIGH, LOAD=1000, VC=1.0, VR=HIGH,
IF C1 WERE SHORTED, D3 WOULD BECOME OVERLOADED.

In the case where nothing more 1interesting happens, "what happens"
questions default to the output voltage.

>>IF a% HAS_AN OPEN EMéTTER AND A SHORTED BAE COLLECTOR JUNCTIONN oF
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«w s LHE XSEIAQE LIMITING SECTION AND THE VOLTGEA REFERENCE SOURCE?
BAE =
VOLTGEA => VOLTAGE

Several examples of the use of conjunction. Imagine the student’s
frustration i1f he is forced to type this query over because of
spelling mistakes.

IF Q6 HAD ITS BASE COLLECTOR JUNCTION SHORTED AND ITS EMITTER OPEN,

UNDER THE PRESENT SETTINGS:
CC=1.0, CR=HIGH, LOAD=1000, VC=1.0, VR=HIGH

THE VOLTAGE BETWEEN N5 AND N13 WOULD BE THE SAME, I.E. 28.9 VOLTS.

A hypothetical question is first tried under the present settings. If
no dfffarence is noted, other settings are tried.

LET ME TRY ANOTHER CASE WHICH USUALLY POINTS OUT PROBLEMS IN THAT
SECTION OF THE CIRCUIT.
UNDER THE SETTINGS:
CC=.9, CR=LOW, LOAD=10, VC=1.0, VR=LOW
THE VOLTAGE BETWEEN N5 AND N13 WOULD BE 8.94 VOLTS.
IN A WORKING CIRCUIT IT IS 9.57 VOLTS.

giWHAT IS THE QUTPUT VOLTA%E WHEN THE VOLTAGE CONTROL IS SET TO .5?
w ! B 0 .
THE OUTPUT VOLTAGE IS 15.6 VOLTS.
A hypothetical question can involve the changing of a control. If

th%s happens the contrcl is left at the new setting and the student is
old so.

R IS O SEE TO .
H 1 OLT ROL NOW SET AT .7
THE OUTPUT VOLTAGE IS 21.4 VOLTS.

Context determines which measurement should be taken and which control
should be set.

2292
WITHR THE VOLTAGE CONTROL NOW SET AT .9
THE OUTPUT VOLTAGE IS 27.2 VOLTS.

>>WHAT IS THE CURRENT THRU THE CC WHEN THE VC IS SET TO 1.07?
WITH THE VOLTAGE CONTROL NOW SET AT 1.0

i J .
THE CURRENT THRU THE CURRENT CONTROUL IS 30 MILLIAMPS.

CC and VC are abbreviations. Notice that controls are also "parts"
that can be used in measurements.

>>WHAT IS IT WITH IT SET TO .82
WITH THE VOLTAGE CONTROL NOW SET AT .8
THE CURRENT THRU THE CURRENT CONTROL IS 24 MILLIAMPS.

Here the system must correctly instantiate two occurrences of "it".
The referent to the second "it" could be either CC or VC since these
are both controls.

>>GOODEYE
GOUODBYE
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Chapter U
SEMANTIC GRAMMAR

INTRQDUCTION
In Chapter 1 we described the requirements for a natural language
processor in a learning environment. Briefly, they are efficiency and
friendliness over the class of sentences that arise in a dialogue
situation. The major leverage points we have that allow us to satisfy
these requirements are (1) limited domain, (2) limited activities within
that domain, and (3) known conceptualizations of the domain. In other
words, we know the problem area, the type of problem the student is tryine
to solve, and the way he should be thinking about the problem in order to
solve it. What we are then faced with 1is taking advantage of these
constraints in order to provide an effective communication channel.

Notice that all of these constraints relate to concepts underlying the
student's activities. In SOPHIE, the concepts include voltage, current,
parts, transistors, terminals, faults, particular parts (e.g. R9, Q5,
etc.), hypotheses, controls, settings of controls, and so on. The
(dependency) relationships between concepts 1include things such as:
voltage can be measured at terminals, parts can be faulted, controls can be
set, etc. The student, in formulating a query or statement, is requesting
information or stating a belief about one of these relationships (e.g.
"What is the voltage at the collector of Q5" or "I think R9 is open".) It
occurred to us that the best way to characterize the statements used for
this task was in terms of the concepts themselves as opposed to the
traditional syntactic structures. The language can be described by a set
of grammar rules that characterize, for each concept or relationship, all
of the ways of expressing it in terms of other constituent concepts. For
example, the concept of a measurement requires a quantity to be measured
and something against which to measure it. A measurement is typically

expressed by giving the quantity followed by a preposition, followed by the

thing that specifies where to measure (e.g. "voltage across C2", "current
thru D1", "power dissipation of R9", etc.) These phrasings are captured in
w 90 -
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the grammar rule:(11)

<MEASUREMENT> := <MEASUREABLE/QUANTITY> <PREP> <PART>
The concept of a measurement can, in turn, be used as part of other
concepts, e.g. to request a measurement "What is the voltage across C2?";
or to check a measurement "ls the current thru D1 correct?". We call this
type of grammar a "semantic grammar" because the relationships it tries to
characterize are semantic/conceptual as well as syntactic.

Semantic grammars have two advantages over traditional syntactic
grammars. They allow semantic constraints to be used to make predictions
during the parsing process, and they provide a useful characterization of
those sentences that the system should try to handle. The predictive
aspect 1s important for four reasons: (1) It reduces the number of
alternatives that must be checked at a given time; (2) it reduces the
amount of syntactic (grammatical) ambiguity; (3) it allows recognition of
ellipsed or deleted phrases; and (4) it permits the parser to skip words at
controlled places in the input (i.e. it enables a reasonable specification
of control). These points will be discussed in detail in a later section.

The characterization aspect 1is {important for two reasons: (1) It
provides a handle on the problem of constructing a habitable sub-language.
The system knows how to deal with a particular set of tasks over a
particular set of objects. The sub-language can be partitioned by tasks to
accept all straightforward ways of expressing those tasks, but does not
need to worry about others; (2) It allows a reduction in the number of
sentences that must be accepted by the language while still maintaining
habitability. There may be syntactic constructs that are used frequently
with one concept (task) but seldom with another. For example, relative
clauses may be wuseful in explaining the reasons for performing an
experimental test but are an awkward (though possible) way of requesting a
measurement. By separating the processing along semantic grounds, one may

gain efficiency by not having to accept the awkward phrasing.

(11) This 1Is not actually a rule from the grammar but 1s merely Intended to
be suggestive.
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\eprese t3 __Meanin

Since natural language communication is the transmission of concepts
via phrases, the "meaning" of a phrase 1is 1its correspondent in the
conceptual space. The entities in SOPHIE's conceptual space are objects,
relationships between objects, and procedures for dealing with objects.
The meaning of a phrase can be a simple data object (e.g. "current limiting
transistor") or a complex data object (e.g. "C5 open'", '"Voltage at node
g (L) The meaning of a question is a call to a procedural specialist that
knows how to determine the answer. The meaning of a command is a call to a
procedure that performs the specified action.(12) For example, the
procedural specialist DOFAULT knows how to fault the circuit and is used to
represent the meaning of commands to fault the circuit (e.g. "Open R9",
"Suppose C2 shorts and R9 opens'"). The argument that DOFAULT needs in
order to perform its task is an instance of the concept of faults that
specifies the particular changes to be made, e.g. "R9 being open". These
same concepts of particular faults also serve as arguments to two other
specialists: HYPTEST which determines the consistency of a fault with
respect to the present context, e.g. "Could K9 be open"; and SEEFAULT

which checks the actual status of the circuit, e.g. "Is R9 open?".

Kesult of the Parsing

m

Easing the grammar on conceptual entities allows the semantic
interpretation (the determination of the concept underlying a phrase) to
proceed in parallel with the parsing. Since each of the non-terminal
categories in the grammar is based on a semantic unit, each grammar rule
can specify the semantic description of a phrase that it recognizes in much
the same way that a syntactic grammar specifies a syntactic description.
The construction portion of the rules is procedural. Each rule has the
freedom to decide how the semantic descriptions, returned by the
constituent items of that rule, are to be put together to form the correct

"meaning".

(12) Declarative statements are treated as requests because the pragmatics
of the situation imply that the student is asking for verification of his
statement. For example, "I think C2 is shorted" is taken to be a request
to have the hypothesis "C2 is shorted" critiqued.
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For example, the meaning of the phrase "Q5" is the data base object
Q5. The meaning of the phrase "the collector of Q5" 1is (COLLECTOR Q5)
where COLLECTGR 1is a function that returns the data base item that is the

collector of the given transistor. For a more complicated example,
consider the non-terminal <MEASUREMENT> shown in Figure 4.1.
Figure 4.1

A Semantic Grammar Rule(13)

(MEASUREMENT> := outﬁut <MEAS/QUANT> [of <TRANSFORMER>] !

<TRANSFORMER> <MEAS/QUANT> !

<MEAS/QUANT> between <NODE> and <NODE> |

<MEAS/QUANT> <PREP> <PART> !

<MEAS/QUANT> between output terminals !

<MEAS/QUANT> <PREP> <JUNCTION> !

<MEAS/QUANT> <PREP> <NODE> !

<JUNCTION/TYPE> <MEAS/QUANT>

of <TRANSISTOR/SPEC> !
<TRANSISTOR/TERM/TYPE> <MEAS/QUANT>
of <TRANSISTOR>

The goal for this non-terminal is to capture all of the ways that a student
can specify a measurement (voltage across D3, output current, etc.). To
specify a measurement, there must be a quantity to be measured <{MEAS/QUANT>
(e.g. voltage, current, resistance, power dissipation), and something to
measure (e.g. with respect to a part, <PART/SPEC>; a transistor junction,
<JUNCTION>; or possibly a point in the circuit, <NODE>). The rule for
<{MEASUREMENT> expresses all of the ways that the student can give a
measurable quantity and also supply its required arguments. The structure
which results from <MEASUREMENT> is a function call to the function MEASURE
which supplies the quantity being measured and other arguments specifying
where to measure it. Thus the meaning of the phrase "the voltage at the
collector of Q5" is (MEASURE VOLTAGE (COLLECTOR Q5)) which was generated

from the control structure:

(13) The rule 1Is exgressed In a BNF-11ke notation which Is an abstraction
of the actual rule (see next section). Nor-terminals are in capital
letters and enclosed in angle brackets. Term! 21 are in lower case.
Brackets enclose optional elements. Alterna. ve right hand sides are
separated by a "I",
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measurement
4

meas/quant node

|
voltage terminal
|
terminal/type part
|
collector Q5

A careful examination of Figure 4.1 reveals that <{MEASUREMENT> also
accepts "meaningless" phrases sdch as "the power dissipation of Node 4."
In addition, it accepts some meaningful phrases such as "the resistance
petween Node 3 and Node 14" which SOPHIE does not calculate. This results
from generalizing together concepts which are not treated identically in
the surface structure. In this case, voltage, current, resistance and
power dissipation were generalized to the concept of a measurable quantity.
Allowing the grammar to accept more statements and having the
argument-checking done by the procedural specialists has the advantage of
allowing the semantic routines to provide the feedback as to why a sentence
cannot be interpreted or "understood”. It also keeps the grammar from
being cluttered with special rules for blocking meaningless phrases.
Carried to the limit, the generalization strategy would return the grammar
to being "syntactic" again (e.g. all data objects are "noun phrases"). The
trick is to leave semantics in the grammar when it is beneficial -- to stop
extraneous parsings early, or tighten the range of a referent for an

ellipsis or deletion. This is obviously a task-specific trade-off.(14)

(10) FBobrow and Brown (1975) describe an interesting paradigm from which to
consider this trade-off.
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The relationship between a phrase and 1its meaning is wusually
straightforward. However, it is not limited to simple embedding. Consider
the phrases '"the base emitter of Q5 shorted" and "the base of Q5 shorted to
the emitter". The thing which is "shorted" in both of these phrases is the
"base emitter Jjunction of Q5." The rule that recognizes both of these
phrases, <PART/FAULT/SPEC>, can handle the first phrase by invoking its
constituent concepts of <JUNCTION> (base emitter of Q5) and <FAULT/TYPE>
(shorted) and combine their results. In the second phrase, however, it
must construct the proper junction from the separate occurrences of the two
terminals involved. Figure 4.2 gives the rules used to recognize these two
situations. The situations are distinguished by the occurrence of the
optional constituent in the second phrase. (As will be discussed later,
the rules are procedurally encoded, which provides a natural way of
building separate semantic forms for the two cases.) Notice that the
parser does some paraphrasing, as the "meaning" of the two phrases is the
same.

Figure 4.2
Grammar Rules

<PART/FAULT/SPEC> := <FAULTABLE/THING> is <FAULT/TYPE>
[to <TRANSISTOR/TERMINAL/TYPE>]

<FAULTABLE/THING> := <JUNCTION> ! <TERMINAL> ! <PART>
<FAULT/TYPE> := open ! shorted
<TRANSISTOR/TERMINAL/TYPE> := base | emitter ! collector

This discussion has been presented as if the concepts were defined a
priori by the capabilities of the system. Actually, for the system to
remain at all habitable, the concepts are discovered in the interplay
between the statements that are made in the domain and the capabilities of
the system. When a particular English construct is difficult to handle, it
is probably an indication that the concept it is trying to express has not
been recognized properly by the system. In our example "the base of Q5 is
shorted to the emitter", the relationship between the phrase and its
meaning is awkward because the present concept of shorting requires a part
or a junction. The example is getting at a concept of shorting, in which
any two terminals can be shorted together (e.g. "the positive terminal of
R9 is shorted to the anode of D6"). This is a viable conceptual view of
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"shorting", but 1its implementation requires allowing arbitrary changes in
the topology of the circuit which is beyond the efficiency 1limitations of
SOPHIE's simulator. Thus, the system we were working with led us to define

the concept in too limited a way.

MA RM R PAR
rediction

Having described the notion of a semantic grammar, we will now
describe the ways it allows semantic informaticn to be wused in the
understanding process. One wuse of semantic grammars is to predict the
possible alternatives that must be checked at a given point. Consider, for
example, the phrase "the voltage at xxx". After the word "at" is reached
in the top-down, left-to-right parse, the grammar rule corresponding to the
concept "measurement" can predict very specifically the conceptual nature
of "xxx": it must be a phrase that directly or indirectly specifies a
location in the circuit. For example, "xxx" could be "the junctions of the
current limiting section and the voltage reference source" but cannot be "3
ohms".

Semantic grammars also have the effect of reducing the amount of
grammatical ambiguity. In the phrase '"the voltage at xxx", the
prepositional phrase "at xxx" will be associated with the noun "voltage"
without considering any alternative parses that associates it someplace
higher in the tree.

Predictive information 1is also used to aid in the determination of
referents for pronouns. If the above phrase were "the voltage at it', the
grammar would be able to restrict the class of possible referents to
locations. By taking advantage of the available sentence contexts to
predict the semantic class of possible referents, the referent
determination process is greatly simplified. For example:

(1a) Set the voltage control to .87

tie) What i3 FRSWLUR"SE set Ho 52
In (1c), the grammar is able to recognize that the first "it" refers to a
measurement that the student would like re-taken under slightly different

conditions. The grammar can also decide that the second "it" refers to
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either a potentiometer or to the load resistance (i.e. one of those things
which can be set). The referent for the first "it" is the measurement
taken in (1b), "the current thru R9". The referent for the second "it" is
"the voltage control"™ which is an instance of a potentiometer. The context

mechanism that selects the referents will be discussed later.

Simnle Deleti
The semantic grammar is also used to recognize simple deletions. The

grammar rule for each conceptual entity knows the nature of that entity's

constituent concepts. When a rule cannot find a constituent concept, it

can either:

a) fail (if the missing concegt is considered to be obligatory in the
surface structure representation) or,

b) hypothesize that a deletion has occurred and continue.

For example, the concept of a TERMINAL has as one of its realizations the
constituent concepts of a TERMINAL-TYPE and a PART. When its grammar rule
finds only the phrase "the collector", it uses this information to posit
that a part has been deleted (i.e. TERMINAL-TYPE gets instantiated to "the
collector" but nothing gets instantiated to PART). The natural language
processor then uses the dependencies between the constituent concepts to
determine that the deleted PART must be a TRANSISTOR. The "meaning" of
this phrase 1is then "the collector of some transistor". Which transistor
is determined when the meaning 1is evaluated in the present dialogue
context. In particular, the semantic form returned is the function PREF
and the classes of possible referents; in our exampie the form would be
(COLLECTOR (PREF '(TRANSISTOR))).(15) The operation of PREF will be

discussed later.
Ellipsis
Another use of the semantic grammar allows the processor to recognize

elliptic utterances. These are utterances that do not express complete

thoughts -- a completely specified question or command -- but only give

(15) The language LISP will be used In examples throughout this thesis. 1In
LISP, a function call is expressed in Cambridge-Polish notation: as a
parenthesized list of the function name followed by its arguments.
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differences between the intended thought and an earlier one.(16) For

example, 2b, 2c and 2d are elliptic utterances.

g What is the voltage at Node 57
At Node 1?2
g and Node 2?

What about between nodes 7 and 87

—~
NN NN
Qoo

Ellipses can begin with introductory phrases such as "and" in 2c¢c or '"what
about" in 2d; however this is not required as can be seen in 2b. Part of
the ellipsis rule is given in Figure 4.3.

Figure 4.3

Ellipsis Rule

<ELLIPSIS> := [(ELLIPSIS/INTRODUCEB)i <REQUEST/PIECE> !
<ELLIPSIS/INTRODUCER>] if <PAKT/FAULT/SPEC>

<REQUEST/PIECE> := [(PREP)] <NODE> !

SR I I

[<PREP>] <JUNCTION> !

etc.
The grammar rule identifies which concept or class of concepts are possible
from the context available in the elliptic utterance.

While the parser is usually able to determine the intended concepts
from the context available in an elliptic utterance, this is not always the
case. Consider the following two sequences of statements.

; ?Sgt is the voltage at Node 57

é i; ?Sgt is the output voltage if the load is 1007
In (3b), "10" refers to node 10, while in (4b) it refers to a load of 10.
The problem this presents to the parser is that the concepts underlying

- these two elliptic utterances have notning in common except their surface
realizations. The parser, which operates from conceptual entities, does not
have a concept that includes both of these interpretations. One solution
would be to have the parser find all parses (concepts) and then choose
between them on the basis of context. Unfortunately, this would mean that
time 1is wacted looking for more than one parse for the large percentage of

sentences in which it is not necessary to do so. A better solution would

(16) The standard use of the word "ellipsis" refers to an{ deletion.
Rather than invent a new word, we shall use the restricted meaning here.
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be to allow structure among the concepts, so that the parser would
recognize "10" as a member of the concept "number". Then the routines that
find the referent would know that numbers can be either node numbers or
values. This type of recognition could profitably be performed by a
bottom-up approach to parsing. However, its advantages over the present
scheme are not enough to justify the expense incurred by a bottom-up parse
to find all possible well-formed constituents. At present, the parser
assumes one 1interpretation, and a message is printed to the student
indicating the assumed interpretation. If it is wrong, the student must
supply more context in his request. 1In fact, "10?" is taken as a load
specification and if the student meant the node he would have to use "at
10", “N10"™ or "Node 10". Later we will discuss the mechanism that

determines to which complete thought an ellipsis refers.

USING CONTEXT TO DETERMINE REFERENTS
Pronouns and Deletions

Once the parser has determined the existence and class (or set of
classes) of a pronoun or deleted object; the context mechanism is invoked
to determine the proper referent. This mechanism has a history of student
interactions during the current session which contains, for each
interaction, the parse (meaning) of the student's statement and the
response calculated by the system. This 1list provides the range of
possible referents and is searched in reverse order to find an object of
the proper semantic class (or one of the proper classes). To aid in the
search, the context mechanism knows how each of the procedural specialists
appearing in a parse uses its arguments. For example, the specialist
MEASURE has a first argument that must be a quantity and a second argument
that must be a part, a junction, a section, a terminal or a node. Thus
when the context mechanism is looking for a referent that can either be a
PART or a JUNCTION, it will 1look at the second argument of a call to
MEASURE but not the first. Using the information about the specialists,
the context mechanism looks in the present parse and then in the next most
recent parse, etc. until an object from one of the specified classes 1is

found.
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The significance of using the specialist to filter the search instead
of just keeping a list of previously mentioned objects is that it avoids
mis-interpretations due to object-concept ambiguity. As an example,
consider the following sequence from the sample dialogue in Chapter 3:

ég; :ggt %g E?ewﬁggrigti;hru the CC when the VC is 1.07?

Sentence (5) will be recognized by the following rules from the semantic
grammar:

1) <REQUEST> := <SIMPLE/REQUEST> when <{SETTING/CHANGE>

2) <SIMPLE/REQUEST> := what is <MEASUREMENT>

(] ST R R e

5) <CONTROL> := VC
with a resulting semantic form of:

(RESETCONTROL (STQ VC 1.0)

(MEASURE CURRENT CC))

RESETCONTROL 1is a function whose first argument specifies a change to
one of the controls and whose second argument consists of a form to be
evaluated 1n the resulting instrument context. STQ is used to change the
setting of the one of the controls. The first argument to MEASURE gives the
quantity to be measured. The second specifies where it is to be measured.
To recognize sentence (6), the application of rules $2 and $5 are changed.
There 1is an aliternative rule for <SIMPLE/REQUEST> that looks for those
anaphora that refer to a measurement. These phrases, such as "it", "that
result" or "the value", are recognized by the non-terminal
<{MEASUREMENT/PRONOUN>. The alternative to $2 that would be used to parse
(6) is:

<SIMPLE/REQUEST> := what is <MEASUREMENT/PRONOUN>
The semantics of <MEASUREMENT/PRONOUN> indicate that an entire measurement
has been deleted. The alternative to rule $5:

<CONTRUL> := it
recognizes "it" as an acceptable way to specify a control. The resulting
semantic form for sentence (6) is:

(RESETCONTROL (STQ (PREF '(CONTROL)) .8)
(PREF '(MEASUREMENT)))
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The function PREF searches back through the context of previous semantic
forms to find the most recent mention of a member one of the classes. In
the above example, it will find the control VC but not CC because the
character imposed on the arguments of MEASURE is that of a '"part" not a
"control".(17) The presently recognized classes for deletions are PART,
TRANSISTOR, FAULT, CONTROL, POT, SWITCH, DIODE, MEASUREMENT and QUANTITY.
(The members of the classes are derived from the semantic network

associated with a circuit.)

Referents for Ellipses

If the problem of pronoun resolution 1is looked upon as finding a
previously mentioned object for a currently specified use, then the problem
of ellipsis can be thought of as finding a previously mentioned use for a
currently specified object. For example:

(gg wWhat is the base current of QA?

( In Q57
The given object is "Q5", and the earlier function is "base current". For

a given elliptic phrase, the semantic grammar identifies the concept (or

class of concepts) involved. In (7), since Q5 1is recognized by the

non-terminal <TRANSISTOR/SPEC>, the class would be TRANSiSTOR. The context
mechanism then searches for a specialist in a previous parse that accepted
the given class as an argument. When one is found, the new phrase is
placed in the proper argument position and the modified parse 1is used as

the meaning of the ellipsis.

n n anism
The method of semantic classification (to determine reference) is very
efficient and works well over our domain. It definitely does not solve all

the problems of reference. Charniak has pointed out the substantial

1) What are the specs of Q5?

2) What is the voltage at its emitter?
The character imposed on Q5 in $1 is that of a part which means that the
context mechanism invoked bg $2 which 1s looking for a transistor won't
Find i¢t. This example 1is andled by relaxing the restrictions the
rocedural s ecialisg in $1 puts on its ariument (i.e. it can be either a
ART or a TRANSISTOR). In spite of thls weakness in the argument
limitation approach, we have found it to be a useful means of reducing the
search time and avoiéing some obvious mis-interpretations.

(1§7The character Imposition as described 1s too strong. For example:
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s problems of reference in a domain as seemingly simple as children's stories

(1972). One of his examples demonstrates how much world knowledge may be
required to determine a referent (1972 p. 7).

Janet and Penny went to the store to get presents for Jack. Janet

said "I will get Jack a top" "Don't get Jack a top" said Penny. "He

has a top. He will make you take it back."

Charniak argues that to understand to which of the two tops "it"
refers, requires knowing about presents, stores and what they will take
back, etc. Even in domains where it may be possibl o capture all of the
necessary knowledge, classification may still 1lead to ambiguities. For
exaple, consider the following:

) What is the voltage at Node 5 if the load is 1007?

O; Node 67

y 10 iy

In statement (11) the user means Node 7. 1In statement (10), he has
reinforced the use of ellipsis as referring to node number. (For example,
leaving out statment (10), sentence (11) is much more awkward.) On the
other hand, if statement (11) had been "1000" or if statement (10) had been
"10?", things would be more problematic. When statement (11) is "1000", we
can infer that he means a load of 1000 because there is no node 1000. If
statement (10) had been "10?", there would be genuine ambiguity slightly
favoring the interpretation as a load because that was the last number
mentioned. The major 1limitation of the current technique, which must be
overcome in order to tackle significantly more complicated domains, is its
inability to return more than one possible referent. It considers each one
individually wuntil it finds one which is satisfactory. The amount of work
involved in employing a technique which allows comparing referents has not

been justified by our experience.

The relationship between semantic grammars and purely semantic
systems (Quillian 1969; Schank et al. 1975) and to some extent Wilks
(1973a, 1973b) parallels the distinction between procedural and declarative
knowledge. The relationship that exists between nodes in the semantic
network structure contains 1little or no information about how these

relationships might be expressed in language. An interpretation mechanism
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must decide where the information is useful. While this is, in some sense,
more general (the same information can be used for several purposes given
the proper interpreter), it 1is necessarily less efficient. (Wilks has
extracted some expressive information, primarily concept order, into his
templates.) A semantic grammar, on the other hand, is written for the
process of recognizing concepts as they are expressed in the surface

structures.

FUZZINESS

Having the grammar centered around semantic categories allows the
parser to be sloppy about the actual words it finds 1in the statement.
Having a concept in mind, and being willing to ignore words to find it, is
the essence of keyword parsing schemes. It is effective in those cases
where the words that have been skipped gre either redundant, or specify
gradations of an idea that are not distinguished by the system. For
example, 1in the sentence: "Insert a very hard fault", "very" would be
ignored; this is effective because the system does not have any further
structure over the class of hard faults. In the sentence: "What is the
voltage across resistor R87" resistor can be ignored because it is implied
by "R8".(18)

One advantage that a procedural encoding of the grammar (discussed
later) has over pattern matching schemes in the implementation of fuzziness
is its ability to control exactly where words can be ignored. This
provides the ability to blend pattern matching parsing of those concepts
that are amenable to it with the structural parsing required by more
complex concepts. The amount of fuzziness -- how many, if any, words in a
row can be ignored -- is controlled in two ways. First, whenever a grammar
rule 1is invoked, the calling rule has the option of limiting the number of
words that can be skipped. Second, each rule can decide which of its
constituent pieces or words are required arnd how tightly controlled the
search for them should be. In SOPHIE, the normal mode of operation of the
parser 1is tight in the beginning of a sentence, but tuzzier after it has

made sense out of something.

(18) The first of these examples could be handled by making "very"™ a noise
word (i.e. deleting it from all sentences). Resistor however is not a
noise word in all cases (e.g. "What is the current through the current
sensing resistor?") and hence cannot be deleted.
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Fuzziness has two other advantages worth mentioning briefly. It
reduces the size of the dictionary because all known noise words don't have
to be included. In those cases where the skipped words are meaningful, the
misunderstanding may provide some clues to the user which allow him to

restate his query.

Before a statement is parsed, a preprocessor performs three
operations. The first expands abbreviations, deletes known noise words,
and canonicalizes similar words to a common form. The second is a cursory
spelling correction. The third is a reduction of compound words.

Spelling correction is attempted on any word of the input string that
the system does not recognize. The spelling correction algorithm(19) takes
the possibly misspelled word, and a list of correctly spelled words, and
determines which, if any, of the correct words is close to the misspelled
word (using a metric determined by number of transpositions, doubled
Létters, dropped letters, etc.). During the initial preprocessing, the
list of correct words is very small (approximately a dozen) and is limited
to very commonly misspelled words and/or words that are critical to the
understanding of a sentence. The list is kept small so that the time spent
attempting spelling correction, prior to attempting a parse, is kept to a
minimum. Remember that the parser has the ability to ignore words in the
input string so we do not want to spend a lot of time correcting a word
that won't be needed in understanding the statement. But notice that
certain words can be critical to the correct understanding of a statement.
For example, suppose that the phrase "the base emitter current of Q3" was
incorrectly typed as "the bse emitter current of Q3". If '"bse" were not
recognized as being '"base" the parser would ignore it and (mis-)understand
the phrase as "the emitter current of Q3", a perfectly acceptable but much
different concept.(20) Because of this problem, words like "base", which
if ignored have been found to lead to misunderstandings, are considered

critical and their spelling is corrected before any parse 1is attempted.

(19) The spellin§ correction routines are provided by INTERLISP and were
developed by Teitelman for use in the DWIM facility (Teitelman 1969,1974).
(20) To minimize the consequences of such misinterpretation, the system
always responds with an answer that indicates what question i is
answering, rather than just giving the numeric answer.
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Note that there are a lot of words -- '"capacitor", "replace", "open", for
example -- that if misspelled would prevent the parser from making sense of
the statement, but would not lead to any mis-understandings. These words
therefore are not considered to be critical, and would be corrected in the
second attempt at spelling correction that is done after a statement fails
to parse.

Compound words are single concepts that appear in the surface
structure as a fixed series of more than one word. Their reduction is very
important to the efficient operation of the parser. For example, in the
question "what 1is the voltage range switch setting?", "voltage range
switch" is rewritten as the single item "VR". If not rewritten, "voltage"
would be mistaken as the beginning of a measurement (as in "what is the
voltage at NA4") and an attempt would have to be made to parse "range switch
setting"” as a place to measure voltage. Of course after this failed, the
correct parse can still be found, but reducing compound words helps to
avcid backtracking. In addition, the reduction of compound words
simplifies the grammar rules by allowing them to work with larger
conceptual units. In this sense, the preprocessing can be viewed as a

preliminary bottom-up parse that recognizes local, multi-word concepts.

AMPLEMENTATION

Once the dependencies between semantic concepts have been expressed in
the BNF form, each rule in the grammar is encoded (by hand) as a LISP
procedure. This encoding process imparts to tne grammar a top-down control
structure, specifies the order of application of the various alternatives
of each rule, and defines the process of pattern matching each rule. The
resulting collection of LISP functions constitutes a goal-oriented parser
in a fashion similar to SHRDLU (Winograd 1973), but without the
backtracking ability of PROGRAMMAR.

As has been argued elsewhere (Woods 1970; Winograd 1973), encoding the
grammars as procedures -- including the notion of process in the grammar --
has advantages over using traditional phrase structure grammar
representations. Four of these advantages are:

1) the ability to collapse common garts of a grammar rule while still
maintaining the perspicuity of the grammar.
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2) the a?ility to collapse similar rules by passing arguments (as with
SENDR) .

3) the ease of interfacing other types of knowledge (in SOPHIE, primarily
the semantic network) into the parsing process.

4) the ability to build and save arbitrary structures during the parsing
(£1§rocess.

In addition to the advantages it shares with other procedural
representations, the LISP encoding has the computational advantage of being
compilable directly into efficient machine code. The LISP implementation
is efficient because the notion of process it contains (one process doing
recursive descent) is close to that supported by physical machines, .while
those of ATN and PROGRAMMAR are non-deterministic and hence not directly
translatable into present architecture. See (Burton 1976) for a
description of how it is possible to minimize this mismatch.) Appendix B
describes the details of the LISP implementation and provides an example of
a rule from the grammar.

In terms of efficiency, the LISP implementation of the semantic
grammar succeeds admirably. The grammar written in INTERLISP (Teitelman
1974) can be block compiled. Using this technique, the complete parser
takes about 5K of storage and parses a typical student statement consisting
of B tc 12 words in around 150 milliseconds! Appendix C presents parses

and timings of some of the sentences used in the dialogue.

(21) This ability 1is sometimes provided by allowing augments on phrase
structure rules.
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Chapter 5
A NEW FORMALISM -- SEMANTIC AUGMENTED TRANSITION NETWORKS

Using the techniques described in Chapter 4, a natural language
front-end, capable of supporting the dialogue presented in Chapter 3, and
requiring 1less than 200 milliseconds cpu time per question, was
constructed. In addition, these same techniques were used to build a
front-end for NLS-SCHOLAR (Grignetti et al. 1974; Grignetti et al. 1975)
(built by C. Hausmann), and an interface to an experimental laboratory for
exploring mathematics using attribute blocks (Brown et al. 1976). In the
construction of these varying systems, the notion of semantic grammar
proved to be useful. The LISP implementation, however, was found to be a
bit unwieldy. While expressing the grammar as programs has benefits in the
area of efficiency and allows complete freedom to explore new extensions,
the technique is lacking in perspicuity. This lack of perspicuity has
three major drawbacks: (1) the difficulty encountered when trying to
modify or extend the grammar; (2) the problem of trying to communicate the
extent of the grammar to either a user or a colleague; (3) the problem of
trying to re-implement the grammar on a machine that does not support LISP.
These difficulties have been partially overcome by using a second, parallel
representation of the grammar in a BNF-like specification language which is
the representation we have been presenting throughout this report. This,
however, requires supporting two different representations of the same
information and does not really solve problems (1) or (3). The solution
to this problem is a better formalism for expressing and thinking about

semantic grammars.

Lugmented Transition Networks (ATN)

Some years ago, Chomsky (1957) introduced the notion that the
processes of language generation and language recognition could be viewed
in terms of a machine. One of the simplest of such models is t e finite
state machine. It starts off in its initial state 1looking at the first
symbol, or word, of its input sentence and then moves from state to state
as it gobbles up the remaining input symtols. The sentence is accepted if
the machine stops in one of its final states after having processed the

entire input string; otherwise the sentence is rejected. A convenient way
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of representing a finite state machine is as a transition graph, in which
the states correspond to the nodes of the graph and the transitions between
states correspond to its arcs. Each arc is labelled with a symbol whose
appearance in the input can cause the given transition.

In an augmented transition network, the notion of a transition graph
has veen modified in three ways: (1) the addition of a recursion mechanism
that allows the labels on the arcs to be non-terminal symbols that
correspond to networks; (2) the addition of arbitrary conditions on the
arcs that must be satisfied in order for an arc to be followed; (3) the
inclusion of a set of structure building actions on the arcs, together with
a set of registers for holding partially built structures.(22) Figure 5.1
is a specification of a language for representing augmented transition
networks. The specification 1is given 1in the form of an extended,
context-free grammar in which alternative ways of forming a constituent are
represented on separate lines and the symbol "+" is wused to indicate
arbitrarily repeatable constituents.(23) The non-terminal symbols are
lower case English descriptions enclosed in angle brackets. All other
symbols, except "+", are terminals. Non-terminals not given in Figure 5.1
have names tnat should be self-explanatory.

Figure 5.1
A Language for hkepresenting ATNs

<transition network> := (<arc set> <arc set>+)
<arc set)> := (<state> <arc>+)
<arc»> := (CAT <category name> <test> <action>+ <term act))
WRD <word> <test> <action>+ <term act>)
PUSH <{state> <test> <action>+ <term act)>)
TST <arbitrary label> <test> <action>+ <term act>)
POP <form> <test>)
VIk <constituent name> <test> <actiond>+ <term act))
JUMP <state> <test> <action>+)
<action> := (SETR <register> <form>
éS&NDR <register, <form>
LIFTKk <register> <form>
EHOLD <constituent name> <form>)
SETF <feature> <form)>)
<term act> := (TO <state>)

(22) This discusesion follows closely a similar discussion In Woods (1970)
to which the reader is referre’. If the reader is familiar with the ATN
formalism he/she may wish to skip to the section '"Advantages to the ATN
Formalism".

(c3) "+" is used to mean 0 or more occurrences. While the accepted usage
of "4" 1is 1 or more, the accepted symbol for 0 or more, "®#" has not been
used to avoid confusion with the use of the symbol * in the ATN formalism.
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<{form> := (GETR <register>)
EX

GETF <form> <feature))
BUILDQ <fragment> <register>s+)
gLIST {formd>+)

¥
E
APPEND <form> <form>)
QUOTE <arbitrary structure))

The first element of each arc is a word indicating the type of arc.
For CAT, WRD and PUSH arcs, the arc type together with the second element
correspond to the label on an arc of a state transition graph. The third
element is an additional test. A CAT arc can be followed, if the current
input symbol 1is a member of the lexical category named on the arc, and if
the test on the arc is satisfied. A PUSH arc causes a recursive invocation
of a lower level network beginning at the state indicated, if the test is
satisfied. The WRD arc can be followed if the current input symbol is the
word named on the arc and if the test is satisfied. The TST arc can be
followed if the test is satisfied (the label is ignored). The VIR arc
(virtual arc) can be followed if a constituent of the named type has been
placed on the hold 1list by a previous HOLD action and the constituent
satisfies the test. 1In all of these arcs, the actions are structure
building actions, and the terminal action specifies the state to which
control is passed as a result of the transition. After CAT, WRD and TST
arcs, the input is advanced; after VIR and PUSH arcs it is not. The JUMP
arc can be followed whenever its test is satisfied, control being passed to
the state specified in the second element of the arc without advancing the
input. The POP arc indicates the conditions under which the state is to be
considered a final state and the form of the constituent to be returned.

The actions, forms and tests on an arc may be arbitrary functions of
the register contents. Figure 5.1 presents a useful set that 1illustrates
ma jor features of the ATN. The first three actions specified in Figure 5.1
cause the contents of the indicated register to be set to the value of the
indicated form. SETR causes this to be done at the current level of
computation, SENDR at the next lower level of embedding, so that
information can be sent down during a PUSH, and LIFTR at the next higher
level of computaticn, so that additional information can be returned to
higher levels. The HOLD action places a form on the HOLD list to be used
at a later place in the computation by a VIR arc. SETF provides a means of
setting a feature of the constituent being built.
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GETR 1is a function whose value 1is the contents of the named register.
LEX is a form whose value is the current input symbol. The asterisk (%) is
a form whose value depends on the context of its use: (1) in the actions

of a CAT arc, the value of * is the root form of the current input word;

2) in the actions of a PUSH arec, it is the value of the lower
computation; and (3) in the actions following a VIR arc, the value of it
is the constituent removed from the HOLD list. GETF is a function which

determines the value of a specified feature of the indicated form (which is
usually #). BUILDQ 1is a general structure-building form that places the
values of the given registers into a specified tree fragment .
Specifically, it replaces each occurrence of + in the tree fragment with
the contents of one of the registers (the first register replacing the
first occurrence of +, the second register the second, etc.). In addition,
BUILDQ replaces occurrences of * by the value of the form #. The remaining
three forms make a list out of the specified arguments (LIST), append two
lists together to make a single list (APPEND) and produce as a value the

(unevaluated) argument form (QUOTE).

vantages of ATN Formalism

The ATN formalism was seriously considered at the beginning of the
SOPHIE project, but rejected as being too slow. In the course of
developing the LISP grammar, it became clear that the primary reason for a
significant difference in speed between an ATN grammar and a LISP grammar
is due to the fact that processing the ATN is an interpreted process,
whereas LISP is compilable and therefore the time problem could be overcome
by building an ATN compiler. During the period of evolution of SOPHIE's
grammar, an ATN compiler was constructed (see Burton 1976). 1In the next
section we will discuss the advantages we hoped to gain by wusing the ATN
formalism.

These advantages fall into three general areas: (1) conciseness, (2)
conceptual effectiveness and (3) available facilities. By conciseness we
mean that writing a grammar as an ATN takes less characters than LISP.
The ATN formalism gains conciseness by not requiring the specification of
details in the parsing process at the same level required in LISP. Most of

these differences stem from the fact tnat the ATN assumes 1t has a machine
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whose operations are designed for parsing, while LISP assumes it has a
lambda calculus machine. For example, a lambda calculus machine assumes a
function has one value. A function call to look for an occurrence at a
non-terminal while parsing (in ATN formalism, a PUSH) must return at least
two values: the structure of the constituent found, and the place in the
input where the parsing stopped. A good deal of complexity is added to the
LISP rules in order to maintain the free variable which has to be
introduced to return the structure of the constituent. Other examples of
unnecessary details include the binding of 1local variables and the
specification of control structure as ANDs, ORs and CONDs.

The conciseness of the ATN results in a grammar that is easier to
change, easier to write and debug, easier to understand, and hence to
communicate. We realize that conciseness does not necessarily lead to
these results (APL being a prime example in computer languages mathematics
in general being another), however, this 1is not a problem. The
correspondence between the grammar rules in LISP and ATN is very close.
The concepts which were expressed as LISP code can be expressed in nearly
the same way as ATNs but in fewer symbols.

The second area of improvement deals with conceptual effectiveness.
Loosely defined, conceptual effectiveness is the degree to which a language
encourages one to think about problems in the right way. One example of
conceptual effectiveness can be seen by considering the implementation of
case structured rules.(24) In a typical case structure rule, the verb
expresses the function (or relation name) and the subject, while the
object and prepositional phrases express the arguments of the function or
relation. Let wus assume for the purpose of this discussion that we are
looking at four different cases (agent, location, means, and time) of the
verb GO -- John went to the store by car at 10 o'clock. In a phrase

structure rule-oriented formalism one would be encouraged to write:
<{statement> := <actor> <action/verb> <location> <means> <time>

Since the last three cases can appear in any order, one must also write 5§
other rules:

(20) See Bruce (1975) for a discussion of case systems.
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<statement> := <actor> <action/verb> <{location> <time> <means>

In an ATN one is inclined towards: PUSH location

PUSH acto, puSH act/y,

rb PUSH time

PUSH means

which expresses more clearly the case structure of the rule. There is no
reason why in the LISP version of the grammar one couldn't write loops that
are exactly analogous to the ATN (the ATN compiler, after all, produces
such code!). However, a rule-oriented formalism does not encourage one to
think this way. An alternative rule implementation is:

<action>:= <actor><action/verb><actioni>

<actionl1>:= <actioni1><temporal>

<actionl1>:= <actionl><location>

actionl>:=z <actionl1><means>
this is easier (shorter) to write but it has the disadvantage of being
let't-recursive. To implement 1it, one is forced to write the LISP
equivalent of the ATN that creates a ditference between tne rule
representation and the actual implementaticn. This method also has the
ilsadvantage of introducing an unmotivated non-terminal.

Another conceptual advantage of the ATN framework is that it
encourages the postponing of decisions about a sentence until a
differential point is reached, thereby allowing potentially different paths
to stay together. In the rule orientea SUPHIE grammar there are top level
rules for <set>, a command to cnange one of the control settings and
<modify>, a command to fault the instrument in some way. Sentence (1) is a
<set> and sentence (2) is a <modify>.

§1; Suppose the current control is hign.
2) Suppose the current control is shorted.
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The two parse paths for these sentences should be the same for the first
five words, but they are separated immediately by the rules <set> and
<modify>.(25) An ATN encourages structuring the grammar so that the
decision between <set> and <modify> is postponed so that the paths remain
together. It could be argued that the fact that this example occurred in
SOPHIE's grammar is a complaint against top-down parsing or semantic
grammars, or just our particular instantiation of a semantic grammar. We
suspect the latter but argue that rule representations encourageé this type
of behavior.

Another conceptual aid provided by ATNs is their method of handling
ambiguity. Our LISP implementation uses a recursive descent technique
(which can alternatively be viewed as allowing only one process). This
requires that any decision between two choices be made correctly because
there is no way to try out the other choice after the decision is made. At
choice points, a rule can, of course, "look ahead" and gain information on
which to base the decision, similar to the "wait-and-see" strategy used by
Marcus (1975) but there is no way to back up and remake a decision once it
has returned.

The effects of this can be most easily seen by considering the lexical
aspects of the parsing. A prepass collapses compound words, expands
abbreviations, etc. This allows the grammar to be much simpler because it
can look for units like "voltage/control" instead of having to decode the
noun phrase "voltage control". Unfortunately without the ability to handle
ambiguity, this rewriting can only be done on words that have no other

possible meaning. So, for example, when the grammar is extended to handle:
(3) Does the voltage control the current limiting section?

the compound "voltage/control" would have to be removed from the prepass
rules and included in the grammar. This reduces the amount of bcttom-up

processing that can be done and results in a slower parse. It also makes

(25) The degree to which the separatlion of paths 1Is a problem can be
greatl¥ reduced using a preprocessing "compilation" state such as Klovstad,
which ({among other things) collapses rules with the same initial parts. In
our example, however this may not work since the phrase '"the current
control" may be parsed as the non-terminal <CONTROL> in (1) and as the
non-termina <PART> in (2). Of course this would be a poor choice of
rammar rules, and no one aware of sentences (1) and (2) would handle it
his way. The problem is recognizing where situations such as this occur.
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compound rules difficult to write bpecause all possible uses of the
individual words must be considered to avoid errors. Another example is
the use of the letter "C" as an abbreviation. Depending on context, it
could possibly mean either current, collector or capacitor. Without
allowing ambiguity in the input, it could not be allowed as an
abbreviation unless explicitly recognized by the grammar.

The third general area in which £INs have an advantage 1is 1in the
available facilities to deal with complex linguistic phenomena. While our
grammar has not yet expanded to the point of requiring any 7 the
facilities, the availability of such facilities cannot be ignored as an
argument favoring one approach over another. A primary example 1is the
general mechanism for dealing with coordination in English described in

woods (1973a).

Conversion to Semantic ATN

For the reasons discussed above, the SOPHIE semantic grammar was
re-written in the ATN formalism. we wish to stress here that the
re-writing was a process of changing form cnly. The content of the grammar
remained the same. Since a large part ot the knowledge encoded by the
Zgrammar continues to be semantic in nature, we call the resulting grammar a
"semantic ATN". Figure 5.1 presents the graphic ATN representation of a
semantic grammar non-terminal. This is tne same rule presented 1in Figure
4.1, which recognizes the whrases for specifying measurements in a circuit.
The actions and structure building operations on the arcs (which are not
shown in Figure 5.1) save the recognized constituents and construct the
proper interpretation when sufficient information has been collected.

Appendix E provides more examples of the semantic ATN used in SUPHIE.

Figure 5.2 presents a simple example of how the recognition of
anaphoric deletions can be capturea in ATN formalism. The network in
Figure 5.2 encodes the straightforward way of expressing a terminal of a
part in the circuit -- the base of (5, the anode of it, the collector. By
the state TERMINAL/TYPE, both the determiner and the terminal type -- base,
anode have been found. The first arc that leaves TERMINAL/TYPE accepts the

preposition that begins the specification of the part. The second arc
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(JUMP arc) corresponds to hypothesizing that the specification of the part
has been deleted, as in: "The base is open." The action on the arc builds
a place-holding form which identifies the deletion and specifies (from
information associated with the terminal type which was found) the classes
of objects that can fill the deletion. The method for determining the

referent of the deletion remains the same as described in Chapter 4.

Figure 5.2
An ATN which recognizes deletion

CAT DET o TERM/Tyo. CATPRE,  goMPART,

TERMINAL/
PREP

The SOPHIE semantic ATN is then compiled using the general ATN

compiling system described in Burton (1976). The SOPHIE grammar provides
the compiling system with a good contrast to the LUNAR grammar, since it
does not use many of the potential features. In addition, a bench mark, of
sorts, was available from the LISP implementation of the grammar that could
be used to determine the computational cost of using the ATN formalism.
There were two modifications made to the compiling system to improve
its efficiency for the SOPHIE application. In the SOPHIE grammar, a large
number of the arcs check for the occurrence of particular words. When
there 1is more than one arc leaving a state, the ATN formalism requires
that all of these arcs be tried, even if more than one of these is a WRD
arc and an earlier WRD arc has succeeded. This is especially costly, since
the taking of an arc requires the creation of a configuration to try the

remaining arcs. In those cases when it is known that none of the other
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arcs can succeed, this should be avoided. As a solution to this problem,
the GROUP arc type was added. The GROUP arc allows a set of contiguous
arcs to be designated as mutually exclusive. The form of the GROUP arc is:
(GROUP arel arc2 ... arcn). The arcs are tried, one at a time, until the
conditions on one of the arcs are met. This arc is then taken, and the
remaining arcs in the GROUP are forgotten -- not tried. If a PUSH arc is
included in the GROUP, it will be taken if its test 1is true and the
remaining arcs will not be tried even if the PUSHed for constituen’ is not

found. For example, consider the following grammar state:

(S/1
(GROUP ?CAT & T ETO S/2;g
WRD X T (TO S/3
(CAT B T (TO S/0))))
At most, one of the three arcs will be followed. Without GROUPing them
together, it %s possible that all tnree might be followed -- if the word X

had interpretaiions as both category A and category B.

The GROUP arc also provides an efficient means of encoding optional
constituents. The normal method of allowing options in ATN is to provide
an arc tha: accepts the optional constituent and a second arc that jumps to
the next state without accepting anything. For example, if in state s/2
the word "very" is optional, the following two arcs would be created:

(S/2

éwﬁb VERY T (TO REST-OF-S/2))

JUMP REST-OF-S/2 T))
The inefficiency arises when the word "very" does occur. The first arc is
taken, but an alternative configuration that will try the second arc must
be created, and possibly later explored. Ey embedding these arcs in a

GROUP, the alternative will not be created thus saving time and space. As

a result, it won't have to be explored, possicly saving more time. A
warning should be included here, tnat the GROUP arc can reject sentences
that might otherwise be accepted. In our example, "very" may be needed to
get out of the state REST-0F=-S/2. In this respect, the GROUP arc is a
departure from the original ATN philosopny that arcs should be independent,
and for this we apologize. However, tor some applications, the increased

efficiency can be critical.
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The other change to the compiling system (for the semantic grammar
application) dealt with the preprocessing operations. The preprocessing
facilities described 1in the last chapter included: 1) lexical analysis to
extract word endings; 2) a substitution mechanism to expand abbreviations;
delete noise words, and canonicalize synonyms; 3) dictionary retrieval
routines; and 4) a compound word mechanism to collapse multi-word phrases.
For the SOPHIE application we added the ability to use the INTERLISP
spelling correction routines and the ability to derive word definitions
from SOPHIE's semantic net. The extraction of definitions from the
semantic network for part names and node names reduces the size of the
dictionary and simplifies the operations of changing circuits. In
addition, a mechanism called MULTIPLES was developed that permits string
substitution within the input. This 1s similar to the notion of
compounding, but differs in that a compound rule creates an alternative
lexical item while the multiple rule creates a different lexical item.
After the application of a compound rule, there is an additional edge in
the input chart; after a multiple rule, the effect is the same as if the

user had typed in a different string.

Fuzziness

The one aspect of the LISP implementation that has not been
incorporated into the ATN framework is fuzziness, the ability to ignore
words in the input. While we ha not worked out the details, the
non-determinism provided by ATNs lends itself to an interesting approach.
In a one-process -- recursive descent -- implementation, the rule that
checks for a word must decide (with information passed down from higher
rules) whether to try skipping a word, or give up. The critical
information that 1is not available when this decision has to be made is
whether or not there is another parse that would use that word. In the
ATN, it is possible to suspend a parse and come back to it after all other
paths have been tried. Fuzziness could be implemented so that rather than
skip a word and continue, it can skip a word and suspend, waiting for the
other parses to fail or suspend. The end effect may well be that sentences
are allowed to get fuzzier because there 18 no danger of missing the

correct parse.
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Comparison of Results

The original motivation for changing to the ATN was its perspicuity.
Appendices A and B show the BNF/LISP version, which can be compared with
Appendix E, that shows the ATN version. We suspect that the reader will
find that neither of them are particularly readable, but then there 1is no
reason to expect that this should be the case. As Winograd (1973) has
pointed out, simple grammars are perspicuous in almost any formalism;
complex grammars are still complex 1in any formalism. We found the ATN
formalism much easier to think in, write in, and debug. The examples of
redundant processing that were presented earlier in this chapter were
discovered while converting to ATN. For a gross comparison on conciseness,
the ATN grammar requires 70% less characters to express than the LISP
version.

The efficiency results were surprising. Table 5.1 gives comparison
timings between the LISP version and the ATN compiled version. As can be
seen, the ATN version 1is more than twice as fast. This was pleasantly
counter-intuitive, as we expected the LISP version to be much faster due to
the amount of hand optimization that had been done while encoding the
grammar rules. In presenting the comparison timing, it should be mentioned
that there are three differences between the two systems that tended to
favor the ATN version.(26) One difference was the lack of fuzziness in the
ATN version. The LISP version spent time testing words other than the
current word, looking ahead to see if it were possible to skip this word,
which was not done 1in the ATN version. The second is the creation of
categories for words during the preprocessing in the ATN version that
reduced the amount of time spent accessing the semantic net and hence
reduced the time required to perform a category membership test in the ATN
system. The third was the simplification of the grammar and increase in
the amount of bottom-up processing that could be done because of the
ambiguity allowed in the input chart. In our estimation, the lack of

fuzziness is the only difference that may have had a significant effect,

(26) The exact extent to which each off these differences contributed 1is
difficult to gather statistics on due to the block compiler which gains
efficiency by hiding internal workings. The exact contribution of each
could certainly be determined but was not deemed worth the effort.
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ind this can be included explicitly in the ATN in places where it is
critical, by using TST arcs and suspend actions, without a noticeable
increase 1in processing time. In conclusion, we are very pleased with the
results of the compiled semantic ATN and feel that the ATN compiler makes
the ATN formalism computationally efficient enough to be used in real

systems.

Table 5.1
Comparison of ATN vs LISP Implementation

Times (in seconds) are "prepass" + "parsing"

1) What is the output voltage?
SP - .024 + .018 = .QU42
N = .08 + .033 = .0B1

) what is the voltage between there and the base of Q67

7

P = 0386 % 039 = 077

LS , I
ATN - .090 + .04b = .136

ISP - .010 + .046 = .056
AN - 013 4+ 060 = 073

4) what is the output voltage when the voltage control is set to .5?

LISP = .045 4+ .038 = .083
ATN = .096 « .048 = . 144

5) If Qb has an open emitter and a shorted base collector junction what
pen: t the voltage between its base and the gunctlon of the voltage
ing section and the voltage reference source?

LISP = .206 % .188 = .394
TN = .259 + .090 = .349

e
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Chapter 6
OBSERVATIONS ON STUDENT USAGE

Wwhen we began developing a natural language processor for an
instructional environment, we knew it had to be (1) fast, (2) habitable,
and (3) self-teaching. The basic conclusion that has arisen from the work
presented here 1is that it is possible to satisfy these constraints. The
notion of semantic grammar (presented in Chapter U4) provides a paradigm for
organizing the knowledge required in the understanding process that permits
efficient parsing. In addition, semantic grammar aids the habitability by
providing insights into a useful class of dialogue constructs, and permits
efficient handling of such phenomena a< pronominalizations and ellipses.
The need for a better formalism for expressing semantic grammars led to
the use of Augmented Transition Networks (presented in Chapter 5). The
ability of the ATN-expressed semantic grammar to satisfy the above stated
requirements is demonstrated in the mnatural language front-end for the
SOPHIE system.

A point that needs to be stressed is that the SOPHIE system has been
(and is being) used by uninitiated students in experiments to determine the
pedagogical effectiveness of its environments. While much has been learned
about the problems of using a natural language interface, these experiments
were not "debugging" sessions for the natural language component. The
natural language component has unquestionably reached a state at which it
can be conveniently used to facilitate learning about electronics. In this
chapter, we will describe the experiences of students using the natural

language component, and present some ideas on handling erroneous inputs.

mpression xperiences an ervation

Prior to any exposure to SOPHIE, a group of four students were asked
to write down all of the ways they could think of for requesting the
voltage at a particular node. Although the intent of the experiment was to
determine the range of paraphrases that students might be inclined to use
before they were aware of the system's linguistic limitations, a more
interesting result emerged. Each student wrote down one phrasing very

quickly but had a difficult time thinking of a second, even though the
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initial phrasing by three of the students were in fact different! One
student quit, exclaiming "But there is only one way to ask that!" This
same inability to perform linguistic paraphrase carried over to the actual
interaction with SOPHIE via terminal. Whenever the system did nct accept a
guery, there was a marked delay before the student tried again. Sometimes
the student would abandon his line of questioning completely. At the same
time, data collected over many sessions indicated that there was no
standard -- canonical -- way to phrase a question. Table 6.1 provides some
examples of the range of phrasings used by students to ask for the voltage
at a node.

Table 6.1
Sample Student Inputs

The following are some of the input lines typed by students with the intent
of discovering the voltage at a node in the circuilt.

What is the voltage at node 1?

What is the voltage at the base of Q5?7
How much voltage at N10?

And what is the voltage at N1?

NG?
V at the neg side of C6?
Vit 1g?

What is the voltage from the base of transistor Q5 to ground?

What V at N16?

Coll. of Q57

Node 16 Voltage?

What is the voltage at pin 17

Qutput?

As Table 6.1 shows, students are likely to conceive of their questions in
many ways and to express each of these conceptions in any of several
phrasings. Yet other experiences indicate that they lack the ability to
easily convert to another conceptualization or phrasing. Since the
non-acceptance of questions creates a major interruption in the student's
thought process, the acceptance of many different paraphrases is critical
to maintaining flow in the student's problem solving.

Another interesting phenomenon that occurred during sessions was the
change in the linguistic behavior of the students as they used the system.
Initially, queries were stated as complete English questions, generally
stated in templates created by the students from the written examples of
sessions that we had given them. If they needed to ask something that did

not exactly fit one of their templates, they would try a minor variant. As
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they became more familiar with the mode of interaction, they began to use
abbreviations, to leave out parts of their questions and, in general, to
assume that the system was following their interaction. After five hours
of experience with the system, almost all of one student's queries
contained abbreviations and one in six depended on the context established

by previous statements.

FEEDEACK - When the Grammar Fails

From our experiences with students using SOPHIE, we have been
impressed with the importance of providing feedback to unacceptable inputs
-- what to do when the system doesn't understand an input --. While it may
appear that in a completely habitable system all inputs would be
understood, no system has ever attained this goal and none will in the
foreseeable future. To be natural to a naive user, an intelligent system
should act intelligently when it fails too. The first step towards having
a system fail 1intelligently 1is the identification of possible areas of
error. In student's use of the SOPHIE system, we have found the following

types of errors to be common:

(1) Spelling errors and mis-t gings - "Shortt the CE og Q3 and opwn its
base"; "What isthe vbe Q52"
(2) Inadvertent omissions - "What is the EE of Q5?" (The user left out the

quantity to measure. Note that in other contexts this is a well formed
question.)

{3) Slight misconceFtions that are predictable - "What 1is the output of
transistor Q37" (The outgut of a transistor 1is not defined); "What
is the current thru node 12" (Nodes are places where voltage is
measured and may have numerous wires associated with them); "What is
R9?® (RO is a resistor); "Is Q5 conductin%?" (The laboratory section
of SOPHIE gives information that is direct y available from a real lab
such as currents and voltages.)

(4) Gross misconceptions whose underlying meaning is well beyond designed
system capabilities - "Make the output voltage 30 volts"; "Turn on the
power supply and tell me how the unit functions"; "What time is it?".

The best technique for dealing with each type of error is an open problem.

In the remainder of this section, we will discuss the solutions used in the

SOPHIE system to provide feedback.

The wuse of a spelling correction algorithm (borrowed from INTERLISP)
has proven to be a satisfactory solution to type 1 errors. During one
student's session, spelling correction was required on, and resulted in

proper understanding of, 10% of the questions. The major failings of the
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INTERLISP algorithm are the restriction on the size of the target set of
correct words (time increases linearly with the number of words) and its
failure to correct run-on words. (The time required to determine if a word
may be two (possibly misspelled) words run together increases very quickly
with the length of the word and the number of possibly correct words. With
no context to restrict the possible list of words, the computation involved
is prohibitive.) A potential solution to both shortcomings would be to use
the context of the parser to reduce the possibilities when it reaches the
unknown word. Because of the nature of the grammar, this would allow
semantic context as well as syntactic context to be used.

Of course, the use of any spelling correction procedure has some
dangers. A word that is spelled correctly but that the system doesn't know
may be changed through spelling correction to a word the system does know.
For example if the system doesn't know the word "top" but does know "stop",
a user's command to "top everything" can be disastrously misunderstood.
For this reason, words like "stop" are not spelling corrected.

Our solution to predictable misconceptions (type 3 errors) is to
recognize them and give error messages that are directed at correcting the
misconception. We are currently using two different methods of
recognition. One is to loosen up the grammar so that it accepts plausible
but meaningless sentences. This technique provides the procedural
specialists called by the plausible parse enough context to make relevant
comments. For example, the concept of current through a node is accepted
by the grammar even though it is meaningless. The specialist that performs
measurements must then check 1its arguments and provide feedback if
necessary:

>> WHAT IS THE CURRENT THRU NODE U4?

The current thru a node is not meaningful since by Kirchoff's law

the sum of the currents thru any node is zero. Currents can be

measured thru parts (e.g. CURREKT THRU C6) or terminals

(e.g. CURRENT gHRU THE %OLLECTOR OF Q2).

Notice that the response to the question presents some examples of how to
measure the currents along wires that lead into the mentioned node.
Examples of questions that will be accepted and are relevant to the

student's needs are among the best possible feedback.
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The second method of recognizing common misconceptions is to "key"
feedback off single words or groups of words. In the following examples,
the "keys" are "or" and "turned on". Notice that the response presents a
general characterization of the violated limitations as well as suggestions
for alternative lines of attack.

>> COULD Q1 OR Q2 BE SHORTED?

I can only handle one question, hypothesis, etc. at a time. The fact

that you say 'OR' indicates that you mag be trying to express two

concepts 1in the same sentence. Maybe you can break your statement
into two or more simple ones.

>> 1S THE CURRENT LIMITING TKRANSISTOR TURNED ON?

The laboratory section of SOPHIE is designed to provide the same

elementary measurements that would be available in a real lab. If you

want to determine the state of a transistor, measure the pertinent
currents and voltages.
These methods of handling type 3 errors have proved to be very helpful.
However, they require that all of the misconceptions must be predicted and
programmed for in advance. This limitation makes them 1inapplicable to
novel situations.

2>

The most severe problems a user has stem from type (omissions) and
type 4 (major misconceptions) errors. (Type 3 errors that haven't been
predicted are considered type 4 errors.) After a simple omission, the user
may not see that he has left anything out and may conclude that the system
doesn't know that concept or phrasing of that concept. For example when
the user types "What is the BE of Q5" instead of "What is the VBE of Q52",
he may decide that it is unacceptable ©bpecause the system doesn't allow
"VBE" as an abbreviation of "base emitter voltage". For type 4 errors, the
user may waste a lot of time and energy attempting several rephrasings of
his query, none of which can be understood because the system doesn't know
the concept the user is trying to express. For example, no matter how it
is phrased, the system won't understand "Make the output voltage 30 volts"
because measurements cannot be directly changed, only controls and
specifications of parts can be changed.

The feedback necessary to correct both of these classes of errors must
identify any concepts in the statement that are understood and suggest the
range of things that can be done to/with these concepts. For type 2

errors, this will help the user see his omission. For type U4 errors, it




may suggest alternative conceptualizations that will allow the user to get
at the same information (for example, to change the output voltage
indirectly by changing one of the controls) or at least provide him with
enough information to decide when to quit.

The notion of semantic grammar may be useful in developing a general
solution along the following lines: A bottom-up or island parsing scheme
could be used to identify well-formed constituents.(27) Since the grammar
is semantically based, the constituents that are found represent "islands"
of meaningful phrases. The ATN representation of the semantic grammar can
then be inspected to discover possible ways of combining these islands. 1If
a good match is found, the grammar can be used to generate a response that
indicates what other semantic parts are required for that rule. Even if no
good matches are found, a positive statement may be made that explains the
set of possible ways the recognized structures could be understood. Much
more work is required in the area of wunacceptable inputs before natural

language systems will feel really natural to naive users.

(27) William Woods and Geoff Brown are presenflg refining such a bottom-up
?a;ggng technique for ATN grammars for use in the BBN Speech project (Woods
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Chapter 7
CONCLUDING DISCUSSION

Future Research Areas

The SOPHIE semantic grammar system 1is designed for a particular
context -- trouble shooting -- within a particular domain, namely,
electronics. It represents the compilation of those pieces of knowledge
which are general (linguistic) together with specific domain dependent
knowledge. In its present form, it is unclear which knowledge belongs to
which area. The development of semantic grammars for other applications
and extensions to the semantic grammar mechanism to include other
understood linguistic phenomena will clarify this distinction.

While the work presented in this report has dealt mostl ' on one area
of application, the notion of semantic grammar as a method of integrating
knowledge into the parsing process has wider applicability. Two
alternative applications of the technique have been completed. One deals
with simple sentences in the domain of attribute blocks (Brown et al.
1975) . While the sublanguage accepted in the attribute blocks environment
is very simple, it is noteworthy that within the semantic grammar paradigm,
a simple grammar was quickly developed that greatly improved the
flexibility of the input language. The other completed application deals
with questions about the editing system NLS (Grignetti et al. 1975). In
this application, most questions dealt with editing commands and their
arguments, and fit nicely into the case frame notion mentioned in Chapter
5. The case frame use of semantic grammar is being considered for, and may
have 1ts greatest impact on, command languages. Command languages are
typically case centered around the command name that requires additional
arguments (its cases). The combination of the semantic classification
provided by the semantic grammar and the representation of case rules
permitted by ATNs should go a long way towards reducing the rigidity of
complex command languages such as those required for message processing
systems. The combination should also be a good representation for natural
language systems in domains where it 1is possible to develop a strong
underlying conceptual space, such as management information systems

(Malhotra 1975).
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The extension of the semantic grammar to incorporate existing
linguistic processing techniques is another potentially fruitful research
area. One of the ways semantic grammar gains efficiency is to separate the
processing of syntactically similar sentences on semantic grounds when it
is useful to do so. However, this prevents the uniform incorporation of,
for example, Woods' (1973b) solution to the problems of relative clause
modification, quantifiers and conjunction. One means of integrating these
techniques would be to develop an intermediate target language that
maintains the advantages ol the semantic grammar approach while allowing
uniform solutions to other problems. It may *even be possible to adopt
Woods' query language, allowing the semantic grammar to dictate the
functions within the "propositions” and "commands". An alternative attack
would be to use a "syntactic" processing phase, incorporating the desired
techniques that canonicalizes the input before it 1is processed by the
semantic grammar. In this method, the semantic grammar would be viewed as
an interpretation phase of the understanding process, but which works on a

much less structured syntactic parse than, for example, the LUNAR system.

CONCLUSIONS

In the course of this report, we have described the evolution of a
natural language front-end from keyword beginnings to a system capable of
using complex linguistic knowledge. The guiding strand has been the
utilization of semantic information to produce efficient natural language
processors. There were several highlights that represent noteworthy points
in the spectrum of useful natural language systems. Toward the keyword end
of the scale, the procedural encoding technique with fuzziness (Chapter U4
and Appendix B) allows simple natural language input to be accepted without
introducing the complexity of a new formalism. Encoding the rules as
procedures allowed flexible control of the fuzziness and the semantic
nature of the rules provides the correct places to take advantage of the
flexibility. As the language covered by the system becomes more complex,
the additional burden of a grammar formalism will more than pay for itself
in terms of ease of development and reduction in complexity. The ATN
compiling system allows for the consideration of the ATN formalism by

reducing its runtime cost, making it comparable to a direct procedural

-




encoding. The natural language front end now used by SOPHIE is constructed
by compiling a semantic ATN. As the linguistic complexity of the language
accepted by the system increases, the need for more syntactic knowledge in
the grammar becomes greater. Unfortunately, this often works at cross
purposes with the semantic character of the grammar. It would be nice to
have a general grammar for English syntax that could be used to preprocess
sentences; however, one is not forthcoming. A general solution to the
problem of incorporating semantics with the current state of incomplete
knowledge of syntax remains an open research problem. In the foreseeable
future, any system will have to be an engineering trade-off between
complexity and generality on one hand and efficiency and habitability on
the other. We have presented several techniques that are viable bargains

in this trade-off,
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Appendix A

BNF Description of Part of the
SOPHIE Semantic Grammar

Ihis appendix gives a BNF-like description of part of the language
accepted b SOPHIE. Included are all of the rules necessary to parse a
"measurement"., Examples of "measurements" are "voltage at N1" "base
emitter current of Q5", and "output voltage". The grammar is impiemented
as LISP functions and an example is listed in Appendix B.

In the description, alternatives on the right-hand side are separated
by ! or are listed on separate lines, rackets [] enclose optional
elements., An asterisk * is used to mark notes about a particular rule.
Non-terminals are designated by names enclosed in angle brackets <>.

The Grammar
<circuit/place>:= <terminal> ! <node>

<diode/spec> := <diode> ! <zener/diode>
{section> diode ! <section> zener/diode

<junction> := <junction/type> [of] <transistor/spec>
<transistor/term/type> and <transistor/term/type> [of]
[<transistor/spec>]
{transistor/term/type> to <transistor/term/type> [of]
[<transistor/spec>]

junction/type> := eb ! be ! ec ! ce ! cb ! be

<meas/quant> := voltage ! current ! resistance* ! power
*means measured resistance

<measurement> := <section>[output*](<meas/quant>]
output* <meas/quant> [of] <section> ]
} output*® [<meas/quant>; [of <transformer>]
‘ <transformer> <meas/9uant>
<meas/quant> between** <circuit/place> and#
l <circuit/place>
<meas/quant> of**#* <{part/spec>
{meas/quant> between output terminals
| <meas/quant> of <junction>
| {meas/quant> of <circuit/place>
<{meas/quant> from <junction>
| {meas/quant> of <section>
<{meas/quant> of <pronoun>
| <junction/type> <meas/quant> [of <transistor/spec>]
<transistor/term/type> <meas/quant> of
[<transistor/spec>
*input also
#%from-to also works
##%3t  thru, in, into, across and through also work

L <node> := junction of <part/spec> and <part/spec>
node pbetween <section> and <section»
[point] between <part/spec> and <part/spec>
<node/name> ! [node] <node/number>
{pronoun>
e I
<num/spec> := "any positive number" [k] ! one
<{part/spec> := <part/name> ! <load/spec> ! <section> <part/type>
, {pronoun?>
. 63
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Appendix B
A LISP Rule from the Semantic Grammar

This appendix describes the method of encoding the grammar as LISP
procedures. The ways of expressing a non-terminal are embodied in a
grammar function. Each grammar function takes at least two arguments;
STR, the 1list of words to be recognized, and N, the degree of fuzziness
allowed. The grammar function in effect, must determine whether the
beginning of the string STR contains an occurrence of the corresponding
non-terminal. There are generally two types of checks that a grammar

function performs. One 1is a check for the occurrence of a word or words
which satisfies certain predicates. This checking 1is done with two
functions -- CHECKLST and CHECKSTR. CHECKLST looks for a word in the

string matching any of a list of words. CHECKSTR looks for a word in the
strinf satisfying an arbitrary predicate. It is through these functions
that the parser implements its fuzziness, For example, if CHECKSTR is
called with the string "resistor R9" and a predicate which determines if a
word is the name of a part (e.g. "R9"), CHECKSTR will succeed by skipping
the word "resistor", which in this phrase, is a noise word.

The other usual type of operation Eerformed by the grammar functions
is to check for the occurrence of other non-terminals. This is done b
calling the proper function (grammar rule) and passing it the correc
position in the input string.

If a grammar rule is successful, the function passes back two pieces
of information. First, it returns some indication of how much of the input
string is accepted (i.e. where it stopped). The convention adopted 1is
that the grammar rule returns as its value a pointer to the last word in
t he strin§ accepted by the rule. Second, the function passes back a
structura description of the phrase that was parsed. This, structure is
passed back in the free variable RESULT (analogous to an ATN's "#" upon
return from a PUSH,.

Listed below is the grammar rule for the concept of a junction of a
transistor. This rule accepts phrases such as "base emitter junction of
Q5", "BE of the current 1limiting transistor", or '"collector emitter
Junction®,

(<JUNCTION>
(LAMBDA (STR N
(PROG (TS1 R1
( RETURN
(AND

(* COMMENT A)

[Ok (AND (SETQ TS1 (<JUNCTION/TYPE> STR N))
(SETQ R1 RESULT))
(AND (SETQ TS1 (<TRANSISTOR/TERM/TYPE> STR N))
SETQ R1 RESULT)
SETQ TS1

(<TRANSISTOR/TERM/TYPE>
(CDR (CHECKLST (CDR TS1) )
QUOTE (AND TO]
(SETQ R1 (JUNCTION~OF-TERMS R1 RESULT]

(* COMMENT B)

(COND
) ([SETQ STR §<THANSISTUH/SPEC) v
(CDR (GOBBLE éGOBBLE TS1 (QUOTE (JUNCTION)))
UOTE (OF))

1
%E?Q RESULT (LIST R1 RESULT))
'K

{
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([SETQ RESULT (LIST K1 (LIST (QUOTE PREF)
: ) (QUOTE (TRANSISTOR]
Sl )

COMMENT A:

IThe first thing that is looked for is either a <junction/type> (BE, emitter
collector etc.) or two <transistor/terminal/type>s (base, emitter or
collector) separated by the words "and" or "to". If two terminals are
found, the function JUNCTION-OF-TERMS is called to determine the proper
Junction. In either case, the place where the successful subsidiary rule
left off is saved in TS1 and the meaning of the accepted phrase is saved in
R1.

.OMMENT B:

[he next thing needed for a junction is a transistor <TRANSISTOR/SPEC>.
{TRANSISTOR/SPEC> 1looks for an occurrence of a transistor, e.g. "Q5" or
"current 1limiting transistor™". GOBBLE 1is a function for skipping
relational words when they are not used to restrict the remaining parE of
the phrase. If a transistor is not found, a deletion is hypothesized and a
call to PREF is constructed. If the transistor has been pronominalized as
in "the base emitter of it", <TRANSISTOR/SPEC> would recognize "it", In
eitner case the semantics of the recognized phrase (something like (EB Q5))
is put into RESULT and a pointer to the last recognized word is returned as
the value of <JUNCTION>.

There are approximately 80 grammar rules in SOPHIE s grammar.
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Appendix C
Sample Parses and Parse Times for the LISP Implementation

This appendix presents some examples of sentences handled by the
natural language processor together with their parse times. Under each
statement, the semantic interpretation returned by the parser is given.
The semantic interpretation 1is a function call which when evaluated
performs the processing required by the statement., Parse times are given
in milliseconds.

Insert a fault.
I sRTFAULT NIL)

What is the output voltage?
(MEASUKE VOLTAGE NIL OUTPUT)

40 ms

wWhat is the voltage between the current limiting transistor
and the constant current source?
(MEASUKE VOLTAGE (NODE/BETWEEN
(FINDPART CURRENT/LIMITER TRANSISTOR)
CURRENT/SQURCE) )

335 ms

what i{s the voltage between there and the base of Q52
(MEASURE VOLTAGE (PREF (NODE TERMINAL)) (BASE Q6))

(REFEKENCE ( (TRANSISTOR) Q5))
b ( ’

} ms
Hips]

he problem be that Q5 is bad?
ULT Q5 BAD)

rted?
F (PART JUNCTION TERMINAL)) SHORT)

If R were 30k what would the output voltage be?
(IFTHEN (R8 30000.0 VALUE) ;
; (MEASURE VOLTAGE NIL OUTPUT))
If C¢ were leaky what would the voltage across it be?
(IFTHEN (C2 LEAKY)
(MEASURE VOLTAGE (PREF (PART JUNCTION)))

120 ms

what 1s the output voltage when the voltage control is set to .57
(RESETCONTROL (STQ VC .5)
(MEASURE VOLTAGE NIL QUTPUT))

What is it with it set at .67

( RESETCONTROL (STQ (PREF (POT LOAD SWITCH)) .6)
(REFERENCE NIL))

110 ms

If it is set to .97

(KRESETCONTROL (STQ (PREF (POT LOAD SWITCH)) .9)
(REFERENCE NIL))

- 135 ms
) 67




S the current thru the cc when the ve is set to 1.07
( RESETCONTROL (STQ vC 1.0)
(MEASURE CURRENT CC))

[f Qb has an open emitter and a shorted base collector
nction, what happens to the voltage between its base and
the junction of the voltage limiting section and the voltage
reference source?
(IF

(MULT ((EMITTER Q6) OPEN)
((BC (PREF (TRANSISTOR))) SHORT))
(MEASURE VOLTAGE
(BASE (PREF (TRANSISTOR)))

(NODE/BETWEEN VOLTAGE/LIMITER REFERENCE/VOLTAGE)))
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Appendix D
Examples of ATN Compilation

This appendix presents a simple augmented transition network grammar
along with two different programs compiled from it and a trace of the first
program parsing a sentence. The ATN grammar was taken from (Woods 1970).
Both compiled versions of the grammar assume a depth-first search strategy
and use configurations which include the state, node, stack, registers,

features and hold list.

The first program does not support lexical ambiguity (neither that
caused by compound rules nor that caused by multiple interpretations under
the same category). In addition, it neither keeps a well-formed substring
table, tests for input before pushing nor returns features with popped
constituents. The second program, on the other hand, has all of these
capabilities. The 1listing of the second program also includes tracing
functions the compiler includes in the program to allow the user to follow

its operation. Both programs are given in CLISP (Teitelman 1974).

The final section of the appendix contains a trace of the first
program (using a version which did include tracing functions) discovering
all possible parses of the sentence "John was believed to have been shot by
Fred" . Shown 1in the trace are all of the arc transitions taken by the
parser together with all register setting operations. (The reader may

compare this with the analysis of this sentence given in (Woods 1970).)
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The grammar

(S/
(CAT AUX T
(SETR V #)
(SETR TNS (LIST (GETF * TENSE)))
(SETRQ TYPE Q)
{TO Q1/))
(PUSH NP/ T
(SETR SUBJ #*)
§SETRQ TYRE BCL)
, TO Q2/)))
(Q1/
(PUSH NP/ T
(SETR SUBJ %)
i (TO Q3/)))
(Qe/
(CAT V T
(SETR V_*)
(SETR TNS (LIST (GETF * TENSE)))
(TO Q37)))
(Q3/
(CAT V (AND (GETF * PPRT)
(EQ EGETR V)
QUOTE BE)))
(HOLD (GETR SUBJ))
%SETH SUBJ (BUILDQ (NP (PRO SOMEONE))))
SETR AGFLAG T
(SETR V %)
(TO Q3/))

(CAT V (AND §GETF ASEERL)
EQ éGETR V)
QUOTE HAVE)))
(SETR TNS (APPEND §GETR TNS)
QUOTE (PERFECT)))
(SETR V ¥)

(TO Q?/))
(PUSH NP/ (TRANS (GETR V))
gSETR OBJ *)
TO Q4/))
(VIR NP (TRANS (GETR V))
(SETR OBJ *)
$TO Qu/))
(POP (BUILDQ (S + + (T
TYPE SUBJ
(INTRANS (GETR V))
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Q4/

(WRD BY (GETR AGFLAG)
(SETR AGFLAG NIL)
(TO Q7/))

(WRD TO (S-TRANS (GETR V))
éTO Q5/))

(POP (BUILDQ (S + + (TNS +) (VP (V +) +))

TYPE SUBJ TNS V OBJ

T})
(Q5/
(PUSH VP/ T

(SENDR SUBJ (GETR OBJ))
(SENDR TNS (GETR TNS)
( SENDRQ TYPE DCL)
’bbTR O?g
{TO Q67

(Q6/

(WRD BY (GETR AGFLAG)
(SETR AGFLAG NIL)
(TO Q7/))
(POP (BUILDQ (S + + (TNS +) (VP (V +) +))
| TYPE SUBJ TNS V OBJ)
ey
(Q7/

(PUSH NP/ T
(SETR SUBJ *)
(TO Q6/)))

_(GETF * UNTENSED)

(VP/
(CAT V

(NP/
(CAT I

D
\

(CAT N
(NP/1

(SETR N )
(TO NP/2)))
(NP/2

(POP (BUILDQ (NP (DET +) (ADJ +) (N +))
DET ADJS N)

T1)

NP/3
(POP (BUILDQ (NP (NPR +))
NPR)

T))

)
7.
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Version 1
(PARSER
(LAMBDA (ACF)
(PROG (STATE NODE STACK REGS HOLD * LEX)

The current status of the machine is kept in

five global

variables; (1) STATE, the atate/arc in the grammar, (2)

NODE, the' pointer into the in REGS,

register name-value pairs

E the 1lisf of
) uTACK the return stack, and

(5) HOLD, the hold list. #utting the 'machine into a given

configuration involves assigning values of

variables,

SPREAD-ACF
(STATE«(CF.STATE ACF))
( REGS«(CF.REGS ACF))
(STACK«(CF.STACK ACF))
(HOLD«(CF.HOLD ACF))
gNODEf(CF NODE ACF))
\LEX&TLDbE WORD (FIRST.EDGE NODE)))

these five

BRANCH dispatches control to the label specified by STATE.

This is the method of executing an arc.

EVALAKC
(BRANCH STATE SUCCESS DETOUR S/ S/-2 S/-2-PUSH Q1/
Q1/-1 PUSH Q27 Q / 03/ 2 Q3/=3 Q3/=-4 Q3/=5
/=3-PUSH Q4/ Q 2 QU/-3 Q5/ Q5/-1-PUSH Qb6/
/=2 Q1/ QT/-1- PUSH ve/ NP?

NP/-Z NP/1 NP/1-2 NP/2 NP/3

SUCCESS checks to make sure all of the input has been

processed, If not it detours.

SUCCESS
(if (EMPTYP.NODE NODE)
then (RETURN %)
else (GO DETOUR))

DPETOUR decides which alternative to try next.
the alternatives list is a stack.

DETOUR
(1f ALTS
then ACFf(ALTS FIRST)
(ALTS.BUTFIRST)
(GO SPREAD- ACFg
else (RETURN (FAILURE)))

This is the beginning of the code which is com
arcs. The first arc of each state has a labe
same as the state name in the ATN. The other

In this case

iled from the
which is the

arcs have a

label which is the state name followed by "-" and the arc

number. Labels which end in "-PUSH" indicate
and termination action of PUSH arcs.

S/ (if (ARCCAT AUX)
then §ALTAH9 S/=2)
SETR 'V #) y
ESETH “TNS <(GETF * "TENSE)>)
SETRQ TYPE Q)
éDUTU Q1/)
GO Q1/))

the actions




e

/=-2(DOPUSH NP/ S/-2-PUSH)
(GO NP/)
S/-2-PUSH _
(SETR "SUBJ %)
(SETRQ TYPE DCL)
(DOPTO Q2/)
(GO Q2/)
Q1/ SDUPUSH NP/ Q1/-1-PUSH)
(GO NP/)
Q1/-1-PUSH
SETR "SUBJ %)
(DOPTO Q3/)
(GO Q3/)
@2/ (if (ARCCAT V) |,
t hen éSETR e, ,
SETR TNS <(GETF * "TENSE)>)
2DOTO Q?/)
GO Q3/
GO DETQUR)

Q3/ (while (ARCCAT V) and §GETF X PPRT)
and (GETR V)= BE
do (ALTARC Q3/-2)
HOLD (GETR SUBJ))
SETR ,SUBJ (BU%LDO (NP (PRO SOMEONE))))

(SETR AGFLAG i
(SETR *)
(DOTO 03/))
03/=2

(if (ARCCAT V) and (GETF * ‘PPRT)
and (GETR V)= HAVE
t hen ?ALTARC Q3/-3) )
SETR 'TNS <1 (GETR TNS) ! “(PERFECT)>)
(SETR ‘V ¥)
éDOTO Q§/)
GO Q37

Q3/-
?if (TRANS (GETR V))
then (ALTARC Q3/-4)
(DOPUSH NP/ Q3/-3-PUSH)
(GO NP/))

(if (HOLDSCAN HOLD ‘NP “(TRANS (GETR V)))
then (ALTARC Q3/-5)
PREVIBACTS)
SETR "OBJ #)
(DOVIRTO Qu/)
(GO Qu/))

(if (INTRANS (GETR V))
then (DOPOP (BUILDQ (S + +(TNS +) (
TYPE SUBJ TNS V

(GO EVALARC))

(GO DETOUR)
Q3/-3-PUSH,
(SETR OBJ *)
(DOPTO Q4/)
(GO Qu4/)
Q4/ (if (ARCWRD BY) and (GETR AGFLAG)
then (ALTARG QU/-2)
SETR AGPLAb NIL)
DOTO Q§
(GO Q7/

Q3/-4

VP (V +)))
))




QU/=2
(if (ARCWRD TO) and (S-TRANS (GETR V))
then éALTAHC Qu/-3)
DOTO Q5/)
(GO Qﬁ/g)

?DOPUP (BUILDQ (S + +(TNS +) (VP (V +)+))
TYPE SUBJ TNS V OBJ))
(GO EVALARC)

Q5/ (SENDR SUBJ (GETR UBJ;)
(SENDR "TNS (GETR TNS)
(SENDRQ TYPE DCL)

\DUP JSH VP/ Q5/-1-PUSH)
SREGS NIL)
\GU VP/)
5/=1-PUSH ,
(SETR “OBJ *)
(DOPTO Q6/)
(GO Q6/)
Qb/ (if (ARCWRD BY) and (GETR AGFLAG)
then (ALTARG Q6/-2)
SETR AGFLAG NIL)
DOTO Q7/)
(GO Q7/))
Qb/=2

(DOPOP (BUILDQ (S + +(TNS +)
(VP (V +)+))
TYPE SUBJ TNS V 0OBdJ))
(J( EVALARC)

Q7/ BL\PIbH NP/ QT7/-1-PUSH)
(GO NP/)
Q?/—T-PUSH,
SETR "SUBJ *)
ébOPTL Q6/)
GO Q6/) -
VP/ (if (ARCCAT V) and (GETF * "UNTENSED)
then (SETR 'V %)
(DOTO Q?/)
(GO Q3/
O DETOUR)
f (ARCCAT DET)
t hen %ALTARC NP/=2)
SETR DET' *)
(DOTO NP/1)
(GO NP/1))

QU/-

(if (ARCCAT NPR)
then (SETR 'NPR %)
DOTO NP/?)
GO NP/3)
(GO DETOQUR)
NP/1(while (ARCCAT ADJ) do éA TARC hi 1-A)
ADDL "ADJS *J
(DOTO NP/1)

4 '4-.
if (AKCCAT N)
then (SETR ‘N %)
(D(TJ } L)
(GO NP/
!\’;n I.'i'.TJJﬁ
NP/2(DOPOP (BUILDQ (NP l +)
\ F ] *)
(N +))
DET Al,“ N))

(GO EVALARC)
NP/3(DOPOP (BUILDQ (NP (NPR +))
NPR))
(GO EVALARC))))
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Version 11

(PARSER
(LAMBDA (ACF)
(PROG ZSTATE NODE STACK REGS FEATS HOLD * LEX SREGS

SFEATS FEATURES TEMP)

If the function is called with an argument of ‘GO, it looks
for another parse. This allows the user to get out more
than the first parse.

(if ACKF="
then (GO DETOUR) )

The.current ?t?tus o the machine is kept 1in five global
variables: 1 STATE, the state/arc in the grammar, (2)
NODE, the pointer into the xnﬁut REGS, the list of
egister name-value pairs éTA K, the return stack, and
(5) HOLD, the hold list, ﬁuttlng the machine into a given
configuration involves assigning values to these five
variables.

SPREAD-ACF
(CHANGESTATE (CF.STATE ACF))
(REGS€¢(CF .REGS ACF))
FEAT?«?CF.FEATS ACFg;
STACK+(CF.STACK ACF
HOLD&(CF.HOLD ACF))
LEx;fEDPE WORD (FIRST.EDGE NODE<(CF.NODE ACF))))

TRACEALTSTART is one of the tracing functions provided to
allow the user to follow the operations of the parser. The
others are TRACEARC and ABORT. None of these result in any
code when a fast version of the parser is produced.

(TRACEALTSTART)
(GO EVALARC)
NEXTLEX

If the current node has more than one lexical interpretati
(BUTFIRST.EDGE), the code sets NODE to try the next one.

(if (BUTFIRST.EDGE NODE)
then LEX«(EDGE.WORD (FIRST.EDGE
NODh+(BUTPIRST EDGE
NODE) ) )
(GO EVALARC))

BRANCH dispatches control to the label specified by STATE.

EVALARC
(BRANCH STATE SUCCESS DETOUR S/ S/-~1-CONT S/-2
S/-1-CAT S/-2-PUSH Q1/ Q1/-1-PUSH Q2/
Q2/-1-CONT Q2/-1-CAT Q3/ Q3/-1-CONT
Q3/-2 Q3/-2-CONT Q3/- 3 Q}/ 4 Q3/-¢
Q3/-1-CAT Q3/-2-CAT 2 -3-PUSH Q4/ Q4/-2 Qu/-3
Q5/ Q5/-1-PUSH Q6/ Q Q7/ Q7/-1-PUSH

VP/ VP/=1-CONT VP/-I—\AT NP/ NP/-1-CONT
NP/-2 NP/-2-CONT NP/-1-CAT NP/-2-CAT
NP/1 NP/1-1~CONT NP/1-2 NP/1-2-CON?

NP/1-1-CAT NP/1-2-CAT NP/2 NP/3)
SUCCESS
(RETURN NODE)
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DETOUR chooses an alternative from the ALTS list,
version the ALTS list is a stack. The detourin

from the list of SUSPENDED alts is faken. The
alternatives are maintained in order by weight.

ABORT

(ABOKT) ABORT is a tracing function.

DETOUR
(if ALTS
then ACF«(ALTS.FIRST)
%ALTS.BUTFIRSTg
GO SPREAD-ACF
elseif SUSPENDEDALTS
then ACF«(SUSPEND.POP)
(GO  SPREAD-ACF)
else (RETURN (FAILURE)))
S/ (if (ARCCAT AUX)
else (GO S/-2))
%ALTARC S/~2)
TRACEARC CAT AUX S/-1)
S/-1-CONT
ALTCAT S/~1-CAT)
SETR 'V *) i
SETR "TNS <(GETF * “TENSE)>)
SETRQ TYPE Q)
(DOTO Q1/)
(GO Q1/)
S/-2(if (STRINGLEFTP)
then (NEXTLEXALT S/)
(TRACEARC PUSH NIL S/-2)
(DOPUSH NP/ S/-2-PUSH)
(GO DETOQUR))
(CHANGESTATEQ S/)
(GO NEXTLEX)
S/~1=GAT
éARCCAT AUX)
TRACEARC ALTCAT AUX S/-1)
(GO S/-1-CONT)
S/-2-PUSH
(SPREAD/WFS)
%SETR SUBJ *)
SETRQ TYPE DCL)
DOPTO Q2/)
GO Q2/)
Q1/ (if (STRINGLEFTP)
then ENEXTLEXALT Q1/)
TRACEARC PUSH NIL Q1/-1)
%DUPUSH NP/ Q1/-1-PUSH)
GO DETOUR))
&CHANGESTATEQ Q1/)
GO NEXTLEX)
Q1/~1-PUSH
ESPREAQ/WPS)
SETR "SUBJ #)
DOPTO Q3/)
GO Q3/)
Q27 (if (ARCCAT V)
else §CHANGESTATEU Q2/)
GO NEXTLEX))
(NEXTLEXALT Q2/)
(TRACEARC CAT V Q2/-1)
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Q2/-1-CONT
%ALI(AL 00 A 1=CAT)
SETR ¥V *) y
(SETR NS <(GETF * “TENSE)>)
CDOTO Q34)
(GO Q3/)
Q24-1-CAT

(AKCCAT V)
(TRACEAKC ALTCAT V Q2/-1)
(GO Q2/-1-CONT)

Q3/ (i (ARCCAT V)

else (GO Q3/-2))

ALTARC Q3/-2)

TRACEARC CAT V Q3/-1)

CONT

LTCAT Q3/-1-GAT) )

f “((GETF * PPHT% and (GETR V)= BE)
then (GO ABORT)

(HOLD (GETR SUBJ))
(SETR _SUBJ (BUILDQ (NP (PRO SOMEONE))))
(SETR AbPLAG T)
gSETR Vo¥)
DOTO Q?/)
(GO Q3/
Q3/-2
(if (ARCCAT V)
else (GO Q3/-3))
(ALTARC Q3/-3)
(THA(nAHC CAT V Q3/-2)
Q3/-2-CONT
(ALTCAT Q3/-2-GAT) ;
(if N((JFIP * PPHT; and (GETR V)= HAVE)
then (GO ABORT)
(SETR "TNS <! (GETR TNS; !
) (PERFECT)>
(SETR "V *)
(DOTO Q3/)
; g‘j“, Q3/)
(if (STRINGLEFTP) and (TRANS (GETE V))
then (ALTARC Q3/-4)
(TRACEARC PUSH NIL Q3/-3)
(DOPUSH NP/ Q3/-3-PUSH)
30 DETOUR) )
(if TEME HOLDSCAN HOLD °NP “(TRANS (GETR V)))
then fA_TAﬁL Q3/-5)
(TRACEARC VIK NP Q3/-4)
\fn}VIBA(I))
(SETR "OBJ *)
(DOVIRTO Q47/)
(GO Qu/))
Q37-5
CLE (IhThAN; (GETR V))
then (NEXTLEXALT Q3/)
tIhA\bAH( POP NIL Q3/-5)
(DOPOP (BUILDQ (S + +(TNS +)
(VP (V +,))
TYPE SUBJ TNS V)
(GETR POPFEATS))
(GO DETOQOUR))
(CHANGESTATEQ Q3/)
(GO NEXTLEX)




Q3/-1~CAT
?AHCCAT V)
(TRACEARC ALTCAT V Q3/-1)
(GO Q3/-1-CONT)
Q3/-2~CAT
ARCCAT V)
TRACEARC ALTCAT V Q3/-2)
GO Q3/-2-CONT)
Q3/-3-PUSH
SPREAD/WFS)
SETR "OBdJ *)
DOPTO Q4/)
GO Qu/)
Q4/ (if (ARCWRD BY) and (GETR AGFLAG)
then (ALTARC Qu4/-2)
STRACEARC WRD BY Q4/-1)
SETR "AGFLAG NIL)
éDOTO Q7/)
GO Q7/))
Q4/=2

(if (ARCWRD TO) and (S-TRANS (GETR V))

TRACEARC WRD TO Q4/-2)
DOTO o?/)
GO Q57))

Qu/-3
NEXTLEXALT Q4/)
ETRACEARC POP NIL Q4/-3)
DOPOP (BUILDQ (S + +(TNS +)
(VP (V +)+))
TYPE SUBJ TNS V OBJ)
) (GETR POPFEATS))
(GO DETOQUR)
Q5/ (if (STRINGLEFTP)
then (NEXTLEXALT Q5/)
TRACEAKC PUSH NIL G5

then gALTARC Qu/-3)

1)

5/ <
SENDR SUBJ (GETR OBJ))
ESENDH TNS (GETR TNS))
SENDRQ TYPE DCL)
(DOPUSH VP/ Q5/-1-PUSH)
SREGSeNIL
SFEATSeNIL

(GO DETOUR))
(CHANGESTATEQ Q5/)
(GO NEXTLEX)
Q5/-1-PUSH
(SPREAD/WFS)
(SETK “OBJ *)
(DOPTO Q6/)
éGO Q6/)
/ (if (ARCWRD BY) and (GETR AGFLAG)
then (ALTARC Qb6/-2)
(TRACEARC WRD BY Q6/-1)
éUETR AGFLAG NIL)

Qb

DOTO Q7/)
(GO Q7/))
Q6/-2
ENEXTLEXALT Q6/)
TRACEARC POP NIL Q6/<2)
(DOPOP (BUILDQ (S + +(TNS

+)
(VP (V +)+))
TYPE SUBJ TNS V 0OBJ)
(GETR POPFEATS))
(GO DETOUR)




sy SN AR s R WS SRR e e

Q7/ (if (STRING
t hen %
(
TA
E

u//—1—PUdh

(SPREAD/WFES

(.)f‘"“‘\ \)U )J *)

(DOPTO Q67)

(GO Q6/)
VP/ (if (ARCCAT V)

else ((HANU +STATEQ VP/)
(GO NEXTLEX))

.EXALT VP/)
Ah( CAT Vv VP/=1)

SETP )
TLEXALT Q7/)

EARC PUSH NIL Q7/-1)
JSH NP/ Q7/-1-PUSH)
JETOUR) )

VE‘CCCI""—
o)
—co

I VP/-1-CAT)

GETF * "UNTENSED)
en (GO ABOKT))

=

=

V)

(ARCCAT DET)
pl%e (GO NP/=2))

(ALTARC NP/-2)

(TRACEARC CAT DET NP/-1)
NP/=-1-CONT

(ALTCAI NP/-1-CAT)

§SETH DET *)

DOTO NP/1)
GO NP/1)

if (ARCCAT NPR)
else (CHANGESTATEQ NP/)
(GO NEXTLEX))

(NEXTLEXALT NP/)
(TRACEARC CAT NPR NP/-2)
2-CONT

(ALTCAT NP/=2-CAT)

E )

(
NP/=2
(i

NP/~

SETR NPR *
DOTO NP/3)
(GO NP/3)
NP/=1-CAT
(ARCCAT DET)
(TRACEARC ALTCAT DET NP/=1)
(GO NP/=1-CONT)
NP/-2-CAT
(ARCCAT NPR)
(TRACEARC ALTCAT NPR NP/=2)
(GO NP/=2-CONT)
NP/1(if (ARCCAT ADJ)
else (GO NP/1=2))
(ALTARC NP/1-=2)
(TRACEARC CAT ADJ NP/1-1)
NP/1=1=CONT
(ALTCAT NP/1-1-CAT)
(ADDL "ADJS *
(DOTO NP/1)
(GO NP/1)

-
-
—
g
.




NP/1=-2
(if (ARCCAT N)
else ECHANGESTATEQ NP/1)
GO NEXTLEX))
(NEXTLEXALT NP/1)
(TRACEARC CAT N NP/1-2)
NP/ 1-2~CONT
ALTCAT NP/1-2-CAT)
SETR N *
DOTO NP/2
GO NP/2)
NP/1-1-CAT
ARCCAT ADJ)
TRACEARC ALTCAT ADJ NP/1-1)
GO NP/1-1-CONT)
NP/1-2-CAT
(ARCCAT N)
gTRACEAHC ALTCAT N NP/1-2)
GO NP/1-2-CONT)
NP /2 (NEXTLEXALT NP/2)
gTRACEARC POP NIL NP/2-1)
DOPOP (BUILDQ (NP §DET +;

DET ADJS N)
(GETR POPFEATS))
(GO DETOUR)
NP/3§NEXTLEXALT NP/3)
TRACEARC POP NIL NP/3-1)
(DOPOP (BUILDQ (NP (NPR +))
NPR)
(GETR POPFEATS))
(GO DETOUR))))
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[race of Version 1 Parsing a Sentence
PARSE((JOHN WAS BELIEVED TO HAVE BEEN SHOT BY FKED))

Starting alternative 0
At arc S/
Node = (((JOHN NPR (&)) ((WAS V & AUX &) (& &))))

The sentence is converted jinto a chart format. The chart
contains information about the possible parts of speech of each
word., Notice that "was" can be either a verb (V) or an auxiliary
verb (AUX)., (An "&" is used to indicate a further structure.)

Taking PUSH arc S/-2
The trace indicates the arc type and its

1
No alternative 1is stored because S/-2 i
state 5/ and there are no lexical alternati

tion in the grammar.
lan.t arec in the

WL
e
@

PUSHing for NP/
faking CAT NPR arc NP/-2
Setting NPR to JOHN

The trace also indicates where registers get set,

Entering state NP/3
Node = (((WAS V (%) AUX (&)) ((BELIEVED V &) (& &))))
Takiag POP arc NP/3-1

Irying to POP
(Continuing arc 5/-2-PUSH)
Setting SUBJ to (NP (NPR JOHN))
Setting TYPE to DCL

Entering state Q2/
Node = (((WAS V (&) AUX (&)) ((BELIEVED V &) (& &))))
laking CAT V arc Q2/-1

setting V to BE

etting TNS to (PAST)

V (&)) ((TO PREP &) (& &))))

The alternative configuration to try the second arc leaving Q3/
(Q3/72) 1is created and saved after the test has succeer :d on the
first arec but before the arc is taken., This 1is alt ¢ because
configuration 1 was created during the earlier PUSH arc (i.e.
the number is a configuration number).

yring alt 2 for are Q3/=2
AT V arce Q3/-1

ing (NP (NPR JOHN))

tting SUBJ to (NP (PRO SOMEONE))
Setting AGFLAG to T
Setting V to BELIEVE

Entering state Q3/

Node = (((TO PREP (&)) ((HAVE V &) (& &))))
Storing alt 3 for arc Q3/-4

laking PUSH arc Q3/=3

PUSHing for NP/

BLOCKED

Starting alternative 3
At arc Q3/-4
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Node = (((TO PREP (&)) ((HAVE V &) (& &))))
btorJn% alt 5 for arc Q3/-5
Taking VIR NP arc Q3/-4
(NP (NPR JOHN)) removed from HOLD list
Setting OBJ to (NP (NPR JOHN))

tnter;n% state Q

Node ((TO PREP &)) ((HAVE V &) (& &))))
Storing alt for arc Q4/-3

Taking WRD TO arc Qu4/-2

Entering state
Node = {(LHAVE ¥_(8)) ((BEEN V &) (& &))))
Iak;nﬁ PUSH arc Q5/-1
Ding SUBJ value of (NP (NPR JOHN))
SENDing TNS value of (PAST)
SENDing TYPE value of DCL
PUSHing for VP/
Taking CAT V arc VP/-1
Setting V to HAVE

Entering state Q3/
Node = (((BEEN V (&)) ((SHOT Vv &) (& &))))
Storing alt 8 for arc Q3/-
Taking CAT V arc Q

Setting TNS to ?PAST PERFECT)
Setting V to BE

Entering state Q3/
Node = (((SHOT V (&)) ((BY PREP &) (& NIL))))
Storing alt 9 for arc Q3/-2
Taking CAT V arc Q3/-1
HOLDing (NP (NPR JOHN))
Setting SUBJ to (NP (PRO SOMEONE))
Qgttxng AGFLAG to
Setting V to SHOOT

Entering state Q3/

Node = (((BY PREP (&)) ((FRED NPR &) NIL)))
Storing alt 10 for arc Q3/-4

Taking PUSH arc Q3/-3

PUSHing for NP/

BLOCK "D
Start i alternative 10
At arc w?/-u
Node = (BY PREP (&)) ((FRED NPR &) NIL)))
Storing alt 12 for arc Q3/-5

Taking VIR NP arc Q3/-4
(NP (NPH JOKN) ) removed from HOLD 1ist
Setting OBJ to (NP (NPR JOHN))

Entering state Qi/

Node = (((BY PREP (&)) ((FRED NPR &) NIL)))
Storing alt 13 for arc Q4/-2
Taking WRD BY arc Q4/-~
Setting AGFLAG to NIL

Entering state Q7/
Node = (((FRED NPR (&)) NIL))
Taking PUSH arc Q7/-1
PUSHing for NP/
Taking CAT NPR arc NpP/-2
Setting NPR to FRED

—
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Entering state NP/3
Node = (NIL)
Taking POP arc NP/3-1
Trying to POP
(Continuing arc Q7/-1-PUSH)
Setting SUBJ to (NP (NPR FRED))

Entering state Q6/
Node = (NIL)
Taking POP arc Q6/-2
Trying to POP
(Continuing arc Q5/-1-PUSH)
Setting OBJ to (S DCL (NP (NPR FRED))
6%5 (PAST PERFECT))

(V. SHOOT) (NP (NPR JOHN))))

Entering state Q6/
Node = (NIL)

lTaking POP arc Q6/-2
Irying to POP

Trying to SUCCEED

S DCL
NP PRO SOMEONE
TNS PAST
VP V BELIEVE

DCL : :
NP NPR FRED One successful parse. Par
INS PAST PERFECT because it was being run
L beﬁggTJOHN returns all possible parse

Starting alternative 13
At arc Qu4/-2
Node = (((BY PREP (&)) ((FRED NPR &) NIL)))
Taking POP arc Qu/-~3
Trying to POP
(Continuing arc Q5/~1-PUSH)
Setting OBJ to (S DCL (NP (PROU SOMEONE))
TNS (PAST PERFECT))
VP
(V _SHOOT) (NP (NPR JOHN))))

Entering state Q6/
Node = {((BY PREP (&)) ((FRED NPR &) NIL)))
Storing alt 15 for arc Q6/-2
laxing WRD BY arc Qb/-1
Setting AGFLAG to NIL

Entering state Q7/
Node = (((FRED NPR (&)) NIL))
Taking PUSH arc Q7/~1
PUSHing for NP/
Taking CAT NPR arc NP/=2
Setting NPR to FRED

Entering state NP/3

Node = (NIL)

Taking POP arc NP/3-1

Trying to POP

(Continuing arc Q7/<1-PUSH)
Setting SUBJ to (NP (NPR FRED))
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Entering state Qb6/
Node = (NIL)

Taking POP arc Q6/-2
Trying to POP

Trying to SUCCEED

S DCL
NP NPR FRED
TNS PAST )
VP V BELIEVE Second possible parse.
S DCL
NP PRO SOMEONE
TNS PAST PERFECT
VP V SHOOT
NP NPR JOHN

Starting alternative 15

At arc Q6/-2

Node = (((BY PREP (&)) ((FRED NPR &) NIL)))
Taking POP arc Q6/-2

Trying to POP

Tr5in to SUCCEED

BLOCKED

At arc /=5

Node = (BY PREP (&)) ((FRED NPR &) NIL)))
BLOCKED

Starting alternative 12

Starting alternative 9

At arc /=2

Node = (((SHOT V (&)) ((BY PREP &) (& NIL))))
BLOCKED

Starting alternative 8

At arc ?%/-3» _
Node = (BEEN V (&)) ((SHOT V &) (& &))))
BLOCKED

At arc QU4/-3

Node = (((TO PREP (&)) ((HAVE V &) (& &))))
Taking POP arc Q4/-3

Trying to POP

Startin§ alternative 6

Tr%in to SUCCEED

BLOCKED

Starting alternative 5

At arc %?/-5

Node = (TO PREP (&)) ((HAVE V &) (& &))))
BLOCKED

At arc /=2
Node = (BELIEVED V (&)) ((TO PREP &) (& &))))
B%ECKED

Startin; alternative 2
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Appenaix kb

Grammar Compiler Declarat ions

apecification off Features

Some features of the general ATN parser require a good deal > f
bookkeeping. For example, SYSCONJ requires a parser to save the path that
it takes through the grammar. This more than doubles the amount of storarge
overhead., To relieve the burden of those features, such as SYSCONJ, which
tncrease the overhead, and which a particular application may not reguire,
the user can specify which features his grammar uses. The compiler will
then tailor the object code to those needs. The wuser specifications
consist of a collection of flags which are set at compile time. A
description of each flag together with its default setting is given below.
HOLDFLG: 1If the grammar does not use the HOLD facility, setting this flar
to NIL will eliminate one field in a configuration. Default is T.

FEATURESFLG: If the grammar doesn’t use the feature facility, setting this
flag to NIL will eliminate one tield in a configuration. Default is T.

WESTFLG: 1If the grammar uses the well-formed substring feature, WFSTFLG
should be non-NIL. Default is NIL,

ALTCATSFLG: If this flag is NIL, the compiler will not compile the abilit
to handle multiple interpretations of a word within a single category.
ALTCATSFLG is a list, it will compile this ability 1Into those CAT 3
whose categories are members of the ist. If T, it will compile
ability into all CAT arcs. Default is T.

SYSCONJFLG: If the grammar uses the LUNAKk SYSCONJ conjunction-handling
facility SYSCONJFLG should be non-NIL. Default is NIL. (SYSCONJ has not
been implemented yet.)

;TAETSIATE: This should be the start state of the erammar. Default value

NULLPUSHFLG: If NULLPUSHFLG is non-NIL, a PUSH arc will never be taken if

there is no input left. Default setting is T.

UNAMBIGUOUS-CHAKT: If the input chart is never ambiguous, setting this
flag to a non-NIL value will avoid the checking for an alternati 1
interpretation., Default is NIL.

Inis begins to legislate nut PUSHes which do not wuse any of the
inputs. In practical terms, this means that a PUSHed to network has to do
more than just take constituents off the hold list., In theoretical terms,
it closes one of the holes which may allow an ATN grammar to be
undecidable.

85




Declarations for Arc Tests and Actions

[he tests and actions on an arc can be arbitrary LISP expressions. To
compile these function calls, the grammar compiler must know which
arguments get evaluated. In general the grammar compiler gets this
information from the same declarations about functions that the LISP
rompiler uses (NLAMA, NLAML, FNTYPE, etc.). In addition a facility is
provided which allows the user to tell the grammar compiler how to compile
the individual arguments to particular functions. Using this facility it
is possible to write function calls in the grammar which implicitly QUOTE
some of their arguments and evaluate others or even which call another
function to decode their arguments. The compiler is told how to compile
the arsuments to a function by putting a specification as the value of the
property GKAMMARARGINFO on the property list of the function name. The

value of GRAMMARARGINFO property should be one of the following:

1) LAMEDA: the function evaluates all of its arguments. (This is the
default case.)

2) NLAMBDA: the function doesn’t evaluate any of its arguments. This
can also be done by putting the function on either of the lists NLAMA
or NLAML (see INTERLISP compiler).

3) A list which specifies how each arsument should be treated. Each
element of the list can be:

1) E or NIL - This argument position will be evaluated. This is the
usual case where the action expects its argument to be evaluated and
tells the grammar compiler to scan the argument for embedded calls.,
2) QUOTE - This argument is embedded in QUOTE. This provides a
convenient way of automatically quoting certain argument positions
in a function call.

3) * - The argument is not compiled by the grammar compiler but is
merely copied. Note: Arcuments which occur in this position should
not have any embedded functions as these will not be scanned by the
compiler.

4) Any other atom - The atom is the name of a function which when
APPLYed to the argument returns the compiled form.

Examples: he grammar function SETK which sets the value of a register
?

could be compiled by having a GRAMMAKAKGINFU property of (QUOTE E).” The

arc action (SETR ANAPHORFLG T) would compile into (SETR (QUOTE ANAPHORFLG)

L) SETR is defined as a LAMBDA function (i.e. the interpreter evaluates

©  SETK is, in fact, recognized specially by the grammar compiler so
that it can keep track uf the registers which are used in the grammar.
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its arguments) which avoids the explicit call to EVAL which results from
having SETR be a NLAMBDA function (i.e. the interpreter doesn’t evaluate

its arguments).

In the LUNAR grammar, many of the arc functions wuse EVALLOC t«
evaluate one or more of their arguments. EVALLOC has three options: (1

if its argument is "*" or NIL, it gets the value of the current thing - ¥;
(2) 1if the argument is atomic, it is a register whose value is retrieved;
and (3) if the argument is a 1list, it is evaluated. This allows the
grammar to be clearer and less cluttered with predictable function calls
[o accomplish the same results using the compiler, a version of EVALI
(CEVALLOC) 1is provided which returns the form for the decoded argument,
I'he functions which use it are then given GRAMMARARGINFO property
CEVALLOC for those argument positions which need decoding. This means that
the decoding process takes place once at compile time instead of each t ime
the arc 1is tried. For example, in the LUNAR grammar the function MAKKER
has a GRAMMARARGINFO property of (CEVALLOC QUOTE). This allows the grammar
to have (MARKER N MASS) as an action which compiles int
(MARKER (GETR N) (QUCTE MASS)) and avoids an explicit call to EVAL
MARKER. Notice that by using this technique, the grammar writer can easily
specify default arguments to actions in his grammar (at very 1littl

computational cost) and greatly improve the readability of the grammar.
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Appendix F

Debugging Features

Since the compiler transforms the grammar into a program, the grammar
writer can use the debugging features of the object language to aid in
debugging his grammar., These should, of course, be augmented by some
features particular to grammars, but these are best integrated into an
existing framework. The following section describes a collection of
grammar debugging tools that have been 1integrated into the INTERLISP

system.

The debugging facilities can be grouped 1into two major categories;
tracing and breaking. The trace will show all grammar transitions and
register-changing operations. In debugging mode, the system will even keep
a complete history of the parse so that the user can back up. In addition,
the user has the ability to stop the parser at the end of each line of the
trace in order to look around in and/or change the current environment.

iracing

The trace package causes the functions in the object language program
t print out what they are doing. There are three types of actions whi
may be included in the trace: (1) arc transitions, storing of alternati
and hold 1list operations; (2) setting of registers; and (3)
registers to a PUSH configuration. The latter two of these can
ff independently. In addition, the debugging system allow
trace to a disk file and not to TTY. (If the user wants bott

pies, he can use the INTERLISP DRIBBLE facility,

eck the tate f the current nfigurat
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bKEAK1 (the LISP Break executive) augmented with some special functions ana
BREAKMACKUS. Since tne wuser is talking to BREAK1, he can use any of the
LISP break commands or execute any LISP functions as well as the special
commands described below. He can also use the special commands while
inside of a break caused by having broken one of his functions or typing

Control-H or Control-B.

Whenever the trace package prints a line of tracing information, and
the variable PAUSEFLAG has a non-NIL value, the trace package will wait for
the user to indicate whether to continue or break. A break 1is caused by
typing PAUSECHAR (initially ","). Continuation 1is caused by typing
CONTINUECHAR (initially "."). All other characters are ignored. If
PAUSECHAR is typed, BREAK1 is entered. The parsing is resumed by using one
of the break exiting commands, or by using one of the special commands

described below. Note: "." is equivalent to the Break command "OK".

Grammar Break Commands

Printing Out Parsing Information:

The following commands and functions are provided to print out

informat ion associated with a configuration.

1) CF - a Break command which prints out the present status of the
currently active configuration.

2) PPCF(n) - prints out the status of configuration number n.

Note: Both GF and PPCFE onl print non-NIL information about a
configuration. Also PRINTLEVE 1s set to 4 when debugging. It can be
reset to a higher (or lower) number 1if the user wants more (or less)
information printed.

3) PT - a Break command which tree prints (PPTT - see below) the current
structure (%), This 1is most useful after a POP to examine the
structure which was POPped.

4) PPTT(x) - prints the structure x in a tree format without parentheses.
5) CFARRAYDUMP(ST END) - dumps the contents of the configuration array
from configuration number ST to configuration number END. If ST is

NILé O is used. If END is NIL, the largest configuration FREECF#, is
used.
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Commands to Back up the Parser

The following commands are used to change the flow of control of the
parser while debugging. In order to use AGAIN or BACKUP, the parser must
be run in PATH mode, which saves a new configuration each time an arc is

taken.

1) AGAIN - a break command which restarts the current configuration,
NG, goes back to the most recent arc transition and starts again.
The effect is to redo the current arc. If the user discovers that
this did not back up far enough, he can use the command BACKUP,

2) BACKUP - a break command which restarts the configuration which led
to the current one. BACKUP may be invoked successively to back up
more than one arc transition.

3) ABORT - a break command which ABEORTs the current configuration. The
next active configuration will be taken from the ALTS Iist.

Note: AGAIN and BACKUP are useful if an arc is taken (or not taken) when
it should not have been (or should have been). The predicates or functions
involved in the offending arc test can be broken (using the LISP function
BREAK) and then AGAIN or EACKUP can be called to redo the arc.

4) FIRE(n) - aborts the current configuration and starts t he
configuration n. If n is on the ALTS list, the ALTS list is POPped
to the configuration before n.

5) PARSER(n) - recursively invokes the parser on configuration n. This
provides a way of exploring one of the configurations on the ALTS
list or returning to a (much) earlier configuration. Note: After
PARSER returns, the user is still in the same place with respect to
the current parse (except that he may have fewer configurations
left, his alternative lists may have been altered and his WFST may
contain more entries.)

90

ST

M



—-— Wy

Appendix G

ATN Description of Part of the SOPHIE Semantic Grammar

This appendix gives an ATN description of the same subset of the
language as presented in Appendix A. Of the 24 rules listed in Appendix A,
15 became "syntactic" categories, 3 were incorporated into other networks
and 6 remained non-terminals. The first section presents the ATN in its
graphic form. The second section presents the ATN as it is input to the

compiler.
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CAT PART

WRD LOAD

PART/ABBREV

CAY SECTI0p

<<t RIGHTWOR),
POP

PART/SECTICN PART/END

WRD \T

WRDITS WRD (JUNCTION
CIRCUIT
OF)

ANS

L

CAT JUNCTION JuMp

[N —
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Input Form of Semantic ATN

(MEASUREMENT/
(GROUP

(CAT SECTION T

SETR WHERE *)

TO MEAS/SECTION))
(WRD (INPUT OUTPUT) T

}SETR 1/0 Lsxg

TO MEAS/I1/0)
(CAT MEAS/QUANT T

(SETR QUANT *)

(TO MEAS/QUANT))
(CAT JUNCTION T

ESETR TERM #)

TO MEAS/TERM))
(CAT TERM/TYPE T

éSETR TERM %)

TO MEAS/TERM))
(CAT TRANSFORMER T

2SETR WHERE *)

TO MEAS/SECTION))))

(MEAS/SECTION
(GROQUP
(WRD (INPUT OUTPUT) T
(SETR I/0 %)

(TO MEAS/SECT/I/O;g
(JUMP MEAS/SECT/I/0 T)

(MEAS/SECT/1/0
(GROUP
(CAT MEAS/QUANT T
§SETR QUANT ';
TO MEAS/END)
(JUMP MEAS/END (GETR I1/0))))

(MEAS/1/0
(GROUP
(CAT MEAS/QUANT T
SETR QUANT #*)
TO MEAS/I/O/QUANT;;
(JUMP MEAS/I/0/QUANT T)

(MEAS/I/0/QUANT
(GRO

yp
(CAT PREP T
(TO MEAS/1/0/QUANT))
(CAT TRANSFORMER T
éSETR WHERE 'g
TO MEAS/END)
(CAT SECTION T
§SETR WHERE *
TO MEAS/END;
(JUMP MEAS/END T)

(MEAS/TERM
(CAT MEAS/QUANT T
éssrn QUANT *#)
TO MEAS/TERM/Q)))

(MEAS/TERM/Q
(GROUP
(CAT PREP

(TO MEAS/TERM/PREP;;
(JUMP MEAS/TERM/PREP T)
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(MEAS/TERM/
(GROUP
(CAT
T
(JUMP

1
(

(MEAS/QUANT

(GROuUP
(WRD

(WRD

(WRD
(WRD

(WRD

(WRD

(WRD

(JUMP
(POP (BU

+)
QUANT)
T))

(MEAS/PREP
(PUSH CI

SE
SE
TO
(PUSH JU

PREP
PART T
(SETR WHEKE (BUILDQ (+ #)
ERM) )
(TO MEAS/END))
MEAS/END T
éﬁ&TH WHERE (BUILDQ (+ (PREF ))

PART/KANGE TERM))))))

ON OF) T
%suTku CLASSES (PART TERMINAL JUNCTION NODE SECTION))
({0 MEAS/PREP))
AT
(SETKQ CLASSES (NODE TERMINAL))
TO MEAS/PREP))
BETWEEN FROM) T
TO MEAS/BETWEEN))
ACROSS T
(SETKQ CLASSES (PART JUNCTION))
gTu MEAS/PREP))
NT
(SETRQ CLASSES (PART TERMINAL JUNCTION SECTION))
(SETKQ I1/0 INPUT)
(TO MEAS/PREP))
THROUGH T
ESETRQ CLASSES (PART TERMINAL JUNCTION SECTION))
TO MEAS/PREP))
(OUT FROM) T
(SETRQ CLASSES (SECTION))
(SETKQ I/0 OUTPUT)
(TOC MEAS/PREP))
MEAS/PREP T))
ILDQ (KEFERENCE ((QUANT)

RCUIT/PLACE/ T
NDRQ NCPRO T)
TR WHEKE 'g
MEAS/END)
NCTION/ T

(SENDRQ NOPRO T)
(SETR WHERE *)
(TO MEAS/END))

i (PUSH PA

SE

- (TO
(CAT SEC

SE
SE
TO
oy (PUSH PR

Ri/ 1

ESENDRQ NOPRO T)

TR WHEKE 'g
MEAS/END)

TION T

NDRQ NOPRO T)

TR WHEKRE ';

MEAS/END)

ONOUN/ (GETR CLASSES)

SETR WHERE *

;SENDR TYPES (GETR CLASSES))

10 MEAS/END)))

(MEAS/END
(POP (BU

ILDQ (MEASURE + + +)
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QUANT WHERE 1/0)
)

(MEAS/BETWEEN
(PUSH PRONOUN/ T
. (SENDRQ TYPES (NODE TERMINAL))
ESETR NODE1 *)
TO MEAS/BET/N1))
(PUSH CIRCUIT/PLACE/ T
(SETR NODE1 *)
(TO MEAS/BET/N1))
(PUSH NODE/BET T
%SETR WHERE ‘;
TO MEAS/END)
(WRD QUTPUT T
(TO MEAS/BET/0UT)))

(MEAS/BET/N1
(WRD ETO AND) T
TO MEAS/BET/AND)))

(MEAS/BET/AND
(PUSH CIRCUIT/PLACE/ T
SETR NODE2 %)
TO MEAS/BET/END)))

(MEAS/BET/END
(POP (BUILDQ (MEASURE + + +)
QUANTT§?DE1 NODE2)

(CIRCUIT/PLACE/
(JUMP TERMINAL/ T)
(JUMP NODE/ T)
(WRD THERE T
2SETR POPVAL (BUILDQ (PREF (NODE TERMINAL))))
TO POP/VAL/)))

, (NODE/

(WRD §NODE N) T
TO NODE/1)
(JUMP NODE/1 T))
(NODE/1
(GROUP
(WRD EBETWEEN JUNCTION) T
TO NODE/BET))
(CAT NODE T
éssrn NODE #
TO NODE/END))
- (CAT 1N§$§§R (AND (IGREATERP #* -1)
)

(ILESSP
a51) (SETK NODE (PACK (LIST (QUOTE N)
1? (TO NODE/END))))
T

)
)

(NODE/BET
(GROQUP
(WRD OF T
(TO NODE/BET))
(CAT SECTION T
§SETR PART1 *)
—— TO NODE/BET/P1)))
§ (PUSH PART/ T
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(SETKR PART1 *)
(TO NODE/BET/P1)))

(NODE/BET/P1
(WRD AND T
{TO NODE/BET/AND)))

(NODE/BET/AND
(PUSH PART/ T
(SETR NODE (BUILDQ (NODE/BETWEEN + *)
PART1))
(TO NODE/END))
(CAT SECTION T
(SETR NODE (BUILDQ (NODE/BETWEEN + *)
PART1))
(TO NODE/END)))

(NODE/END
(poP S%ETH NODE)
T

( TERMINAL/
(GKOUP
(CAT TERM/TYPE T
(SETR TERM/TYPE *)
(TO TERM/TYPE))

(WRD ITS T

(TO TERM/ITS))
(WRD OUTPUT T
(TO TERM/OP))))

(TERM/TYPE
(GROUP
(WRD TERMINAL T
(TO TERM/TYPE/2))
(JUMP TERM/TYPE/2 T)))

(TERM/PREP
(PUSH PART/ T
éSETh PART *)
TO TEKM/TERM))
(WRD ONE T
(SETK PART (BUILDQ (PREF )
(PART/KANGE TERM/TYPE)))
(TO TEKM/TERM))
(JUMP TERM/TERM T
(SETK PART (BUILDQ (PREF )
(PART/RANGE TERM/TYPE)))))

(TEKM/TERM
(POP (BUILDQ (+ +)
TERM/%%%E PART)

(TERM/ITS
(CAT TERM/TYPE T
(SETk TERM/TYPE 'g
(TO TERM/ITS/END)))

(TERM/ITS/END
(POP (BUILDQ (+ (PREF ))
TERM/ TYPE
(PART???NGE TERM/TYPE) )

98

el et e




(PART/
(GROUP
(CAT PART T
ESETR PART %)
TO PART/END))
(WRD (Q RD C) T
éSETR TYPE %)
TO PART/ABBEV))
(WRD LOAD T
2SETRQ PART LOAD)
TO 2ART/END))
(CAT SECTION T
éSETR SECTION *)
SETRQ CLASSES (CAPACITOR DIODE RESISTOR TRANSISTOR
ZENER/DIODE TRANSFORMER))
(TO PART/SECTION))
(JUMP PRONOUN/ T
(SETRQ TYPES (PART)))))

(PART/ABBEV
(CAT INTEGER T
(S§¥§)PART (PACK (LIST (GETR TYPE)

(TO PART/END)))

(PART/SECTION
(TST RIGHT/TYPE (MEMB LEX (GETR CLASSES))
(SETR PART (BUILDQ (FINDPART + )
SECTION LEX))
(TO PART/END)))

(PART/END
(POP (GETR PART)
)]

(PRONOUN/
(GROUP
(WRD IT T
(TO PRO/END))
(WKD

THAT T
(TO PRO/THAT))))

(PRO/THAT
(TST TYPE/CHECK (MEMB LEX (GETR TYPES))
(SETR TYPES (LIST LEX))
(TO PRO/END)))

(PRO/END
(POP (BUILDQ (PREF +)
TYPES)
T))

(JUNCTION/
(GROUP
(CAT JUNCTION T
gSETR JUNCTION *#)
TO JUNC/JUNC))
(WRD ITS (NULLR NOPROg
(TO JUNCTION/)))

(JUNC/JUNC
(GROUP
(WRD (JUNCTION CIR
(TO JUNC/J???

ggIT OF) T
(JUMP JUNC/OF T
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(JUNC/OF
(GROUP
(CAT TRANSISTUK T
(SETK TRAN #)
(TO JUNC/END))
(JUMP JUNC/END (NULLR NOPRO)

(SETR TRAN (LIST (QUOTE PREF)

(QUOTE (TRANSISTOK)))))))

(JUNC/END
(POP (BUILDQ (+ +)
JUNCT%?? TRAN)
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