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A BOLTZMANN TRANSPORT CODE
FOR ION PENETRATION IN MA’Il’ER

A. Introd uction

Bol tzmann transport theory has been thoroughl y investi gated for

cases where specific physical assumptions - isotropic elastic scattering

cross sections in the center of mass frame (slow neutron transport) or

small angle elastic scattering (passage of hi gh energy par ti cles

tlirou~h matter~ - allow drastic mathematical simp lifica tions. No such

si~~p li~ y ing conditions exist when one is considering either low energy

ions , which come to rest in the bombarded material , or the re co ils they

produce in elastic collisions with target atoms . However, the single

particle distribution functions for the penetrating ions and the recoil

at oms contain a great deal of information , which may be used , e.g., to

calculate dir ectl y range distributions of both beam and recoil atoms,

L [l1’rgy and damage distributions in the bombarded material and to study

ion i~~p lantation and sputtering phenomena. I. Manning and D. W. Padgett1

(herl.’after referred to as MP) have developed a formalism for describing

the penetration of ;i norphous matter by a heavy ion beam which is based

on the Boltzmann transport equation and uses Lindhard atomic collision

cross sections . This formalism was later extended by Mueller°~ to

include ine l astic losses.

Nose : Manusc ript submitted July 6, 1977.
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In th is paper , a method in which the single particle distribution

function is expanded in Hermite and T~~~cndre ’ pol ynomials is describ ed

and app lied to the imp l ementation of the Nanning-P~fd~ ct t heavy ion

transport formal ism . By way of a demonstration ca ictila t ion we h~I ’,’e

considered a beam of 2C( key antimony ions incident on germanium. This

particular case was chosen because it seems typ ical for a class of

app lications we have in mind , and because experimental data ’ and tlico-

retical calculation s4 of energy deposition are already available here.

As discussed in MP , mos t of the calculations of ion penetration

have heretofore been based on transport theories of the Lindhard

whereas the transport theory we deal with is based on the

Boltzmann transport equation.

B. Form of the Solution

Consider the Boltzmann equation for the vector flux r of the inci-

dent beam , under the s imp l i f ying assumptions of rotational invariance.

translational invariance , p lane symmetry and time independence:~

T ~-s-— - ± ( E ,x ,~..i ) I N :  ( E ) ’~( E , x ,~~ ) - -
~~~ - ( S ( E ) ~~ ( E . x ,~,. ) )

= d ( E , x ,~.j I ~~~~~~~~~~~~~~~~~~~~~~~~~~ . v ~~~( E ’.x ,~~ ’) ,

where x is the distance along the direction of the bombarding beam and

perpendi cu lar to the targe t su r fa ce, v is the ion velocity, N is the

densi ty of targe t a toms ,

~~~~~~~~~~~ —



E = ‘ inv~ (
~ )

C.;)

S(E1 is the inelastic stopp ing power (we take inelastic electronic

en e r g y  losses  i nt o  a c c o u n t  in the continuous slowing down approximation) ,

~ is t1i ~ source  term of the beam ion f l u x , and

= ~~v N ( E , x ,~~ ) , (2 #)

with

N ( E ,x ,~,j) d E d x d ~1 = numbe r of beam ions with
en ergy in the in terval
dE about E, direction
cosin e d~~ abou t ~~, and
a t dis tance dx  abo ut x;  (~)

and the elastic binary collision cross section is defined such that

N :(v’—. ,)v ’:(r.v ’,t)d~ v’d ”rdt

= the probable number of beam particles with
velo city in d v ’ about ~~,

‘
, lo ca ted in d5r

about r, which undergo a collision in time
dt about t such that their final velocities
l ie in d v  about v.

The total elastic cross section , ~
T
(E), is given by

T(E)  = j~ d3v ’ :(~~~ . 
~~

‘) . (7)

It should be stressed that our transport approach models the targe t

as be ing amorphous.
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We emp loy the boundary condition used by Wint erbon , Sigmund and

Sanders (WSS) in their work7 and mode l the target as being infinite in

every direction ; over the entire x = U p l ane there is embedded in the

targe t a source of monoenergetic atoms, all traveling in the positive x

direction. This boundary condition represents an actual ion bombardment

only to the extent that scatterings back and forth through the x = U

plane can be neglected. For the case of our demonstration calculation .

there shou ld be a neg ligible number of such scatterings.

We note however that our approach nevertheless differs to a con-

siderable extent from that of WSS. The WSS dtstribution F(r,v~ is a

distr ibution of deposited energy, whereas ours is the distribution in

energy and ang le of the beam ions as they traverse the target. In

addition , WSS solve for moments of their distribution from which they

must reconstruct the distribution , whereas we solve directl y for the

distribution by an expansion in Hermite and Legendre polynomials with

energy dependent parameters built into the expansion functions. The

use of these energy dependent functions , ‘~ (E)  and ~(E) (see next

section) , allows us great flexibilit y in improving the convergence of

the expansion . Given ‘~‘(E ,x,~ i), we are able to calculate with relative

ease the distribution of deposited energy , the energy dependent spatial

distribution of beam ions and moments of these distributions.

A method of handling the singularities near the boundary surface

is presented In references 1 and 2. As is done there the solution for

the vec tor flux is written in the form

( ,
~

_
/

14



The terms ~~ 
~ 

and 
~~2 

represen t the vector flux of par ticles which

have undergone , respective ly, zero, one and two elastic collisions with

target atoms. The ~ term represents particles which 1’ave undergone

three or more elastic collisions.

All of our resul ts are normalized to unit incoming flux. We writc

the source term in the Boltzmann equation for the incoming ions in the

for m

= ~~(x)ó(~i -1) (E-E
8) ‘

-
~~ is the inciden t beam energy.

For convenience we rewrite Eq. (~) so as to exh ibi t exp licitly the

singularities arising from the source term.

= •~,(u - 1) o(E - E
B
)T (x)

+ ~ (p  - g (E~ ,E))~ 1(E ,x)

+ ~2(E,x,~~)

+ ~(E ,x ,~ i)  , ( 1 )

where ~ (E~ ,E) is the cosine of the scattering angle in the laboratory

system for a beam ion entering with energy E
B 

and exiting with energy E. .

The firs t three contributions are solved for explicitl y, and the problem

is reduced to solving for 4, wh ich is by far the most important portion

of ‘
~~~, but contains neither the singularities of the ‘/~~ . and term s nor

the extremel y peaked behavior that ‘~~~ exhibi ts.’~

5



C .  Exp i I L l  t f . X p r t ’ S S  1 ( 1 1  I’ I ’ . . . and ~

I t  i s  c o n v e n i e n t  to  ( 1f f inc a n u m b e r  of q u an t i t i e s  h i r e  wh ich  appear

f r e q u e n t ly  in m a n y  e x p re s s ion s  t h a t  f o l l o w .  For an e l a s t i c  s c a t te r i n g ,

correspond i ng to v ’ v (where both v ’ and v re f e r  to the  beam ion) ,

one obtains for the cosine of the scattering angle in the lab system

v ’. v = g(E ’.E) = f 1l ( E / E ’)~ - (M - I)(E ’/ E)~~1 (ill

where

N = A / A , (~~~~/

and A~ and ‘~ 2 are the masses of the beam ions and target atoms,

respectively. The cross section j(v’-. ~) of Eq. (~
T) can be w r i t t e n

in the form

‘(v’~~ v) = ~~~~~~ â (~~. ~~~
‘ - g(E’,E ) ) F ( E ’,E) . (1:~)

For convenience , we also define the quan tity

~~(E ’
,E) = (2/A

1
3)*N E ~~F(E ’.E)  . (1~

;
~l

The total cross section corresponding to the differential cross section

(13) is

E ’

NC
T(E 1) = d E ~ c(E

’,E) , (15)
‘/1

where

I M + 1 V
~~~

= 
~~~M - 1 )  

(16
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and  E ‘/ is the m i n i m u m  p o s s ib l e  energy fo r  an o u t g o i n g  beam ion fol  low—

i n ; an elastic c o l l i s i o n .  For 1 . i t e r  u s e ,  we a l so  d e f i n e  the  q u a n t i t i e s

L ( E . ~~ ) = \ f ([) / (1~)

= L(E,g(E~ ,F~ ) = 
\~~~

T( E ) / g ( E  E) , (1~)

( E
B ) = N ’  T(~~~ ) . ( 1D)

In e v a l u a t i n g  
~~~~~

, 
~~~~~

. and 
~
. ,., we have neg lected the c o n t r i b u t i o n

f r o ~r inelastic electronic energy losses. As w i l l  be seen later (Fig. 1)

this should have a neg li gible effect on the final solution. Inelastic

~OSSCS were not neg lected in the calculation of 4-. In deriving the

eq ation below we assume the inelastic loss term in the Boltzmann

equation to be absent. For the sake of clarity this is true also for

the equations that determine ~~. In Appendix A , however , we show how

t h O S e  equations ‘Ire modified to include the contribution of these losses.

l’Thcn we substitute thc solution (id into the Boltzmann equation

and u se  the limitin g procedures of NP to separate the various terms

according to their singular behavior , we obtain the four equation s

~~~~~~ , (x )  1 N~
T( F ) (x ) = 5 (x ) . ( ;~:~

~ (E
1~
,E) 

~~~~~ 
, 1(E , x) I N . T ( E ) , (E x) (~ 1)

= g (E ~~,E) (x)~~C: 11 ,
E) ,

• ~~~ ~~~~~~~~~ ~ Nc T(E )~~~(~~,x , L~~) 
( ;t )

dE ’j(I:’.E) dv ’5(v . v ’ - g (E ’,F)) X
cSt l E

7



x c~’ ’ o(~~’ - g(E ,E
’))T (E ’, x

B 1

a I so

4 N .T ( E ) ~~( E x u )  (~~~v)

= ~~~~. 

E d E I
~~(E I

E) ‘ dv ’d (v  . V
1 
- g(E ’,E)~

x ~i ’~~~[: 2 (E ’, x ,~~ ’) +

Equation (
~ is simp ly solv ed to y ie l d

= U(x)  exp [ i
B
x} (~~

• ,)

y h e r e  [ ( x l  15 the unit step function. In solving for ~~~~~ we note that

the  dss ratio N in the case of a n t i m o n y  on germanium is such t h a t  the

m a x i m u m  s c a t t e r i n g  ang le is app rox ima te l y . The cosine f a c t o r

in Eq.  C ~) can never be nega t ive ; in f a c t .  t h ree  or more col-

l i s i o n s  are  r e q u i r e d  be fo re  the k i n e m a t i c s  a l low a beam ion to be scat-

tered to a backward direction.

As can be easil y ver i f i ed  by substitution , the solution of Eq. ( .i.4

has the  form

~ 1(E , x = e~~ 
( E ) x ’ x  d x ’e 

( E l  x (x~ )~~(I : E) , ( )

or

~ 1(E , x) 
~~

(E B , E)T ( (
~~B , ? ( E )  ;x) , (.:~~)

where

8
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- ; ix 
- , -hx

T 1(a , h ;x ) 
b - a  

11(x) . ( :)

N a s s  ratios that allow backward scattering in a single collision are

h a n d l e d  j u s t  as simp l y, but the resulting expression for is sli ghtly

diff erent.

By performing the angular integrals , Eq. ( [ )  can be rewritten as

+ N~
T (E) ~~~(E , x , u )

C
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where

K = K ( E ’,E,~j) = (~~i
÷

- u)(~ i 
- u )  C 9)

and

= g(E
1~,
E ’)g(E ’,E) ± /3T~~ (E ~~, E ’) / 1 - g ( E ’,E) . (~~

• I

As can again be ver i f i ed  by substitution , the solution of Eq. (Hi ) is

(E , x ,p )  = ~~~~~~~~~~ Sx d 1 L ,
~~~~

x ~ t 
r~~

E d E 1
~~~E

1 E) 

(:.)

x T 1(E ’,x ’)g l (E~ ,E ’) K ~~ 11(K)

= ~~~

(32)

X K~~ U ( K ) T , (
~~B ,~~

( E ’) ,  L(E ,~.i) ;x)

where

9
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1’

— a x  — c x  — h x  - c .’.
= 

b - a : 
— 

c: ~ 
(.

..
•
.
,

A f t e r  some i i i  i piil ation , one can show that r,(E ’ , I[ ,~~ can he writ t ’ r i

in the f o r m

( E 4 - E ’)(E’ - F l  ~~~~ (M ~ -

(E .E,~~> I 
~~~~~~~~

•:fl~ re

— 
~~~ 

(N L i ) 2 ( E / E  V + (;-~ - I) 
5(E

B
/E)

~~
T (351

and

1
- 

•:~~ 
+ ~~~~ ~ (1- ~!) (M  - (

~ 
-

E = (E E
B
)2 (:~~T)

~ r + ( M ~ - i ) ~.j

We note that the minimum value of ~j  after two scatterings is given by

= - M’ . (~~ )

The expression for can now be written

= ~~~~
- U(x) U(~ -

/ J~~ + dE ’
~~

(E
B,
E ’)

~~
(E ’,E)T 2(~ B,~~ (E ’),L (E , ~) ;x)

x rg (E~ ,E
’) ~~~~~~~~~~ 1~~

’ .

10



i l c h l e r m  i.te Pol ynomial L>~j~u~s ion of 
; ( U, x.

Ne s o l v e  Eq.  ~ ~~ by ‘> :p ~a n d in g  ~~ E , x . in H e r m i te pol y n o m i a l s  in

the v riab le x nd Legendre  pol y n o m i a l s  i n  the v a r i a b l e  ~~~. Starting

with tile l i en  i t  L x p l n s  ion  we yr i t c

= ~‘xp 

~ 
-( X X ( E))

s — U  

h 
~~ 

~~) h l  ( ‘~~~~~)

and

i~~( E . x , 
~) = e :p - (~~~(~~C•)) }

/ h 
~~ ~~~~~~~ ~ II1

( ~(~~i )
~

w h er e  h is the normalizing factor

h = 
/_ ;~~S ! (~~

)
S

arisi ng from ti l t in t cdra l

7 d y e~~~ lI ( y )  H ( y )  h ( . 1

We s u b s t i t u t e  t u e  expans ions  ( •  . )  and (~ i n t o  Eq.  C 31 ,  U se  t i l e

act that

-H~— r e
_
~~(x~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(. 1

11 



and opera  t i’ on ho ti i d iS with

~~d x  exp - ç )  ~

and oh~ aj~

- 2 n ~~ - ( E , ~~:) :( E 3m
1

= ~
. ~

•
~~

E (I l.: / :;( E I E) d , ‘ f l ’ ’-

([+ [+ )

~ç 
~~~~~~~~~~~~~~~ 

- g ( E ’.E ) )

I 

s
~~~~

c

Qm
~
5

/
) E~~~~~) + r ( E ’ ,~~~’ ) T ,

ii’ r e

Q (E ’.E )  = h ~~~ ~~~ d x H  (x :~~~( E )
n ,s 5 “ n~~ ~(I,

(
~ 5)

-_~ (E ’) ’\~~~ /x -x exp 

~~ ~(E’) I ? ~ ( u : ’ I

The evaluation of Qn s
(E ’

~
E) is left to Appendix B.

thenceforth , we will use the notation

= ‘
~ (E) , ~ = ~(E), i~ = ~ (E ’) ,  ~~I = ~ (E ’) . ( [ i ( )

The functions ‘
~(E) and ~(E) are yet to be specified. The advantage of

introducing ~ (E)  and ~(E) is tha t much of the gross behavior (as a

f unc t io n of x) of the dis t ribut ion f unc t ion can be bui l t in to the

12
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Gaussian factor in expansion (3d) . C o n s e q u e n t l y ,  many fewer  te rms

~hou l d  be r e q u i r e d  in the  I l e r m i t e  expansion than would he the case if

we set

= ~~, ~(E) = constant . (

E. The Legendre Pol ynomi al Exp ans ion of ~(E ,x,~j)

We now expa nd ~~(E ,p), r 5
( E ,di) and 5(v . v - g(E’,E) in

Legendre pol ynomials; specifical l y,

= 

m = C  

1 

~~~~~~~~~~~~ ~ 
([ ,

~

;s~~~’~~ 
= 

~ ~~~~~C 

~~~~ :., ; 5 m (E) Pni (u )  ( ‘ H)

and

if-

_____ /v - g) = 

t i C  

P (g) [P
m (kl)Pm (l

~
i )

( 1

+ 

r~~~~0 ~~ 

~~ r ( ) P
m

r ( ~ cos C. - 
~

By subs titu ti1ig these expansions into Eq. ( .~ ) )  and performing angular

integrations , we ob tain a coup led set of integral equations for the

‘1’

- 
• ~~~~4 L ~ n - i ,~ - 1(E) 

~~~~~~~ ~~~ ~ Lfl - 1,~ t 1(E)] ~ ( E ) N m T(;:)~~0 (E

( ( J • )

= V ~~~, ( E )  + W~~~( E )  I fl~~E d E I
~~(E / E)P (g(E / E))Q (E / F). (E !)



where

V
0 f~~

F I  = 

~~~~ 

~~~~~~~~ d E ’~~~(iY~~E ) P
) 

( g ( E ’
,E)

X 
~n,s ”~~

’
~ 5 ç ( E ’)

= 

:
~~~::~~

E d E I

~~~
E

/
,E P g E I

,E
~~ 

( ‘ .
~~; I

x

An explicit exu ression for 
~~~~~~~~ 

is derived in Appendix U. Al though

Eq. ( H describes a set of coup led equations . the coup l ing is such that

thu ~0 , (E) may be obtained , order by order , in a natural sequence. The

e qu a t i o n s  for  t h e  f u n c t i o n s  ~ ~ (E)  are uncoupled ,

:( E ) ;.; -
t(E) ~~0 1 (E )  = V

0 9 (E)  + J 
Ed F ’~~(E ’,E)Q r

’
~~~

h ü 
(E ’) ,  ( 5 l~)

E ‘ ‘

and so these f unc t ions may be obtained directl y, say for a set ‘ = I. ,

The equations for the ~ (E)  depend on ~ , m =
1,~ . O,m

1 1, and so may now be fo und for the se t of ~ va l ues = 0, 1,

.,  - 1. This process is then continued until ~~ is determined.

I f  a t tha t poin t we see tha t more t e rm s ar e needed , we can solve suc-

cessive l y for ‘t — , ~ — , ... , a _ wi thout modifying the solu-
,
,, + 1 1,f .  ~ + i ,c

tions for the terms obtained previous ly .

1~4



Eqttat ion (51) is m o d i f i e d .  of cou r se , when t h e ncla ;t ic loss tern

in the Bol tzmann equation is taken into a c c o u n t .  The form of the

equation rema ins unchanged however and the procedure for it s solution

is unal fected. I)etails of t ue changes i ntrod iiced by includ i nU the con-

tributions of t i l e  inelastic losses are given in Appendix

Th e matrix inversion It thod for solving t h e  r n t c ’ . r l  ‘I ~~ itions for

the -

~~~~ ~ 
is described in detai l in Appendix D.

F. Calculation __for dcc key Antimony A t o m s  Incident on Cernanium

In our calculation we used the Winterbon analyt ic al fit to the

LNS 1° elas tic cross section , wi th howeve r two modificati ons. The

Winterbon fit to the elastic cross Section diverges at  sm a l l  ener [y

transfers as t~~~~~; we have therefore introduced a low-energy transfer

c u t  o f f  T, at 1I;~~5 eV, a reasonable estimate for the energy needed to

disp lace a germanium atom. With this cut off however , the total cross

secti on goes to zero preci p itously at T . As is pointed out in

Append ix D, this introduces difficulties with the numeric al solution

for . We therefore introduced one further modification iii the
n,’t

cross section below 101 eV which allows the total cross section to go

to zero smoothl y with energy . Both modifications are described in

detail in Appendix E. We use the LSS~ evalu ation of the inelastic

s topp ing powe r , but again wi th a modification introduced for numerical

convenienc e at energ ies below i-Il. eV. These alterations , beca use they

are made at energies so low compared to the incident energy , do no t

alter quan tities of physical interest such as range and deposited

energy distribution to any significant extent.

- ~~~~~~~~~~~ •- —~~ ‘ m ~~~~



As stated earlier we have found it expedient to neglect the effect

of inelastic energy loss on . j~~~, and ‘~~. . The depthi distributi on of

electronic energy loss near the surface will of course be adversel y

affected, but ~ itself, and therefore elastic losses , is hard l y affected

a t  Il l. As an illustration , in Fig. 1 we p lot V integrated over ener4v

( t i me energy dependence is set  by the h — f u n c t i o n )  is a f u n c t io n  of o g l e

b r  t u e  case where inelastic losses are included and also where they are

neg lected. Albeit it is a log p lot , the results are indistinguishable.

The functions ~(E) and (E) were determined by a quasi-self-

consistent me thod. A physic all y reasonable form v s  initially chosen ,

and Eq. (
~~~~

) (modified according to Eq. (AJ2)t was solved for the

(11 . Noments ol the range distribution of beam particles having

energy F were then calculated (see Appendix F) and a new anal ytical

l i t for ~(E) and (E) obtained. No further iteration was found

necessary. Figure 2 dep icts the energy dependenc e of ~ and f ound in

t h i s  way .

Expressions for the distribution of stopped ions and for the dis-

tribution of energy depos ited in elastic collisions are derived in

App endix F. It is shown there that these distributions depend only on

and ~r , . The range and depos it ed energy dis tr ibut ions shown in
n, 2 , n ,

Figs. 3 and include contributions for values of n up through 7. At

t h a t  po in t  the He rmite  expansion has not  yet  q u i t e  converged , but  the

resultant distributions should be good to about I~~ - .

16
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A p p en d i x  A. I n c l u s i o n  of In e l a st  I c  Losses

As i n d i c a t e d  in the t e x t , i n e l a s t i c  losses ( i n  the  c o n t i n u o u s

s l o~- i  mig down a p p r o x im a t i o n )  are  t aken  i n to  a c c ou n t  by i n lud i n i. a t e ’ -

I ( E . x ,~~ - (S(E) ~( E . x . ~~~) ( A L )

on the l eft hand side of Eq. ( 1 ) .  where  S(E)  is the inelastic s t o p p ing

pa’ .e r .  In  order  to o b ta i n  the a l t e r a t i o n s  made b y t h i s  t er ~ I to Eq .  ( —)

we expand ~ in H e r m i t e  and Legendre  pol ynom i a l s .  F i r s t  we make the

Legen dr e  expans ion shown in Eq.  
~~~

- ~l

= ~~ 1 - ( E , x )P ~ (~~~ . (A )

We divide by ~/ ( J  + 
3 ) to find the contribution of the -fth ha rmon ic  to

the transport equation is

I,(E,x) = - (S(E)i~~(E ,x) )  .

We now introduce the Rermite e~~ ansion of ~~~,,

~~ (E ,x) ~~~~~hm
_ L
~~in ,;

( E ) e Y H
m

(y)
~ 

(A- )

where

y = (x  - ~~~~~~~~~ 
( A - I

~ow the htermit e polynomial s satisf y the relation

d y ~~~~~~~~~ 
) - H ( y ) e~~ , (A ~ I

and therefore

21-



l~ (E.x) = - S ’( E )
~~~~~~~

h
~~~

:t m t (E )  e~~~
’ H (y)

— S(E ) ~~~~~~ hi~~~ ~ 2 (E)  e~~
’ H (y) ‘ h

~~~
:t m~~ 

([) e~~~~h1 1~~y ) /

~ [ _  x 
- 

‘ ( x _ ~~~) ]  ( A l

u s i n g  t h e  r e c u r r e n c e  r e l a t i o n

-yH (y = 
~ 

(y)  ~ ~ m H — 1~~
’) -‘ (.\

w e o b t a in

I1( E . x l  ~~ “ 

m~~~ O 
~ 

- S ‘(E)  
~~~~~~~ 

- S(E)  ~~~ (E~

- (m + 

~~~~~~~~~ ~m , ;~~~ 1 11 (y)

- ~~
‘
~~( E )  

t m 
( E ) H

m I  i~~~~

- ~~~s(u- ; ) 
t m, 

E ) H  ( y )
~ . (A : I

Operating on l,~ by ‘(E ‘ 
d y 11 (y), we find

22



= - [S ’(E )  + (n  + 1)~~~
’ 

~~~~~~~~ ÷ S(E) ~~~~~ (E)

(A.1c)— , h - , Ft
+ 
f h 

1~~
n -  1~~ (E)  ~ h 

2~~
n -  ~~~( E )

ow

h = r2~~’ , (ALL)

thus

I~~~~(E )  = - { [S ’ (E)  + (n + 1)

~ S(E) , (E )  + 2 n  x~~(~E) 
~~~ 1t

(E) ( A12)

+ 2 n ( n  - 1) ~~
‘S(E) 

~~~ 2,~~
(E}
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Appendix B. Evaluation of

In this appendix we evaluate the function

= h ’ ~~~dxH (y)H (y’) e~~ (Bi)

wh ich appears in Eqs. (I)) and (~~i) and where

h =

y = (x  - ~~) /~~ (B2)

— I
y = (x  - x ) / ~ ,

and where the H are Hermi te  pol ynomials  of order n .

‘4e first rewrite Eq. (Bi)

Q~~~5 (E ’~~E) = (~~
‘/h) 

~~ 

d y
/
e~~ H

5(Y ’)H (~~ y ’+ ~~~~~~~~ ~~ ). (B3)

We remark that

= 0, s > n , (B~ )

and use the fac t tha t

2 H (  x f = 

~~~~~~~~~ 

H (  / ~ x) H n - m~ 
r y) (B5)

to obtain



= 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘
~~~~~ 

“)

~ H ( Y ’)H (r y’ . (iv ,

The int egral can be done exp iicitly ,~~ and with a change of suosriation

index m = s ~ 2 r , we obtain

= 
/ (7 f/ ~ s ) ’ (~~~~ 

~~~)
S 
/

/ r ! ( n - s- 2 r ) !  [2(~~~~
2 - 1j

r

x H~~~ 5 2 (~~~~~~~ 
x 

, ( B - )

where the upper l imi t of the summation ~(n - s )/ 2~ denotes the  greatest

integer less than or equal to (n - s)I~ .
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A p p e n d i x  g . . v . m l i t a t  ion of 
- 

(E)

~v 1, -f init ion r .~~~~;(t-; ) is related to ~~ (E ,x,~~) by the expression

( [ I  = d~ . ~~ 
P (~~ )~~ 

1

~~ 
dxH ( 

X - X )~~~( E x ) . (c i)

To obtain a numerjcall y useful e xor e s s i o n  for 1 
- however , the best

Hcthod i s  n o t  the  m o s t  d i r e c t  one where  ~ is taken from Eq.  ( :~ - ) .

Rathe r it is bett er to start with I i c  definin g e q u a t i o n  for V
2

(E ,x, ~

T
L - - . + (E)~~2 = T~ F 

d L :’~
;(E ’.E) r ( E ’,x) X

(c2)

dv ’ b ( v~~ - g1) ~~~~~~~~ ~(~~
‘- g ) ,

.~‘nerd g = g ( E ’,E)  and g = ~ (E~~,E ’) (C)

and g ( l ~~~,E ) is the cosine of the laboratory scattering angle for a beam

atom entering with energy E , and leaving with energy E .  After we expand

the ~— ftinction

- = ~~~_ + 1 p (g
1)[P

(-~ )~~,~
( t
~~
’)

(C~)

+ 

Ii~~~~~1~~~~~~~~~ 

P~
m

(~~ ) P 1
m

(~~ ’) cos

the integrations over and ~~~
‘ can be done immedia tely to y ield for the

RUS of Eq. (C~)



~ ( E ’ , E ’~ (E ’,x) + 1RutS d E ’ 
‘(E F ’) ~- ~~ ~~~~~~~~ 

P1 (~~) .  (C~~)
F. 

~‘ B ’~ 
-

Now expand i

‘
~~(E ,x,~~) = 

I 1 Y ( E ,x ) P (~~) (C)

If we no te that

~~~~~ 
~~~ 

(c:~)

= 

~~— 0  
~~ 

+ 
;- ~~~ ~~

we obta in

_ _ _ _  _ _ _ _  
T - .

2~ - ~~~~ ;.f (E ,x) + 
~~~ ~~L ~~~X ~~~; t  1

(L , x) + a (F..)~r . .1 (E,x)

(C-1)

~ F , ~ (E ’,E)~ 1( E ’, x)

~ d E  
g2 

P (8 1) P.~(~~2)

We now expand y (E,x) in Hermnite polynomials. We let

= (x  - x ) / ~ , (c9)

and wri te

~ 
(E ,x) = 

rE~~~~~ 

h~~
1 

~,~~
( E ) H ~(Y)e~~~~, (dc)
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where

h = fTT ‘ . (CU)

We s u b s t i t u t e  t h i s  sum for  ‘
~ in Eq. (C) , note that

I c~~~ 11 ( y ) ) = - ~~~ e~~~~h 1 1
(y  (CI .

and use the or thononiia Ii . ty p rope r  cv of  the h i e rmi  te pol ynomials

d y  e~~ t 1 (yHt (y) = h o  (C

to obtain

7 
_ _ _ _  -P + 1(- 2s) 
U + I ‘

~ - ; S  - .,  - I 
-) 

1 ~~-;s - 1, ~

T
+ ~ ~~~~~~~~~~ (CI,)

-‘ E ~( E ’,E ) P (g ) P,~( g )
= d E ’ 1 - - dx

Taking ~~ from Eqs. (I
’) and (L’) and noting that

2 1 l (~~ - 
~~~ 

~~~~~~~~ 
~~~t)H k~~~~~~~

) (c15)

and

: d~ H
k
(
~~~~

T )  e ’ ~L 
= 

~~~ ~~~~ 

~~~~~~V 2 v  
(c1~ )

where the symbol r k / ~~] denotes the l a r ges t  integer contained in k / C - ., we

find that

— ~~~~~~~~~~~~~~~~~~~~~~~~ 
.,
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-- .-
~ ~ (E ,E ) S —

d x , (E’,x)H (y) = 2 
‘ 

k~~~~) 
(s - k ~~ - k~ 

r /

- k- 2 ’~ ,

¶~
•••

~I ( _  )
‘d ~~~~~~~ - k — ~~~ ~~~~~~~ , -

/ ~~~~~~~~ - - 

- 
~~~~~~~~~~~ L 

( E ’))

who re

= and ~ (E ’) = ~
T

( E l
) / g  . (CU)

The final result then is

_ _ _  
‘ - 4- _ 

T( - 2 s ; 1  ; s- 1 ,-~~- 1~~~ 
+ r~~ -ti  r 2 ;s j,~~±i( E )] +  

~~ 
(E)

~~2 ;s ,1
( E )

S

2 — L vi 
~~~

- k - 2 v i
= 

~ B k~~~~O 
(s -k)~ ~ -k~~ 

‘~~~ ~~~ 
\ ) 0  

/

~ (E E ’)u~(E ’ E) -I. ~
-
. ~~~~~~~~~~~~ T(E F

) 
P~(g )P~(g)~~~2

B
, )

We have therefore

~ (E)  = ,(E)/~~c
T(E)

(Cli )

1 ;(E ,E ’)~~(E ’,E)
= 

T S
I E d E ’ B

1 P4. ( g ( E  , E ’) ) P  ( g ( E ’,E ) )
~~a (E) ~t8 E ~ (E ’) B

and 
(c. 1)

= 2 n [2~~ + 1 ~2 ;n-1,r 1(E) + 
~~~l J  2 ; n- l ,f + 1 ( E )j 1 0

n ,~ ~
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Appendix P. Nu.~I e ri c al  S o l u t i o n  of ti m e I n t e g ra l  Equa t ion

In this appendix we describe how the i n t e g r a l  e q u a t i o n  fo r  1 ( I ~ I

is so lved . This  w i l i  serve  as an illustration of how the equations for

a l l  t h e 
~ -

- ( i-i ) Ir e  s o l v e d . For the purposes  of t h i s  s e c ti o n  we - ‘i 11

- l e i ç u ( c t  i n e l a st i c  losses  ( b u t  w i l l  i n d i c a t e  a t  t i m e  end how they  are

l r e ; l t e d  ~iud ~-. i l l  assume the cross section is given by the Winlerbon ,

:-~i / I l m n d  an d Sanders ’ anal yti cal fit to the Limidhard , Nielsen and

Sch a rtt cross s~-ct ion. Since the LNS cross section heco : LcS singular as

t he  energy t r a n s f e r goes to zero , we introduce a cutoff T to represent

a min tmmi r i  energy transfe r allowed in an elastic collision . Tile ~ietliod

d,~scribed h~ l ow works equa ll\ well, moreover , with other cross sections.

With the use of the LNS cross section , the function 
~

- (E) satis-

i e s  the equation

-: ( I - .~~,. , 
( = ‘

~
‘
~

( P1)

L~~ T 
F ’ U( E

B 
- .- T -

w h m erii all of the term s appearing here have been defined in time body of

t h i s  r - p o r t .  I f  we def ine

m(E)  = mm ft E, EB 
— 3 T] , (P H

then we have

(E)  = V (E)
0~~1 0,1

(D3)

m(E)
+ d E ’~~’~~(E ’, E)~1 1 (E ) .

E H T
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Briefly, given an appropr h i t  e e ne r gy  mesh [ E .)  , ou r a im i s to

express Eq. (I). ) as a set of l inear  e q i m a t  i ons  i n  t h e  set  
~ r i j ~~~~

w h i c h  we w i l l  then s o l v e  by s t ra i gh t f o r w a r d  m a t r i x  inv  r s i on .

C o n s i d e r  t h e  i n te g r a l  in Eq. (P H . We c a r r y  ou t  th e  i n t e g r a t i o n

u s i n g  C a u s s - L e g e n d r e  q u a d r a t u r e .  Thus if f t . )  and ~w .)  are the  sa

of Gauss -Legendre  o rd ina tes  and we ig h t s , r e s pe c t i v e l y ,  fo r  n - p o i n t

i n t e g r a t i o n , then the  i n t e g r a l  in Eq.  ( Dl- ) nay be expressed

\ ~ d E ’ (E ’)J(E ’.E .)g (E’) = R ( E .) ~~ w .~~(f ~~ . . .E .)~ (? • )~~

F ~ 
- J C ,C) J ‘ 7) 

1 j I  J i  J ,
)~ 3 1

I
( P

where

e . = B ( E .) -E R ( E . ) z . ( [) - )

and

R ( E )  ~~[m(E) — ( E l  T )j ,  B(E) = ~(m (E)  + E l  T) . (P

This method fails when singularities (or near singu l ar iti e s l occur

i n  the i n t e g r a n d ;  when such is the  case , tile s i n g u l a r i t i e s  shoul d  he

removed before integrating. For examp l e. the WSS7 representation of

the LNS1° cross section is proportional to (E’ - F t ’/ ~~, th at is,

= G(E ’.E / ( E ’ - E~~~’~ . (I) )

where G(E’,E) is well behaved. In this ease the singularity is removed

by in t rod uc ing the  change of v a r i a b l e  y = ( E ’ — E ) ’’~~, so that

31
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— in (El
d E ’ ( E ) ’ ( E ’, lL~~ ( E ’)

0,1

E~ T

( D  - I

d y - : ( E  I y )~~(F 4 y~~~. E ) .  ( E l  YH .
I . , )

El — 
— /

T h e  h-v i n t e g r a l  c o n t a i n s  no singularities and can be evaluated as

described above . Another , not so obvious , singularity is associated

w i t h  the  LNS c ross  s e c t i o n  and wi th  tile c u t o f f  T; as E approaches

I , . where

- - N
/ - (D7)

( 1  I N) ”

the total cross section ~~(E)  rap idl y goes to z e r o .  The l e f t  s ide  of

( Di- ) r~~ i a i n s  f i n i t e , however .  This me ans t h a t  -r 
- 

( E )  is increasing

just as last -is o~ (E) is decreasing. We have hand led this situation by

Hod i l y ing the  LNS cross sect ion at energies l e s s  t h a n  1 eV so that this

sharp cutoff of - ‘(E) does not occur. The modification is described in

Appendix

Lot us assum e that a l l  s i n g u l a r i t i e s  have a l r e a d y been removed in

Eq. (I). I .  Ther m for iac m mesh point E . we have

~~~~~ 
.T( E .l , ( E ~ = v~ 

,
~ (E

i
)

(DL-)

4 R (E .~ ~~ w . ~ (~
‘ . . )~~~~~

‘ . , ,E l~ (P , , l
i — i  1~ 3 1  31. j 0.& J I-

G e n e r a l l y,  the argument of -
~~ 

on the righ t side will lie among the

--3 ’ — ~ —--‘-~~~



mes h points (E .). We use cubic spline interpolation to express

~~~~~~, ~(?~~) = ~~ C~~ c , 
(E
k
) (J )___

~ )

w h i e r e  the c o e f f i c i e n t s  C~~’ are de te rmined  by the  cubic sp line equations

and found without having to know the values -~ (E
k
). Equation (DiP )~

which now describes a set of linear equations in ft - 
(E
k)L 

therefore

has  t h e  form

(E ) = V (E .) , (D~1)
k -~ C~ c , ~ I

where

A . =
j  j  j k

( Dil)

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The desired solution is then

~~~ 
V~ 0

(E~) . (D114)

As a t es t  of the accuracy of the me thod , we considered the equation

m(E)
D(E) = V(E)  4 

,
~~ d E ’ K( E ’, E) D(E ’) . ( D 1 5)

E +T

wi th

K ( E ’ , E) = [1 + (E ’— E)~~’° ]/(E
’- E)~~’

1
~ . ( D16)

3,5
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Time [tmn c t ion V( F) is a rat ime r cump ~ ix function of E and T , such li -m a t  the

solution of Eq. (P~ ) is

b ) ( E )  ( l : 1,~~~~~T~~~E) d .

Rv em p l oy i n g  t i m e  m e t h o d  described above , a mes h of -~ - - ene rgy  p o i n t s , and

U Gauss-Legendre points , we reproduced the exact solution at all tu e

mesh points to an accuracy of better than ia per cent.

In Appendix A. we have shown that inelastic losses are taken into

account by adding a term I~~~,(E~) to the left hand side of Eq. (IL)

where

(E  = - ~ (E)  [ [ s ’( E )  + (n * I) S (H )  ~ ~0~~~
(E)  + S(E) ~~~~, (E)

(Di ~)

+ 2n ~~ S(E )~~~~1~~ (E) I 2n (n-1) ~~ S(E):~0 2 ~~ (E)])

where S(E) is the inelastic stopp ing power and the “prime ” denotes the

derivative with respect to energy . From the cubic spline equations , we

obtain ~- ‘ (E .)
fl ,1 I -

= ~~~
Dj i Zl

~n,~~
(E

i
) . (Dill

The r e s u l t i n g  equations can then be solved as ind ica ted  above b y s t r a i ght-

forward mat r ix  inversion.
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.\ppenhi x E. Mod i f i c a t i  on of I, N S Cr o s s  Sec t ion and  LSS I n e l a s t i c
i ng l’owe r m l  1,0w Energy

cr es s  ~e C t i O f l  > Pn h i f j c a l i o n

h u e  l l I l ] - I ’ d i l i e d  I3-~S elas t ic scattering cross section is given by

~
(U )

~~E
, E) = 

2 
E ’t ‘~~ f (L h/ )u(~~E_ H ’) , (El )

LN S / I_ _
i,

where  a ~~S t i le  L i n d h a r d  s c r e e n i n g  l e n g t h , E
L is the L i n d h i a r d  e n e r g y,

= 
E ’T_ T = -; ‘- H , ( F -  )
-/ E

L
’

) i s  g i v e n , in  t i l e  W in t e r b o n  a p p r o x i m a t i o n , b y

= ~~.
- P t 7’ i + ( : - . ( - J -~ t / y ~ 1 ’~ , (El )

1 1 1 0 step function tJ(~~E- E
’) merel y expresses the kinematical elastic

S c - I t  t i r i n g  condition that the initial energy of the scattered particle ,

I .  is a r e a t e r  than  the m i n i m u m  p o s s ib l e  v a l u e  of the  o u t g o i n g  energy .

A l l  ot h e r  symbols are defined H the body of the paper. The cutoff at

l o w  encr -g ’-  t r a n s i er s  i s  i n t r o d u c e d  b y multip lying Eq. (El) by another

st - b ) function

~ (E ’,E) = 
N - - a  

E ’t / ~ f ( t l/ :  ) U ( I i E -  E ’) U ( E ’- E - T ) , (It-)
LNS l y E  - c

where  I i s the  c u t o f f  energy t r a n s f e r .  For expedienc y in the n u m e r i c a l

solution of the integral equations , we also wanted tile total cross

sec t ion  to vanish  smooth ly  at low energies and so we introduced one

other m o d i l i c a t i o n  for energies less than an energy E ( w h i c h  we took
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to be 11 (~ o V )

= 
/ EE (F - )

U(E - — )
E - T

C , E ’< E
U(E ’- E - T )

I n  Fig.  5 we show the energy dependence at low energ es of bo th the

niodifieu and unmodified LNS total cross sec t ions  ( b ot h  i n c l u d i n g  the

low e n e r gy  transfer cutoff at T
c = 1b .~~5 eV).

inelastic Stopp ing Power

The LSS elastic stopp ing power is proportional to the particle

veloc ity

S(E)  = K E~ ’~ , (E ’ -)

w h e r e ,  for  the case of ant imony on germanium , we take K = 1.32 N eV “ /...m.

For numerical convenience we have added an additional term at low energy

S
d
(fl = .2 ~~E~~~E )

O 
~~E - E ~~

2 
MeV/p m , ( H ’ )

so that

E > E
= (EP)

K F ” I S
d

(E)  , H E

where again we have taken E = i - i  eV .
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Fig. 5 — The dependence at low ener gies of both the LNS total cross section
and its modification used in the present calculation
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Appendix F. -iam ’~~ and 1)epositcd Energy 1)istribtmtion s and Their ~-!oincnt.~

I. Pistribu t ion of Stopped Beam Ions

As s t a t e d  in t he  bod y of the  t e x t - , we have w r i t t e n  ‘? as  t h e  Sum of

t o u r  t & ’ r n S

= + -
~ + 

~~~
, ( 1 : 1

r e p r e s en t i n g . r e s p e c t i v el y ,  the f l u x  of u n s c a t t e re d , once s c a t t e r e d .

t w i c e  s cat t e r e d  ions and the f l u x  of ions s c a tt e r e d  th ree  or n or e  t i w e s .

B e c a u s e  the ene rgy trans ferred in an elastic collision by an ion of

e n e r gy  E can be no greater than yE , no contribution to the d i s t r i b u t i o n

of s topped  ions can come f rom ~~ . ~~~~ or •
2~ 

C o n ;i d e r ,  t h e r e f o r e .

Eq. (: I- ), the equation for (p (and include the inelastic contribution)

- 
~~~~~

- (S(E)l1

(I-~-

= ~~ 
i E

d E ~~~(E / E) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~, (E ’, x .~~’ I -~(E ’, x .~~~~

The x component  of the cu r ren t  of p a r t i c l e s  s c a t te r e d  t h r e e  or more

time’s

1 
1
E - 3 T

j(x) = d - ~ 
B d E ~ (E , x , -~ ) ( F:- )

must obey a particle conservation rule

d j ( x )  
+ 

do (x) d’t (x) 
— - -

dx  dx dx  — ( I -  - 1

where d’~ ( x ) / d x  is the d i s t r i b u t i o n  of stopped beam ions and d~~(x ’u/ dx
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is t h e  d i s t r i b u t i o n  of  t w i c e  s c a t t e r e d  p a r t i c l es w h i c h  are  e l a s t i c al l y

scat t er ed  a t h i r d  t i m e  in the  in t e r v a l  be tween  x and x 4 d x .  I f  we

~ l) cr ~~t e  on Eq. (F. ~ w i t h

d-j~~ d E

iso of the relation

-
- 

dYô(v.v ’-g(E ’,E ) )  = 1 , (Ft)
‘—I

and recall ‘he definitio n of the total cross section from Eq. ( 15 )

N - 1 (E )  = -~ d E ’~~(E ,E ’) , (F(~)

E /~3

we find

E - Td j(x) _
~~~~

t
~

- B
— , d~~ -~ — d E  — .— (S(El~~( E ,x ,gj))d x  ~ ~ E

(F  ‘)

EB -:3T ,IIE 1
— d E  d E ’

\ d~~
’
~~
’ ‘~ f ( E ’,E ) f 2(E ’,x,~~ ’) = 0.

E -1

We find therefore that

1

d~~(x )  
S d ~

.j
~~

: 
~ 

d E  ~~~ ( S ( E ) ~~(E , x ,~ ,j ) )

We expand -
~ in Legendre polynomials
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= ~~~(E , x l P ~ (~~ ) , (Fl)

and find that

—

(F l

= S(~~)-~- (c , x)
C,

since ~- vanishes for E E B
_ 3 T .  The Herinite pol ynomial expansion

gives

(Fill

= S ( c )  exP [_ ~~ X~~~x ( c )~~~~~
j  n~~~O~~~~

1
~~~ 

x - ~~ ()

It is clear that withou t inelastic losses , there would be no stopped

ions - any ion whose energy f a l l s  below I would have no mechan i sm for

further energy loss and would neve r come to a stop.

Moments of the range distributions are easily calculated ,

R
m = 

m d o (x )

(F.J :-~
m

= S() C (~~~) ‘-t- ( )
n,m n,un =0

where

c~~~~(E)  = 1m~~’ d x  x
m

H~~ ( x  ~~~~
‘)

j exp [_ ~X~~~1
)j  

. ( F13
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Usin tile recurrence relations for Ilermite po l ynomials

2y U (y)  = 
~~~~~~~~ 

+ n H ~~~~ (y)  , ( F - - )

and recalling that

h ~
m
n~ , (Fi~.)

we arrive at a recurrence relation for the C . If we let
fl m

Cn m
(E)  = ~ (E)  Cn m (E)  ~ ( F ’L()

then

Cn ,m ~ (E)  Cn m i  + (n +1)~~(E )  Cn+i m+i (E) + ~~~(E ) ( 1- a 0 ) C
n~~i m~~~~ .

(Fi [)

If we note that

C = I-. and C = 0, m <  n (FL ~ )- O,C’ n ,m

we can calculate aD the C (E).n,m

2. Energy Deposi t ion

The energy c u r r e n t  ‘fl (x) is given by

1

TI( x) = ~~~~ S d E  EY( E , x ,~ j) . (FlO ’)

I f  we de f ine  X ( E , x) by

1

X (E , x) ~~ d ,~~~~Y( E , x ,~~ ) , (F20)
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l I eu  b i~e Kr  I t - -u - - bbn equation yte I cis . after a lit tie niani pulat ion

d (1 
E1, (ER
d E T (b-:)x(i-: .x) I ~ d E S (E ) / J F , x )  = E 1)-i (x) , (F. 1)

[‘(i - I = E ’(E E ’)’~ (E ,E ’) . ( FH ~~

thu s can i dent I f y  l i i i -  q uan t  i~ ty

~~~~( x )  
= ~~dE (T(E) I S ( E ) ) X ( F . x )  (F l . -)

a - , 11w w pth r a t e  of energy d e p o s it i o n .  The c o n L r i b u t i o n  f rom e l a s t i c

au— 1 inelastic collisions are clearl y separated. Using Eq. ( L I  ) from

ri ~~ 
- - .~ in  body of the t ex t , we have

= 4 S(E~ l ~~‘~~ (x )  - I \ d E  T~~~~~~
)
E) 

~1
(E ,x)

+ d E ~~T( E ’)+ S(E~~exp — ~~~~~~~~ 
)~~~~~ 

h ’H~ ~~~~~ 
~~[ ~ n 

(E)

4- ~ (I-:) I .- ;n ,C j F )

Time m O m e n t s  of the energy dis tribution are given by
s de(,)~V = d x xs dx

I S(E g) J A 5 
I 

S~~~~~~ 

T~~~~f~~~E) B (E) (F: )

E~ /~
~ E

4 ~ d E 1(E) + S( E ) )c (E) -
. (E) + P (E)  , (F : .(

rt =  C- .J j  n , S L ; - , f l , e fl , i.) , ,
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where

s sA = 
,~~d x  x b~I~~(x) , B

5
(E) = ~~ d x  x I~I 1(E , x) . (F L ()
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