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A BOLTZMANN TRANSPORT CODE
FOR ION PENETRATION IN MATTER

A. Introduction

Boltzmann transport theory has been thoroughly investigated for
cases where specific physical assumptions - isotropic elastic scattering
cross sections in the center of mass frame (slow neutron transport) or
small angle elastic scattering (passage of high energy particles
through matter) - allow drastic mathematical simplifications. No such
simplifying conditions exist when one is considering either low energy
ions, which come to rest in the bombarded material, or the recoils they
produce in elastic collisions with target atoms. However, the single
particle distribution functions for the penetrating ions and the recoil
atoms contain a great deal of information, which may be used, e.g., to
calculate directly range distributions of both beam and recoil atoms,
energy and damage distributions in the bombarded material and to study
ion implantation and sputtering phenomena. I. Manning and D. W. Padgett?’
(hereafter referred to as MP) have developed a formalism for describing
the penetration of amorphous matter by a heavy ion beam which is based
on the Boltzmann transport equation and uses Lindhard atomic collision
cross sections., This formalism was later extended by Mueller® to

include inelastic losses.

Nute: Manuscript submitted July 6, 1977.




In this paper, a method in which the single particle distribution
function is expanded in Hermite and Legendre polynomials is described
and applied to the implementation of the Manning-Padgett heavy ion
transport formalism. By way of a demonstration calculation we have
considered a beam of 200 keV antimony ions incident on germanium. This
particular case was chosen because it seems typical for a class of
applications we have in mind, and because experimental data and theo-

retical calculations®

of energy deposition are already available here.
As discussed in MP, most of the calculations of ion penetration
have heretofore been based on transport theories of the Lindhard

type, »7*7 whereas the transport theory we deal with is based on the

Boltzmann transport equation.

B. Form of the Solution

Consider the Boltzmann equation for the vector flux Y of the inci-
dent beam, under the simplifying assumptions of rotational invariance,

translational invariance, plane symmetry and time independence:”

H'S%: ¥(E x ) + N:T(E)?(E,x,u)-

s

SE (S(E)Y (E,x,u))

(@B
= J(E,x,u) + Nuv [d®/(u'v) to(y

v

’ R .
’X‘Y(E Xyl ),

where x is the distance along the direction of the bombarding beam and
perpendicular to the target surface, v is the ion velocity, N is the

density of target atoms,




T ——

L v (2)

bw=9% . (%)

S(E) is the inelastic stopping power (we take inelastic electronic
energy losses into account in the continuous slowing down approximation),

# 1is the source term of the beam ion flux, and

Y(E;X)H) LlVN(E;X:U-) ) ("’)

1}

with

number of beam ions with

energy in the interval

dE about E, direction

cosine dyu about y, and

at distance dx about x; &)

1l

N(E,x,u) dEdx dpy

and the elastic binary collision cross section is defined such that

/

No(y' = v v ¥(x,v’,t) d®’ % dt

= the probable number of beam particles with
velocity in d”v’ about y’, located in d°r
about r, which undergo a collision in time

dt about t such that their final velocities
lie in d”v about y. (6)

The total elastic cross section, cT(E), is given by
y - B F e =y
o (E) = [&v'a(V-7V". (7

It should be stressed that our transport approach models the target

as being amorphous.
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We employ the boundary condition used by Winterbon, Sigmund and
Sanders (WSS) in their work’ and model the target as being infinite in
every direction; over the entire x = O plane there is embedded in the
target a source of monoenergetic atoms, all traveling in the positive x
direction. This boundary condition represents an actual ion bombardment
only to the extent that scatterings back and forth through the x = !
plane can be neglected. For the case of our demonstration calculation,
there should be a negligible number of such scatterings.

We note however that our approach nevertheless differs to a con-
siderable extent from that of WSS. The WSS distribution F(r,v) is a
distribution of deposited energy, whereas ours is the distribution in
energy and angle of the beam ioms as they traverse the target. 1In
addition, WSS solve for moments of their distribution from which they
must reconstruct the distribution, whereas we solve directly for the
distribution by an expansion in Hermite and Legendre polynomials with
energy dependent parameters built into the expansion functions. The
use of these energy dependent functions, x(E) and £(E) (see next
section), allows us great flexibility in improving the convergence of
the expansion. Given Y(E,x,u), we are able to calculate with relative
ease the distribution of deposited energy, the energy dependent spatial
distribution of beam ions and moments of these distributions.

A method of handling the singularities near the boundary surface
is presented in references 1 and 2. As is done there the solution for

the vector flux is written in the form

Y=y +Y +Y_ +8, (9)




The terms ¥ ¥, and Y; represent the vector flux of particles which
have undergone, respectively, zero, one and two elastic collisions with
target atoms. The ¢ term represents particles which have undergone
three or more elastic collisions.

A1l of our results are normalized to unit incoming flux. We write
the source term in the Boltzmann equation for the incoming ions in the

form
JCE,x,u) = La(x)6(u -l)é(E"EB) 5 (9)

EB is the incident beam energy.
For convenience we rewrite Eq. (8) so as to exhibit explicitly the

singularities arising from the source term.

‘f(E)X;u)

I

6 = 1)6(E - EB)";«‘C(X)
+ o - 8(Eg,E))v (E,x)
+ Y, (E,x,u)

+ ®(E,x,u) , (10)

where g(EB,E) is the cosine of the scattering angle in the laboratory
system for a beam ion entering with energy EB and exiting with energy E.
The first three contributions are solved for explicitly, and the problem
is reduced to solving for ¢, which is by far the most important portion
of ¥, but contains neither the singularities of the Y  and ¥, terms nor

the extremely peaked behavior that vy, exhibits."




C. Explicit Expressious for ¢ _, V., and ¥

It is convenient to define a number of quantities here which appear
frequently in many expressions that follow. For an elastic scattering,
corresponding to v’ + v (where both v’ and v refer to the beam ion),

one obtains for the cosine of the scattering angle in the lab system
vie v = g(E',E) = LM+ D(E/ENT - M - H(E/E)] (11)

where

M =A_/A (12)

and A, and A_ are the masses of the beam ions and target atoms,
respectively. The cross section g(v’'— y) of Eq. (£) can be written

in the form

SRR ]
o(v/ 2 v) = F=6(vev' - g(E',E))F(E',E) . (13)

For convenience, we also define the quantity

1 1
F(E’',E) = (2/Al“)§NEEF(E',E). (1)

The total cross section corresponding to the differential cross section

(13) is
EI
No(E') = J“ dEF(E',E) , (15)
E'/B
where
M+ 1 \° /
i (T‘T) (16)
6

—




and E’/¢ is the minimum possible energy for an outgoing beam ion follow-

ing an elastic collision. For later use, we also define the quantities
L L e
L(E,u) = No (E)/u , an
: = i 1A - 3
L(E) = L(E,g(Ey,E)) = No (E)/g(EL,E) , (18)
f L(E.) = No (B.) - (19)
B B B
In evaluating Y_, ¥Y,, and ¥  we have neglected the contribution

from inelastic electronic energy losses. As will be seen later (Fig. 1)
this should have a negligible effect on the final solution. Inelastic
losses were not neglected in the calculation of §. 1In deriving the
equation below we assume the inelastic loss term in the Boltzmann
equation to be absent. For the sake of clarity this is true also for
the equations that determine ¢. In Appendix A, however, we show how
those equations are modified to include the contribution of these losses.
When we substitute the solution (1l0) into the Boltzmann equation
and use the limiting procedures of MP' to separate the various terms

according to their singular behavior, we obtain the four equations

d i S
Tx Vo (X + No'(Ep)y (%) = 6(x) , (20)
d T : o
;;(EB,E)-;%X ¥ (E,%) + No (E)Y (E,x) (21)
= g(EB,E)',‘{ (X)'E(EB,E) ’
o) Y 3 Fip
o) ; \f;,(E)x)U) + No (E)\‘IKI‘. (h,X, M) (22)
u APE LR P
S~ dE'F(E',E) [ dv’s(v v’ - g(E',E)) X
& '-’E v




x u’"lstu’ - g(EB,E/))Y‘(E,)X);

also

2 W(E,x, 1) + No (B)8(E,x,1) (23)

]

1l

o~
21T

B MBEgpreet my Tae st « v - 2(E,EYS X
E
A ‘[’:Q(E',x,u') + Q(EI,X,U'\j ;
Equation (20) is simply solved to yield
¥ (%) = U(x)exp{-rﬂBx}, (2l

where U(x) is the unit step function. In solving for {,, we note that
the mass ratio M in the case of antimony on germanium is such that the
maximum scattering angle is approximately 356. The cosine factor
u(EB,E\ in Eq. (21) can never be negative; in fact, three or more col-
lisions are required before the kinematics allow a beam ion to be scat-
tered to a backward direction.

As can be easily verified by substitution, the solution of Eq. (21)

has the form

-£L(E a
= e (E)x px dx

«

’ 1(E)XI.
(] Y

¥ (E,x) (xYF(EL,E) , (25)

or

(EX) = F(EGE)T, (R4 () 5% , (26)

where

R . ——




-ax -bx
e -e

b-a

it

T, (a,b;x) U(x) . (27)

Mass ratios that allow backward scattering in a single collision are
handled just as simply, but the resulting expression for v is slightly

different.

By performing the angular integrals, Eq. (22) can be rewritten as

: T e
4 % \Vﬁ([:,x, W + No (E)&r(h,x,u)
(28)
M BE ! ’ | ’ s ;=L
= == [ O AR g (P BV (E',x) g (EL,ENCEU(K)
: E
where
k= KESEU) = (b, - Wu-u) (29)
and
Moo= 8(EB,E/H;(E',E) + ‘/3.-g"(EB,E’) /l.-g'(E',E) 2 (30)
As can again be verified by substitution, the solution of Eq. (283) is
l / 3
£ (E,x,0) = U-LC-L(E’H)X j)(dxleL(E’u)x %é [B[:dE'?(EIyE)
5 X m e
(31)
AR e ’ "%
x ¥, (E,x0)g (EB’E YK = U(K)
1 3E >
- = fEf dE'F (B, E)F(E,E) g “(Eg,E")
(32)
-3

X K"U(KY;(&B,{(E'),L(E,p);x),

where




T (a,b,eix) = - | — - - (33)

After some manipulation, one can show that K.(li',[i,u) can be written

in the form

’

> il ST 4 e e
(E, EJCE" -E ) Mo (M 1)

K(E',E,u) = ;
s M Py ; ‘/—EE; (34)
where
Mo = BLMM+ DSE/ED® + (M - .L.)"(EB/E\'"P?j (35)
and

o ' . Sk g o
Ll S TN R e Tl TR o

TR e b
We note that the minimum value of {4 after two scatterings is given by
U T (37)

m (@}

The expression for ¥  can now be written

L
\flz.(E;x:U) T U(X)U(H = Hm)

x

('E+ ’ ’ ' ' g
| TdE "}(EB,E )F(E ,E)T?(JLB,L(E ) sL(E, 1) 5%)
UE =

x

[g(EB,E') K(E',E,u ] (38)

10
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D. The Hermite Polynomial Expansion of ¢(E,x,u)

We solve Eq. (25) by expanding $(E,x,.) in Hermite polynomials in
the variable x and Legendre polynomials in the variable u. Starting

with the Hermite expansion we write

S(H. % L_:_V(._Q
B(E,x, 1) L\P < E(E) (
‘ (39)
X 2: h "¢ (E,u)H (—,—'—\—(il)
g s s E(E)
S = \
and
£ = X(E '
¥Y_(E,x,u) 2 (—\;'(—ﬁ&—l) }
(40)
< - A s x - x(E)
; 2 : B ;s(r"“‘ms(—-—_‘g(m ,
S (
where h 1is the normalizing factor
S
et
hS = Jmé S ( )
arising from the integral
: dy c_ny Gy Gy = h 8. (42)
e s n S “sn

We substitute the expansions (592) and (140) into Eq. (23), use the

fact that

3 x e ;( £ )%Hn("‘—&.—), ot Wl '( £ )2”;}01( g ) (43)

3l

e T z



and operate on both sides with

..‘ dx u\p] ( :([\El ’) {”'1(_(—;(%[—)_)

and obtain

AR :
ny (r‘,u + E(E) No 1-A~4n(1;,.)

X 6(vev’ - g(E’,E))

X 2 Q, JELE Iy, EhLu) + v @007,

80 =

where

0 (e =k~ " axu /—AQ)

n,s s v E(E)

com {-Cim) ()
The evaluation of Qn,s(E,’E) is left to Appendix B.
Henceforth, we will use the notation
% =%(E), g = E(E), X =KE,E = §(E". (46)
The functions x(E) and E(E) are yet to be specified. The advantage of

introducing X(E) and E(E) is that much of the gross behavior (as a

function of x) of the distribution function can be built into the




Gaussian factor in expansion (%J). Consequently, many fewer terms
chould be required in the Hermite expansion than would be the case if
we set

X(E) = 0, E(E) = constant . 40

E. The Legendre Polynomial Expansion of &(E,x, )

We now expand ;S(E,p), YV_S(E,u) and {(Q . q = g(E’,E)) in

Legendre polynomials; specifically,

X0
. - L il 2 : emitl - . ol
"S(E’ M) = u ey Q'/s,m(E)Pm(u) 3 (48)

Hin=n
2m + 1

y Eslh) = N Lo
235 EsM W S z .Q;s)m(E)Pm(u) (49)

m = O

and

e om+1 ’
s(v « v - g) = Z—mi— Pm(g) {Pm(“)Pm(“)

m

2 1

+ 2 E (2 - E).' Pmr(umr(u') cos (¢ - 91} .
= L)

By substitutiug these expansions into Eq. (44) and performing angular

integrations, we obtain a coupled set of integral equations for the

*n,L;
1 24 1 T
AT — R hegr T S
BL3L+ 1 %n-1,0-1"8 * 3737 P 1,041 BN EENG (DR, , (E)

(51)

= . (‘BE ! g ’ ! @ ! ’
= Vn,{(E) + wn,L(E) t ‘e dE"F(E ,E)PL(g(E ,h))Qn’n(E ,E)@n’((E )




e ——————i g

where

n

TN ) CTTAdE'F(EYL,E)P, (g(EYLE))
n,4 JE /9

S
(52)
TN o
0 ,S(E ’L)':;s,ﬂ(h )
n -1
W (E) = E j“hdﬁﬁﬂgﬁﬁnz(aﬁﬁan
. S
(53)
X Q. (B'Eye. (B .
n,s tadehar
An explicit expression for }"s ,(E) is derived in Appendix C. Although
SSigENUR

Eq. (51) describes a set of coupled equations. the coupling is such that
the P ,(E) may be obtained, order by order, in a natural sequence. The
54

equations for the functions ¢ {(E) are uncoupled,
0,4

ey o] 2 o ¥ :
E(E)No (E)g_ ,(E) =V_ ,(E) + | dE'F(E',E)Q. (E',E)9 (E'), (54)
0,4 0,4 E 0, 0,4
and so these functions may be obtained directly, say for a set £ = O, 1,

- L. The equations for the Py *(E) depend on @l yomb = 00 B wady
o 0

,m
L + 1, and 8o s  May now be found for the set of £ values { = 0O, 1,
)
eeey L = 1. This process is then continued until ¢_ is determined.
,,(‘

1f at that point we see that more terms are needed, we can solve suc-

cessively for ¥ . 5 @ 5 seey P without modifying the solu-
0,4 +1 1,4 L+ 1,0

tions for the terms obtained previously.

14




Equation (51) is modified, of course, when the inelastic loss term
in the Boltzmann equation is taken into account. The form of the
equation remains unchanged however and the procedure for its solution
is unaffected. Details of the changes introduced by including the con-
tributions of the inelastic losses are given in Appendix A.

The matrix inversion method for solving the integral equations for

the L is described in detail in Appendix D.

v

F. Calculation for 200 keV Antimony Atoms Incident on GCermanium

In our calculation we used the Winterbon analytical fit to the

raik : : ; e ; :
LNS*“ elastic cross section, with however two modifications. The

Winterbon fit to the elastic cross section diverges at small energy

3,

transfers as t'4/’, we have therefore introduced a low-energy transfer
cut off T, at 1.5 eV, a reasonable estimate for the energy needed to
displace a germanium atom. With this cut off however, the total cross
section goes to zero precipitously at T . As is pointed out in

Appendix D, this introduces difficulties with the numerical solution

Iz We therefore introduced one further modification in the

for ¢
n,{

cross section below 100 eV which allows the total cross section to go
to zero smoothly with energy. Both modifications are described in
detail in Appendix E. We use the LSS” evaluation of the inelastic
stopping power, but again with a modification introduced for numerical
convenience at energies below 100 eV. These alterations, because they
are made at energies so low compared to the incident energy, do not
alter quantities of physical interest such as range and deposited

energy distribution to any significant extent.

15
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As stated earlier we have found it expedient to neglect the effect
of inelastic energy loss on ¥ , Y , and y,. The depth distribution of
electronic energy loss near the surface will of course be adversely
affected, but ¥ itself, and therefore elastic losses, is hardly affected
at all. As an illustration, in Fig. 1 we plot Y; integrated over energy
(the energy dependence is set by the &-function) as a function of angle
for the case where inelastic losses are included and also where they are
neglected. Albeit it is a log plot, the results are indistinguishable.

The functions X(E) and £(E) were determined by a quasi-self-
consistent method. A physically reasonable form was initially chosen,
and Eq. (°1) (modified according to Eq. (Al2)) was solved for the
 (E). Moments of the range distribution of beam particles having
energy E were then calculated (see Appendix F) and a new analytical
fit for x(E) and £(E) obtained. No further iteration was found
necessary. Figure 2 depicts the energy dependence of X and £ found in
this way.

Expressions for the distribution of stopped ions and for the dis-
tribution of energy deposited in elastic collisions are derived in
Appendix F. It is shown there that these distributions depend only on
9n,< and Y;; oy The range and deposited energy distributions shown in
Figs. % and i include contributions for values of n up through 7. At
that point the Hermite expansion has not yet quite converged, but the

resul tant distributions should be good to about 1(%.

16
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‘ ENERGY INTEGRATED SINGLE SCATTERED
| FLUX WITH AND WITHOUT

2 ‘»* INCLUSION OF INELASTIC LOSSES -

AT x 1007 A

O k 1354 LINDHARD UNITS

o8 = & Xk 00 &
| x
1= o) =
"
|
2 o ol
3 r x> 5
SR Sl S S O || RO e || | RERARe e
01 10 10 100
4 (DEG)

Fig. 1 — The flux of once scattered particles integrated over energy with
and without the inclusion of inelastic losses. An inelastic loss proportional
to velocity is used, with a value of k of .1354 Lindhard units.
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Fig. 2 — The energy dependence of the parameters x and ¢
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RELATIVE DENSITY OF STOPPED IONS

Fig. 3 — The depth distribution of stopped beam ions for the case of
a 200 keV monoenergetic beam of antimony ions normally incident on

germanium
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ELASTIC ENERGY LOSS (10 3 MeV um)

56

33

b
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300 500
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Fig. 4 — The depth distribution of energy loss from the incident
antimony beam in elastic collisions with germanium atoms
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Appendix A. Inclusion of Tnelastic Losses

As indicated in the text, inelastic losses (in the continuous

slowing down approximation) are taken into account by including a term
: 3 : : x
I(E,x,.) = - _ag (SCE)®(E;x, 1)) (AL)

on the left hand side of Eq. (23), where S(E) is the inelastic stopping
power. TIn order to obtain the alterations made by this term to Eq. (01),

we expand & in Hermite and Legendre polynomials. First we make the

Legendre expansion shown in Eq. (!3),

St )
(B, %) = W z = % (E,0)P, (0) . (AZ)
j_/ = i

We divide by 2/(24 + 1) to find the contribution of the {th harmonic to

the transport equation is

I).(E;X) = -~ —BB—E (S(E)‘F&(E,X)) . (A.j)

We now introduce the Hermite expansion of #},

v, (E,%) = Z ho o (B B ), (A%)
m =0
where
y =(x~-X)/E. (AS)

Now the Hermite polynomials satisfy the relation

_d_ _y2 s _yi b
ay (H (e 7 ) = um“(y)e > (AD)

and therefore




S _ aler -1 N AN
I{(L.x) S(E) z hm :m,r(L)L Hm(y)
m =

e =iy . 'Y‘ -1, ‘)v 3

- S(E E ,(E 7) E t ‘ 1) e )
S(E) hm 7m,"(l) o Hm()) ]m v11.<(r) : ”ml ,.(_V‘ .

Bl = i =
5 [ 2 B omaw J (A7)

Using the recurrence relation
‘yHm(y) = Hm N (y) + 2m Hm_ ;(y) . (AR)

we obtain

- ,;-y. [ ”‘, - z .\ a "
I)j(L,x) = E { | S(E) \fm’{./(}..) S(E) @' /'(h\

m,

m =

(m + 1)E'S(E)
e N

(B) ] H_(¥)

"m,£
%'S(E)
: m,&(m“ma (y)
E'S(E) : )
2§ *m,&(E)Hm+ 2 ()} (49)

Operating on Ii by £(E) = dy Hn(y), we find




/

I (E) =-©¢{[s’ 4 vl_g_'!.« il
n"{( ELIS(E) + (n + 1) : an,)(/(g)4 S(E)Wn,L(E)
(AL0)
;(-I hn ) hn
+ <
g h I*n-l,{,()+§? h q’n_;,é(E)}'
n—
Now
hn = /a2™:! (All)
thus
e ' : £'S(E 3
In,{.(E) =-E{[S(E) + (n+ 1) J_EQ_Z'—}‘Pn,&(E)
P 7 ;'SSE!
S(E)wn’,v(E) E 2R 3 s l’{(E) (A12)

5 E'S(E)
+ 2n(n - 1)d_€£_l R




Appendix B. FEvaluation of Qn S(E',E)
)

In this appendix we evaluate the function

’:
’ 3 I b =Y
Qn,s(E JB) = hS J yd}(Hn(y)Hs(y Ye

-1

which appears in Eqs. (44) and (51) and where

s
h :/—TTZS:

(% = X)fe

<
I

I (x‘_;(l)/gl’

~<
1]

and where the Hn are Hermite polynomials of order n.

We first rewrite Eq. (Bl)

e = peo
Q, s(E"SE) = (§'/h) |

-0

¥ ’ (£ - B
dy’e y Hs(y')Hn (% y'+ 2= =

We remark that

Qn,S(E,’E) =0,s>n,

and use the fact that

n n
52 Hn(x +y) = Z(;) Hm(f§ x)Hn - m(fz y)
m=0

to obtain

2k

(BL)

(B4)

(BS)




o i, /
7 L - =t n X w0
Qn,s(E sE) - e /hs 2 :<m) n-m '’ g ;
m=s
$ X -y" ’ g’ -
X f dy’e Hgy)ﬂmﬁﬁ y! o (B6)

-0

The integral can be done cxplicitly,L‘ and with a change of summation

index m = s + 2r, we obtain

Qn,s
~n-s,
’d J
e !
n. £ r
n [2 (= - O
A 2 r! (n-s8-2r)! (r:) :
r=0
X - %
X H Rl O (B7)

where the upper limit of the summation [(n - s)/Z] denotes the greatest

integer less than or equal to (n-s)/2.




Appendix C. Evaluation of ! (E)
L‘;n))v

By definition ¥ .  ,(E) is related to ¥ _(E,x,u) by the expression

b b ot ST n 0 i 0
Y B = L—‘d~‘f§ P, (W)§ Lﬁ@dXHn( : )Y (E,x,0u) (cl)
To obtain a numerically useful expression for &"n 2 however, the best
23N y4

method is not the most direct one where Y_ is taken from Eq. (38).

Rather it is better to start with the defining equation for ¥ _(E,x,u)

d I+ xBE
Mk Yot o (B)Y, = == [ dE'FE’,B)_(E5%) X
O 4 < p Yoot 1 S 4
Lt
(c2)

P x [dvie(vev’'- gyu"ta(u’- 8,
|
?
‘ where g, = g(E',E) and g_ = g(EB,E') (C3)

and g(E ,E_ ) is the cosine of the laboratory scattering angle for a beam

atom entering with energy E  and leaving with energy E_. After we expand

the ©-function
» Gy 2{,’ il ’
fveyieg)n E 7~ B (8P, ()P, (uh)

| L =0
(ck)

1 :
] Z G " GR,(h cos m(# -9")]
mo= 1

the integrations over ¥’ and u’ can be done immediately to yield for the
y

RHS of Eq. (C2)




rrr ! il ~ !
nfE ., F(ELE)W,(E7,xX) b1
RHS = |~ " dE’ e BCE IR, (5 ) B, Cl) s

(€)

(co)

(c7)

- o/ 9
E ?7(L|,)7E) 1
Now expand Y _,
: - z (2o AT
¥ _(E,%x, 1) = pu Foor el (E,x)P (w) .
‘ ; 2 234 £
If we note that
d ; X P R e OB !
W ¥, = E 5 3x Yo (Es¥) 0™ By (W)
L=
Ko B A+l 9 =
) ([2 3x ‘2t -1% T2 3x Tejt+1lHEG,

we obtain

L
2l +1

d
S_; \y.?;'f, -1 (E,x) +

- [PEgg’ FEE)Y, (B,x%)
UE g")

r

P, (g )P, (8) .

We now expand Y {(E,x) in Hermite polynomials. We let
4"

y - (x-B/,

and write

7 o -y?
Y?;(((E,x) Z:‘hn Y?;n,L(E)Hn(Y)e ’

n =0

% T,
ax \Yr;{ + _L(h,x) e 0 (E)Y:;L(E,X)

(c8)

(c9)

(C10)

o

N I =




. o

where

T
h = /7 2 n!
n

We substitute this sum for Y in Eq. (C8), note that
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Y. 5 Sl 'y:
Hn())) = 2 € [ln

= e
3 X

and use the orthonormality property of the Hermite polynomials,

L —y: 0 P
dy e Hs(y)Hn(y) = hS &

s sSn
to obtain
. L+l
CERLEI N ek ber T il T b1
T
t € g (E)Y
ity T
(E',E)P, (2. )P,(8.) .=
[*Fan b X ke kg (B RE ()
‘E 8: i b 3

Taking y from Eqs. (20) and (27) and noting that

s i S =
= X X /s X X
p = - =) = 2 ==yl - ==
ns(: s) E \k) H, (/ g)s_k(/ g)
k =¢
and
-
o - =] k! 2 (- ]_ZV sz \k=2V
‘ " Vs o M SN =5
J, . ‘Hk(/" L8 T« z : i (\a ) g
V=0

(C12)

(C13)

(clh)

(C15)

(c16)

where the symbol [k/2] denotes the largest integer contained in k/2, we

find that
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‘ - 15’
J ,1(}2 ,x)}ls(y\ = 7 i(h

nE

Lod

)

Z (s-k). By (- /29 X

k-2v

]

(cl7)

’Z (_\,—L\i o Z \_ES/

where

o =

The final result then is

L= 0 (Ey and L(E) = T(E') /g, .

~ ~ ‘(/ " }‘,f_l_ : =4 T i - v
(28 Z2+1 Yoin-1,4- 1D * BT Yarei1,041® |+ B0 BY, (@)
k
T : [_] V) 3 k_’ V)
ST e S
B k = T vi= 0 1=
Y F(E,,ENF(E',E) . ; P
E : J E cT(E’) (g )P (g )\Aﬁ(E y ) Us,{(E)
b= (
We have therefore
¥ (E) = U_,(E)/Ec (E)
;b;'){ ";‘L
(c20)
1 - (E_,E"F(E',E)
B T f“:dE' B'r : P, (g(Ey,E")) P, (g(E’,E))
Eo (E)LB E o (E) {
and (c2l)
T P 2 | e e
€o (E)Ye;n,L(E) = 20 S¥eT Yan-1,0-2B + 300 SO cl(h)_" Uy ¢

29

— ot

(Cl13)




Appendix D. Numerical Solution of the Integral Equation

In this appendix we describe how the integral equation for Y (E)
o

is solved. This will serve as an illustration of how the equations for
all the %n.;(E) are solved. For the purposes of this section we will
neglect inelastic losses (but will indicate at the end how they are
treated) and will assume the cross section is given by the Winterbon,
Sigmund and Sanders’ analytical fit to the Lindhard, Nielsen and
Scharff cross section. Since the LNS cross section becomes singular as
the energy transfer goes to zero, we introduce a cutoff T to represent
a minimum energy transfer allowed in an elastic collision. The method

described below works equally well, moreover, with other cross sections.

With the use of the LNS cross section, the function Y ’(E) satis-
J

fies the equation

EoT(E)P_ (E) = V. _(E)

’ J

e U(Eg - 3T -E)E'F(E',E)®,

(EY) ,
E+T 5

where all of the terms appearing here have been defined in the body of

this report. 1f we define

m(E) = min{f E, EB e 3Ty (D2)

then we have

€0 ()9, (E) = V_ _(E)
’ b
(D3)
A Urm(E) dE’§"}(E',E)<,'() (‘(E,) :

s L

B4R
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Briefly, given an appropriate energy mesh {E.}, our aim is to
3°7°

J
)

express Eq. (D3) as a set of linear equations in the set {4 (E,)},
which we will then solve by straightforward matrix inversion.

Consider the integral in Eq. (D3). We carry out the integration
using Gauss-Legendre quadrature. Thus if {zi} and {wi} are the scts
of Gauss-Legendre ordinates and weights, respectively, for n-point

integration, then the integral in Eq. (D3) may be expressed

‘m(Ej) n
\ e nla(r! B e e AN 2 2 (P Ng (L o >
) o dE'E (ENHF(E ,hj)v(,,l (E") = R(Ej).z: w.E(E ji”(‘ji"‘j)* S (tji),
E ¥l i=1
j
(D)
where
= + D Z L
aji B(Ej) R(FJ.)7i (DY)
and
R(E) =% [m(E) - (E+T)], B(E) = 3(m(E) +E+T) . (DO)

This method fails when singularities (or near singularities) occur
in the integrand; when such is the case, the singularities should be
removed before integrating. For example, the WSS’ representation of

the LNS1© cross section is proportional to (E’ - £)=#/% that is,
F(E’,E) = G(E',E)/(E’' -E)%/2, (07

where G(E’,E) is well behaved. In this case the singularity is removed

by introducing the change of variable y = (E’ -E)"/", so that

?
)
3




~-m(E)
dE'E(EYF(E',E)p (E")

o 4
E+T
(D3)
A l_\/.
=3 \ dyS(E+y ")F(E+y °,B)p_ _(E+¥y 2.
‘rm(li\-l’,]"‘/
The new integral contains no singularities and can be evaluated as
described above. Another, not so obvious, singularity is associated
with the LNS cross section and with the cutoff T; as E approaches
T/7. where
= 4M - (D2)
(1+M)

; B ; ;
the total cross section ¢ (E) rapidly goes to zero. The left side of
Eq. (D3) remains finite, however. This means that v (E) is increasing
0 ¢
: x y ; > ¥ - ‘
just as fast as o (E) is decreasing. We have handled this situation by
modifying the LNS cross section at energies less than 1C0O eV so that this
T e ; : ; :
sharp cutoff of -~ (E) does not occur. The modification is described in
Appendix E.
Let us assume that all singularities have already been removed in
Eq. (DZ). Then for each mesh point Ej we have

T
E(E,)o (E, E,) = V E,
£ ( 3 (J)Y( o 5 ["( i

(D10)
n
+ R(Ejj p wi;({'ji)‘.r(l’ ji’Ej)“u ‘(E‘ji) .

"

Generally, the argument of Yoo 90 the right side will lie among the
e

o




mesh points {Ej}. We use cubic spline interpolation to express

Ry wh e e my (D11)
0, it m k ,0°  k
where the coefficients C;J are determined by the cubic spline equations
and found without having to know the values v+ (Ek). Equation (D10),
r,l

which now describes a set of linear equations in {9 (Ek)}. therefore

has the form

ZAjki{«( (E) =V (Ej) y (D12)
K ’ L
where
T
= SCH S CE, )b,
Ay = B(EDo (ED6
(D13)
n l_]
-~ MBS w2 FE, ,BHC .
18y k

The desired solution is then

=

s A 1
P (B = j A Ve (B - (D1

As a test of the accuracy of the method, we considered the equation

m(E)
D(E) = V(E) + S dE'K(E',E)D(E") , (D15)
E+T
with
K(E',E) = [ 1+ (E'-E)*/37/(E’-E)*/3, (D16)
3%




The function V(E) is a rather complex function of E and T, such that the

solution of Eq. (DLl/) is
D(E) = (Eg-3T- Bt (D17)

By employing the method described above, a mesh of 4Z energy points, and
Gauss-Legendre points, we reproduced the exact solution at all the
mesh points to an accuracy of better than 10°" per cent,
In Appendix A, we have shown that inelastic losses are taken into

account by adding a term In I(Ej) to the left hand side of Eq. (DLlO),
v

where
E'
% = el Falewy - Ty i Y 4 0 n » T /
L., = E(E){[S'(E) + (n+1) e S (B)]9, ,(E)+ S(L)q)n’i/(E)
=1 y (D18)
A e e - i (4 2 1
t2n 5 S(E)9, ) 4 (B) + 2n(n-1) %= S(B)9, _, ,(E)]} ,

where S(E) is the inelastic stopping power and the '"prime' denotes the
derivative with respect to energy. From the cubic spline equations, we

(E))

obtain ¥’
n,d" ]

’ o ; uy 1
Pa, (B = LDy % 4 (B - (D19)

The resulting equations can then be solved as indicated above by straight-

forward matrix inversion.

3k
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Appendix E. Modification of LNS Cross Section and LSS Inelastic
Stopping Power at Low Energy

Cross Section Modification

The unmodified LNS elastic scattering cross section is given by

— ) NT a® e -
F (E',E) = —2— g'¢73/2 ¢ (¢1/2)ypE-E) , (E1)
LNS 2y EL‘

where a is the Lindhard screening length, EL is the Lindhard energy,

A (E2)

f(tt/') is given, in the Winterbon approximation, by
£(e/?) = 1.309¢2/6[1 + (2.618 tf /8y2/s 1_'”/" 3 (E3)

the step function U(BE-E’) merely expresses the kinematical elastic
scattering condition that the initial energy of the scattered particle,
F, is greater than the minimum possible value of the outgoing energy.
All other symbols are defined in the body of the paper. The cutoff at
low energy transfers is introduced by multiplying Eq. (EL) by another

step function

$ (B',B) = L2 g/
LNS 2y E
ik 7

£=3/¢ f(t’/")u({sE-E')U(E’-E-TC) y (Eb)

where TC is the cutoff energy transfer. For expediency in the numerical
solution of the integral equations, we also wanted the total cross
section to vanish smoothly at low energies and so we introduced one

other modification for energies less than an energy E (which we took

35




to be 100 eV),

In Fig.

W(E’ - =— )

,E) E-0 . - wfeE .,

U(E’- E-T )
C

we show the energy dependence at low energies of both the

modifieud and unmodified LNS total cross sections (both including the

low energy transfer cutoff at TC = U~.L

. Inelastic Stopping Power

The LSS elastic stopping power is proportional to the particle

velocity

S(E) = KEY/2,

where, for the case of antimony on germanium, we take K = 1,32

(EO)

Mev:/2 /um.

For numerical convenience we have added an additional term at low energy

Smod(h\ = Q.c

so that

S(E)

KEL/:

where again we have taken E

A S AN - ™

FE+B\® 7 R-E\? :
\ =) k = ) MeV/um , (ET)
E E
y E > E
(E3)
+8 4 (B) ,ESE,
100 eV,
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and its modification used in the present calculation

8 =
6 |
[
m? |
TR = |
z
|
2 - /,./ —e— INS - |
A — —x——— MODIFIED LNS
/.‘
—
/‘/
il s g o | | 1 1]
0 20 40 60 80 100 120
E(eV)
Fig. 5 — The dependence at low energies of both the LNS total cross section

37




-

Appendix F. Range and Deposited Energy Distributions and Their Moments

L. Distribution of Stopped Beam Tons
As stated in the body of the text, we have written ¥ as the sum of
four terms,

f= 0 ¢4 =l 53, (F1)

representing, respectively, the flux of unscattered, once scattered,
twice scattered ions and the flux of ions scattered three or more times.
Because the energy transferred in an elastic collision by an ion of
energy E can be no greater than yE, no contribution to the distribution

of stopped ions can come from Mo ¥ or Y_. Consider, therefore,

1’

Eq. (£%), the equation for ¥ (and include the inelastic contribution)

__x ; 1~T 2y E - k) D
oA + No (E)?% SE (S(E) %)
(F2)

3E A o~ A : ’
- [TaEF(E',E) [dv'6(v-v'-g(E',EN)u " [ Y.(E',x,u'+ 8(E',x,u'] .
E % :

The x component of the current of particles scattered three or more

times

i(x) = Sdu \ dE&(E,x,u) (F3)

must obey a particle conservation rule

dj(x) X do (x) d7(x)
dx dx ! dx e

(F4)

where do (x)/dx is the distribution of stopped beam ions and dT(x)/dx
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is the distribution of twice scattered particles which are elastically

scattered a third time in the interval between x and x + dx. 1I1f we

operate on Eq. (F2) with

o Eg-3T
\ dv‘u \dE ]
oo )
3 (
make use of the relation
et e
( s 7
f'; \ dU \\\) de O(V'VI' Q,(E }E)) = 1 ) (F{/’)

(
and recall ‘he definition of the total cross section from Eq. (15)

No(E) = \ dE'S(E,E"), (F6)

)
E/B
we find
1 EB-?BT

LoTe SER e L) R O ey
P _ ‘Bduu 3rdES—E‘:(S(L)r(hv)\7H))

e |

(F7)
< Bp~5T BE. 3
-y dE VAR Y dui TR EL B Y (B % uY) = o,
;- o N
We find therefore that
’.l EB-ST
4968 - - \ aup™ \ 4B 2 (s(m) 8%, ) - (F8)
X / aE
-1 )

We expand ¢ in Legendre polynomials




- —~ 24+ 1 B
D(E, X, ) = U2 TE @ (B, 0P, (W), (F9)
T {,
and find that
AR =BT

dacx) - ) o

e = BdE SE(S(E)Q‘?/(E,X))
(F10)

S(f)’d(((c,X)

since ¥ vanishes for E = EB -3T. The Hermite polynomial expansion

gives
(F11)

do (%) v [ %~ %(0) \* 1 & w5 [ x-x(0)"

— | - hs H — % o)
d x K5 =np ! k E(o) , AZ;f, n n EGE n,L(
It is clear that without inelastic losses, there would be no stopped
ions - any ion whose energy falls below T would have no mechanism for
further energy loss and would never come to a stop.

Moments of the range distributions are easily calculated,

R = J'd X xm Eklié)

m dx

(F12)
m
= S(0) ng(\ Cn,m(‘ Wn,u(‘ )
where
i =1 m x = X(E) \ _ [ x=%(B) Lo

Cn’m(L) = hn :["ndx X an G /exp[ \ Z0E) ) J (F13)

Lo




Using the recurrence relations for Hermite polynomials

: 5 i . "
: yHn(y) Hn+l())& 11Hn_j(y), (Flh)

and recalling that

b /2%, (F15)

we arrive at a recurrence relation for the Cn e If we let
2

- E(EYC. (E (F16
Cp n(® = E®C (®), (F16)
then
. e . : e A (E)
Cn, 3 x(E)Cn,m-l’ (n+l)§(E)cn+l,m+l(E) # 8 ORI Onr)(’n-l;m-l g
(FL7)
If we note that
6 = 1 and C = 0, M < (F18)
(O 26 n,m
we can calculate al) the C (E) «
n,m
2. Energy Deposition
The energy current T(x) is given by
1 FEB
N(x) = B di y dE BY(E,x,p) . (F19)
-1 (@]
If we define X(E,x) by
1
(
X(E,x) = 5 du u™t Y(E,x,u) , (F20)
-1
L1

e — ST SR




then the Beltzmann equation yields, after a little manipulation

Bl E
dN(x) B B
o { dE T(EYXCE, %) + \ dE S(EYX(E,x) = EP«’;(X) ; (F21)
ax ) o 5]
1€r¢
E
T(E) = \dL (E-ENF(E,E) . (F22)
E/B
We thus can identify the quantity
2 -
ijaf—"-) = \dE(T(E) + S(E))X(E,x) (F23)
o)

-
as the depth rate of energy deposition. The contribution from elastic
and inelastic collisions are clearly separated. Using Eq. (10) from

the main body of the text, we have

dé(x) _ tT(F Y+ S(E.) ¥ (%) + \(lE E{E)+ 2(R) Wl(E,X)

dx gty o) il J 8(E,,E)

E

i [ (2-%B) "] - x(E) -
. » 3 F'._T(E) i expl_ Loy /o n=0 fa K E(E) /L.Yn o(E)
+ l{r‘ﬁ;n’r (E)_j . (F‘dzi)

The moments of the energy distribution are given by
v 5 dx s degxz
S
LT(E )+ S(E ) Sdg _L)._‘_f’_(ﬂ Bs(E) (F25)
E,/8

s & ”
+ n§=: Sd E ‘ T(E) + S(E)] (E) L (E) + an,o(E)_i p (F206)

23;0,0

L2




where

o O s 3 3
A = gdx xswﬁ(x), B_(E) = 5 dx x ¢ (E,x) .

@© .

(F27)
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