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ABSTRACT:

This paper presents an approach to nonlinear feature extraction based
on certain graph theoretical considerations (such as the minimal spanning
tree, maximally complete subgraphs, inconsistent edges and diameter edges)
and topological considerations (such as interpoint distance measures). After
appropriate introductory sections, the feature extraction algorithm is
developed in section 4, The algorithm is hierarchical in nature and offers
considerable savings in terms of computer computation and storage requirements.
An outline of the computer procedure is also inciuded.
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A NEW APPROACH T7 STRUCTURE PRESERVING FEATURE EXTRACTION *

Scott A. Starks
Dept. of Electrical Engineering
Rice University
Houston, Texas 77001

Abstract

This paper presents an approach to nonli-
near feature extraction based on certain graph
theoretical considerations (such as the minimal
spanning tree, maximally complete subgraphs, in-
consistent edges and diameter edges) and topolo-
gical considerations (such as interpoint di-
stance measures). After appropriate introducto-
ry sections, the feature extraction algorithm
is developed in section 4. The algorithm is hie-
rarchical in nature and offers considerable sav-
ings in terms of computer computation and sto-
rage requirements. An outline of the computer
procedure is also included.

lic Introduction

In the design of any practical pattern reco-
gnition system, the problem of developing an ef-
ficient feature extractor is critical. A number
of methods for optimal feature extraction exist.
These are based on a variety of optimality cri-
teria. A good review of the methods of feature
extraction can be found in [1].

Quite often in a real world situation one
is presented with the problem that the dimensio-
nality of the measurement space is large, while
the number of training samples is small. In this
case, obtaining good estimates of the class con-
ditional statistics is virtually impossible. As
a result, all feature extraction algorithms which
base their optimality criteria upon these statis-
tical quantities are severely hindered. What is
needed is a feature extraction method which does
not rest solely on statistical considerations but
which is based also on structural attributes pre-
sent in the training data.

In order to accomplish the above, this paper
presents a new method for nonlinear feature ex-
traction. We begin this work with the general
problem statement. Let there be given a set of
data vectors X = [Xl’ Xyyeees XN] where each

X.eR". We wish to find a corresponding set of
vectors Y = {Yl, Y2,..., YN} where each

v, eR" (where m is an integer satisfying 1< m< n),
if such a way that the structure present in X is
optimally preserved under the transformatior
from X to Y, that is, we wish that the mapping
of X to Y takes place with the least degradation
in structure. Of course, the central question
arises as to what constitutes structure in a da-
ta set, Thus, the present paper thrusts much of
its attention toward this question.

#* Supported by the AFOSR Grant 75-2777.

Rui J. P. de Figueiredo
Dept. of Electrical Engineering and
Dept. of Mathematical Sciences
Rice University
Houston, Texas 77001

2. Background

In (2], J. W. Sammon developed a point-to-
point mapping from a given space to one of lower
dimensionality. In his algorithm, Sammon, by an
iterative technique, optimized a criterion fun-
ctional based upon interpoint distances in each
space. If d,. represents the Euclidean distance
between poinES X, and X, in R" (this distance,
will also appear at timds as d(Xi, Xj))and dij

is the corresponding Euclidean distance between.

Yi and Yj in Rw, then the mapping criteria is

defined as: N kg
Gdy = idi )
1 i -1
Q ) =-L Z 1]d i (2-1)
i<j ij
where
d = - PR
igj 1J

Generally speaking, this indicates that in
optimizing this criterion, one finds the confi-
guration of points Y in R™ whose interpoint di-
stance best match their conterparts in R .
Further examination of this criterion functional
yields that it is a function of (Nxm) variables
yij: L= 10N J= 1,0 eems

In certain cases, the product (Nxm) may be-
come so large that optimizing such a criterion
functional would be prohibitive in terms of com-
putational complexity. To combat this problem,

a heuristic relaxation method was devised by
Chang and Lee [3] to perform point-to~point fea-
ture extraction. Despite the fact that tnis al-
gorithm is computationally less demanding than
the one developed by Sammon, it still is based
upon the same criterion. As a result, it too
treats interpoint distance as the only deposito-"
ry of information present in a data set.

Calvert [4] and White [5] have also contri-
buted to the study of point-to-point mappings by
applying orthogonal projection theory to the
problem and investigating the effect of using L1
or city-block distances instead of Euclidean
distances, respectively.

- The Search for Structure

When one is presented with the problem of
designing a practical pattern recognition sys-
tem under the constraint of a small number of
training samples from a space of high dimensio-
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nality, he often resorts to cluster analysis to
learn something about the structure of the data.
Much work has been done in this area and due to
the fact that many clustering techniques might
be best described as 'ad hoc'" or heuristic,
there exists a number of clustering procedures.
For good reviews of clustering techniques see
[6], (7], and [8].

One large heading for clustering procedures
is hierarchical clustering. To begin, it is ne-
cessary to pose the problem of hierarchical clu-
stering. Let us consider the problem of cluste=
ring a set of M objects Z = [Z,,... ] into C
clusters: wl, Wz,... W_ . We might think of clus~-
tering as no more than the process of partitio-
nﬁng M objects into C groups wl,... W. where

ililwi=~z:mc1wim~lj =¢ if L # j.

The process of hierarchical clustering is
begun by partitioning the M objects of Z into M
singleton clusters (clusters with only one mem-
ber). At the next level of the procedure, a new
partition is obtained consisting of M-1 clusters
At each successive level, the number of clusters
is reduced by one and this process is terminated
when the desired number, C, of clusters is ob-
tained. If the procedure is such that whenever
any two samples are in the same cluster at a gi-
ven level, they also are in the same cluster at
any higher level, then the clustering procedure
is called hierarchical. This type of clustering
is widely used in biological toxonomy and other
classificatory sciences.

There are two basic types of hierarchical
clustering algorithms: agglomerative and divisi-
ve. The method described above in which two clu-
sters are merged at each level is called agglo~
merative, Divisive clustering occurs when at
each level one cluster is split into two. Regard-
less of the type of hierarchical scheme used, the
way one defines the distance between two clus~
ters is critical because in agglomerative s:ziieme
the two nhearest clusters are joined at each
stage and in divisive schemes a single cluster
is split to yield two clusters which are the
farthest apart.

Some of the more widely used distance for-
mulas are:

d (X;5 %;) = min d(X, X') (3-1)
min ALY A 1
Xe Xi’ X'e X_]
d (xy5 %;) = max d(X, X') (3-2)
max Cokt A :
Xe Xy* X'e X5
(3-3)

4 ean Xy Xj) =l )

where
m = mean of Xy m' = mean of Xj’ Xy and X3 are

clusters, d(.,.) represents some distance measu-
re such as Euclidean distance.
Consider the use of dmin

distance between clusters in an agglomerative
scheme. We may think of the data points as nodes

as the measure of

For a

in some graph. review of graph theo-
ry see Ore [9]. When d is used, nearest
neighbors determine the nearest subsets or clus-
ters. In the terminology of graph theory, the
merger of X, and X, corresponds to adding an
edge between the jnesrest pair of nodes, one in
¥, and one in X,. Since such edges linking clus-
ters always go getween distinct clusters, it is
obvious that the resultant graph never contains
any closed loops or circuits. Such a graph is
referred to as a tree., If this edge linking pro-
cedure is continued until there is a path from
any node to any other node, the resulting graph
is said to be a spanning tree. In addition, it
can be shown that the sum of the edge lengths of
this spanning tree will never be greater than
the sum of the edge lengths of any other tree
which spans the nodes, Thus this graph is said
to be the minimal spanning tree (MST) for the
data set and this procedure is called the near-
est-neighbor or single-linkage clustering al- ]
gorithm. 1
When the d measure of distance is used j
in an agglomera¥i§e hierarchical clustering |
scheme, we obtain what is referred to as the
furthest-neighbor algorithm. Applying this algo-
rithm to a set of data can alsu be described in
terms of graph theory. At each stage of the hie-
rarchy we produce a graph in which edges connect
all the pairs of nodes of a given cluster. In
graph theoretic terminology, each cluster is
said to form a complete subgraph. Referring to
the definition of dmax’ we deduce that the dis-

tance between two clusters is determined by the
most distant pair of nodes belonging to their
union. This quantity is also referred to as the
diameter of the two clusters' union.

As was mentioned previously in connection
with the single-linkage algorithm, the concept
of the Minimal spanning tree (MST) is an impor=-
tant one and was introduced by Prim in (10]. It
is a deceptively simple structure which has a-
mazing properties for cluster analysis. Zahn
[11] was the first to demonstrate its powers in
dealing with a number of problems which were
rendered unsolvable by other methods. He showed
that clusters in a two-dimensional space which
the eye identified immediately as separate en-
tities could be separated trivially by a cluste=-
ring algorithm based on the MST. In fact, he
went so far as to suggest that the MST was the
fundamental mechanism responsible for proximity
and Gestalt effects in psychology.

Some other approaches to cluster analysis
using tree structures are described and referred
to in [12].

The main properties of the MST can be sum-
marized as follows:

1. Any point (node) is connected to at least
one of its nearest neighbors.

2. Any subtree is connected to at least one of
its nearest neighbors by the shortest available
path.

3. The MST minimizes all increasing symmetric
functions of interpoint distance.




4. The MST connectivity is invariant under any
transformation which preserves the rank order of
interpoint distance.

5. The MST structure is easy to compute and
resembles a loopless skeleton of the configura-
tion.

Thus we have found two attributes, the MST
and the cluster diameter, which in part tell
something of the structure present in a data set.
In the following action, these two concepts are
combined with that of interpoint distance to
yield a procedure for nonlinear feature extrac-
tion.

4, Feature Extraction Procedure

For convenience, we shall now restate the
feature extraction problem:

Let there be given a set of points
X = [x 2,...XN] where each X, eR We wish to
find a corresponding set of points Ys(Yl,...YN]
where each Y, ¢ " (I< m< n) in such a manner
that the structure contained in the data set X
isoptimallympresetved under the transformation
A R" = R™ which maps X into Y. We take the

liberty of expressing g(x ) as Yi due to the one-

to-one correspondence between the sets X and Y.

For N points, there are N(N-1)/2 independent
interpoint distances. After determining these
distances, the minimal spanning tree (MST) for
the data set can be constructed. Once this is
accomplished, a method of feature extraction
based on a divisive hierarchical clustering
scheme can be implemented in the following fa~
shion.

Let us define the inconsistency measure for
an edge of the MST in the following manner. Sup-
pose that there is an edge of the MST connecting
nodes represented by the points X, and X,. We
define the inconsistency measure [ll]ofj this
edge as the ratio of length of the edge between
xi and Xj divided by the average length of all

MST edges connected to either X, or (exclu-
ding the edge from X, to Xj) .S ifice forja data

set of size N, the MST has N-1 edges, we can
store the inconsistency measure for each edge of
the MST in an array, E, of dimension N-1.

Since we may think of clustering as merely
a process of labeling points according to their
cluster or group membership, we can store such
membership in an array C of dimension N, where
C, contains the label or membership of point
being placed in cluster X . So C =1 for all 1
initially.

To initiate the feature extraction procedu-
re, the array E is searched to find the MST edge
with the largest value for inconsistency. We i-
dentify the endpoints of this edge and will de-
note them as xi and xi. The value for the diame-

ter of the cluster Xl is also determined. Let

the endpoinfa of this diameter edge be denoted
by x and X and the diameter be DL, Once these

G g5 R

four points are known, we group them in_what we
call the active set, Al. So Al = [x t, X X

This set is termed the active set because it
contains the vectors whose images Y., Y, Y;, Yl

h

are optimally located in the image or feature
space at the first stage of the process.

Thus once the membership of the active set
is found, the image set can be determined. This
is done ?y finding the set of points

(¥, Y, Yo, ¥O) = g@ab)

which minimize the following criterion:
-dk. .2
o 1) =) Zl —

(4-1)
ig Il jel iJ
i<j
under the constraint that
WoEw G, e, %-2)
where
1 1
) [ W I T ¢ i€ Y. gl g (4-3)
dij = d(X i X ), (4-4)
d*ij = d(y, Yj). (4-5)

The above is the standard Sammon criterion
except that we have added the inequality con-
straint (4-2) and we do not require the distan-
ces (4-4) and (4-5) to be Euclidian. Note also
that we are applying this criterion to only four
points rather than as in [2] to the entire data
set.

The optimization of (4.1), (4.2) may be
carried out by the iterative method found in the
Appendix of this paper.

Once the optimal configuration of 8 QA )
is found, the loc%iion of the points correspon-
ding to Yk’ YL’ = and Y are fixed and are not

allowed to vary through the remaining part of
the procedure. As an indication of this fact, the
vector B of dimension N is constructed. If the
component B,=1, this indicates that the image of
Xy has been”located. So initially B; =0

(i=1,...N), but after the first stage B,=1 for

i
Xic Al. Before we begin the next stage of the al-
gorithm, we must update the cluster membership
on the basis of deleting the most inconsistent
edge found earlier and creating two connected
subgraphs with the remaining edges of the MST.At
this step, some of the components of C will be
changed to reflect changes in cluster membership.
In general, we repeat the above procedure
until all the points of X have their images map-
ped into Y. Let us assume that we are at the Kth
stage of the algorithm. A search of E is conduc-
ted to find the KD most inconsistent edge of

the MST. The endpoints of this edge, xﬁ and K%,

as well as the endpoints of the diameter edge, th
xK and XK, for the cluster which contains the K

most inconsistent edge are determined. Thege
points are then placed in the active set Ak,




If any points belonging to AK have already been
mapped into images in R™, it is understood that
they will not be moved at this stage of the al-
gorithm. Suppose that the cluster containing the
Kth most inconsistent edge is designated cluster
and that the diameter of xgais pK. If A ¢1,:1)
i§ the standard Kronecker delta function, the
criterion functional forgythe KR stage is
K Z ey s d*i])z
Q, (™) = L A(p-C;)
% 1T Mt %4y J
(4-6)
under the constraint that

K £
a <D ¥ 4,53X and X, ¢ X, (4-7)

where

Fa(1:x eah). (4-8)

The above criterion is minimized by the me-
thod outlined in the Appendix.

This constraint is added to insure that no
two points in the image set of y, are farther a-
part than the diameter of Xp. Examination of the
criter1a shows that the configuration g@AK) =

K K K

[Yk’ L’ Ym, Yn}
intracluster interpoint distances with added em-
phasis on the diameter edge length and the in-
consistent edge length. After the optimization
is performed, the cluster membership is updated
by setting Cj = K for all values of i represen-
ting points belonging to one of the two connec-
ted components of cluster Xp formed by deletion
of the KM most inconsistent edge.

This procedure is repeated until all the N
points are mapped to R". For a flow chart of
this entire operation refer to Fig. 1.

is optimized with respect to

5. Determination of the dimensionality of the
feature space

The final feature extraction obtained de=-
pends upon the value, m, of the dimensionality
of the feature space. The problem remains as to
how to make a reasonable choice for m.

In[13], Schwartzmann and Vidal present an
algorithm for estimating the topological or in-
trinsic dimensionality of point sets. Since we
are concerned in our algorithm with preserving
the structure in a data set, it seems only natu-
ral that we concern ourselves with determining
the topological dimensionality. The algorithm of
Schwartzmann and Vidal relies heavily on the MST
just as the hierarchical clustering presented
earlier. This approach is iterative and is also
based on Karhunen —Loéve theory along with the
theory of barycentric transformations. As a re-
sult, before beginning the feature extraction
process, we perform the Schwartzmann-Vidal algo-
rithm to get an estimate of the topological di-
mensionality to be used as the value for m.

Recall that in the discussion of the MST,
it was stated that any transformation of a dzta
set which preserves the rank ordering of the in-

terpoint distances also preserves the MST con-
nectivity. This is intimately connected with the
work of Shepherd [14] who was concerned with pre-
serving monotonic relationships. Since the
MST has been shown to have important clustering
and Gestalt properties [l1l] it would be desirable
to preserve its connectivity under transformati-
on. To do so it would be required that the image
set of Y be such that for each inequality
d(xi’ xj) <d (Xk, XL) we would have to have
d(Yi, Yj) < (Yk, YL). With N(N-1)/2 interpoint
distances, this translates to

(N(-1)/2) - (N(N-1)/2 ~ 1)/2
pairwise inequality constraints. In most cases,
such a large number of constraints would greatly
deter optimization.
With this in mind, an NxN array R is con-

structed so that qu gives the rank order of the

distance between Y, and Y,. We can then use the

value for HR-R*“ as a means for determining the
"goodness'" of the transformation. If the value
of ||R-R¥|| is too large, the feature extraction
would be repeated only with the value for the
dimensionality of the feature space increased.
Increasing the value of m would allow for a
greater number for the degrees of freedom and
would thus enable one more freedom in preserving
the rank order of interpoint distance,

Conclusions

An algorithm for nonlinear feature extrac-
tion has been presented. It emphasizes structures
from graph theory such as the minimal spanning
tree, maximally complete subgraphs, inconsistent
edges, and diameter edges as important entities
to be preserved under transformation. The proce-
dure is hierarchical in nature. By solving a
number of small problems instead of one large
problem, this procedure greatly reduces the com-
plexity of computer implementation. This approach
shows great promise especially when one is not
sure of class conditional statistics for it is
based on other structures present in the data.
Presently, computer programs are being developed
to implement this algorithm at Rice University.
Numerical results on the application of this al-
gorithm to fluorescence and infrared spectrosco-
py data for oil spill identification will appear
shortly.

APPENDIX

At each stage of the feature extraction al-
gorithm, we are concerned with finding the confi-
guration g§AK) = YX which optimizes
* (2

(d,, = d,,)
S DR £ A(p'cj) @a-1)

"\
Q (80" = /.
icIK j=i ij

d

where
IK

= (1:x, eAN), (A-2)
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under the constraint that dij < DK for all

i:j : xi, X, ¢ XP- (A'3)

j
This sort of problem is well suited for

solution by an algorithm proposed by Fiacco and

McCormick [15]. Let us denote QK (30\ )) by

F(Yl’ YZ’ Y3, Ya). Suppose that there are M

pairs of points (X, xj) such that both are in

XJ. We can express the inequality constraints as
Gy (Y i Y ) = D - (dij)k>0 k=1,...M. A4)

The procedure developed by Fiacco and
McCormick can be applied to this problem as
follows:

1. A modified objective function is formulated
consisting of the original function to be mini=-
mized and penalty ﬁznctions with the form:

=F-r2 in G, @A-5)

where r is a positive constant. As the algorithm
proceeds r is evaluated to form a montonically

decreasing sequence. T > r, >...> 0. As r grows
small under suitable conditions P approaches F

and the problem is solved.

2. Select a starting point (feasible or nonfea-
sible) and an initial value for r.

3. Determine the minimum of the objective func-
tion for the current value of r by an uncon-
strained gradient technique.

4, Estimate the optimal solution using extra=-
polation formulas.

5. Select a new value for r and repeat the pro-
cedure until convergence criteria are satisfied.
A logic diagram for this process is given in
Fig. 2.
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