
j—Afl5 ~92 CARNCSIC—I~~U.ON LA’dIV PITTISUflH PA DEPT OF COMPUTER —ETC F~S 9/~AN INSTRUCTABLE PROCUCTION SYSTE MP BASIC OfteN ISSUES. (U)
MAY 77 N 0 RYCHENER. A PEWELL F4fl20—73—C—0071

IIICLA SSI FIE D AFOSR—T R—77—I1 l*U II..

A~~~~~~ 9 f lr_~ir;i~!nifl1 : ______________________________
U

Ut~Fala I
• t ’ .

—
~
-.-, ,- ~~~~~ ‘7” r ~~~~~~ __

~FoSR-~~ ~~
- 1144

/ /

An Instructable Production System:

Basic Design Issues

© Michael 0. Rychener and Allen Newell
May 1977

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, PA 15213

Approved for publiC
releaSO

distribUtion unlimited.

This paper has been submitted for presentation at a Workshop on Pattern-Directed

Inference Systems, chaired by D. A. Waterman and F. Hayes-Roth, Honolulu, May 23-27,

1977.

This research was supported in part by the Defense Advanced Research Projects Agency

under Contract no. F44620-73-C-0074 and monitored by the Air Force Office of Scientific

Research. 0

F l

\\~~
. .

=3 =3

~~~~~~~~~~~~~~~ _0__
~~~~__  ~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 

0

~~~~ 
00 

_ _~~~ 
—- ——



—

r
f

AIR FORCE OFFI(~~ OF ~C’LE~TIFIC RESEARCH (AFStI ‘

NOTICE OF TRANSMITTAL TO DDC
ih1~ tj c h n ~ c~~1 r~ p n i t  ha~ b ec:~ r ev ie ,~ed arad Is
~tp p r ovcci f c ~ p~~ U c  ~-o iea~ o lAW AFR 190—12 (7 b ) .
i s tr ib u t i o n  is ~~ iic~ited.

A. D. BLOSE
Tec ntcal  Inf o rmat ion O~ f 1cer



___________________ 
- - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- ~~~~~~~~~~~~~~~~ ~~

- -
• SECURITY CLASSIFICAI I ON OF THIS PAGE (*7,.., o.t. ,,...aj ____________________________________

REPORT.D~~CU MEP1TA1~~~H~~~~GE BEFORE COMPLETING FO RM
I. PORT NUMBER - _____ 2. GOVT ACC ESSIOP-NO. 3. RECIPIENT S C A T A L O G NUMBER

&AFjS 7 7— 1
_ _

4. TITLE (and Subtltli) *_
:

3. TYPE OF REPORT & PERIOD COVERED

~ 7- AN INSTRUCTABLE SYRODUCTION SYSTEM,

BASIC ~ ESICN JSSUES. . / 6. PERFORMING ORG. REPORT NUMBER

\~~~~~~ _~~~~~~~~~~~~~~~~
:_

~~~~~~~~~-~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

7. AUTI4OR(.) S. CONTRACT OR GRANT NUMBER(.)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~
) F446Z%..73..C.%~74\ /

9. PERFORMING O R G A N I Z A T I ON NAME AND ADDRESS tO. PROGRAM ELEMENT . PROJ ECT . TA SK

Carnegie-Mellon University AREA a WoRK UN jT$#M46eE~~~

• Computer Science Dept. - --i 61102F iq
~~~Pittsburgh, PA 15213 ( /~, 23~ 4 A2 ‘‘ I

II. CONTROLL ING OFFIC E NAME AND ADDRESS
Defense Advanced Research Projects Agency ( / Ma__e77..... /

1400 Wilson Blvd~ ~~~. N U M B E  —

Ar 1~ngton , VA 22209
14. MONITORING AGENCY NAME & AOORESS(I( different from ControIIin4 Off ice) IS. SECURITY

A ir Force Office of Scientific Research (NM) UNCLASSIFIED
Boll ing AFB , DC 20332 Isa . DECLAS SI F ICAT ION/ OOWN GRAD ING

• IS. DI STRIBUTION STATEMENT (of this R.pori)

Approved for public release; distr ibution .

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~17. DISTRIBUTION S T A T E M E N T  (of the ab.tracl .nf.r.d in Block 20. ii dlft.rant from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Contin u. on r.,.r.. aid. If n.c...ary mId identity by block number)

20. ABSTRACT (ConUnu. on r.vsr.. aid. U n.c.e.afy and id.niify by bloc k numb. ,) The full advantages of the
incremen tal proper ties of production systems h~tve yet to be exp lo ited on a
large scale. A promising vehicle for this is the task of instructing a system
to solve problems in a comp lex domain. For this, it is importa nt to express
the instruction in a language similar to natural language and without detailed
knowledge of the inner structure of the system , Instruction and close inter-
action with the system as it behaves are pr’~ferred over a longer feedback loop
with more independent learning by the system . The doma in ~s initially an ab-
stract job shop. The beginning sYstem has canabil-ities for solvine orob1ems~ -~~
DD ~~~~ 1473 EDITION OF I NOV IS IS OeSOLETE (continued)

5/N O 2 O 2 ~ 0i4- 660 1 I
SECURITY CLASSIFIc ~ I~~~ (J~~~OC (a,.., Dais

~-i ~: ~ ~-. -~~~~~~~&~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ..~~~~~
, —

‘“~~ ‘
,

~~~
--- • --

~~~~~
. • — •

~~~~~~~~ 

-
~
. t —.-.,—.•—,.. .— .-

~
-.—. —

• • ..~~ .~I4I T y  CLA$ Si F ILk TI ON UF THIS PAGL (  When 0.1 . Ent,r. I)

20. abstract (continued) : ~ 
• - 

• - 
- : ,

‘) processing language building productions , and interacting with the task
-

. 

. nvironment. All parts of the system are subject to instruction. ‘ The main
roblem-solving strategy , which permeates all four system components, ~ based
n means-ends analysis and goal-subgoal search . This is coupled with an ex-
licit representation of control knowledge. The aystem 1 s behavior so far is

- 
_ - -estricted to simple environmental manipulations, a number of which must be

aught before more complex tasks can be done ç

-
~ 

“
• •

~~~~~~~~ t4

• ,
_

— —- • - .

-
I

• • .,

-

. • ,
:~~

‘ -

~~~~~~~~ 

. • 

•

• . 
UNCLASSIFIED

• - - - 
• 

• . _ 
• 

- - SECURITY CLASSIFICATION OF THIS PAGE(Wh. n Data tni.r.d)

— —
~~



~
- ‘ - r ’--

~ 
~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ - -‘~- 1 . r -
~~~~~

--
~~~~~~~~~ 

-

Hawaii 
- 

. . 
• 

- -

• Table of Contents - •

- 

SECTION - 
.

. 

- 

. 

. 
• PAGE

1 instruction Tasks and Large Production Systems 1
1.1 Introduction and overview 2

• 1.2 Building a large production system 3
1.3 The abstract job shop task 4
1.4 The instruction mode 6

- . 1.5 The production system architecture and task environment 8

2 The Initial Instructable System 12
• 2.1 The problem-solving component of the Kernel 1~

• 2.2 External language capabilities of the Kernel - 
16

2.3 Building productions and the interface to the TE 18
• 2.4- Discussion of the Kernel design 19

3 Sample System Behavior 19

4 Conclusions 23

5 References 27
5.1 Footnotes 28

ACCESSION for 
_________

NT I S Wh~’e Section~~
DDC Buff Sect ion 0

UN AN ~IOI1NCFD 0 •

JtJS IIFICAT ION - - .. -

DISTR~BUTION /AVA I~ABIUTY C~ [S - 
-

~~~~~~~ A~Ai~.T~~ 7or E~ AL

_ _

H
.

I

_ _ .•~•


~~~~~ _“w-~ ~~~~~~~~~~~~~~ 
—•- ~~~~~~~~~~~~~~~~~~~~~~~~~ 

r__I_ -, —-a—-— 

~
“1

Hawaii 
-

An Instructab le Production System: Basic Design Issues *1.
Michael D. Rychener and Allen Newell

- 
- Department of Computer Science

Carnegie-Mellon University
• Pittsburgh, PA 15213

Abstract. The full advantages of the incremental properties -of production systems have

yet to be exploited on a large scale . A promising vehicle for this is the task of instructing

a system to solve problems in a complex domain. For this, it is important to express the

instruction in a language similar to natural language and without detailed knowledge of the

inner structure of the system. Instruction and close interaction with Ihe system as it

behaves are preferred over a longer feedback loop with more independent learning by the

sys tem. The domain is initially an abstract job shop. The beginning system has

capabilities for solving problems, process ing language building productions , and interacting

w ith the task environment. All parts of the system are subject to instruction. The main

problem-so lving strategy, which permeates all four system components , is based on

• means-ends analysis and goal-subgoal search. This is coupled with an explicit

• represen tation of control knowledge. The system ’s behavior so far is restricted to simple

environmental manipulations, a number of which must be taught before more complex tasks

- can be done. - •

• C

1. Instruction Tasks and Large Production Systems

I

- • •-— ~~~~~~——— ~~~~~~~~~~~ •- . —-— —
~~ ~~~~~~~~~~~~~~~~~~~~ ~~

•... —
~~ ~~~~~~~~~~~~~~ 

—
~~

..- —



. -- • •—

~

— ~~~~~~~~~~~~~~~~~~~~ nI~~ — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • •

Hawaii Instruction Tasks and Large Production Systems

1.1. Introduction and overview .
-

-

This paper reports the beginnings of a system-building project. The aim is to build

• - a large, generally intelligent system by gradual instruction starting from a small initial

system. At present , the large system is still in the future. This description is limited to

descr ibing a promising initial system, along with the rationale for believing it has

significant potential for further work. Likewise, the task domain of the eventual system is

-not yet determined, though there is an initial domain. -

. Production systems are the system architecture most consonant with the project’s

• aims. Their basic condition-action form, along with- the global and open nature of their

action, indicate their usefulness for a task involving incremental growth, recogni tion-based

p
., problem solving, responsiveness to unexpected conditions, and other attributes discussed

below. The initial task domain is based on the problem of scheduling a job shop. This has

unusual features that allow tests of basic instruction issues, par ticularly a wide range of

tasks with simply-produced variants. Thus the potential exists for instructing the system

‘-I on one variant , and then introducing perturbations to which it must dynamically adjust ,

evoking the need for further instruction. There are several constraints on what

instruction• is and on what the instructors can know about the internal content of the

system. •

• The remainder of this section discusses in more detail the basic task and system

issues, and introduces a suitable production system architecture. Section 2 discusses the

rationale - for our approach to building the initial system, calted the Kernel. The Kernel

embodies a set of assumptions about problem solving, language use, the particular task ,

and augmentation. Section 3 presents an instruction protocol that the system has

performed. Section 4 summarizes our current status.

2

-

• •
~~~ ~~~~~~~~

-- •
~~

- • .• - -
~ ~~

- --
~~ ~~~~~

- -•
~~~~~~



~~~ -‘~~~~~~~r_.—.,,—- -

Hawaii Instruction Tasks and Large Production Systems

1.2. Building a large production system

• Production systems (abbreviated “PSs”) have a brief but illustrious history within
- 

ar tificial intelligence (Al) and cognitive psychology. For general- background, the reader is

referred to [5], [10] and [12]. There are four architectural components of the kind of PS

used here: production memory, work ing memory, recogn ize-act cycle , and conf lict

reso lution principles. Action arises from the system as a result of conditions (left-hand

s ides) of productions being recognized true of the current working memory state. The

recogn ition leads to the performance of associated actions (right-hand sides). This is the

basic recognize — act step, excep t that in general the conflict resolution principles must be

applied to distinguish between productions whose conditions are simultaneously true,

mak ing a selection before actions are actua lly performed. The performance of actions

results in a new wortcing memory state , and t}~e recognize-ac t step is repeated.

We have chosen PSs for our instructa ble system for a number of reasons. All

productions are sensitive to a single working memory, with no control organi zation

imposed on them, and wi th all necessary control achieved by goals and other data

conventions within working memory. In practice , produc tions tend to be small (only a few

condi tions and actions) and relatively independent of each other. Thus they are attractive

w here structure is to be added gradually and incremental ly. Their feasibility, power ,

transparency, flexibility, and conciseness has been shown empirically by implementing

we ll-understood Al systems [13]. The importance of having actions conditioned on the

recogn ition of aspects of a global state is central. Actions are not evoked directly by

other actions , but are performed whenever the appropriate conditions emerge. Thus

intelligence is distributed rather than concentrated in a complex control executive or other

orc hestrating mechanism. Since intelligence requires the ability to respond to important

3

~~~~~~~~~~~~~~ -~——-- — .-- -,
~~~

. 
~~

-
~~~

—•
~~
-- •

•

.—.
~~
‘. .—

~~
-- - • . -

~~
—--“ - •.

~~~
- —i -- —

~ 
—,-

~~
-- —

~~~~~~
-- - -.--

~~~~
. -- ---



- -~~~~ “~~ ~~~~~~~~~~~~~ ~~~~~~ 
•
~
-

~--~~~~~~~~~
.• 

•~~~~~ ~~~~~~~~~~~~~~~~~~~ 
.
~~~~~~

.- • - - - ,—

~~~~~~

-- •

Hawaii Instruction Tasks and Large Production- Systems 
-

• 
- 

• 
- 

aspec ts of complex states , the high degree of conditionality of action in PSs appears to

• 

- 
have merit. • - -

In btilding the system, the PS architecture is used according to specific conventions.

All long-term knowledge is kept as productions, and work ing memory is used exclusively -

for short-’erm, dynamic state. This is in contrast to a possible view of working memory as

• a long-term database , with “facts ” stored in it , to be manipulated by “procedures” coded as - 
-

productions. Though working memory may become large, our convention is to store as

productions such database-like things as facts about objects in the world, relational

structures (semantic networks), etc. -

A large intelligent system of the sort envisioned places new demands on PSs and on

cys tem-building capabilities in general. Building such systems is interesting in its own

ght , rais ing issues of representation accommodation , and a whole range of act vit ies

assoc iated with intelligence [9, see also 1]. -To study many of these issues fruitf ~~)y, as

many have not ed, an uncommonly large-scale knowledge base is necessary. From a pure

PS research st andpoint, building a large system (on the order of several thousand

productions), especial ly including a rich diversity of knowledge, ailows us to test

hypotheses about PS efficiency openness, m’-Jularity, automatic augmentation,

• representational flexibility, and feasib ility. The sys~cm is to develop, eventually, past the

current state of the art in Al. -
•

1.3. The abstract lob shop task - 

-

Several criteria are essential to our choice of an initial task for an instructable

system. The task domain should be rich in problems of sufficient challenge to require

instruction it should be amenable to the instructional mode (see Section 1.4); and it

should not be amenable to a general solution mechanism , whic h, once constructed, would

4

— _&—~~_ • • - s—— ~~~~~~~~~~~~ — - ——~~. • — ,  —- ~~~~~~~~~ ~~~~~~~~~ — _____.•_ ...~~_  1. -~~~~ -~~ •~~•_ —— — ~~~~~~~~~~



~~~~ 

•
~~~~~~~~~~~~~~~~~~~~~ 

_ 
~~~~~~ ~~~~~~~~~~~~~~~~~~ ~ ‘ , ~~~~~~~~~~~~~~~~~~~~~~~~~ 

•
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Hawaii Instruction Tasks and Large Production Systems

make further instruction unnecessary. Among the general task areas that might be

appr opriate are: a tutor in some domain, an intelligence- test taker , an automatic

pr ogramming sys tem, and the higher , cognitive levels ol an image understanding system.

We have chosen for the time being a toy task , the abstract job shop (AJS). The job shop

has as its objective to produce objects with specified desired properties from raw

ma terials according to some schedule. The shop conta ins stacks of materials and partial

produc ts , machines that must be started with explicit comma nds , and means for

transpor ting obj ects from one place to another within the shop. The details of the

par ticular implementation of this idea are given in Sect ion 1.5. This toy task has a

number of close analogs t hat are potentia l appl ications of any useful techniques

developed: real-wor ld prc~~~tion sc heduling, the genera l problem of funclic ial design,

scheduling in com puter opera ting systems , and coding computer programs (to name j uc t a

few) . It also contains within it the possibility of exp loring the full range of Al tasks known

as the “toy blocks world.” -

If all goes well , the AJS tas k has attributes that are the extr a bonus for immediate

pur poses. AJS has an unusual number of variants , including the basic task of producing

desire d object s , the allocation of scarce resources , advanced kinds of planning, and

produc tion under time constraints. A fter the system has , been instructed in a number of

basic var iants , per turbations to the tasks and to the environment (the job shop) can pose

major difficulties for the system. Among these perturbations are: changes in the prof it—

objective function for various mixes of outputs , spoilage of mater ials , err or in machines ,

acc idents in moving objects , additional time constra ints and last-minute changes in orders.

The difficulties of the basic task should preclude any advance planning on the part of the

instructor to have the system respond gracefully to such basic task changes. Thus , the

5

• - • • —— • - • - --~~~—- --~~~ Sa~ ~~~~~~~~~~~~~~~~~~~ - - —



— ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -..-.-•~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-.•

~~-- -

Hawai i Instruction Tasks and Large Production Systems

systt m’s behav ior will be interesting, whether it can adjust easil y or not. The

effec tiveness of the entire approach, -including the use of PSs, will be measured by the

adequacy of the sys tem’s behavior over a set of such perturbations.

1.4. The instruction mode

Posing t he task as one of growing a large system through instruction introduces

additional issues. - Some of these might seem irrelevant to the main aims , but others are

direc ted towards important questions with respect to the study of the represeniation and

use of knowledge. The following attempts to justif y this third major concern , instruction ,

w hich is in addition to the concerns with building a generall y intelligent system and using

PSs as a basis. -

The instruction mode used here forces the automatic encoding of knowledge as

produc tions. This allows the verification of essential properties of. PSs, particularly t hose

dealing with the independence or modularity of the knowledge in the PS. If the PS were

augmented by simply composing and adding Ps, there would still be a possibility for the

system to be very intricately contrived,’ with implicit global coordination of production

action sequences. A language of instruction is used that states each new item of

knowledge in a human-readable, plausibly independent form, with no reference to internal

struc ture.

Instruction takes place under the following constraints:

I. The instructor (Ins) can see what the ’ sys tem (IPS, Instructable PS) is doing in

the environment , and can communicate with IPS, but cannot examine the internal

st ruc tij -e of the system directly.

2. Interaction between Ins and IPS is in an external language, ana’ogous to natural

language, ra ther than in internal representations , either of working memory or

production memory forms.

6

- ~~~~~~~~-- -~~ - —~~~—~~~~~~~~~~~ •- -. ~~~~~~~~~~~~~~~~~~~~~ • ~~~~~~~ • ~~~~~~~ . . •- ~~~~~~~~~~~~~~~~~~~~~~~~~



- —- ~~~~,‘- ~~~~~~~~~~~~~~~~~~~~~ 
‘ -

~~~~~~~~~~~~~
‘
~
‘
~~~~ 

“ 
~~~~~~~~~~~~ 

‘
~~~~

‘ 
~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~

‘

-- —

Hawai i Instruction Tasks and Large Production Systems

• 3. The in i t ia t ive fc~ interact ion is mixed. IPS’s behavior can be interrupted by Ins

a t any time , for corrective instruction or interrogation. Likewise , IPS may

communica te to Ins and in~cr r i ’pt him. -

4. Instruction may be about any ½pic within the total environment: the structure of

the environment , how t o perfo rm a task , t he language of communication , the

detection and correction of errors , how to learn about the environment , etc.

Also , the instruction r-.ay be at whatever level Ins wisL or can achieve:

specif ic behavior sequences , general methods , al)s tract principles , mode ls,

theories, etc . - -

5. Knowledge gained th rough instruction accumulates -. er the life of the system.

Having the system be instru ctab !e adds to its capabilit ies as a total man—computer

in te rac t i ve system, so t hat in ultimate real app lications the performance of the combination

system can be expected to be higher than either participant alone. As a pract ical

measure , making the system instructab le also reduces the possibility of internal coding

• conventions that would prohibit multip le instructors from - unders tanding the existing

system. That is, al l communication is forced to be in a language of ins t ruct ion, which may

be more easil y shared than program conventions. If instructabi l ity can be achieved , it

should be wor th the extra initial ef for t .

The instruction mode can be contrasted with a learning mode in which the system is

se t tasks and then required to learn on its o~ -n from the environment. Here Ins gives

incomple te or approximate instructions and watches very closel y for oppor tunities to

interrupt IPS and refine them, It is ‘~incomp le te or approximate instructions ’ because too

much pre-p lanning by Ins is bound to be futile , given Ins’s imperfec t knowledge of IPS’s

internal structure , and given a task sufficiently complex to make anticipation difficult and

7

L -—
- - - - • • - -

‘ ~~~~~~~~~~~~ ~~
-

~~
-.
~~
“.—-

~~
--,— “I

Hawaii - Instruction Tasks and Large Production Systems

ineffective. With Ins watching IPS so closely, the need for learning by the system on its

own is minimized. But such independent learning is not excluded. It can eventuall y arise

in the way IPS interacts with and gathers knowledge from the- task environment , in the

way IPS uses the external language, and in other knowledge acquisition mechanisms.

Presumab ly the best strateg ies of instruction and performance require that IPS be able to

learn for itself about a changing environment. The sequerce of novel but related tasks is

intended in part to arouse this. Nor does the futility of pre-planning rule out giving IPS

genera l methods , anticipating certain types of difficulties. Such general methods , however ,

are bound to have incompleteness similar to that of specif i.e ones. -

1.5. The production system architecture and task environment

Before detailing the PS architecture used for IPS, a few distinguishing features of

our overall PS approach are pointed out. The way that action develops f rom the PS

differs from some others in being a forward recognition-driven cycle, rather than a

backwar d-chaining, goal-driven cycle , as in the MYCIN system [4]. The system is

contro lled by si gnals and symbol structures in the global working memory~ called goals ,

• w hich are included explicitly in production conditions when appropriate. This is in contrast

to MYCIN and to DENDRAL [3]. The PS architecture is used as the tota l system , ra ther

than having it be one of a number of procedural components. Other systems have

emp loyed add i t ional, non-PS procedures for such activities as modifying and analyzing the

PS. Working memory is arbitrary list structures in an extensive database-like structure ,

wit h a vast majority of items explicitly stored rather than represented as computable

predica tes. Production conditions make use of general pattern-matching capabilities , as is
•

common in other recent Al languages [2). Though the general architecture derives from

concern f or human cognition [10, 12], li tt le consideration is given to psycholog ica l

constraints. • . - 4,

— — - - -
~~~~~~~~~~ ~_S~ &~S~~ A’ . - • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ -



T ~~~~~~~~~~~~~~~~~~~~~~~~ 

-

Hawaii 
- 

lnstruction Tasks and Large Production Systems

The particular architecture and language used for IPS i~ called OPS (Official, at least

locally, PS) [7] and is an iteration on earlier designs [11 , 13). Production memory in OPS

is an unstructured , unordered set of produc tions. - Working memory is -lilcewke an

unorde red set of list structures , without dup lica tions. It is bounded in size, by deleting

elements whose last - assertion occurred more than some arbitrary number of system

actions in the past (currently 300). The recognize—act cycle is: (1) form a conflict set of

productions whose condi tions are currentl y satisfied; (2) apply the conflict resolution

pr inciples to select a unique element from the conflict set; and (3) execute the actions of

the se lected production. -

For confl ict resolution (the most distinctive component of OPS) the following rules

appl y, in order. These rules are experimental in nature, and are expected to change as

understanding of instructabi l ity increases [8].

1. Refraction: a production is not fired twice on the same data (instant ia~ nr, of a

pat tern) unless some part of that data has been re-inserted into werking

memory since the previous firing. This prevents most infinite loops and other

- use less repetitions. . 

. 
-

2. Lexicograp hic recency: the production using the most recently inserted elements

of working memory is preferred. “Most recent~
’ is determined lexicograp hically,

i.e., if there is a tie on the most recent element used, the next-most recent

elements are compared , and so on; use of any element is considered more recent

than using none, e.g., (A X) is ordered before (A). Recency order discriminates

~t the level of individual actions within productions , rather than taking all the

actions performed by a production to be of equal recency. This rule serves to

focus the att ention of the system very strong ly on more recent events, allowing

curren t goals to go to comp letion before los ing control.

9

• ‘ - 
~~~~~~~~~~~~ -~~~~~~~~~~~ ~~~~~ 4~J •~~~ . J~ .-J;fl1 r


~
, -• •_‘___

~‘

‘
~~~~
__‘•“_‘•__- ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

,
~~~~~ — . ---.- “~7 ‘ 

~~~~~~~~~~~~~ 

-

Hawaii - Instruction Tasks and Large Production Systems

- 
3. Special case: a production is preferred that has more conditions , Including

negative conditions which do not match to specific mempry elements. Most of

the meaning of having one production be a special case of another is captured

by rule 2, since a special case that uses more data than a general one is

• lexicographica lly more recent. Preferring special cases to general ones follows

the expectation that a specific method is more appropriate to a situation than a

more general one. Also, this is consonant with a strategy of augmentat ion by

provid;ng more discriminative rules. -

4. Production recency: the more recentl y created production is preferred. This

allows identically conditioned rules (wi th perhaps contradictory actions) to be

distinguished and assumes that a more recent instruction is more correct.

5. Arbitrary: a selectio r: is made among multi ple r atches to the same production

using the same data. -

As a ma tter of practice , conflict resolution rarel y requires more than the first two rules. - 
- - .

OPS has several other distinguishing features. The pattern matching allows a limited

form of segment variables namely, a variable may ma tch an indefinite-sized tail of a list.

The Pattern-And (Pand) feature allows an expression to be matched to several patterns ,

and then bound to a variable. OPS allows complex negative ’ cond itions to be specified , for

instance , including the negation of an entire production condition within the condition of

another production. Productions in OPS are compiled into an efficient network form, rather

than interpreted (6). OPS has an operator for adding productions to production memory

w hich have been formed (in terms of an appropriate data structure) in working memory;

suc h additions are done directl y - into the comp iled network during the runtime cycle

w ithout excessive cost.

I
- 

10 
- 

-

II. ~~~~~~~~~~~~~~~ 
“ s -  ~ ‘~~~j , - p . .. s_ ~s~• ~~ -, ..~ ~~~~~~~~ - - .



___  - - -- - - 1I~~~

Hawaii Instruction Tasks and Large Production Systems

- A subsystem of OPS provides the task environment (TE) for instruction. The TE is

represented as an array of discrete locatio,is , wit h in wh ich objects can be placed, plus a

se t of “perceptual” and “motor ” operators. Each location and object is represented as a F
lis t of pairs in attribute—value form , with cer tain attributes given special interpretations.

For examp le, the external display of a location in the TE (L15), would be

LiS I 
1 (46 I • . - -

1 1498 I • 
-

1 (472 I 
-

F H

with the internal representation , -

LiS: ( NAME Lib
TYPE STACK
MEMBER TE-AF 1RAY
POSITION (2 3)

• COMPOSITION (146 (198 1472)

The object W98 might be defined as:

1498: - 
( NAME 1498

• TYPE 14000 -

MEMBER LiS
POSITION (-2 ) -

SHAPE TRIANGULAR - -

LENGTH S - 

-

(4 10TH 7 - 
-

COLOR 
- 

RED

Objects are potentially hierarchical , with values of attributes composed of other objects.

Relations between positions of the TE and objects can be determined by TE operators.

The opera tors on the TE are:

1. View: the attribute-value pairs for an object or location appear in working

memory. •

11

-• : ~~~~~~~~~~~~~ —--~~~~~~~ 
—i-- — ~~~~~~~~~~~~~~~~~~~~~~~ 



~~~~~~~~~~~~~~~~~~~~~~~ 
.-•-

~~~~~~~~ ‘~~~~~~~ ~~~~~ —— “ ~~~ ‘~~~~‘ ‘ ~~~ 
—

- ~~~~~~~- - ~~~~ r~~~~~~~~~~ 
. -

Hawaii Instruction Tasks and Large Production Systems 
-

2. Scan: the TE is searched for an object satisfying a pattern, and If it is found, it

• is Viewed. - 
• 

- 
• 

- 

- 
-

3. Trans: an object is transferred from one location to another within the TE. -

4. Start: a machine in the TE is started , consuming a set of input-s (specified as

va lues of INPUT attribute) and producing a set of outputs (specified as values of

OUTPUT). The machine operates once, not continuously. 
-.

5. Compare: two attr ibute-va lue pairs are compared, wi th results depending on the

values compared. For instance , if the values are pairs of numbers, as for

POSITION, the result is a spatial relation, amounting to , say, “nor thwest.” -

2. The Initial Instructable System

The instructab le system is initialized with a relatively small set of hand-coded

productions called the Kernel. The Kernel design includes a minimal set of components that

can support all of -the present instruction goals and provide an interface to the TE. The

comp onents at present achieve minimal capabilities for: (1) solving problems , (2)

processing language, (3) building productions , and (4) interacting with the TE.

A number of design issues inf luenced the Kernel. These derive from a wish to

maint~~., easy ins tructabi h ity within the rules laid out above for the instructional mode.

• 1. Everything - In the system is potentially instructable and Improvable. This

includes especially the components of the Kernel and the results of instruction

that the Kernel produces. The Kernel itself may eventually be superseded by

productions gained through instruction , and commitr~ents to techniques and

representations in the Kernel may eventually be altered.

-~~ - - -.s•~~~~~~~~~~~ —~~~~~~~~~~
- -

~~~~~~~~~~ ~_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——~~~~~- -

~~~~~~~ 
-

~~~
_•

~~~~
-•

~~~~~ •~~;



-- ~~~~~~~~~~~~ - - -
~.!———.•-•- —.•,...

~v— •—.- ’—,•- 
~~~~~~~~~~~~~~~~~~~~ 

.

~
- -,

-

•

• -

Hawaii - - The Initial Instructable System

2. The system should be instructable without detailed knowledge of internal I
-

structures. Thus the Kernel design must include some capability for mapping

- from external to internal forms , and vice versa.

3. Knowledge should not be globally coordinated or pre-planned, but should

develop in locally plausible , concrete increments. This particularly affect s the

- form of problem-solving methods and language processing techniques.

-
4. The construction of the Kernel should not embody a commitment to focusing on a

par ticular kind of problem, e.g., language, but should be amenable to instruction

-
-

in a number of probl em areas. -

2.1. The problem- solving component of the Kernel

• The Kernel has two general forms of problem-solving unit , correspond ing to two

uses of the basic condition-action form of productions. The firs t recognizes ~ goal and

proposes means to achieve it: -

~~

- goal & conditions => possible means. -

The means to achieving a goal can be one or more subgoals , direct ac tions on the TE, or

requests to Ins.

The second form of produc tion serves as a test or recognizer:

goal & conditions => goal success or failure or consequences.

The growth philosophy for the IPS revolves around means-ends analysis [12).

Knowledge added to the system forms a conceptual network of connections between goals ,

means to achieving them, and tests on the results of applications of means. Goals

cons titute the most meaningful portion of the dynamic state of the system (working

memory), w hile means and tests are permanent productions added gradually through

instruc tion and learning, It is important that this network of means and ends is defined at

13


~~~~~~~~~~~~~~~~~~~~~~~~ 
• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~
•-
~~~~~

---‘-- .-—‘ ---
~
--.-- - ~~~~~~~~~“— -~~~ -~~~~~~

I

- - Hawaii - The Initial Instructable System

the level of individual productions rather than, say, at some higher level of organization

wi th productions used to code an interpretive mechanism for the network. For the means-

ends structure must be applicable to creating, shaping, and correcting all aspects of the

behavior of the system, down to the finest detail. -

Augmentat ion of networks of means-ends structures leads to a flexible but highly

inefficient computational structure. Strategies for converting or comp iling these sti uctures

are a necessary component of the growth philosophy outlined here, which however will

not be discussed fur ther.

• Tw o basic conventions built into the system help to make the basic production form

adequate for general problem solving: the lexicographic event order conflict resolution

rule and a taxonomy of PS control , represented in a particular way. Recall that the

conflict resolution principle orders produc tion firings based on the relative recency of data

used. This gives a depth-first emp hasis , focusing on recenti y proposed goals before older

ones and allowing successes to propagate in orderly fash ion. It does not preclude,

however , having emerging conditions unexpectedly satisf y an older goal and lead to ac tion

quite distinct from what was the immediately preceding focus.

While the conflict resolution princi ple is built int o the PS architecture , the Kernel’s

know ledge of control is by way of modifier tags that appear in most working memory

elements. The current system of representation is based on an anal ysis of past PSs [13).

The basic representation form is: - - -

- (Primary Secondary Modifier Body)

A primary is a verb or main data structure name, w hile a secondary is an object of a verb,

an attribute of a structure , or the name of a substructure. Some examp les of pr imary-

• secondary pairs: examine objec t , interrogate value, objec t color , and phrase boundary.

14

L~•. . -  ~~~~~~~~~~~~~~~~~~~ 
•
~~~~~~ ~~~

• - • •~~~~~~~~~

—~ —~~~ -
— —

~~~ ~~~~~ ——~~~
‘
~~
‘ “

“
~~~ ,—1_ 

‘~~~
‘
~~~~~~~ 

-- -.

Hawaii The Initial Instructabte System

The modifie r is a list with positions occup ied by values fr om predefined classes: goal

values, da ta values , process values , truth va lues, and degrees of comp letion. By combining

• valued from various classes , a large number of t~”anings can be assumed by a modifier ,

w hich in turn affects the interpretation by productions of the representational unit

containing it.

Space does not permi t giving the entire modifier system , but the main entit ies that

are used in the Kernel are as follows (examples of actual representations appear in

Section 3). The most important goal value indicates ‘W ant” , and marks units tha t are

currently desired goals. Other goal values indicate “Old”, “Don’t-wan t”, and “Neutral”.

Evoca t ion, intermediate control , and results of pro cesses emp loy goal values in combination

• wi th process and data values: “Activate ”, “Iterate ”, “Hold”, “Result” , and “Continue ”. Truth

va lues are “True”, “Faise ’~, and “Unknown”.

Modifier values are made coherent by certain establish ed knowledge about control.

For instance , a process is usually initiated by a “Want Act ivate ” signa l, w hich then becomes

“Want Continue ”, if it has several steps to be performed. The steps are indicated by using

degrees of comp letion, whic h are simpl y ordinals. When the process is started , the “Want

Activate ” becomes “Old Activate ”, but the content of the initiation signal itself is stil l

available , should it become necessary later to examine it. Similarly, control for a process

can go into a dormant “Hold” status until some pre-set condition arises , whereupon it

• rever ts to its former status. When a process finishes , it may produce an item with

modifier “Neutral Result” . • 
- .

The use of these explicit modifiers in the basic representational units makes the

behavior of the system open for detailed self-examination , w hen combined with the basic

openness of working memory. Such a simple scheme for manag ing control knowledge is

15

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~
--
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


___ _w _ _
~~

_ -• • -~~~
’-- ~~

• —- .-

~~~ 
•—- -

Hawaii . - The Initial Instructable System

based on the ease of control in PSs generally, and its feasibility has been tested

ex tensively on typical id tasks [13), though its suitability for the present instruction task

has yet to be verified in large-scale practice. As shown below , control knowledge can be

easily expressed in the exter nal language by using key phrases corresponding to modifier

var iants. The available knowledge and basis c~ con trol can similarly be expanded.

The Kernel itself is a problem solver (in the domains of language, building

produc tions, etc.), and is written using the conventions just sketched. But it is also the

producer of programs embody ing the same conventions. Thus, initial instruction is - f

cons trained to be close to such forms. Later on, as IPS becomes more sophisticated ,

internal problem-soking method forms should be producible from instruction requiring

more difficult mappings. Incidentally, t he Kernel itself is simp le enough that a

straightforward instruction sequence should be able to reproduce it.

2.2. External language capabilities of the Kernel

The Kernel is built to understand a limited external language. The language

capabi lity has three aims: to make interactions with IPS readable by the instructors and by

other Al researchers; to make the interactions occur in something other than a PS

language; and to encode a number of representational conventions, so that instructors can

refer to the same internal entity in a variety of ways - i.e., a mapp ing or assimila tion

facili ty, relating ex ternal to internal structures. To keep the Kernel simple , an initial

language with ra ther rigid format has been chosen.

Language expressions are processed primaril y in a bot tom-up fashion, with only a

few keywords having spec ific meanings to start with. That is, a keyword is recognized and

clas sified, and a number of the actions associated with it (its semantics ) are performed. A

default action is taken for words with no known classification. Occasionall y, a keyword

16

• • ----~~
— - —- - - - 

~~- - ~~
--- —--- — 

~~
— - —-—---



-

~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~ 

-.-

~~~~~~ ~~~~~~~~ 

- -

Hawaii The Initial Instructable System -

sets up anticipat ions for actions later in the input , giving the processing a par tial top-

down orientation. The default action for unclassified words is easily superseded , using the

spec ial-case conflict resolution principle. Along with the careful design of the Kernel to

allow all of its goals and subgoals to be discussed in the external language, this use of

special cases forms the basis for extensibility. A similar bottom-up approach , though not

coded s tr ict ly incrementall y, has been used successfully in a toy blocks domain [13).

The main form in the language is an image of a production or of a closely related set

of productions. The form starts with “To ”, with an expression of a condition following,

then a sequence of actions. “To ” is taken as an abbreviation of “If you want to”. For

example , -
-

To examine an object in some location • do view that location

In this example , the keywords have been ita licized. The other words are given in an

ordering that corresponds to the basic primary-secondary form discussed above. Thus

“examine object” is the essence of a representational unit forming the goal in a condition-

side of a production to be built. Most of the keywords not shown deal with the forma tion

of conjunctions and sequences of units , so t hat productions can test more complex

conditions and perform more complex ac tions: “and”, “then”, and ~‘if” . “Some ”, “that” , and a

few other keywords allow the specif ication of match variables , as opposed to constants.

Deta iled examples of the use of the language in a simple instruction protocol are shown in

the following section. -

Another main keyword in the language is “Next ”. “Next” is followed by text very

muc h like t he “To” c lause above. This allows a process for achieving some goal to be

expr essed as a set of closely related productions , rela ted by being continuations or steps

in the common process. That is , the “To” c lause of an instruction signals the main or first

17

— ——~— — — —

— --~~~~
- - -

~~~~~~~-~~~~~~~~~~~~~~~~ —“•‘-

- ~-— ——----~- ~~~~~~ -----~~-- — —--s ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 
‘
~“.“~ ~

‘?‘
~~~
‘ I

Hawaii The Initial Instructabte System

step in the solution of some goat (the phrase immediately following the “To”). When “Next”

clauses follow the “To” c lause, they give succeeding steps in the process , which

presumably test the outcome of the first step and take furl-her actions accordingly. Some

form of the main goal appears in all of the productions constructed within such a set of

c lauses. This loose content-based association of productions is called a module, though

nothing structural in the architecture distinguishes it. The productions in-such a module

- share internal assumptions , since they arise from a conti guous instruc tion sequence. The

module is known to other modules usually only through its main goal unit , which is its

evoking condition. To connect this with the discussion on means-ends analysis above , the

language allows the local (intra-module) sharing of assumptions about me~ns to achieve a

goal.

2.3. Building productions and the interface to the TE

The Kernel’s third and fourth comp onents are minimal: the system ’s abili ties to build

produc tions and to manipulate the TE effectivel y are expected to develop as sys tem

behavior develops and as consideratio ns arise from the task that vary from our present

preconcep tions. -

Basically only simp le, direct ways exist for telling IPS what to store in production

memory and wha t to do in the TE. Both capabilities rel y on the closeness of external

language expressions to internal forms. The main sentence form is an image of a

produc tion, so the operation needed to build an actual production is a simple itera tion over

a list of units extracte d from an input string. The - curren t strategy for adding to

production memory treats the memory as an unordered set. To specify a TE operator , the

instructor uses the keyword “do” and follows it wi th a phrase in the proper form for the

opera tor. The expandability of both components rests on the basic openness of their

18 -

-—- - -----— _ - - — - — - ~—~~~~~~~~~~~~~~~~~~ :~~~~~~
-
~~~~~ ~~~~~~~~~~~~~~~~ --- ~~~~~~~ 

- - 



- 
~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~
_-

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -- - - -,,

~~

-, 

I
Hawaii The Initial Instructab le System

Kernel representation , ra ther than on specific structural design. The simp le goals by

w hich they are presently achieved are expressed using a small set of primaries and

secondar ies, along w ith a few modifk~r tags to indicate partial results and iterations.

2.4. Discussion of the Kernel desjg~ 
-

To recap the basic strategy i~ building the Kernel , focus is placed on a primitive

language capabi lit y embody ing definite problem-solving and goal search methods. This is

not because language issues are most important , but because language seems to provide

the shortest path to easier instructio n , to flexibil ity, and to the encoding of basic problem—

solving method assumptions. That is, an instruc table language system leaves a large

amount of openness for further instruction without precluding desirable op tions. Our

experience over the short history of our attempts , covering a dozen or so initial abortive - 
-

Kernels , indicates that the best strategy is to rely more on spontaneous ad hoc methods

arising from interactions than on initial knowledge about aspects of prOblem so lving. This

insures that important aspects of the system relating to the problem-solving task are

themselves instructable , rather than “cast in concrete.” • 
-

3. - Sample System Behavior 
- 

-

The Kernel starts with essentially no behavioral capability with respect to the TE.

Thus, it must be instructed in some basic TE tasks to build up a network of goals for doing

more significant tasks. A sequence of progressively more complex tasks has been

esta blished to build comp lex ab ilities from the simple ones in the Kernel.

The first task attempted is to instruct IPS to look at the top of a stack of objects in

19



~ _•r._—•’,—-_~ _ _  
‘~~~~“‘~~~~~~

‘
~~ 

- . 
- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.—“ -
~

—_---- - - — - - -

Hawaii - - Sample System Behavior -

a TE location. This will involve Viewing the location (in the TE sense of View defined

above), checking to see that there is in fact a stack of objects there , and then finding the

top of that stack and Viewing it. Instructing it to achieve these goals gives it some

material to work with on tasks that follow this first one, w hich include looking at objects

other than the top one in a stack , de termining the type of an object (which requires that it

be looked at first) , and comparing the types of two objects. More complex tasks include

rearrang ing objects and determining the requirements and effects of machines in the TE.

The instruction sequence to be given now consists first of giving IPS a top-level

subgoal sequence to achieve the goal. Then a concrete task is given, involving that goal,

so that its behavior gives rise to subgoals that it can ’t solve , at which points further

instruction is given.

IPS starts by asking for input , and it is given the following:

To examine an ob iect the ~~ in some locat ion ~wan t do view that location then

the status of the value of that location composition N~ i

In the text , “...“ indicates that more is to come below; it doesn’t appear in actual input.

Note that the language is very primitive in expression , a consequence of our desire to

include only t he minimum necessary for communication of basic ideas , thus excluding

familiar linguistic elaborations.

The syst em uses the word “nex t” to act as a temporary boundary for the input, and

forms the following production before continuing to scan further.

Ri (examine objec t (want a c t i v a t e) top in = loc a t ion) ~ ‘rd

— — > (v iew .TE = loca t i on (want a c t i v a t e))
(test status (want activate) value ‘location composit ion)
(exam i ne object (want continue 1) top in — location) ‘

(examine object (old activate) top in — location) (delete —ci) ;

The OPS notation for productions gives the name , Ri , followed by the condition side,

- 20

— —

- - -

— - Hawaii Sample System Behavior

fo llowed by “-->“
, fo llowed by the action side , and terminated by “

;
“
.

“=“ is used to mark

var iables as in “— location ”, which makes “location ” a var iable. “8” stands for Pattern-and ,

which allows two match expressions to use the same -working memory expression. In RI ,

“8” is used to bind the single condition element and the var iable ci to a sing le working

memory element. A production is executed as a result of matching its condition, which

• resul ts in binding its variables to elements or suhelements of working memory. Firing the

produc tion then results in asserting or deleting working memory elements 3ccOrding to the

action—side forms (“assert” is implicit , “delete ”, exp lici t), in such a way that the leftmost

ac tion becomes the most recent working memory element , for purposes of conflict

• resolution. -

The phrase be tween “To ” and the first “,“ has been formed into the condition side of

Ri. The mapping of text to represent ational unit is direct , with the Kernel supp lying the

“want act ivate ” modifier and the “8 — c l ’ , which is used to delete the “want ~c t i v a t e ” form

after it is converted to “old ac t ivate ’s at the end of the action side. “Direct mapp ing ”

means that words are added to a unit in the same order as given in the text. The

remainder of the text is converted to . a sequence of two representat ional units , t he f irst

two in the action side. This conversion is also quite direct. These serve as subgoa ls , the

first of which , view.TE, w ill be achieved by Kernel mechanisms , and the second, by fur ther

instruction. The third action element is a signal that will stay in working memory until the

first and second ac tion elements have been recognized and their consequences follow

up, at which time it will become most recent , and - productions using it will become

candidates for fir ing. •

The first segment of the instruction has established a topic for the ent ire sequence

up to the next “
.
“
, namely the goal of “examine object ”. The next segment of the

instruction for this goal is:

21

• •~~~~~ ~~


~~~~~~~~~~~~~~~~ ~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 

-

Hawaii Samp le Sys tem behavior

....
~~~~ 

if the result 21 L~ t ~~ status is non-empty is the value 21 Lb~1 Location

composi tion , wan t find the ~~ of the value of that location composition 
~~~~

E This results in forming a second production , including as a condi tion the “wan t continue”

unit from Ri and a unit corresponding to the text between “if” and “,“:

(test status (neutral result) non-empty value —location composition)

The production tests the result of the - second subgoal of Ri (to test the status of the —

compos ition attribute of the Viewed location) and proceeds with a further subgoal (to find

the top of the composition list) if appropriate. To do the continuation , it includes a “want

continue 2” unit with the form of the main topic.

The next phrase tells IPS what to do if another condition arises as a result of that

second Ri subgoal.

~ Else ~~the resu~ of test the status k ~~~~~ ~ t he value 21 that location

composi tion the result of examine the object is failure ~Next ... -

This fragment gives one of the possible results of the topic goal, whic h indicates a failure

(a t present , in a non-informative way) .

The next’ segment forms a production to recognize the result of the ‘~find top ”

subgoal, View that result , and leave the name of- the result in working memory (a “neutral

result ” form similar to the one above).

- ~~ Next if the result 21 find the
~
pp some object wan t do view that object

~~the result of examine the o~j pct is that
~~~~~~ 

•

The system has now taken that instruction sequence and formed four productions.

It then awaits further input , which is the following: - - - 
-

I~~ exam ine the object ~~ L23 . -

This tells IPS to actuall y try to achieve an “examine objec t” goal for a particu lar TE

22



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Hawaii Sample System Behavior -

loca tion. It would not get very far before stopping, in need of further instruction to allow

it to achieve the “test -status ” goal (the second goal in the action side of Ri). Ins

determines what the system is in need of (if he can ’t remember) by asking it , “What want

?“, which IPS answers by finding its most recent “want” -mod ified unit. Instruction for the

“test status ” goal can be given so that the system can achieve it directly. That is, a sing le

production suffices to perform the test and- return a result , without further subgoals.

After that , it needs instruction on the “find top” goa l, w hich can also be achieved directly.

4. Conclusions -

The aim of this initial examination of the problem of an inst ructab le PS has been to

motiv ate the start ing assumptions , to discuss some broad issues for PSs and for

instructable systems , and to give some detail on where the project stands as a resul t of

several design iterations. -

• A PS archi tecture has been developed that builds on substantia l experience with

past architectures. Its conflict resolution scheme appears to be compatible with

incremental additive growth , and it essen tially abandons th~ use of stat ic orderings of the

productions. A small kernel system of about 150 productions currently exists , embody ing

an incremental approach to solving problems , processing language, representing knowledge

as produc tions , and interacting with a toy environment. The system’s prob lem solving

capabilities exploit a form of knowledge that is natural for PSs , means-ends analysis. With

that , a taxon omy of some simp le control mechanisms in PSs provides the system with the

capabili ty to do complex tasks.

23

A - - - - - -- ~~~~~~~ - -
~~
___ts_ •-—-~~ —~~~~~~. ~~~•—- -—- - _

_ _ _ __ _ _

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~

“ -~~~~~~~~~
‘
~~~~~~~~ -~~~~~ --~r.r 

-- -~~~~~v ---r~ --,. -~~~~”~~ ~~~~~~~~~~
- -~

Hawaii - Conclusions

The initial ingredients assembled seem ideally suited to attaining the incremental

growth of a complex understanding system. Experimentation w ith a sequence of

progessively more difficul t tasks will reveal whether this is the case. However , it may not

happen quickly. Experience so far , expressed in a good dozen kernels , has shown how

difficu lt it is to get the details right , even while the general features of the scheme hold

F up rather well. Partly the difficulty is that our design intuitions imp ly a substantial

“kerne l” of capabi lities in place , w hereas it is necessary to grow (instruct) that “kerne l”

through a much leaner initial system , whic h is certainly highly at ypical and counter-

intuitive in many ways. Any attempt to lay down this larger “kerne l” by an act of desi gn

(in t he usual system-building fashion) seems sure to create a beast that is uninstruct able

except along limited dimensions. Thus a regimen of iteration and back-tracking at primitive

~eveis seems necessary. -

One issue that has arisen about the particular ingredients can serve to summarize

and illuminate the current state of understanding ~f the approach. If the observable

behavior of the PS is to be organized completel y as a means—ends network , then w hat ro!c

do the properties of the PS architecture play? Wouldn ’t any other architecture or basic

programming system do as we ll?

To see the force of this , consider what makes means-ends analysis at t ract ive for the

instructable-system task. It permits simple addition to the existing system, since

increments are made by attaching new (alternative) methods to existing goals , from which

other goals and methods may freely branch. its network of goals and me thods can be

driven down to any fineness of processing detail , permitting the sc heme to be used for

any processing. If care is taken initially, then all aspects of the system will be formed as a

means-ends structure; hence, all acpe ct s will be open to modification by further means-

24

-

~

~~~~~~~ •-~~~ —---—-~~~~~~~~~~ -- j -~~~ -.~~~ --~~~~~~~~~~~~ -~~~ ~~~~~~~~ --~~~~~~~ — - -- —~~~~~~~~~~~~~~ —.~~u~~~~~~_~~_ -
_ 

~~~~~~~~~~~~~ ~~~~~-_ _~~~ •-~— -- -


Hawaii Conclusions

ends cons truction. To utilize such a scheme requires of the underly ing programming

system (which con~t i tut es the operators and associated data structu res through which the

means-ends net works) only that it be complete , have a f ine enough grain of action , and

per haps be rather simp ly composable.

These properties constitute a significant fract ion of the claimed advantages of PSs.

What do PSs provide that is not already latent in an approach that focuses purely on

cons truction of means-ends networks?-

Mqans-ends anal ysis dictates (hence provides) a structure of goals , methods , goal—

tests , o~ erators and operands (data s tructures) . But it only provides functional roles , not

the programming system. Subject to the conditions of fineness of detail and comp leteness ,

we do not see tha t PSs have a striking advantage over oth~ r homogeneous architectures

for rea lizing these processes in general.

In a performance syster i~ the instances of these structu res are provided by the

system crea tor. In a learning system they m ust be provided by the system itself , and the

proper ties of the architecture become relevant to how easy or hard that will be. An

instructa ble system , though it can shade into a programmed system especiall y initially, is

fundamentally a learning sys tem.

Without being exhaustive , some of the important functions to be performed in

learning a means-ends structure are t he detection of error and/or the opportunity for

learn ing, the construction of hypothesized means-ends structures , t heir installation so as

to supersede selec ted pro-existing structure , their validation and debugg ing, and a secure

— env ironment within which learning experimentation can occur. Means-ends itself does help

on some of these functions , notably ins tal lat ion and (possibly) supersession , but does not

• provide help with most of them.
•

25

A ~~~ ~~~
-—-

~~ ~~
-- - - -~~~

—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ -



Hawaii- - Conclusions

PSs appear to be a useful architecture for a number of these aspects , though no

claim can be made that it is especiall y persp icuous across the board. Detection , validation

and debugging seem to require wide-band access to the exis ting knowledge in the system

at all times , i.e . in a monitoring-like mode. This is distinctly a feature of PSs. Although not

quite so obvious, wide-band access seems important also to the construction of new

hypothesized goals and methods. Successful modifications depend, not just on some fixed

procedure for correcti ng failed goals , hut on detecting and att~nding to highly various

features of the environment and to equally various aspects of past experience. The

problem of memory search to make ontact with relevant but disparatel y represen ted

experience is not solved in PSs just by the recognition scheme , but the architecture seems

a useful one for approaching the problem.

The extreme simplicity of the ultimate forms of both goa l tests and method steps in

PSs is probably also important. They can cons ist simply of throwing toge ther some

hopefully relevant distinctions on the environment as conditions along with some likewise

hopefully relevant actions , then adding the collection to the program memory without

fur ther ado. This is a fundamentally task-oriented operation , unencumbere d by syntactic

ceremgr)ies or other detailed knowledge. That the elementary f orm of functionally

relevant additions can be so simple rests upon two other aspects that PSs seem to provide

in some measure. The first is security, which is provided by all behavior in a PS being

effec tively monitored (by the whole production memory). It can be brought under

interpretive control at any time to dampen the prospects of “sudden death”. The second

aspec t Is the related ability to program by debugging, i.e., by adding fragments and

modifying the system later on the basis of self-observed behavior.

Our present assessment is that the ingredients will cooperate together in a mutually

- 

- 

26

--,-- -

~

--- - - — - -- —-.-—‘--——-—-- - - ----S ~~~~~~~~~~~~~~~~ - —~~~~~~ - — - —~--~-- --  -~~~---
-
~~~ —— ~~~~~~~~~~ — -

~~~~~~~
- --- ----- - ~~~~~~~~~~~~~~~~~~



r~-r-~~~~~~~~~~~~ - 
- 

~~
- 

~~~~~~~~~~~~~~~ 
--- ~~~~~~- --- - —

Hawaii - Conclusions -

suppor ting way. However , it has taken a long time to evolve reasonable conflict resolution

rules, to take an important recent example [8]. It may also take a while, f or example , to

evo lve systems that map to distant experience appropriately [9] but that can be serviced

by the limited recognition abilities inherent in efficient recognize-act cycles.

5. References

[1] Bobrow , D. G. and Collins , A. (Eds.) Pnprese ntal i o n and Understanding: Studies ~,

Cogflit ive Science,~ Academic Press , New York , NY, 1975.

[2] Bobrow , D. C. and Raphael , B. R. New pro~ ramm in~ languages for ar tif icial intelli gence

research. Computing Surveys , Vol. 6: 3, 1974. Pp. 153-174.

- [3] Buchanan, B. C. and Sridharar i, N. S. Anal ysis of behavior of chemical molecules: Rule
-

-
- formation on non-homogeneous classes of objects. Proc. Third International

Conference on A r t i f i I Intell i r~~c~, 19 73. Pp. 67-76 .

[4] Davis , R., Buchanan , B. and Sh o mt l i f fe , E. Production rules as a representation for a

knowledge-based consultation program. Report STAN-CS-7 5-519 , Memo A IM-266.

Stanford University, Computer Science Department , Stanford , CA, 1975.

[5) Davis, R. and King, J. An overview of production syste~is. Report STAN-CS-75-524,

Memo AIM-271. Stanford University, Computer Science Department , Stanford , CA,

1975.-
-

[6) Forgy, C. A production system monitor for parallel computers. Carneg ie-Mellon

University, Department of Computer Science , Pittsbu rgh, PA, 1977.

[7) Forgy, C. and McDermott , J. The OPS reference manual . Carneg ie-Mellon University,

Department of Computer Science , Pittsburg h, PA, 1976.

27

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~
-
~~~~~~~ -~~ —-~~~~~ -~~ -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~ ‘~~~~ ~~~~~~~~~

- 

-

.

Hawaii References

(8) McDermott, J. and Forgy, C. Production system conflict resolution strategies.

Carnegie-Mellon University, Department of Computer Science, Pittsburgh, PA, 1976.

Also in Proceedings of Workshop on Pattern-Directed Inference Systems, Hawaii, - 
-

197 7. 
- 

-

~ [9] Moore, J. and Newell , A. How can MERLIN understand?. In Gregg, L. (Ed.), Knowledge

~~~ Cognitiofl, Lawrence Erlhaum Associates , Potomac , MD, 1973. Pp. 20 1-252.

[10] Newell , A. A theoretical exploration of mechanisms for coding the stimulus. In Melton,

A. W. and Martin , E. (Eds), ç~~jn ~rpc_esses in Human Memory~ W inston and Sons ,

V Washington , DC, 1972. Pp. 373-434.

[11] Newell, A. and McDermott, J. PSG manual. Carnegie-Mellon University, Department of

Computer Science , Pittsburgh , PA, 1975.

[12] Newell , A. and Simon, H. A. Human Probk?m Soj~jfl2 Prentice-Hall , Englewood Clif is , NJ,

1972.

[13] Rychener , M. D. Production systems as a programming language for artificial

intell igence applications. Carneg ie-Me llon University, Depar tment of -Computer

Science, Pittsburg h, PA,- 1976. -

5.1. Footnotes
-

sr i. This paper draws ideas from an ongoing project involving C. Forgy, J. McDermott ,

Kamesh Ramatcrishna , and P. Langley, in addition to the authors. Forgy and McDermott

have been resp onsible for the implemen tation of the OPS production system architecture

and other system facil i t ies described here. We acknowledge the joint role these peop le

have played in develop ing the ideas in this paper , but they are not responsible for our

detailed expression or interpretation of them.
-

This research was supported in par t by the Defense Advanced Research Projects Agency

28

—-- - -—-~~~~~~~~~~ --~~~~~~~~~~~~~~~~ ~~~~~~~ -- --~~~~~~~~~- -- - -

, _
~
‘ r~

- •

~~~~~~~~~~~~~~ 
—

-. 
Hawaii References

under Contract no. F411620-73-C-0074 and monitored by the Air Force Office of Scientific

- Research.

29

—-- ---—-—-——-----~~—- —~--•-—--- - -~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

~~~~
-
~
---.

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~









~~t 

. 

- 

~ ~ ~ ~ 

: 

~~~ 
~~~ ~ 

_ t

_ 

‘ 

- 

- 

V



p

4

- 4

- 
- ~ 4~

- ~ 4 4

- _ *  p

~~ ~ ~~ ~ -
~~~~~

-

-
-

~

~ 4 -

_
7

~~~~~

4 ~ ~



4

-

~~ ~ - - I
~~:-~~ -

,-.

~~

74

V ~ —

7 ~ - -S 
~~~ ~ 

S~~~~~ S
- -

-
~
- 7 4

-S ~ -V 4 - 47
- 7_

- 1

4 4

1_

% _ _
~~

S

4 .4

~~~
-

‘ 
-4 - 

-4



-
J

__tS 
S

— ~ ,( 
~~ (_ 

4 _ 4

V _ _ ~ ~ 

~~~~ ~~~~ ~ ~ _~ S- _
_
~

_
~

4
4

-

- -
S ~

r;

7~~~ 4~~

a

:-:
~

S ~

4 4~4 ~~~~~~ -

S ~
~ ~ ~

4

- 4 - -

-

~~~
S7 4

4
4 4

~ 

-~ 

S ~ ~

S 
~~~~~~~~ 

-
4 4

~~~ ~
- 

~~~~~~~~ 

4~~~~~~; -
‘

4 ~4
4 -

5 -44

- S ~

4 4

-
S ~ ~~~

~~~ 
- 4 

1 ~ 

• 4
4 4~4 

~ 
4 4~~ 44 -

V ~ ~ 
~ ; ~ ~ ~

- ~~ 

~~ ~ ~ ~ S
_ ~ 

~ 

~~ ~ :-~ ~~
-

-~~~4 74 ~ 

-4 4  
-4 4 

- 
~~~ S ~ ~

4
4 54 g-~~

4

4 ~~~~~1 ~

& - 44 ~

-

, 4
-

4

S _ -
~

- 44

V -

-

~~

-
~~ S

S

S
-S

V

_ V4

-

-

S

—

_ _ 4 _ S 4

-
~~~~~~~~~ 4 -4 

. 

- 

S 
- :

‘

-~~~~~~~
S

~ 

7

4 

~ ~ ~~ 

~~~ 

S

__

S ~ 7

~~ ~
V

V
~~~ ~ 

~ ~~~~ 

7- ~SS



.1



. 

-

. 

.
~~~~~~~~~~

-
-

-

-

.

~~~~



- I



-

-

. 

- 

: ~ 

• 

-

~~~~~~


- -

1

~*7 ~

~

S

t

54 474~

V ~

~ ~ ~

r ~ .~~

