CllﬂI'lE-HILLON UNIV ’lTTllUIOH PA DEPT OF COMPUTER =-=ETC Fl.

AN INSTRUCTABLE PRODUCTION SYSTEM! BASIC DESIGN ISSUES.(U)

MAY 77 M D RYCHENER,» A NEWELL F#&.ZO-TS—C-OB?Q
UNCLISSIF!ED AFOSR=TR=77=-1144

| oF |
ARoaaanz
END
DATE
FILMED
=77
poc

b

e :
\(YX'
o \.

An Instructable Production System:
Basic Design Issues
Michael D. Rychener and Allen Newell
May 1977
Department of Computer Science s y :

Carnegie-Mellon University]
Pittsburgh, PA 15213 '

ADAG4A3492

Approved for public release;
o distribution unlimited.

This paper has 'been‘vsubmittedfor presentation at a Workshop on Pattern-Directed
Inference Systems, chaired by D. A. Waterman and F. Hayes-Roth, Honolulu, May 23-27,

: 1977.

This research was supported in part by the Defense Advanced Research Projects Agency

under Contract no. F44620-73-C-0074 and monitored by the Air Force Office of Scientific

Research.

DOC FLECOPY

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSTY i
NOTICE OF TRANSMITTAL TO DDC

This technical report has been reviewed and is
approved for public rolease IAW AFR 190-12 (7b).
Distribution is uulimited,

A. D. BLOSE

Technical Information Officer

- ol SECURITY CLASSIFICATION OF THIS PAGE (When Dare Envercd)
25 i READ INSTRUCTIONS
J REPORTDQCUMENTAW_..AGE BEFORE COMPLETING FORM
g PORY NUMBER 2. GOVT ACCESSION~NO.| 3. RECIPIENT'S CATALOG NUMBER
/i) @@—77-—1144\3 ~
» 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
A y JN _INSTRUCTABLE PRODUCTION SYSTEMN) Tirterim
N~ BASIC DESIGN ISSUES, o n / 6. PERFORMING ORG. REPORT NUMBER
e mm—— g ‘
7. AUTHOR(s) 2 > RN L 8. CONTRACT OR GRANT NUMBER(#)
/" /4\ Michael D/Rychener &2 Alleﬁewelf\" g L
) e (/ s F44620-73-C-@874
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT TASK
Carnegie-Mellon University Sy NORKILN:

Computer Science Dept. / 61102F 17 ﬁJ\
Pittsburgh, PA 15213 /)

11. CONTROLLING OFFICE NAME AND ADDRESS m
Defense Advanced Research Projects Agency G/ l May @977 . 4

1400 Wilson Blvde 3. NUMBE ‘
Arlington, VA 22209 33X/ 2. Z244.)
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY rt)

Air Force Office of Scientific Research (NM) UNCLASSIFIED
Bolling AFB, DC 20332 TSa. DECL ASSIFICATION/ DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for pubhc release; distribution.

TP rEW B /

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, i{ different !rom ﬁopoﬂ)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identily by block number)

20. ABSTRACT (Continue on reverse side If neceasary and identify by block number) The full advantages of the
incremental properties of production systems have yet to be exploited on a
large scale. A promising vehicle for this is the task of instructing a system
to solve problems in a complex domain. For this, it is important to express
the instruction in a language similar to natural language and without detailed
knowledge of the inner structure of the system. 1Instruction and close inter-
action with the system as it behaves are preferred over a longer feedback loop
with more independent learning by the system. The domain is initially an abs«
stract job shop. The beginnin itq

DD 75k 1473 €oiTioN OF 1 NOV 65 IS OBSOLETE (continued) e

S/N 0102-014+ 6601 | uNe /“4
i' SECURITY CLASSIFICKTIS GE (When Data Entered)
Y30, S

e

R AT i

LLLURITY CLASSlH(.ATION OF TNIs PAGE(When Data Bnuud)

ke ' G R e

20. abstract (continued) R]

processing language building productions, and interacting with the task
nvironment. All parts of the system are subject to instruction. / The main
broblem-solving strategy, which permeates all four system components, s based
bn means-ends analysis and goal-subgoal search. This is coupled with an ex-
plicit representation of control knowledge. The system's behavior so far is
Festricted to simple environmental manipulations, a; number of which must be -

taught before more complex tasks can be done.

i oy o

$

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

o 1 o8

T Y 3L 107 ey - 1t SR

Hawaii

 Table of Contents

SECTION
1 Instruction Tasks and Large Production Systems .
1.1 Introduction and overview i
1.2 . Building a large production system . S e
13 . The abstract job shoptask
1.4 The instruction mode i :
15 The production system archltecture and task enwronment :

The Initial Instructable System
2.1 The problem-solving component of the Kernel ‘
2.2 External Janguage capabilities of the Kernel
23 Building productions and the interface to the TE
24 Discussion of the Kernel design .

" Sample System Behavior .
Conclusions

References el
5.1 Footnotes

ACCESSION for

NTIS White Section
Doe Buff Section [J
UNANNOUNCED O
JUSTIFICATION

DISTRIBUTIBMIAVAILABIHTY DGUES
| Dist. AVAIL. and,“or SPECIAL |

fr

TV T

. Hawaii

An Instructable Production System: Basic Design Issues «1.
Michael D. Rychener and Allen Newell
~ Department of Computer Science

Carnegie-Mellon University
‘Pittsburgh, PA 15213

Abstract. The full adv;ntages of the incremental éroperties-of production systems have
yet to be exploited on a large scale. A promising vehicle for this is the Itask of instructing
a system to solve problems in a complex domain. For this, it i; important to express tﬁe
instructi.on in a language similar to natural language and without detailed knowledge of the
inner structure of the system. Instruction and close interaction with the system as it
behaves are preferred over a longer feedback loop with more independerﬁ learning by the
system. The domain is initially an abstract job shop. ; The beginning system has
capabilities for solving problems, processing language building productions, and interacting
with the task environ.ment. All parts of the system are subject to instruction. The main
problem-solving st'rategy, which permeates all four system components, is based on
means-ends analysis and goal-subgoal search. This is coupled with an explicit
representation of control knowledge. The system’s beha;/ior so far is restricted to simple

environmental manipulations, a number of which must be taught before more complex tasks

* ¢an be done.

1. Instruction Tasks and Large Production Systems

e

e

Hawaii Instruction Tasks and Large Production Systems

1.1. Introduction and overview

This paper reports the beginnings of a'system-building project. The aim is to build

a large, generally intelligent system by gradual instruction starting from a small initial

"syste'm. At prese'nt, the large system is still in the future. This description.is limited to

describing a promising initial system,.along with the rationale for believing. it has
signifiéant potential for further work. Likewise, the task domain of the eventual system is
not yet determined, though there is an initial domain. ‘

Production systems are the system architecture most consonant with the project’s
aims. Their basic condition-action form, along with the global and ;)pen nature of their
action, indicate their usefulness for a task involving increment;I growth, recognition-based
problem solving, responsiveness to unexpected conditioﬁs, and. otHer attributes discussed
below. The initial task domain is based on the probleﬁ of scheduling a job shop. This has
unusual features that allow tests of basic instt;uction issues, particularly a wide range of
tasks with simply-produced variants. Thus the potential exists for instructing the system
on one variant, and then introducing perturbations to which it must dynamically adjust,
evoking the need for further instruction. .There are several constraints on what.
instruction.is and on what.the instructors can know about the internal content of the
system. ‘ '

The remainder of this section discusses in more detail thé basic task and system
issues, and introduces a suitable pronction system architec)ure. Section 2 discusses the
rationale - for_our appfoach to building the initial syst_em, called the Kernel. The Kernel
embodies a set of assumptions about problem solving, language use, the particular task,

and augmentation. Section 3 presents an instruction protocol that the system has

performed. Section 4 summarizes our current status.

|
|
s'

i R o e

Hawaii Instruction Tasks and Large Production Systems

1.2. Building a large p.r.oduction system

Production systems (abbreviated "PSs") have a brief but illustrious history within

“artificial intelligence (Al) and cognitive psychology. For general background, the reader is

referred to [5], [10] and [12]. There are four architectural components of the kind of PS
used h_ere: production memory, working memory, recognize-act cycle, and conflict
resolution principles'. Action arises from the syste.m as a re§ult of conditions (left-hand
sides) of productions being recognized true of the current working memory state. The
recognition leads to the performance of associaled actions (right-hand -sides). This is the
basic recognize-act step, except that in general the conflict resolution principles must be
applied to distinguish between prodL-nctions whose conditions are simultaneously true,
making a selection before actions are actually performed. The performance of actions
results in a new working memory state, and the recognize-act step is repeated. ‘

We 'have chosen PSs for our instructable system for a number of reasons. All
prod_uctions are sensitive to a single working memory, with no control organization
imposed on them, and with all necessary control achieved by goals and other data
conventions within working memé_ry. In practice, productions tend to -be smali (only a few
conditions and actions) and relatively independent of each otl;]er. Thus the.y are attractive
where structure is to be added gradually and incrementally. Their feasibility, power,
transparency, flexibility, and conciseness has been ‘shown empirically by implementing
well-understood Al systems [13) The importance of having actions conditioned on the
recognitioﬁ of aspects .of a global state is central. Actions are not evoked directly by
other actions, but are performed whenever the appropriate conditions emerge. Thus
inlélligence is distributed rather than concentrated in a complex control executive or other

orchestrating mechanism. Since intelligence requires the ability to respond to important

Hawaii Instruction Tasks and Large Production Systems

aspects of complex states, the high degree of conditionality of action in PSs appears to

_ have merit.

In building the. system, the PS architecture is used according to specific conventions.
All long-term knowledge is kept as productions, and working memory is used exclusively -

for short-term, dynamic state. This is in contrast to a possible view of working memory as

. @ long-term database, with "facts" stored in it, to be manipulated by "procedures” coded as

productions. ThoUgh working memory may become large, our convention is to store as
productions such database-like things as facts about objects in the world, relational
structures (semantic networks), etc. . »

A large intelligent system of the sort envAisioned places new demands on PSs and on
system-building capabilities in general. Building such systems is interesting in its own
right, raising issues of representation accommodation, and a whole range of activities
associated with intelligence [9, see also 1]. To study many of these issues fruitfully, as
many have noted, an uncommonly large-scale knowledge base is necessary. From a pure
PS researc;v standpoint, building a large system (on the order of several thousard
productions), especially including a rich diversity of knowledge, alcws us to test
hypotheses about PS efficiency openness, modularity, automatic augmentation,
répresentational flexibility, and feasibility. The system is to develop, eventually, past the

current state of the art in AL

1.3. The abstract job shop task

Several criteria are essential to our choice of an initial task for an instructable
system. The task domain should be rich in problems of sufficient challenge to require

instruction it should be amenable to the instructional mbde (see Section 1.4); and it

should not be amenable to a general solution mechanism, which, once constructed, would

Haw aii Instruction Tasks and Large Production Systems

make further instruction unnecessary. Among the general task areas that might be
appropr.iate are: a tutor in some 'dohain, an iﬁtelligence-test taker, an automatic
programming system, and the higher, cognitive levels of.an image understanding system.
We have chosen for the"time being a toy task, the .at.)stract job shop (AJS). The job shop
has as its objective to produce objects with specified desired properties from raw
materials according to som-e schedule. The shop contains stacks of materials énd partial
products, machines that must be svtarted with explicit .commands, and means - for
transporting objects from one place to another \./vithin the shop. The details of the
particular implementation of this idea are given in Section 1;5. This toy task has a
number of close analogs that are potential applications of any useful techniques
developed: real-world preduction scheduling, ihe general problem of functional design,
scheduling in computer operating systems, and coding computer programs (to name just a
few). It also contains within it the possibility of explor'ing the full range of Al tasks known
as the "toy blocks world."

If all goes well, the AJS task has attributes that are the extra bonus for immediate
purpbses. AJS has an unusual number of var?ants,' including the basic task of producing
desired objects, the allocation of scarce resources, advarlwce'd‘ kinds - of planning, and
production under time conctraints. After the system has been instructed in a number of
basic variants, perturbations to *He tasks and to the em./ironment (the job shop) can pose
major difficulties for the system. Among these perturbations are: changes in the profit-
objective fuqction for various mixes of outputs, spoilage of materials, error in machines,
accidents in moving .objects, additional time constraints and last-minute changes .in orders.
The difficulties of the basic task should preclude any advance planning on the part of the

instructor to have the system respond gracefully to such basic lask changes. Thus, the

Hawaii Instruction Tasks and Large Production Systems

system’s behavior will be interesting, whether it can' adjhst easily or not. The
effectiveness of the entire approach, including the use of PSs, will be measured by the

adequacy of the system’s behavior over a set of such perturbations.

1.4. The instruction mode

Posing the task as one of growing_ a large system through instruction introduces
additional issues. Some of these might seem irrelevant to the main aims, but others are
directed towards important ques-tions with respect to the study of the representiation and
use of knowledge. The following attempts to justify this third major concern, instruction,
which is in addition to the concerns with building a generally intelligent system and using
PSs as a basis.

The instructio‘n mode used here forces the automatic encoding o% knowledge as
productions. This allows the verification of essential propertie; of PSs, particularly those
dealing with the indep‘endence or modulari'ty of the know|ecige in the PS. If the PS were
augmented by simply composing and adding Ps, there would still be a possibility for the
system to be very intricatély contrived, with implicit global cobrdin;tion'of production
action sequences. A language of instruction is used t.hat states each new item of
knowledge in a human-readab_le, pladsibly independent 'form,‘wit'h no_‘ reference to internal
structure.

Instruction takes place under the following constraints:

1. The instructor (Ins) can see what the'systém (IPS, Instructable PS) is doing in
the env.ironment, and can communicate with IPS, but cannot examine the internal
structure of the system directly.

2. Interaction between Ins and IPS is in an external language, analogous to natural

language, rather than in internal representations, either of working memory or

production memory forms.

Hawaii Instruction Tasks and Large Production Systems

3. The initiative for interaction is mixed. IPS’s behavior can be interrupted by Ins
at any time, for corrective instruction or interrogation. 'Likewise, IPS may
communicate to Ins and interrupt him. A
Instruction may be about any topic within the total environment: the structure of
the environment, how to perform a task, the IangUage of communication, the
detection and correction of errors, ho‘w to learn about 'the environment, etc.
Also, the instruction may be at whatever level Ins wishc: or can achieve:
specific behavior sequences, general methods, abstract principles, models,
theories, etc, |

5. Knowledge gained through instruction accumulates t'vér the life of the system.

Having 'f.he system be instructable adds to its capabilities as a total man-computer
interactive system, so that in ultimate real applications the performance of the combination
system can be 9x‘pected to be higher than either parlicipant alone. As a practical
measure, making the system instructable also reduces the péssibility of internal coding
conventions that would prohibit multiple instructors from,understanding the existing
system. That 'is, all communication is forced to be in a language of instvruction, which may
be more eas'ily shared than program conventions. If instructability can be achieved, it
should be worth the extra initial effort.

The instruction mode can be contrasted with a learning mode in which the system is
set tasks and then required to learn on its own from the environment. Here Ins gives
incomplete or approximate instructions and watches very closely for opportunities to
interrupt IPS and refine them. It is "incomplete or approximate instructions" because too

much pre-planning by Ins is bound to be futile, given Ins’s imperfect knowledge of IPS’s

internal structure, and given a task sufficiently complex to make anticipation difficult and

Hawaii ¥ : Instruction Tasks and Large Production Systems

inefféctive. With Ins watching IPS so closely, the need for learning by the system on its
own is minimized. But such independent learning is not egclﬁded. It can eventually arise
in the way IPS interacts with and gathers knowledge from the' task environment, in the
way IPS uses the external language, and in other knowledge acqui#itioﬁ mechanisms.
éresumably the best strateéies of instruction and berformahce require that IPS be able to
learn for itself about a changing environment. The sequence of novel but related tasks is
intended in part to arouse this. Nor does the futility of pre-planning fule out giving IPS
general methods, anticipating certain types of difficulties. Su_ch general methods, l;owever,

are bound to have incompleteness similar to that of specific ones.

1.5. The production system architecture and task environment

Before detailing the PS architecture used for IPS, a few distinguishing features of
our overall PS approach are pbinted out. The way that action develops from the PS

differs from some others in being a forward recognition-driven cycle, rather than a

backward-chaining, goal-driven cycle, as in the MYCIN system [4]. The system is

controlled by signals and symbol structures in the global working memory, called goals,
which are incluaed explicitly in bfoduction conditions when a.p'propriate. This is in.contrast
to MYCIN and to DENDRAL [3). The PS architecture is used as the total system, réther
than having it be one of a number of procedural components. Other systems have
employed additional, non-PS procedures for such activities as modifying and analyzing the
PS. Working memory is arbitrary list structures in an extensive database-like structure,
with a vast majority of items expllicitly stored rather than represented as computable
predicates. Production conditions make use of general pattern-mat;:hing capabilities, as is
common in other recent Al languages [2). Though the general architecture derives from
concern for human cognition [10, 12], little consideration is given to psychological

constraints.

Hawaii ' " Instruction Tasks and Large Production Systems

The particular architecture and language used for IPS is‘caned OPS (Official, at least

locally, PS) [7] and is an iteration‘on earlier designs [11, 13] Production memory in OPS
is an Qnstructured, unordered set. of productions. - Working memory is ‘likewise an
unordered set of .ﬁslt strt;ctures, without duplications. It is bounded in size, by deleting
elements whose last assertion occurred more than some‘arbitrary number of system

actions in the past (currently 300). The recognize-act cycle is; (1) form a conflict set of

productions whose conditions are currently satisfied; (2) apply the conflict resolution
principles to select a unique element from the conflict set; and (3) execute the actions of
the selected production,

|

1

1

|

.. |
i For conflict resolution (the most distinctive component of OPS) the following rules g
; _ |
apply, in order. These rules are experimental in nature, and are expected to change as |

understanding of instructability increases [8].

"' 1 5 Refractién: a'producfion is not fired twice §n the same data (instantiat'on of a
pattern) unless some part of that data has beeﬁ re-inserted into wcrking
memory since the previous firing. This prevents most infinite loops and other
useless repetitions. ' » ‘ | ; ' 3

2. .LexiCOgraphic recency: the production using the most recently inserted elements
of working'memory is preferred. _"Most recent” is determined lexicographically,
i.e,, if there is a tie on the most recent element used, the next-most recent
elements are compared, and so 6n; use of ar;y element is considered more recent
than using none, e.g.,‘(A X) is ordered before (A). Recency order discriminates

at the level of individual actions within productions, rather than taking all the

actions performed by a production to be of equal recency. This rule serves to

focus the attention of the system very strongly on more recent events, allowing

i current goals to go to completion before losing control.

Hawaii

il SR

. Instruction Tasks and Large Production Systems

Special case: a productioh is preferred that has more condi.tiOns, inclﬁding
negative conditions which do not match to specific memory elements. Most of
the meaning of having one. production be a special case of another is captured
by rule 2, since a special case that uses more data thén a general one is
Iexiﬁographica"y more recent. Preferring special cases to general ones follows
the expectation that a specific method is more appropriate to a situation than a
more general one. Also, this is cobnSOnant with a.strategy of augmentation by
providing more discriminative rules.

Production recency: the more recently created production is preferred. This
allows identically conditioned rules (with perhaps con.tradictory actions) to be
distinguished and assumes that a more recent instruction is more correct.
Arbitrary: a selection is made amcng multiple matches to the same production

using the same data.

As a matter of practice, conflict resolution rarely requires more than the first two rules.

OPS has several other distinguishing features. The pattern matching allows a limited

form of segment variables namely, a variable may match an indefinite-sized tail of a list.

The Pattern-And (Pand) feature allows an expression to be matched to several patterns,

and then bound to a variable. OPS allows complex negétive'conditions to be specified, for

instance, including the negation of an entire production condition within the condition of

another production. Productions in OPS are compiled into an efficient network form, rather

than interpreted [6]. OPS has an operator for adding productioné to production memory

which have been formed (in terms of an appropriate data structure) in working memory;

such additions are done directly into the compiled network during the runtime cycle

without excessive cost.

10

Hawaii Instruction Tasks and Large Production Systems

~ A subsystem of OPS brovides the task ehvironment (TE) fo'r instruction. The TE is
represented as an array of discrete locations, within which objects can be placed, plus a
set of "perceptual" and "motor" operators. Each location and objéct is representéd as a
list of pairs in attribute-value fofm, with certain attributes given special interpretations.
For example, the external display of a location in the TE (L15), would be.

1 L15 frem bz

|
|
IW72 I
|
I

! with the internal representation,

L15: (NAME L15
, TYPE STACK
= MEMBER TE-ARRAY

POSITION (253)
COMPOSITION (W W38 W72))

The object W98 might be defined as:

W38: - (NAME W38

TYPE WOOD
MEMBER L15
POSITION 2) :
SHAPE TRIANGULAR
LENGTH 5

WIDTH %

COLOR _RED Y

6bjects are pot'entially hierarchical, with values of attributes composed of other objects.
Relations between positions of the TE and 6bjects can be determined by TE operators.

The operators on the TE are:

1. View: the attributé_—value pairs for an object or location appear in working

memory.

11

o e e e T el i

Hawaii Instruction Tasks and Large Production Systems

2. Scan: the TE is searched for an object satisfying a pattern, and if it is found, it
is Viewed. .

3. Traps: an object is transferred from one Iocatit;n to another within the TE.

4. Start: a machine in tH,e TE is started, consuming a set of inputs (specified as
valpes of INPUT attribute) and producing a set of outputs (specified as values of
OUTPUT). '_THe- machine operates once, not continuously.

5. Compare: two attribute-value pairs are compared, with t-'esults depe;\ding on.the
values compéred. Fdr instance, if the values are pairs of numbers, as for

~ POSITION, the result is a spatial relation, amounting to, say, "northwest."

2. The Injtial Instructable System

The instructable system is initialized With a rellatively small set of ‘hand-coded
productions called the Kernel. The Kernel design inclﬁdes a minimal ‘set of components that
can slupport all of the present instruction goals and pro;/ide an interface to the TE. The
components at present achieve minimal capabilities for:. (1) solving problems, (2)
processing language, (3) building productions, and (4) interacting with the TE.

A number of design issues influenced the Kernel. These derive from a wish t>c‘)
maint2iii easy instructability within the rules laid out above for the instructional mode. :

1. Everything in the system is potentially instructable and improvable. This
includes ‘espec.ially t‘he components of thé Kernel and the res;slts of instruction
that the Kernel produces. The Kernel itself may eventually be superseded by
productions gained through instruction, and commitments to techniques and

representations in the Kernel may eventually be altered.

12

e o

Hawaii_ : © © The Initial Instructable System

2. Thé system should' be instructable without detaifed knowledge of internal
structures. Thus the Kernel design must include some capability for mapping
from external to internal forms, and vice versa. -

3. Knowledge should not be globally c‘oordina.ted or pre-planned, but shoula
develop in locally plausible, concrete increments. This particularly affects the
form of problem-solving methods and language brocessing techniques.

4, The construcﬁon of the Kernel should not embody a commitment to focusing on a
particular kind of prob.lem, e.g, language, but shou.|d be amenable to instruction

in a number of problem areas.

2.1. The problem-solving component of the Kernel

The Kernel has two general forms of problem—wlving unit, corresponding to two
uses of the basic condition-action form of productions. The first recognizes a goal and
proposes means to achieve it:

goal & conditions => possible means.
The means to achieving a goal can be one or more subgoals, direct actions on the TE, or
requests to Ins. ‘ ' _ : e
The second form of production serves as a test or recognizer:
goal & conditions => goal success or failure or consequences.

Thg growth phiI‘OSOphy for the IPS revolves around means-ends analysis [12].
Knowledge added to the sy-slem forms a conceptual network of connections between goals,
means to achieving therﬁ, and tests on the results of applications of means. .Goals
constitute the mogt méaningful portion of the dynamic state of the system (working
memory), while means and tests are permanent productions added gradually through

instruction and learning. It is important that this network of means and ends is defined at

13

Haw aii " The Initial Instructable System -

the level of individual productibns rather than, say, at some h}gher level of organization
with productions used to code an interpretive mechanism for the network. For the means-
ends structure must be épplicable to creating, shaping, and co;recting all aspects of the
behavior: of the system,,do;/vn to the finest detail. | ‘

Augmentation of networks of means-ends structures leads to a flexible but highly
inefficient computational structure. Strategies for converting or compiling these structures
are a necessary component of the growth philosophy outlined here, which however will
not be discussed further.

Two basic conventions built into the system help to make the basic production form
adequate for general proble-m solving: the lexicographic event order conflict resolution
rule and a taxonomy of PS control, represented in a particular way. Recall that the

conflict resolution principle orders production firings based on the relative recency of data

used. This gives a depth-first emphasAis, focusing on recentiy proposed goals before older

ones and allowing successes to propagate in orderly fashion. It does not preclude,
however, having emerging conditions unexpectedly satisfy an older goal and lead to action
quité distinct from what was the immediately preceding focus.

While thé conflict resolution principle is bui|t‘inlo the PS architecture, the Kernel’s
knowledge of control is By way of modifier tags that appear‘in most working memory
eler.nents. The current system of representation is based on an analysis of past PSs [13].
The basic representation form is:

(Primary Secondary Modifier Body) .
A primary is a verb or main data structure name, while a secoﬁdary is an object of a verb,
an attribute of a structure, or the name of a substructure. Some examples of primary-

secondary pairs: examine object, interrogate value, object color, and phrase boundary.

Haw aii : The Initial Instructable System

The modifier is a list with positions occupied lby vaIL;es ffom bredefined cla#ses: goal
values, data values, process values, truth values, and degrees of completion. By combining
values from various classes, a large number of meanings can be assumed by a modifier,
which in turn affects the interpretation by productions of the representational unit
Coﬁtaining it.

Space does not permit giving the entire modifier system, but the main entities that
are used in the Kernei are as follows (examples of actual fepresenlations appear in
Section 3). The most important goal value indicates "Want", and marks units that are
currently desired goals. Other goal values indicate "0ld", "Don’t-want", and "Neutral".
Evocation, intermediate control, and results of processes employ goal values in combination
with process and data values: "Activate”, "Iterate", "Hold", “Result", and "Continue". Truth

values are "True", "Faise", and "Unknown".

Modifier values are made coherent by certain established knowledge about control.

For instance, a process is usually initiated by a "Want Activate" signal, which then becomes
"Want Continue", if it has several steps to be performed. The steps'are indicated by using
degrees of completion, which are simply ordinals. When the process is started, the "Want
Activate" becomes "Old Activéie", but the content of the initiation signal itself is still
available, should it become necessary later to examine it. Similarly, control for a process
can go into a dormant "Hold" stétus until some pre-set condition arises, whereupon it
reverts to its former status. When a process finishes, it may produce an item with
modifier "Neutral Result".

The use of these explicit modifiers in the basic representational units makes the
behavior of the system open for detailed self-examination, when combined with the basic

openness of working memory. Such a simple scheme for managing control knowledge is

e

|
i
|
|
|
|
|
¥
|

Haw aii S “The Initial Instructable System

based on the ease of control in PSs generally, and its feasibility has been tested
extens;ively on typical Al tasks [13], thouéh its suitability for the present instruction task
has yet to be verified' in large-scale practice. As shown below, control knowledge can be
easily expressed i.n the external language by using key phrases corresponding to modifier
variants. The available knowledge and basis ¢f control _(;an similarly be expanded.

The Kernel itself is a problem solver (in the ddmains of language, building
productions, etc.), and is written using the coﬁventions just skétched. But it is also the
producer of programs embodying the same'conventi.ons. Thus, initial instruction is
constrained to be close to such forms. Later on; as IPS becomes more sophisticated,
internal problem-soiving method forms should be pr.oducible from instruction requiring
more difficult mappings. Ihcidentally, the Kernel ifself is simple enough that a

straightforward instruction sequence should be able to reproduce it.

2.2. External language capabilities of the Kernel
The - Kernel is built to understand a limited external language. The language
capability has three aims: to make interactions with IPS readable by the instructors and by

other Al researchers; to make the interactions occur in something other than a PS

-language; and to encode a number of representational conventions, so that instructors can

refer to the same internal entity in a variety of ways - i.e,, a mapping or assimilation
facility, relating external to internal structures. To keep the Kernel simple, an initial
language with rathe'r rigid format has been chosen. .

Language expressions are processed primarily in a bottom-up fashion, with only a
few keywords having specific meanings to start with. That is, a keyword is recognized and

classified, and a number of the actions associated with it (its semantics) are performed. A

default action is taken for words with no known classification. Occasionally, a keyword

s s i sl e

Hawaii The Initial Instructable System

sets up anticipations for actions later in the input, giving the processing a partial top-

down orientation. The default action for unclassified words is easily superseded, using the
special-case conflict resolution principle. Along with the careful design of the Kernel to
allow all of its goals and subgoals to be discusse'd’ in the external language, this use of
special cases forms the basis for ex'er;sibilily. A similar bottom-up approach, though not
coded strictly incrementally, has been used successfully in a toy blocks domain [13].

'I'}he main form in the language is an image of a production or of a closely related set
of productions. The form starts with "To", with an expression of a condition following,
then a sequence of actions. "To" is taken as an abbreviation of "If you want to". For
example,

To examine an object jn some location , do view thal location .

In this example, the keywords have been italicized. The othér words are given in an
ordering that corresponds to the basic primary-secondary forh discussed above. ThL.JS
"examine object" is the essence of a representational unit forming the goal in a condition-
side of a production to be built. Most of the keywords not shown deal with the formation
of conjunctions and sequences of units, so that productions can test more complex
conditions and perform more complex actions: "and", "then", and "if". "Some", "that", and a
few other keywords allow the specification of match variables, as opposed to constants.
Detailed examples of the use of the language in a simple'ins.truct'ion protocol are shown in
the following section. -

Another main keyword in the language is "Next". "Next" is‘ followed By text very
much like the "To" clause above. This allows a process for achieving some goal to be
expressed as a set of closely related productions, related by being continuations or steps

in the common process. That is, the "To" clause of an instruction signals the main or first

17

[R —

Haw aii The Initial Instructable System

step in the solution of some goal (the phrase immediately following the "To"). When "Next"
clauses follow the "To" clause, they 'give succeeding ‘steps in the process, which
presumably test the outcome of the first step and take further actions accordingly. Some
form of the main goal appears in all of the productions constructed within such a set of
clauses. This loose content-based association of productions i§ ca!led a module, though

nothing structural in the architecture distinéuishes it. The productions in.such a module

. share internal assumptions, since they arise from a contiguous instruction sequence. The

module is known to other modules usually only through its main goal unit, which is its

evoking condition. To connect this with the discussion on means-ends analysis above, the

language allows the local {intra-module) sharing of assumptions about mefns to achieve a

goal.

2.3. Building productions and the interface to the TE

The Kernel’s third and fourth components are minimal: the system’s abilities to build
productions and to manibulate the TE effectively are expected to develop as system
behavior develops and as considerations arise from the task that vary from our present
preconceptions. |

Basically only simple, direct ways exist fo-r telling IPS what to store in production
memory and what to do in the TE. Both capabilities rely on the closeness of external
language expressions to internal forms.. The main sentence form is an image of a
production, so the operation needed to build an aclual production is a sihp!e iteration over
a list of units extracted from an input string. The'cprre.nt strategy for adding to
production memory treats the memory.as an unordered set.‘ To specify a TE operator, the
instructor uses the keyword "do" and follow; it with a phr.ase in the proper form for the

operator. The expandability of both components rests on the basic openness of their

18

Haw aii : The Initial Instructable System

Kernel representation, rather than on specific structural design. The simple goals by
which they are presently achieved are expressed using a small set of primaries and

secondaries, along with a few modifier tags to indicate partial results and iterations.

2.4. Discussion of the Kernel design

To recap the basic strategy in building the Kerr'wel, focu.;s is placed on a primitive
language capability embodying definite problem-solving and goal search methods. This i§
not because language issues are most important, but because language seems to provide
the shortest path to easier instru;tion, to flexibility, and.to the encoding of basic problem-
solving method assumptions. That is, an instructab(e language system leaves a large
amount of openness for further instruction without precluding desir.a_ble options. Our

experience over the short history of our attempts, covering a dozen or so initial abortive

Kernels, indicates that the best strategy is to rely more on spontancous ad hoc methods

arising from interactions than on initial knowledge about aspects of problem solving. This
insures that important aspects of the system relating to the problem-solving task are

themselves instructable, rather than "cast in concrete."

3. Sample System Behavior -

The Kernel starts with essentially no behavioral capability with respect to the TE.
Thus, it must be instructed in some basic TE tasks to build up a network of goals for doing
more significant tasks. A sequence of progressively more complex tasks has been
established to build complex abilities from the simple ones in the Kernel.

The first task attempted is to instruct IPS to look at the top of a stack of objects in

19

T e s

Haw aii . Sample System Behavior

a TE location. This will involve Viewing the location (in the TE sense of View defined

above), checking to see that there is in fact a stack of objects there, ana then finding the

top of that st.ack and Viewing it. Instructing it to achie\)e these goals gives it some

material to work with on tasks that follow this first one, which include looking at objects . r _
other than the top one in a stack, determining the type of an objeét .(which requires that it

be looked at first), and comparing the types of two objects. More complex tasks include

réarrangin_g objects and determining the requirements and effects of machines in the TE.

‘ : The instruction sequence to be given now conéists'first of giving IPS a top-level
subgoal sequence to achieve_ the goal. Then a concrete task is_given, involving that goal,
so that its behavjor gives rise to subgoals that it c:an’t solve, at which points further
instruction is given.

IPS starts by asking for input, and it is given the following:

To examine an object the top in some localion , want do view that location then

In the text, ".." indicates that more is to come below; it doesn’t appear in actual input.
Note that the Ianéuage is very p‘rimitive in expression, a consequence of our desire to
include or'\ly. the minimum necess.ary for communication of basic ideas, thus excluding
familiar linguistic elaborations.

The system uses the word "next" to act as a temporary boundary for the input, and

RO A T

forms the following production before continuing to scan further.

R1 (examine object (uwant activate) top in =location) $ =cl
--> (view.TE =location (uant activate))
(test status (want activate) value =location composition)
(examine object (want continue 1) top in =location)
(examine object (old activate) top in =location) (delete =cl) ;

e

The OPS notation for productions gives the name, R1, followed by the condition side,

Hawaii : Sample System Behavior

followed by "-->", followed by the action side, and terminated by "". "="is used to mark

variables as in "=location", which makes "location" a variable. "$" stands for Pattern-and,
which allows two match expressions to use the same ‘working "memory expression. In R1,
"$" is used to bind the single condition_element.and the variable c1 to a single working
memory element. A production is executed as a result of matching its condition, which
results in binding its variables to elements or subelements of working memory. Firing the
production then results in asserting or -deleting working memory elements according to the
action-side forms ("assert" is implicit, "delete", explicit), in such a way that the leftmost
action becomes the most recent working memory element, for purposes of conflict
: resolution.

The pHrase between “'fo" and the first "," has been formed inio the condition side of
R1. The mapping of text to representational unit is direct, with the Kernel supplying the
"want activate" modifier and the ';8 =cl", which is used to delete the "want activate" form
after it is converted to "old activate" at the end of the ac‘tiovn side. "Direct mapping"
means that words are added to a unit in the same order as given in the text. The
remainde;' of the text is conQerted to. a sequence of two representational units, the first
two in the action side. This conversion is also quite direct. These serve as subgoals, tﬁ.e
firs_t of which, view.TE, will be achieved by Kernel mechanisms, and the second, by further
instruction. The third action element is a signal that will stay in working memory until the
first and second action elements have been recognhized and their consequences follow
up, at which time it will become most recent, and.productions using it will become
. candidates for firing.
The first segment of the instruction has established a topic for the entire sequence

‘ "N

up to the next "", namely the goal of "examine object". The next segment of the

instruction for this goal is:

Hawaii ‘Sample System Behavior

This results in forming a second production, including as a condition the "want continue"
unit from R1 and a unit corresponding t_o the text between "if" and ",":

(test status (neutral result) non-empty value =location composit.ion')
The production tests the result of the second subgoal of Rl (to test the statﬁs of the

composition attribute of the Viewed location) and proceeds with a further subgoal (to find

. the top of the composition list) if apprdpriate. To do the continuation, it includes a "want

continue 2" unit with the form of the main topic.
The next phrase tells IPS what to do if another condition arises as a result of that

second R1 subgoal.

‘cumposition , the result of examine the object is failure , Next ...

This fragment gives one of the pbssible results of the topic goal, which indicates a failure
(at present, in a non-informative way).

The next segment.forms a production to recognize the result of the “find top"
subgoal, View that result, and leave the name of the result in working memory (a "neutral

result" form similar to the one above).

and the result of examine the object is that object .

The system has now taken that instruction sequence and formed four productions.
It then awaits further input, which is the following:

Try examine the object top in L23 .,

This tells IPS to actually try to achieve an "examine object" goal for a particular TE

22

Hawaii Sample System Behavior

location. It would not get very far before stopping, iﬁ need of further instruction to allow
it to achieve the "test ‘status" goal (the second goal in the actior) side of R1). Ins
determines what the system is in need of (if he can’t remember) by asking it, "What want
7", which IPS answers by finding itsv most recent "want"-modified unit. Instruction for the
" "test status” goal can be given so that the system can achieve it directly. That is, a single
production suffices to perform the- test and return a result, without further subgoals.

After that, it needs instruction on the "find top" goal, which can also be achieved directly.

4, Conclusions

The aim éf this initial examination of the problem of an instructable PS has been to
motivale the stérting assumptions, to discuss some broad issues for PSs and for
instructable systems, and to give some detail on where the project stands as a resu'lt of
several design iterations.

A PS architecture has been developed that builds on substantial experience with
past architectures. Its conflict resolution scheme appears to be compatible with
incremental additive growth, and it essentially abandons the use of static orderiﬁgs of the
productions. A small kernel system of about 150 productions currently exists, embodying
an increménta| approach to solving problems, processing language, representing knowledge
as productions, and interacting with a toy environment.‘ The system’s problem solving
capabilities exploit a form of knowledge that is natural for PSs, means-ends analysis. With
that, a taxonoﬁy of some simple control mechanisms in PSs provides the system with the

capability to do complex tasks.

23

Hawaii : ,. " Conclusions

The initial in;;redients assembled seem ideally suited to attaining the incren.'uental
growth of a complex understanding system. Experimentation with a sequence of
progessively more difficult tasks will reveal whether this is the case. However, it may not
happen quickly._ Experience so f'ar, expressed in a good dozen kernels, has shown how
difficult it is to get the details right, even while the general fe_a!ures of the scheme hold
up rather well. Partly the difficulty is that our design intuitions imply a substantial
“kernel" of capabilities in place, whereas; it is necessary to grow ‘(instruct) that "kel.'nel"
through a much leaner initial system, which is certainly highly atypical and counter-
intuitive in many ways. Any attempt to lay down this larger "kernel" by an act of design
(in the usual system-building fashidn) seems sure to create a beast that is ‘uninstructable
except along limited dimensions. Thus a regimen of iteration and back-tracking at primitive
levels seems necessary.

One issue that has arisen about the particular ingredients can serve to summarize
and illuminate the cqrrent state of understanding of the approach. If the observable
behavior of the PS is to be organi'zed completely as a means-ends network, then what role
do the properties of the PS architecture play? Wouldnt any other architecture or basic
programming system do as well?

To see the force of this, consider what makes means-ends analysis attractive for the
instructable-system task. It permits simple addiiioﬁ to the existing system, since
increments are made by attaching new (alternative) methods to existing goals, from whi‘ch
other goals and methods may freely branch. its network of'goals and methods can be
driven down to any fineness of processing detail, permifting the scheme to be used for
any processing. If care is taken initially, then all aspects of the system will be formed as a

means-ends structure; hence, all aspects will be open to modification by further means-

24

Haw aii j : Conclusions

ends construction. To utilize' such a scheme requires of the underlying programming
system (which constitutes the operators and associatedldata structures through which the
means-ends net works) only that it be complete, have a fine enough grain of action, and
perhaps be rather simply composable.

These properties constitute a significant fracfion of the claimed advantages of PSs.
What do PSs provide that is not already latent in an approach that focuses purely on
construction of means-ends networks? ‘

Means-ends analysis dictates (hence provides) a st‘ructure of goals, methods, goal-
fests, operators and opérands (data structures). But it only provides functional roles, not
the programming system. Subject to the conditions of fineness of detail and compigteness,
we do not see that PSs have a striking advantage over other homogeneous architectures
for realizing these processes'in general,

In a .performance system the instances of these structures are provided by the
system creator. In a learning system they rﬁust be provided by the system itself, and the
properties of the architecture become relevant to how easy or hard that will be. An
instructable sYstem, tho_ugh it can shade into a programméci system especially initially, is
fundamentally a learning system.

Without being exhaustive, some of the important functions to be performed in

Jlearning a means-ends structure are the detection of error and/or the opportunity for

learning, the construction of hypothesized means-ends structures, their installation so as
to supersede selected pre-existing structure, their validation and debugging, and a secure
environment within which learning experimentation can occur. Means-ends itself does help

on some of these functions, notably installation and (possibly) supersession, bul does not

provide help with most of them.

'
|
|
|
|
|

Hawaii. ! Conclusions

PSs appear to be a ugeful archi.tecture for a number qf these aspects, though no
‘c!aim can be made that it is especially perspicuous across the board. Detection, validation
and debugging seve.m to require wide-band access to the existing knowledge in the system
at all times, i.e; in a monitoring-like mode. This is distinctly a feature of PSs. Although not
quite so obvious, wide-band access seems important also to lhe' construction of new
hypothesized goals and methods. Successful modifications depend, not just on some fixed
procedure for correcting failed goals, but on detecting 'and attending to highly various
features of the environment and to equally various aspecls of past experience. The
problem of memory se%rch fo make contact with relevant but disparately represented
experience is not solvéd in PSs just by H—we recognition scheme, bqt the architecture seems
a useful one for approaching the problem.

The extreme simplicity of the ultimate forms o'f both gqal_ tests and method steps in

PSs is probably also important. They can consist simply of throwing together some

 hopefully relevant distinctions on the environment as conditions along with some likewise

hopefully relevant actions, then adding the collection to the program memory without
further ado. This is a fundamentally task-oriented operation, unencumbered by syntactic

cererﬁqnies or other detailed knowledge. That the elementary form of functionally

_ relevant additions c~an be so simple rests upon two other aspects that PSs seem to provide

in some measure. The first is security, which is provided by all behavior in a PS being
effectively monitored (by the whole production memory). It can be brought under
interpretive control at any time to dampen the prospects of "sudden death". The second

aspect is the related ability to program by debugging, i.e, by adding fragments and

modifying the system later on the basis of self-observed behavior,

Our present assessment is that the ingredients will cooperate together in a mutually

P

Hawaii e Conclusions

supporting way. However, it has taken a long time to evolve reasonable conflict resolution

rules, to take an important recent example [8). It may also take a while, for example, to

evolve systems that map to distant experience appropriately [9] but that can be serviced

by the limited recognition abilities inherent in efficient recognize-act cycles.

(1]

(2]

(3]

(4]

[5]

(6]

(7]

5. References

Bobrow, D. G. and Collins, A. (Eds.) Representation and Understanding: Studies i

Cognitive Science, Academic Press, New York, NY, 1975.

Bobrow, D. G. and Raphael, B. R. New programming languages for artificial intelligence

research. Computing Surveys, Vol. 6: 3, 1974. Pp. 153-174.

Buchanan, B. G. and Sridharan, N. S. Analysis of behavior of chemical molecules: Rule

formation on non-homogeneous classes of objects. Proc. Third International Joint

Conference on Artificial Intelligence, 1973. Pp. 67-76.

Davis, R, Buglwanan, B. and Shortliffe, E. Production rules as a representation for a
knowledge-based consultation program. Repori STAN-CS-75-519, Memo AIM-266.
Stanford University, Computer SEience Department, Stanford, CA, 1975.

Davis, R -and King, J. An overview of production systems. Report STAN-CS-75-524,

" Memo AIM-271. Stanford University, Computer Science Department, Stanford, CA,

1975..

Forgy, C. A production system monitor for parallel computers. Carnegie-Mellon
University, Department of Computer Science, Piltsbﬁrgh, PA, 1977.

Forgy, C. and McDermott, J. The OPS reference manual. Carnegie-Mellon University,

Department of Computer Science, Pittsburgh, PA, 1976.

27

L gk dbGtseais

Hawaii ; References -

(8] McDermott, J éﬁd Forgy, C. Production system conflict resolution strategies..
Carnegie-Mellon University, Department of Computer Science, Pittsburgh, PA, 1976.
Also in Proceedings of Workshop on Pattern-Directed Inference Systems, Hawaii,
1977.

[9] Moore, J. and Newell, A. How can MERLIN understand?. In Gregg, L. (Ed.), Knowledge
and Cognition, Lawrence Erlbaum Associates, Potomac, MD, 1973. Pp. 201-252,

[10] Newell, A. A theoretical exploration of mechanisms for coding the stimulﬁs. In Melton,

A. W. and Martin, E. (Eds.), Coding Processes in Human Memory, Winston and Sons,

Washington, DC, 1972. Pp. 373-434.
[11] Newell, A. and McDermott, J. PSG manual. Carnegie-Mellon University, Department of
Computer Science, Pittsburgh, PA, 1975.

[12] Newell, A. and Simon, H. A. Human Problem Solving, Prentice-Hall, Englewood Cliffs, NJ,

1972,
[13] Rychener, M. D. Production systems as a programming language for artificial
intelligence applications. Carnegie-Mellon University, Department of -Computer

Science, Pittsburgh, PA, 1976.

51 Footnotes

#1. This paper draws ideas from an ongoing project involving C. Forgy, J. McDermott,
Kamesh Ramakrishna, and P. Langley, in addition to the authors. Forgy and McDermott
have been responsible for the implementation of the OPS production system architecture
and other system facilities described here. We acknowledge the joint role these people
have played in developing the ideas in this paper, bul they are not responsible for our
detailed expression or interpretation of them.

This research was supported in part by the Defense Advanced Research Projects Agency

Hawaii References

under Contract no. F44620-73-C-0074 and monitored by the Air Force Office of Scientific

Research.

o

! fdl.\x«

&

4
1

3
*
»
. .
e
.
=&
- :
Fane T 4
i
:
&
,{
Wik 5
L
®
R #
%
O g
5 *
:
Fop
2
»
." =
e
o
%
o »
- i s ::
/‘m,.\ N
;] b .
Ty
S
A
3 4 o
< =
% & v 3 D
. o
o
»
i
.
g ». i
o ;
» » -
’
{
" A
-
®
-

>, . 4 g - ~
ﬁ * o * :
®
5 * :
. 5 S
% L
. 2 .
* ' 5 -) i el
p . B .
* . v - 7
v e - = A v
- & 2
. 5 < 4 .
. g e
E - - o
s = 4 - : .
Vi : . .
so S B - ., @ . " .
: % 4 *
.
. . 2 & % o . . - .
¥ . - :
5 - L] . g 2

