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EVALUAT ION

The contract “ECL Programming System” has resulted in this report

entitled “Recent Developments in the ECL Programming System.” This effort

was intended to further the development of the ECL Programming System in

the general areas of program optimization and software reliability.

Extensible programming languages have be.en with us in one form or

another for almost ten years, but for reasons such as the poor efficiency of

of the object programs and/or the compilers, they have been inappropriate

for use in developing military systems software. R.ADC believes that

extensible languages offer many potential benefits, most notably the ability

to change constructs or to add new ones as requirements, hardware, and

even programming philosophy and style change.

This effort was undertaken under TPO 5, C3 Availability, to attempt

to surmount certain of the problem areas associated with the use, or

proposed use of extensible languages in military systems, and to that degree

was successful. The advances in the state—of—the—art of programming

environments for extensible languages made by this and similar efforts have

direct application to the new proposed common DOD programming language

known as DOD—l, which will have a large degree of extensibility built into

it, and even to existing nonextensible languages such as the Air Force ’s

JOVIAL.

/
SAMUEL A. DI NITTO • 1 1

Project Engineer
A4
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Our central objective in develop ing the ECL Programming

System at Harvard has been to evolve tools and techniques

that reduce the cost of producing software and that increase

the reliability and efficiency of the product. Achieving

these  goals w i l l , in the  long run , require a striking

departure from conventional methods of design ing and

build ing large programs. Software engineers will need to

beco me accus tomed  to the idea of der iv ing concre te ,

efficient systems from abstract , readab le , d emonstrably

correct algorithmic specifications by a sequence of

well— isolated , well—documented refinements. Development

costs can be reduced through use of libraries of abstract

algor ithms which can be specialized to the task at hand and

librar ies of implementation techniques for common data and

control abstractions. Maintenance costs , wh ich o f t e n

dominate the life cycle costs of software , can be reduced

because the design dec isions taken during a systems ’s

construction will be spelled out in its refinement history.

The dependences between such decisions will be made

ex p l i c i t , and the effects of changing one decision will be

easy to trace. Reliab ility will be enhanced because the

logical foundations on which the program ’s correctness is

based , its abstract algorithm s and the soundness of the

refinement steps , will be exposed and manageably small. Use

of proven software selected from a library also favors

reliability.
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Rat ion al t hou gh suc h ar guments ma y be , stepwise

refinement methods will probably not be used consistently

enough to have major impact until tools are available which

aid in program derivation. Especially critical are

optimization aids to help squeeze the unneeded generality

out of an abstract program and to make it efficient while

making it concrete .

This report motivates and summarizes our study of tools

and techniques for stepwise refinement and optimization in

conjunction with development of the ECL system . It is

intended to give an overview. Detailed discussion of the

individual software aids cart be found itt the documents cited

in t he text .

APPLICATION STUDIES: ~~~ Eç..LI FACILIT IES

Since 1 974 , we have studied a number of applications

involving combinatorial and linear algebra and have

investigated the sort of library facilities needed to

su pport t heir pro per d ev elo pment. For exam ple , we built a

set extension of ECL so that abstract algorithms involving

sets can be expressed and tested at a very high level. The

set pac kage offe rs a select ion of alte rnat ive

re pres entat ions for set structure s from whi c h the us er can

choose t he most app ro pr iate for his applic ation.
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One of our earliest experiments along this line was a

matrix package. Though it has now fallen into disuse , it

helped motivate several ECL improvements and new facilities

which are now in regular use for software development. The

matrix package provides notations for generalized selection

of submatrices. For example , if M is a two—dimensional

m a t r ix , then M fi ,*I and Mf ’,j) select the i—th row and j—th

column of M , respectively. M[i THRU j,k] selects the i—th

through j—th elements of column k and M{1 THf~U n , 1 THRU ni

is the upper left n x n submatrix of M. In each case , the

selected portion is shared with the original .

The package permits users to supply the data types of’

matrix elements and to describe their algebraic properties.

The additive and multiplicative operations to be used in

matrix manipulations can be user—defined , for example , and

such attributes as commutativity, associativity, and the

existence of a unique inverse can be declared . Using the

algebraic structure of each element type , appropriate

operators are constructed for the corresponding matrix type .

For instance , if the element domain forms an algebraic

field , a matrix inversion operator will be provided . The

extended operators are designed to exploit algebraic

identities to increase their efficiency. The matrix package

offers a collection of representations for sparse matrices ,

an d matr ix o perators ar e ta ilore d to su it t he re presen tat ion

chosen by t he us er. Exten d ed matr ix operators inclu de

trans itive closure , inner and outer p ro duct an d matr ix
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invers ion.

Experience with the matrix package and similar

applications led us to generalize ECL’s mode (data type)

abstraction facilities. ECL permits programmers to

encapsulate data behavior in a set of user—defined functions

attached to extended modes. Particular functions are

invoked by the system to perform specific data dependent

~~ , such as object creation and initialization , component

‘)n and so on. The new abstraction mechanism enables

t.he programmer to attribute “apparent” dimensions to data

structures which are not dependent on the physical sizes of

the objects representing them . A sparse matrix , for

example , could be implemented as a grid of linked pointer

rings while its apparent dimensions are those of a

rectangular array. Cascaded component selection was also

made cleaner in the new facility . Suppose T, for example ,

is a three—dimensional structure composed of a matrix mode M

whose elements are vectors of mode V. Then in the selection

T [ I ,J ,K] the selectors I and J would be processed by the

user-defined selection function (USF) for matrix mode M.

The resulting object and the remaining selector K would then

be passed to the USF for vector mode V. The partitioning of

the selectors is determined by the numbers of formal

parameters of the selection functions. In this way, the USF

for M need know nothing about the attributes of V —- not

even its dimensionality .
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The mode extension facility that resulted from these

and other improvements is smoothly integrated with the base

language ’s built— in conventions , so that the user of an

extended mode need not know the details of its

implementation and so that new modes can be added which

interact with (e.g. convert to and from ) existing types

without altering their definitions. At the same time , the

ECL compiler has been modified to expose extended mode

attributes to compile—time manipulation (e.g. macro

substitut ion) to insure efficient compilation of extended

features. Use of the mode extension facility and the

compiler are described in chapters ‘4 and 6 of l Manual] .

The use of extended notations for clarity and

modularity in the matrix and set packages made us aware of

t he  need for other abstraction tools than those provided by

E C L ’ s d a t a  definition facility. For example , it is handy to

define an iteration form like

F O R E A C H  Element IN SomeArray DO
<statement>; . . . ; <statement>

END

The intent is that the components of SomeArray be bound one

by one in some order to the identifier “Element” , and that

the sequence of statements be performed once for each such

binding . No FOREACH form exists in the ELi base language.

However , It is easy to add by syntax extension and by

definition of a procedure to interpret FOREACH iterators

when they are encountered in programs. An interpretive

routine , nevertheless , is not always a very clear or concise

-J
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description of the meaning of an expression. One would like

to be able to explicate the FOREACH form by providing its

m e a n i n g  at a s l i g h t l y  lower  leve l  of’ abstraction. One would

also like to be able to use such semantic definitions to

translate high level programs successively down to the base

level for interpretive debugging , analysis , or compilation.

This  c a p a b i l i t y  is p r o v i d e d  by E C U ’ s R e w r i t e  M e c h a n i s m .

A Rewrite is a pattern replacement rule. Patterns may

c o n t a i n  m a t c h  v a r i a b l e s , d i s t i n g u i s h e d  by  t h e  p r e f i x

o p e r a t o r s  $$ and ?? , w h i c h  w i l l  be b o u n d  to arbitrary

subexpressions or sublists , respectively, during matching.

R e f e r e n c e s  to these  m a t c h  v a r i a b l e s  in r e p l a c e m e n t s  cause

the  c o r r e s p o n d i n g  b i n d i n g s  to be i n s e r t e d  in t h e  r e w r i t t e n

text. For example , the meaning of the FOHEACH iterator for

two—dimensional matrices could be given by the rewrite

FOREACH $$ELEM IN $$MA T DO ??STMT S END < - >
BE G IN

DECL M: A NY LIKE $$MAT;
FOR I TO LE N GT H ( M ) R E P E A T

FOR J TO LENGTH(M[I]) REPEA’l
DECL $$ELEM : A NY SHAR E D M[ I ,J1;
??STMTS;

END;
END;

END;

Here the “ < — > “  operator separates the pattern on its

left from the replacement , on its right. $$ELEM and $$MAT

in the pattern are bound to an identifier and a

matrix—valued expression , respectively; ??STMTS is bound to

the list of statements comprising the body of the iterator.

Although this replacement happens to be expressed entirely
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in th~ base l a n g u a g e , it could  j u s t  as wel l  i n c l u d e  e x t e n d e d

n o t a t i o n s .  R e w r i t i n g  ru l e s  are app l i ed  r e p e a t e d l y  u n t i l  no

m a t c h e s  are found , so t h a t  any  n u m b e r  of i n t e r m e d i a t e

l a n g u a g e  l eve ls  can be used . For e x a m p l e , m a t r i c e s  m i g h t  be

implemented as lists of lists. Then the matrix iterator

would  be i m p l e m e n t e d  as a nes ted  pa i r  of i t e r a t o r s  over

lists. List iterators would in turn be implemented at a

lowe r level , p e r h a p s  u s i n g  po in t e r  m a n i :u l a t i o n s .

This  ra ises  an i n t e r e s t i n g  q u e s t i o n .  Why s h o u l d n ’t the

i t e r a t o r s  fo r  m a t r i c e s  and l i s t s , and o the r  c o l l e c t i o n s  as

wel l , share  the same s y n t a x , i . e .  F O R E A C H e IN c DO s i ;  s2 ;

E N D .  If the  r e w r i t e  m e c h a n i s m  were a p u r e l y  s y n t a c t i c

macro  expans ion  f a c i l i t y , the re  would  be c o n f l i c t  among the

r e w r i t e s  d e f i n i n g  i t e r a t i o n  over v~~’ious collection types.

R e w r i t e  p a t t e r n s , however , can i n c l u d e  p r e d i c a t e s  w h i c h

a u g m e n t  the  s y n t a c t i c  c o n d i t i o n s  for  m a t c h i n g .  Such a

p r e d i c a t e  may be any ECU f u n c t i o n  t h a t  maps  an exp re s s ion

( p l u s  o the r , o p t i o n a l  i n p u t s)  to a Boolean v a l u e . Al l

p a t t e r n  p r e d i c a t e s  must  r e t u r n  TRUE for  m a t c h i n g  to succeed .

For e x a m p l e , i f  i n s t ead  of $ $MAT , in our m a t r i x  i t e rat o r

p a t t e r n , we had w r i t t e n  $ $ H A S \ T Y P E ( M A T , M A T R I X ) , and i f

H A S \ T Y P E  is a f u n c t i o n  t a k i n g  a FORM and a MODE w h i c h

returns TRUE when the MODE equals the type of the FORM , then

that rewrite would , without other changes , be semantically

specialized to expressions of type MATRIX. A separate

rewrite could be given for list iteration using the same

syntax but a different type predicate .



8

The f u n c t i o n  H A S \ T Y P E , and a n u m b e r  of o the r  u s e f u l

expression queries , are part of a tool calLed the Expression

A n a l y z e r .  This  p r o g r a m  p e r f o r m s  a v e r y  weak , s t a t i c

interpretation of’ ECL program text , attempting to develop a

mode and , where possible , a value or other attributes such

as d i m e n s i o n s , for each expression in the program. Hidden

semantics such as those imparted by user—defined mode

behavior extensions are exposed through the creation of

equivalent explicit expressions . These expressions , called

shadow forms , are inserted along with modes and other

attributes in a database which is connected to the original

expressions by a hash—coded translation table. Predicates

such as HAS\TYPE use the  hash  t a b l e  deve lop ed  by the

E x p r e s s i o n  A n a l y z e r  and are  thus  q u i t e  e f f i c i e n t .

Shadow fo rms exp res s  p rog ram semant i c s  in a s t a n d a r d

notation which is designed to capture the meaning of any ECL

expression using as few constructs as possible. Thus shadow

forms are quite useful in pattern matching; rewrite patterns

can d rop  in to  the shadows to make  a match. The Expression

Analyzer is like the front end of a compiler , and as such it

can be a useful tool for direct user interrogation. In

c o n j u n c t i o n  w i t h  E C U ’ s l i s t  s t r u c t ur e  e d i t o r  [M a n u a l ,

chapter 51, the Analyzer allows the user to see his code

from the compiler ’s point of view. He can browse through

the tex t , selectively printing portions of the shadow and

other attributes. He can discover passages where additional

declaration would enable more efficient compilation.
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The Rewrite Mechanism is documented in [Conradi]; the

Ex pres sion Ana ly zer , in [Holloway].

Our experience with the matrix package also suggested

the need for instrumentation aids to help provide the basis

for refinement decisions. The implementor needs to take

measurements of program behavior when the high level version

is run with sample data. In many cases , it is useful to

m o n i t o r  the c h a r a c t e r i s t i c s  of da ta  i t ems  t hemse lve s  at key

p o i n t s .  To se lect  a r e p r e s e n t a t i o n  for  sparse  a r r a y s , fc’~
i n s t a n c e , one needs  to know wha t  o p e r a t i o n s  ~re pe r formed

most  f r e q u e n t l y  ( e . g .  s e q u e n t i a l  ve r sus  random and wha t

the  d i s t r i b u t i o n  of e mp t y  e l e m e n t s  is l i k e l y  to be .  Two ECU

facilities have been implemented which enable such

measurements to be made during program execution by planting

executable probes directly in the code. COST [Conrad2] is a

tool for  c o l l e c ti n g  d a t a  a t t r i b u t e s ;  P R O B E  [Conra d ~~]

d e t e r m i n e s  e x e c u t i o n  f r e q u e n c i e s  and t i m i n g  i n f o r m a t i o n .

PROBE c a r e f u ll y  e l i m i n a t e s  ove rhead  f rom t i m i n g s ,

s u b t r a c t i n g  out t ime spent  d u r i n g  ga rbage  co l l ec t ion  as we l l

as the time required to run the probe. It recognizes

recursive calls dynamically and accounts properly for them

in computing timing s. It can time either compiled or

interpreted routines and can break down the time spent in a

routine by caller. In interpreted code it collects

frequency counts which can be included as annotations in a

listing of the program . These frequencies serve to
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h i g h l i g h t  both  sec tions  tha t  are executed so frequently that

t hey  deserve  spec ia l  care  in i m p l e m e n t a t i o n  and sec t ions

that have not been exercised by the test data.

COST plants probes each of which collects the value of

an ECL expression. The data collected may be numeric ,

Boolean , or of other types. Numeric and Boolean data are

averaged and may be displayed in a variety of convenient

formats when the probed program is listed . To give a very

simple example , in

FOR E A CH e IN m DO
/~ (e 0);

END

the COST operator “/ @ “ records the number of times an

element of matrix m is zero on entry to the loop body.

After the sample run , the result would be displayed as a

percentage of the total number of times the probe has been

activated :

FOREA CH e IN m DO
\~ (e 0) :: 62.6%;

END

As with the Expression Analyzer , data are linked to the

program text by hashing . Thus , the measurement results can

be used in Rewrites that perform stepwise refinement. As a

simple example , the decision whether or not to expand a

particular procedure call in line might be predicated on

me asured features of its arguments.
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SOURCE-TO—SOURCE PRO GRM4 TRANSFORMATION; SYMBOLIC EVALUATION

The too ls descr ibed so far have ena b le d us to ad o pt a

style of constructing programs which emphasizes their

abstract foundations and isolates design decisions in their

realization. In building our own systems software using

this style , we find it has paid off itt terms of ease of

initial construction and debugging , m inim izat ion of errors

(particularly deep-seated design errors) , and ease of

maintenance when requirements change.

These tools , however , are most suitable for a user with

high initiative , who understands his implementation options

and the trade—offs they imply. If adaptation of general

algorithms to take advantage of special circumstances is to

become even semi-automatic , we will need more sophisticated

analytic aids for source—to—source program transfo rmation.

A gain , the matrix application provides an example.

Consider the problem of developing a special purpose matrix

multiplication algorithm for tridiagonal matrices. A matrix

M is said to be tridiagonal if it is square and its only

non— zero elements fall on its main diagonal or on one of the

two nearest subdiagonals . That is , if ~i—j > 1 , then Mij =
0. The specialized matrix product program is to multiply

tridiagonal matrices A and B , putt ing t he result in matr ix

C.
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It t u r n s  out t h a t  the p r o d u c t  C w i l l  be p en t a d i a g o n a l :

if  i — j ~ > 2 , t hen  C j~ = 0.  U s i n g  t h i s  f ac t , one can

devise  an a l g o r i t h m  in w h i c h  the  n u m b e r  of sca la r

m u l t i p l i c a t i o n s  is reduced  f r o m  0 ( N 3 ) , f o r  the  u s u a l ,

gene ra l  me t hod , to 0 ( N ) , where  N is the  m a t r i x  d i m e n s i o n .

The spec ia l  purpose  method  s i m p l y  c l e a r s  e l e m e n ts  of the

o u t p u t  m a t r i x  l y i n g  o f f  the f ive  p r i n c i p al  d i a g o n a l s .  Then

i t  t r ave r se s  those d i a g o n a l s , f i l l i n g  in componen t s  of C.

Each is the sum of at most t h ree  p roduc t s  of e l ements  f rom A

and B.

We have not yet developed optimization algorithms

capab le  of p e r f o r m i n g  s p ec i a l i z a t i o n s  as soph i s t i ca ted  as

this one automatically. However , we have begun building a

Symbolic Evaluator (SE) for ELi which will serve as the

basis for furthur work on source—to— source transfo rmation .

The SE is now capable of providing the key analytical facts

(such as the pentadiagonality of C) which would enable this

specialization to be derived We will describe the SE and

then sketch how it could be useful in the matrix product

derivatio1~.

The Symbolic Evaluator is an analyzer for ELi programs

which builds a data base of deduced facts about them . Its

major com ponents are:

(i) a symbolic interpreter , which embodies the semantics of

ELi and which builds and manages the program data base ,

(2) analyzers for those control structures which give rise
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to recurrenc e equations among program variable values ,

namely loops and procedures , and

(3) a simplifier/theorem prover which manipulates and

reduces the expressions developed during symbolic

evaluation .

The SE’s symbolic interpreter begins where the

Expression Analyzer leaves off. To every program variable

it attaches a location description , which contains the mode

of the variable and some representation for values of the

variable ir every program context which lies within its

scope . Variable values are manifest constants , where

possible , and otherwise they are symbol ic expressions

(SEXPRs) composed of pure arithmetic , logical , and

structural functions. Sharing patterns among locations ,

including conditional patterns , are carefully tracked by the

symbolic interpreter and are used to account for all

possible side effects when the value of a particular

variable is being fetched . A context graph is constructed

which reflects each branch of control in the program and

which records the symbolic predicate that conditions each

branch. The conjoined predicates leading from the entry of

the program to a particular context comprise the “path

condition ” of that point. Path conditions are extremely

useful in reasoning about variable behavior (yet most

compilers pay no attention to them).
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When it encounters a ioop , the symbolic interpreter

processes the loop body, obtaining for each variable an

expression representing the effects of a general cycle of

the loop as a function of the values of variables at the

beginning of the cycle. Then the loop analyzer is called in

to try to solve the resulting recurrence equations ,

producing , when possible , closed—form expressions for loop

variable values as a function of the cycle number. The loop

analyzer also determines the symbolic condition for loop

exit and attempts to derive the total number of cycles of

the ioop. This result is then used to produce values for

variables after loop exit.

A component of the loop analyzer called the “row

solver” specializes in solving the recurrence equations

which arise for array variables in loops. Here the problem

is complicated by the uncertainty as to which component

location is being affected by a given array assignment.

Using only a general recurrence equation solving method , the

row solver is frequently able to describe each output array

element as a function of initial variable values only. As a

simple illustration , the matr ix trans pose loop:

FOR I TO N REPEAT
FOR J TO I—i REPEAT

SWAP (M[I,J], M [J ,I1)
END

END

results in the following expression as the value for M:

array(< i ,j> , <N 1, N 1 > , M 1[j, ii)

Here , “array ” is a structure—valued SEXPR function which
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yields art array , in this case two—dimensional , with both

dimensions equal to N 1, the symbolic value of N. i and •j

are dummy parameters ranging between 1 and their

corresponding dimensions. The third argument describes an

array element at position <i ,j> . M~ is the symbolic value

of M at the beginning of the outer ioop. In other words ,

this expression describes an N x N array which is the

transpose of the original M.

The procedure analyzer (which has been designed but not

yet implemented) handles non-recursive and certain simple

recursive procedures. It analyzes each once in isolation

and then applies the resulting analysis to each point of

call. The treatment of recursive procedures again produces

r e c u r r e n ce re lat ions to be solved , and the procedure

analyzer shares the loop analyzer ’s tools for doing so.

The simplifier/theorem prover attempts to reduce SEXPRs

to manifest constants. In the process , it places them in a

normal form so that those with equal values will tend to

have the same representation . Syntactically equivalent

SEXPRs are replaced , using a hash coded translation table ,

by a un ique list structure represen tative. Thi s greatly

speeds up SEXPR equality checking and allows the simplifier

to attach attributes to SEXPRS by direct hashing . In

addition to the conventional rules for arithmetic and

logical reduct ion , the simplifier includes a “linear

solver” . The linear solver takes conjunctions of linear
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inequalities involving rational variables and tests them for

consistency. If they are inconsistent , it replaces the

conjunction by the constant “false ” . Otherwise , it tries to

derive strict equalities , or bounds on linear combinations

of variables implied by the original conjucntion . Finally,

the logical simplifi cation algorithms include a resolution

theorem prover for the ground case. We expect to extend the

theorem prover to assertions involving quantifiers in the

near future .

A more detailed descriotion of the Symbolic Evaluator

will be found in [Cheathami , Cheatham2 , Townley].

To return to the problem of deriving a specialized

product algorithm for tridiagonal matrices , let us consider

how we would use the SE to motivate specializations. ~‘rorn

the general matrix multiplication b o o , the SE derives the

value for the output matrix C:

C = array(<i ,j> , <N ,N> , finite\surn(t~, 1 , N , A[i ,kI*BCk ,jfl )

(Here the expression finite\sum (k , U , U, f(k)) means

f(L) + f(L+i) + . . . + f(U)

it’ U ~ U and is zero otherwise.) The tridiagonal condition

is expressed as the SEXPR

M [i ,j] cond(— 1 be i—j and i—j le i , M Ii ,jl , 0)

(H e r e  cond ( p , x , y) may be read ‘if p then x else v ’.) Using

this fact for the input operands A and B , the simplifier

would produce
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C = array(<i ,j> , <N ,N> ,
finite\sum(k , 1 , N ,

c o n d ( — i  be i — k  and i — k  be i and
— 1 be k — j  a nd k — j  be i ,

A [ i , k] * B[k ,jl ,
0)))

When the  l i n e a r  solver  is a p p l i e d  to the  p r e d i c a t e  of the

c o n d i t i o n a l , i t  produces  the d e r i v e d  c o n j u n c t i o n  —2 be i — j

and i— j be 2. Only when this condition is satisfied will

the re  be n o n — z e r o  c o n t r i b u t i o n s  to C t i , j ] .  In o the r  words ,

C w i lb  be p e n t a d i a g o n a l .

Since on ly  f i v e  va lues  of i — j  are invo lved , we can use

case analysis to try to eliminate the finite\sum and thereby

eliminate a loop in the program . With i— j chosen to be — 2 ,

the linear solver determines that the conditions for

non— zero terms are k i+1 and i be N—2. Thus C[i ,j] =
A [i ,i÷i] * B [ i ÷ i , i+2 ]  in t h i s  case .  The case when i — j  2

is similar. When i— j is fixed at — 1 , the relations i be N— i

and i le k and k be i+1 result. So in this case the sum

expands  to

C [i , j ]  A [ i , i] * B[i , i -s-1 ] + A ti ,i+i] * B I i + 1 , i+1]

The case i— j = 1 is s i m i l a r .  F i n a l l y ,  when i j ,  we have

max( i , i— i ) le k and k be min(N , i+1)

Since the spread of possible values for k (and hence the

number of non-zero terms) is at most three , the program

trans former m igh t opt for com pl ete expans ion of the

fin ite\sum .



18

Thus , we derive the new symbolic expression for C:

C~~a r r a y ( < i , j > , <N , N> ,
CHOOSE

j—i it —2 ~> 0;
i— i = — 2 ~> A [ i , i + 1]  * B [ i + i , i + 2 ] ;
i— i  —1 ~>

A [i ,i] * B{i ,i+ i ] + A [ i ,i + 1]*B[ i +1 ,i+i];
i — j  = 0 and i = 1 ar id N 1 => A [1 ,1 ]  * B [i , 1 ] ;
i j and j z 1 an d N g t 1 >

A [1 ,1] * B[1 ,1] + A [ i ,2] * B [ 2 , i ] ;
i = j and i gt 1 and i N =>

A [ N , N .-1 ] * B [ N — 1 , N 1 + A [ N , N] * B [N ,N];
i = j and i gt 1 and i it N =>

A [i ,i— 1] * B [ i — 1 , i] + A [i ,il * B[i , i] +

A [i ,i+1] *B [i+ 1 ,i];
i— i  = 1 =>

A [i ,i] * B [i , i — 1 ]  + A [ i , i — 1 ]  * B [i— 1 ,i— 1];
i—j = 2 => A t i ,i— 1 ] * B [i— 1 ,i— 2];
i — j  g t 2 => 0;

E N D ) ;

(Mere the expression CHOOSE 
~~ 

=> e1 ~2 
=> e2 ; . . . END is

a m u l t i — a r m  c o n d i t i o n a l  SEXP R in which  the p r e d i c a t es  ~~~

P2 ’ . . . are mutually exclusive.) From this symbolic value ,

the transformer can plausibly synthesize a new loop to

produce the appropriate value of C. In fact , it can use

several loops : doubly nested loops for the cases in which i

and j have no fixed difference (e.g., j—~ it —2), and single

loops when j is a function of i. No loop at all need be

used when i and j are constants. Since , by construction ,

the cases are mutually exclusive , the order of the loops is

immaterial

FOR i TO N REPEAT
FOR j TO N REPEAT

i—j LT —2 — > C [i , j I  <— 0
END

END ;
FOR i TO N—2 REPEAT

C [i ,i+2) <_ At i ,i + 1 ] *B [ i+1 ,i+21 ;
END;
FOR i TO N-i REPEAT

c[i ,i+i ) <—
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A [ i , i] * B[i , i + i ]  + A t i , i+1 ]  * B ( i + 1 , i÷ 1] ;
END;
N = 1 — > C [ 1 ,i] <— A [1 ,1] * B [i , 1];
N GT 1 —> C [ 1 ,i] <— A [ i , i] * B [i , i] + A[ 1 , 2]  * B{2,1];
N GT 1 ->

C [N , N] <— A [ N , N — i ]  * B[N— 1 ,N] + A [ N , N] * B[N ,N ] ;
FOR i FROM 2 TO N — i  R E P E A T

C [i ,i] <—
A [i ,i— 1] * B(i— i ,i] + A f t , i] * B[i ,i] +

A [i , i +1 ]  * B[i+i ,i];
END;
FOR i FROM 2 TO N R E P E A T

C [i i— i] <—
A~ i ,i] * B [i ,i - i 1 +  A[i , i- 1] * B[i_ 1 ,i_ 1];

END;
FOR i FROM 3 TO N R E P E A T

C [i , i 2 1 < A [ i , i _ 1 ] * B [ i _ i , i_ 2 ] ;
END;
FOR i TO N R E P E A T

FOR j  TO N R E P E A T
i — j  GT 2 — > C [i , j ]  <— 0

END
END;

This  is a much  more e f f i c i e n t  p r o g r a m  than  the

unspecialized version . Of course , further improvements can

be made to tidy it up. Loop reduction could be used to

simplify the first ioop to

FOR i FROM 4 TO N REPEAT
FOR j TO i -3 REPEAT

C [i , j ]  <— 0
END

END

for example. Loop fusion could also be used to combine

those loops with compatible parameter ranges.

The point of presenting this example has not been to

represent the SE as a complete tool for program

trans form ation. It is not , and we appreciate the difficulty

of automating such transfo rmations in general . We are

confident , howev er , that the Symbolic Evaluator provides a
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suitable basis on which to develop source—to— source

specialization technique s , whether user—guid ed or comol eteby

mechanical.

O P T I M I Z E D  M A C H I N E  CODE G E N E R A T I O N

However sophisticated our source— to— source optimiz ation

techniques become , they will still need to be complemented

by co m p i l a t i o n  a l g o r i t h m s  w h i c h  p r o d u c e  e f f i c i e n t  m a c h i n e

code. We have therefore implemented an optimization pass

for E C L ’ s compatible compiler . Called I M P R O V E , it walks the

program tree output by ANALYZE (the analysis phase) and

produce s  a m o d i f i e d  t r ee  fo r  i n p u t  to CODE (the code

g e n e r a t i o n  p h a s e ) .  We have  chosen to c o n c e n t r a t e  on the

p r o b l e m  of e l i m i n a t i n g  r e d u n d a n t  s u b e x p r e s s i o n s , an ’I on the

so— called “invalidation problem ” for potentially available

ex p r e s s i o n s .  O t h e r  m a c h i n e  code op t i m i z a t i o n  i s sues ,

including code motion , dead code elimination , and

optimization of register assignment , have been examined in

b u i l d i n g  the  SP~~L c o m p i l e r  for  a sys t ems  p r o g r a m m i n g  subse t

of ECL.  SPECL , w h i ch w i l l  be de sc r ibed  be low , a lso uses

ANALYZE and IMPROVE as a front end .

The IMPROVE Phase

-J
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The invalidation problem arises ~iecause sharing

p a tt e r n s  among v a r i a b l e s  and d a t a  st r u c t u r e s  p e r m i t  h i d d e n

side e f f e c t s  to d e s t r o y  the  a v a i l a b i l i t y  of e x p r e s s i o n s  not

manife stly affected . For example , suppo se X and Y ~re LIST

variables , and consider the sequence

H E A D ( T A I L ( X ) )  .

Y < — NEWLI ST;
H E A D ( T A I L ( X ) )  ..

Unless  i t  can be shown t h a t  Y is shared n e i t h e r  w i t h  X nor

w i th T A I L ( X ) , the value of H E A D ( T A I L ( X ) )  mus t  be r e c o m p u t e d ;

t h a t  is , i t is i n v a l i d a t e d  by the possible  side e f f e c t .  In

a l a n g u a g e  w i t h  the r i ch  p o t e n t i a l  for  s h a r i n g  t h a t  ECU has ,

the relationship between X and ~1 n ay be q u i t e  obscure ,

p a r t i c u l a r l y  i f  t hey  are  fo rmal  p a r a m e t e r s  or f ree  v a r i a b l e s

of the p rocedure  be ing  compi led . Th i s  is some t imes  ca l l ed

the  “ a l i a s i n g  problem .”

O ur a p p r o a c h  in I M P R O V E  is to cope as e f f e c t i v e l y  as we

can w i t h  the  i n v a l i d a t i o n  p rob lem without engaging in

intense analysis . Fortunately, a significant number of

p o L e n t i a l l y  d a m a g i n g  s ide  effects can be ruled out on very

s imple  g r o u n d s  of scope , s t o r a g e  s t a t u s  (h e a p  ve r sus  s t a c k)

or d a t a  type .

Two types  of common s u b e x p r ess i o n s  are d i s t i n g u i s h e d :

pure  v a l u e s  and p rope r  o b j e c t s .  Pure values are expressions

like X + Y and LENGTH(A) whose values are transient ; that

is , they  occupy  no i d e n t i f i a b l e  p lace  in storage. The

availability of a pure value for reuse ends if any of is
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subexpressions is redefined . When this type of redundant

ex p r e s s i o n  is removed , i t s  replacement acts like a “runtime

c o n s t a n t” : s to rage  for  the  v a l u e  is a l l o c a t e d  at procedure

e n t r y  a n d  is i n i t i a l i ze d  when t he  “ p are n t ”  o r d e f i n i n g

o cr ’u r r e n c e  is e v a l u a ted . Thereafter it may  be r e f e r e n c e d

bu t not  ch a n g e d .

P roper  o b j e c t  e x p r e s s i o n s  are  those  w i t h  i d e n t i f i a b l e ,

r e u s a b l e  st o r a g e  l o c a t i o n s , such as A . F T E U D [ I ]  and  V A L ( P ) .

When fou nd r ’~d u n d a n t , t hey  too a re  r e p l a c e d  by r e f e r e n c e s  to

t e m p o r a r i e s .  But p r o p e r  o b j e c t  t e m p o r a r i e s  b e h a v e  l ike

shared  v a r i a b l e s , r a t h e r  t h a n  c o n s t a n t s .  For e x a m p l e , the

sequence

DECL A :RECORD;

PR INT ( A : F I E L D [  I] )

A.FIELD <- NEWEIELD;
P R I N T ( A .  PTELD [I]);

w~~ild be replaced , in effect , by

DECL A:RECO RD ;

DECL T1 :AN Y SHARED A.FIELD ;
DECL T2:ANY SHARED h E l l ;
PRINT(T2); -

T i <— NEWFIE LD;
PRINT(T2);

Care  mus t  be t aken  to see t h a t  s t a c k  space  for  p rop e r  o b j e c t

t e m p o r a r i e s  is a l l o c a te d  at  the  same b lock  leve l  as the

pa r e n t  o b j e c t  ( R E C O R D  A in the  e x a m p l e  a b o v e ) .  If  i t  were

a l l o c a ted a t  the  p rocedu re  level , fo r e x a m p l e , da n g l i n g

r e f e rences  cou ld  o u t l i v e  an o b j e c t  a l l o cat e d  on the s t a c k ,
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leading to confusion for the storage manager.

As I M P R O V E  wa lks  the p r o g r a m  t ree , i t  m a i n t a i n s  an

A v a i l a b l e  Express ion  L i s t  ( A S U ) .  On ly  s imple  expressions

u s i n g  b u i l t — i n  o p e r a t o r s  are  i n c l u d e d ; c o n t r o l  e x p r e s s i o n s

are n o t .  Each exp re s s ion  l i s t ed  in the  AEL is c l a s s i f i e d  by

mode , by context of creation , by expression type (pure or

p r o p e r ) ,  an d if pr ope r , by scope and locale  ( l o c a l  ve r sus

gl obal , s t ack , heap  or u n k n o w n ) .  As a new s i m p l e  exp re s s ion

is walked , it is tes ted for  r e d u n d a n c y  w i t h  e x i s t i n g

available expressions. Two expressions match when

(1) they have the same operator , and
(2) they have the same number of operands , and
(3) each pair of corresponding operands match recursively.

If the new expression matches none of the AEL members it is

made available by adding it to the list. Otherwise it is

linked to the existing expression subtree.

Var ious trans itions and events in IMPR OVE’ s walk of the

tree cause it to scan the AEL and prune invalid elements. A

change of context , for example , may cause some expressions

to become “unavailable ” while the validity of others is

re— established . A control excursion , such as a call to a

proced ure whose effects are unknown , forces all available

expressions to be dropped except those depending strictly on

“hidden ” local names. Pruning expressions at an assignment

is essent ial ly a pa t t e r n  matc hi ng process , using the object

descriptions stored with AEL members. When the object being

assigned is well defined , e.g. an unshared local var iable
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of known mode , affected expressions can be pruned quite

precisely. In less well resolved cases of course , more AEU

elements may have to be removed to guarantee correctness.

F~ r examp le , VAL( INTPTR) < —  I + i invalid ates not only the

• expression being redefined but also all INT expressions not

known to reside on the stack.

Even so ,the inexpensive optimization schemes used in

IMPROVE provide an efficient complement to the more powerful

tools that will become available through symbolic

evaluation.

fl~ a~ ci~. Comp iler

The SPECU (Systems Progr amming in ECU) project is

intende d ts ext~ n1 the use of ECU into ar’~as no r m a l l y

res~ rv ed for so—called “implementation languages. ” SPEOL is

a d i al ect of ECL t h a t can be compiled to stand— alone machine

code that runs without the support of ECU’ s runtime

facilities. It offers the opportun ity to “contract” ECU for

special applic ations , since ~PECL—pro1uced code can be

augmented by just the runtime support (such as storage

mana gement or I/O) that is needed .

SPECL also offers access to the implementation of

operators and the choice of underlying data representctions

at the hardware level. For example , suppose a programmer

wants to implement doubly linked lists using a minimum of
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storage for the links . One trick is to give each element a

single link field containing the bitwise exclusive— or of the

address of its predecessor with that of its successor.

Given pointers to any two successive elements it is then a

simple matter to move forward or backward along the list.

SPECL is ideal for such an application since it permits

the user to manage storage as he chooses and allows him to

give machine code definitions for the necessary pointer

operations. Access to the hardware level is isolated in

code generation templates called Compiler Control

Expressions (CCE). A CCE consists of a specification of a

set of methods that may be used by the compiler to translate

the application of an operator to a set of operands.

I n c l u d e d  in the CCE are  c o n s t r a i n t s  on the order  of

evaluation of operands; information regarding which , if any,

of the operands and the result are proper objects; whether

operand s are modified or merely referenced; and a set of

methods of’ generating code to evaluate the operator. The

methods include information about the form and dispositions

of operands and result , side effects , additional registers

needed , the cost of code generated , and of course , the code

template itself.

SPECL compilation begins with the same two phases ,

ANALYZE and IMPR OVE , used by the ECL interpreter— compatible

compiler. The two compilers thus share the same redundancy

recogni tion scheme . The rest of’ the SPECL compiler consists
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of five passes. They are , first , an initial pass (LAB1) in

w h i c h  the program tree is labelled with information needed

for later passes , an order of evaluation is chosen , and an

i n i t i a l  se l ec t ion  of me thods  for  op e ra to r  c o m p i l a t i o n  is

m a d e .  The second pass , L AB2 , is a r e v e r s e — o r d e r  pass , made

to d e t e r m i n e  the  l i f e t i m e  of v a l u e s  of v a r ia b l e s  and

opera tor  r e su l t s , and the  d i s t a n c e  be tween  r e f e r e n c e s  to

those v a l u e s .  This  information is used by the two

alloca t ion passes , ALLOC 1 and PI LLOC2 which  d e t e r m i n e  which

i t ems  a re  a l l oca t ed  to registers , interpose the necessary

lo ads , s tores  and o the r  a d j u s t m e n t s , and gene ra t e  the

c o n f l i c t  n e t w o r k  used by the  r e g i s t e r  assignment program

A S S I G N .  Af ter a s s i g n m e n t  a f i n a l  pass , EMIT , gene ra t e s  the

actual instructions.

Starting from a trial ordering of the expressions in

each context (straight— line program section), the

temporary—minimization procedure examines the  v a r i a t i o n  in

storage requirements over each context. The vicinities of

peaks in the requirements are scanned for target positions

that meet a simple numeric criterion based on the temporary

usage and result size of the neighboring computations.

Expressions are moved to these favorable positions in order

to reduce overal l storage use . Subtrees free of common

subex pressions mov e as un its, subject to safety constraints.

Most of the time used by this process is actually spent in

recalcul ating the tem porary requirements after a move.
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The register assignment algorithm first makes a

l i v e — d e a d  a n a l y s i s  of v a r i a b l e s  and common s u b — e x p r e s s e i o n s

and d e t e r m i n e s  the m i n i m u m  d i s t a n c e  to nex t  us~ for  these

i t e m s .  This  g ives  the  i n f o r m a t i o n  needed to pe r f o r m

r e g i s t e r  a l l o c a t i o n  o p t i m a l l y  in s t r a i g h t — l i n e  code.

A s s i g n m e n t  is s t r a i g h t f o r w a r d  in such b r a n c h — f r e e  r eg ions  as

w e l l .  W i t h  con t ro l  s t ru c t u r e , however , the  problem is to

match assignments at branches and join points. Heuristics

are used to reduce  the  c o m p u t a t i o n  from a “ t r y  al l

assignments ” approach.

In s u m m a r y ,  then , SPECL ex t ends  to the ha rdware  leve l

the methodology that characterizes program design using ECL.

Users are permitted to become involved in the optimization

of their programs , and they need not forsake good structure

to achieve highly efficient performance

F u r t h e r  d e t a i l s  on the SPECL c o m p i l e r  can be found in

t U din l . At present the basic translator /optimizer is

essentially complete as described . Missing are portions for

handling certain specific ELi constructs such as THTJNKS and

MARK— RETURN . Most of the actual operators of ELi , ot her

than control structures and assignment , have been left to be

implemented as Compiler Control Expressions.
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SYNCHRQNj~~~ jQ~j OF ~~~~~~ Q~ C O N C U R R E N T  PROCESSES

Coordination of multiple concurrent processes is an

area of software en gine ering in which automated aids to

progra m reliability are especially critical. Correct

syn c h r o n i z a t ion of com p lex sys t ems  of in t e r a c t ing pa r a l l e l

proc esses is a t r icky  p ro b lem u n d e r  the  best  of

circumstances. Conventional multi programming facilities

often aggr avate the problem by forcing programmers to think

in terms of low level synchronization primitives within the

individual processes. A more natural approach is to view

synchron ization in terms of the state of the system as a

whole. One would like to construct a model of the system

r e f l e c t ing a l l  of its  sign i f ican t  s t a t e s  and the  cond it ions

for s t a te  changes , and then generate code from that model to

be used by individual sequential processes in effecting

state trans itions.

We have constructed an ex perimental facility which

implements this centralized approach to synchronization with

the ECL system . SYNVER is a tool which allows designers of

multi—process systems to specify the coordination of

processes in a high level specification language (an

extension of’ ELi). SYNVER verifies the consistency of the

user ’s model , checking , ‘or example , for deadlock

situations. It then generates synchronization code to be

used by the individual processes. These synchronization

functions are expressed in terms of ECL’s multi—path control
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primitives tPreriner].

SYNVER has been successfully applied to a wide variety

of s y n c h r o n i z a t i o n  p a r a d i g m s . A comple te  d e s c r i p t i o n  of

SYNVER with examples of its use is contained in EGriffiths].

Because code generated by SYNVER depends on the control

interpreter of the ECU system , a relatively high level

f a c i l i t y , it is i n t e r e s t i n g  to cons ide r  how S Y N V E R — c r e a t e d

s y n c h r o n i z a t i o n  f u n c t i o n s  could  be t r a n s l a t e d  to use ve ry

low level (and easily implemented) synchonization

primitives , such as Dijkstra ’s semaphores. Unfortunately,

brute force translation of such functions to the semaphore

level gives very inefficient results. However , the

existence of a high level specification including invariant

assertions made by the user , plus the knowledge of

cons t ra ints  on the func tions gen era ted by SYNVER , permits

significant optimizations to be perfo rmed on semaphore code

produced from them . We have studied algorithms for

generation of optimized semaphore code , and have described

them in detail in [Steele].

~~~~~~ ACCESS FROM ~~~

To widen ECL’S applicability to probe lms of interest to

the ARPANET community, we have extended ECL’s I/O facilities

to perm it ge neral use of ne twork connect ions without leav ing

the system . Th us inter faces with remote d atabases or
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program tools can be constructed easily within ECL. To test

the new facility and provide an example of’ its use , the

TELNET protocol has been implemented in ECL. 

-
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