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EVALUATION

The contract "ECL Programming System'” has resulted in this report
entitled "Recent Developments in the ECL Programming System.' This effort
was intended to further the development of the ECL Programming System in
the general areas of program optimization and software reliability.

Extensible programming languages have been with us in one form or
another for almost ten years, but for reasons such as the poor efficiency of
of the object programs and/or the compilers, they have been inappropriate
for use in developing military systems software. RADC believes that
extensible languages offer many potential benefits, most notably the ability
to change constructs or to add new ones as requirements, hardware, and
even programming philosophy and style change.

This effort was undertaken under TPO 5, C3 Availability, to attempt
to surmount certain of the problem areas associated with the use, or
proposed use of extensible languages in military systems, and to that degree
was successful. The advances in the state-of-the-art of programming
environments for extensible languages made by this and similar efforts have
direct application to the new proposed common DOD programming language
known as DOD~1, which will have a large degree of extensibility built into
it, and even to existing nonextensible languages such as the Air Force's
JOVIAL.
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SAMUEL A. DI NITTO
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Our central objective in developing the ECL Programming
System at Harvard has been to evolve tools and techniques
that reduce the cost of producing software and that increase
the reliability and efficiency of the product. Achieving
these goals will, in the 1long run, require a striking
departure from conventional methods of designing and
building large programs. Software engineers will need to
become accustomed to the 1idea of deriving concrete,
efficient systems from abstract, readable, demonstrably
correct algorithmic specifications by a sequence of
well-isolated, well-documented refinements. Development
costs can be reduced through use of libraries of abstract
algorithms which can be specialized to the task at hand and
libraries of implementation techniques for common data and
control abstractions. Maintenance costs, which often
dominate the 1life cycle costs of software, can be reduced
because the design decisions taken during a systems's
construction will be spelled out in its refinement history.
The dependences between such decisions will be made
explicit, and the effects of changing one decision will be
easy to trace. Reliability will be enhanced because the
logical foundations on which the program's correctness is
based, its abstract algorithms and the soundness of the
refinement steps, will be exposed and manageably small. Use
of proven software selected from a 1library also favors

reliability.




Rational though such arguments may be, stepwise
refinement methods will probably not be used consistently
enough to have major impact until tools are available which
aid in program derivation. Especially critical are
optimization aids to help squeeze the unneeded generality
out of an abstract program and to make it efficient while

making it concrete.

This report motivates and summarizes our study of tools
and techniques for stepwise refinement and optimization in
conjunction with development of the ECL system. 17 o hig)
intended to give an overview. Detailed discussion of the
individual software aids can be found in the documents cited

in the text.

APPLICATION STUDIES; NEW ECL FACILITIES

Since 1974, we have studied a number of applications
involving combinatorial and linear algebra and have
investigated the sort of 1library facilities needed to
support their proper development. For example, we built a
set extension of ECL so that abstract algorithms involving
sets can be expressed and tested at a very high level. The
set package offers a selection of alternative
representations for set structures from which the user can

choose the most appropriate for his application.




One of our earliest experiments along this line was a
matrix package. Though it has now fallen into disuse, it
helped motivate several ECL improvements and new facilities
which are now in regular use for software development. The
matrix package provides notations for generalized selection
of submatrices. For example, if M is a two-dimensional
matrix, then M[i,®*] and M[(*,j] select the i-th row and j-th
column of M, respectively. M[i THRU j,k] selects the i-th
through j-th elements of column k and M[1 THRU n, 1 THRU n]
is the upper left n x n submatrix of M. 1In each case, the

selected portion is shared with the original.

The package permits users to supply the data types of
matrix elements and to describe their algebraic properties.
The additive and multiplicative operations to be wused 1in
matrix manipulations can be user-defined, for example, and
such attributes as commutativity, associativity, and the
existence of a unique inverse can be declared. Using the
algebraic structure of each element type, appropriate
operators are constructed for the corresponding matrix type.
For instance, if the element domain forms an algebraic
field, a matrix inversion operator will be provided. The
extended operators are designed to exploit algebraic
identities to increase their efficiency. The matrix package
offers a collection of representations for sparse matrices,
and matrix operators are tailored to suit the representation
chosen by the user. Extended matrix operators include

transitive closure, inner and outer product and matrix




inversion.

Experience with the matrix package and similar
applications 1led us to generalize ECL's mode (data type)
abstraction facilities. ECL permits programmers to
encapsulate data behavior in a set of user-defined functions
attached to extended modes. Particular functions are
invoked by the system to perform specific data dependent

, such as object creation and initialization, component

ton and so on. The new abstraction mechanism enables

ne programmer to attribute "apparent" dimensions to data

structures which are not dependent on the physical sizes of
the objects representing them. A sparse matrix, for
example, could be implemented as a grid of linked pointer
rings while 1its apparent dimensions are those of a
rectangular array. Cascaded component selection was also
made cleaner in the new facility. Suppose T, for example,
is a three-dimensional structure composed of a matrix mode M
whose elements are vectors of mode V. Then in the selection
T[(I,J,K] the selectors I and J would be processed by the
user-defined selection function (USF) for matrix mode M.
The resulting object and the remaining selector K would then
be passed to the USF for vector mode V. The partitioning of
the selectors 1is determined by the numbers of formal
parameters of the selection functions. In this way, the USF
for M need know nothing about the attributes of V -- not

even its dimensionality.




The mode extension facility that resulted from these
and other improvements is smoothly integrated with the base
language's built-in conventions, so that the wuser of an
extended mode need not know the details of its
implementation and so that new modes can be added which
interact with (e.g. convert to and from) existing types
without altering their definitions. At the same time, the
ECL compiler has been modified to expose extended mode
attributes to compile-time manipulation (e.g. macro
substitution) to insure efficient compilation of extended
features. Use of the mode extension facility and the

compiler are described in chapters U4 and 6 of [Manual].

The wuse of extended notations for clarity and
modularity in the matrix and set packages made us aware of
the need for other abstraction tools than those provided by
ECL's data definition facility. For example, it is handy to
define an iteration form like

FOREACH Element IN SomeArray DO

{statement>; ...; <statement>

END
The intent is that the components of SomeArray be bound one
by one 1in some order to the identifier "Element", and that
the sequence of statements be performed once for each such
binding. No FOREACH form exists in the EL1 base language.
However, it is easy to add by syntax extension and by
definition of a procedure to interpret FOREACH iterators

when they are encountered in programs. An interpretive

routine, nevertheless, is not always a very clear or concise




description of the meaning of an expression. One would like
to be able to explicate the FOREACH form by providing its
meaning at a slightly lower level of abstraction. One would
also 1like to Dbe able to use such semantic definitions to
translate high level programs successively down to the base

level for interpretive debugging, analysis, or compilation.

This capability is provided by ECL's Rewrite Mechanism.
A Rewrite 1is a pattern replacement rule. Patterns may
contain match variables, distinguished by the prefix
operators $$ and ??, which will be bound to arbitrary
subexpressions or sublists, respectively, during matching.
References to these match variables in replacements cause
the corresponding bindings to be inserted in the rewritten
text. For example, the meaning of the FOREACH iterator for
two-dimensional matrices could be given by the rewrite

FOREACH $$ELEM IN $$MAT DO ??STMTS END <->

BEGIN
DECL M:ANY LIKE $$MAT;
FOR I TO LENGTH(M) REPEAT
FOR J TO LENGTH(M[I]) REPEA1
DECL $$ELEM:ANY SHARED M[I,J];
LISTMIS
END;
END;
END;

Here the "<->" operator separates the pattern on its
left from the replacement, on its right. $$ELEM and $$MAT
in the pattern are bound to an identifier and a
matrix-valued expression, respectively; ??STMTS is bound to

the list of statements comprising the body of the iterator.

Although this replacement happens to be expressed entirely




in the base language, it could just as well include extended
notations. Rewriting rules are applied repeatedly until no
matches are found, so that any number of intermediate
language levels can be used. For example, matrices might be
implemented as lists of lists. Then the matrix iterator
would be 1implemented as a nested pair of iterators over
lists. List iterators would in turn be implemented at a

lower level, perhaps using pointer maninoulations.

This raises an interesting question. Why shouldn't the
iterators for matrices and lists, and other collections as
well, share the same syntax, i.e. FOREACH e IN c DO s1; s2;

END. 1If the rewrite mechanism were a purely syntactic
macro expansion facility, there would be conflict among the
rewrites defining iteration over vairious collection types.
Rewrite patterns, however, can 1include predicates which
augment the syntactic conditions for matching. Such a
predicate may be any ECL function that maps an expression
(plus other, optional inputs) to a Boolean value. All
pattern predicates must return TRUE for matching to succeed.
For example, if 1instead of $$MAT, in our matrix iterator
pattern, we had written $$HAS\TYPE(MAT, MATRIX), and if
HAS\TYPE 1is a function taking a FORM and a MODE which
returns TRUE when the MODE equals the type of the FORM, then
that rewrite would, without other changes, be semantically
specialized to expressions of type MATRIX. A separate
rewrite could be given for list iteration using the same

syntax but a different type predicate.




The function HAS\TYPE, and a number of other useful
expression queries, are part of a tool called the Expression
Analyzer. This program performs a very weak, static
interpretation of ECL program text, attempting to develop a
mode and, where possible, a value or other attributes such
as dimensions, for each expression in the program. Hidden
semantics such as those 1imparted by user-defined mode
behavior extensions are exposed through the creation of
equivalent explicit expressions. These expressions, called
shadow forms, are inserted along with modes and other
attributes in a database which is connected to the original
expressions by a hash-coded translation table. Predicates
such as HAS\TYPE wuse the hash table developed by the

Expression Analyzer and are thus quite efficient.

Shadow forms express program semantics in a standard
notation which is designed to capture the meaning of any ECL
expression using as few constructs as possible. Thus shadow
forms are quite useful in pattern matching; rewrite patterns
can drop into the shadows to make a match. The Expression
Analyzer is like the front end of a compiler, and as such it
can be a useful tool for direct wuser interrogation. In
conjunction with ECL's 1list structure editor [Manual,
chapter 5], the Analyzer allows the user to see his code
from the compiler's point of view. He can browse through
the text, selectively printing portions of the shadow and
other attributes. He can discover passages where additional

declaration would enable more efficient compilation.




The Rewrite Mechanism is documented in [Conrad1]; the

Expression Analyzer, in [Holloway].

Our experience with the matrix package also suggested
the need for instrumentation aids to help provide the basis
for refinement decisions. The implementor needs to take
measurements of program behavior when the high level version
is run with sample data. In many cases, it 1is useful to
monitor the characteristics of data items themselves at key
points. To select a representation for sparse arrays, for
instance, one needs to know what operations aire performed
most frequently (e.g. sequential versus random: and what
the distribution of empty elements is likely to be. Two ECL
facilities have been implemented which enable such
measurements to be made during program execution by planting
executable probes directly in the code. COST [Conrad2] is a
tool for collecting data attributes; PROBE [Conrad3]

determines execution frequencies and timing information.

PROBE carefully eliminates overhead from timings,
subtracting out time spent during garbage collection as well
as the time required to run the probe. It recognizes
recursive calls dynamically and accounts properly for them
in computing timings. It can time either compiled or
interpreted routines and can break down the time spent in a
routine by caller. In interpreted code L collects
frequency counts which can be included as annotations in a

listing of the program. These frequencies serve to
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highlight both sections that are executed so frequently that
they deserve special care in implementation and sections

that have not been exercised by the test data.

COST plants probes each of which collects the value of
an ECL expression. The data collected way be numeric,
Boolean, or of other types. Numeric and Boolean data are
averaged and wmay be displayed in a variety of convenient
formats when the probed program is listed. To give a very
simple example, in

FOREACH e IN m DO
/8 (e = 0);

END
the COST operator "/@" records the number of times an
element of matrix m is zero on entry to the loop body.
After the sample run, the result would be displayed as a
percentage of the total number of times the probe has been
activated:

FOREACH e IN m DO
\@ (e = 0) =: 62.6%;

END '
As with the Expression Analyzer, data are 1linked to the
program text by hashing. Thus, the measurement results can
be used in Rewrites that perform stepwise refinement. As a
simple example, the decision whether or not to expand a

particular procedure call in line might be predicated .»on

measured features of its arguments.
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SOURCE-TO-SOURCE PROGRAM TRANSFORMATION; SYMBOLIC EVALUATION

The tools described so far have enabled us to adopt a
style of constructing programs which emphasizes their
abstract foundations and isolates design decisions in their
realization. In building our own systems software using
this style, we find it has paid off in terms of ease of
initial construction and debugging, minimization of errors
(particularly deep-seated design errors), and ease of

maintenance when requirements change.

These tools, however, are most suitable for a user with
high initiative, who understands his implementation options
and the trade-offs they imply. If adaptation of general
algorithms tc take advantage of special circumstances is to
become even semi-automatic, we will need more sophisticated

analytic aids for source-to-source program transformation.

Again, the matrix application provides an example.
Consider the problem of developing a special purpose matrix
multiplication algorithm for tridiagonal matrices. A matrix
M is said to be tridiagonal if it is square and its only
non-zero elements fall on its main diagonal or on one of the
two nearest subdiagonals. That is, if 1i-ji > 1, then Mjj =
0. The specialized matrix product program is to multiply

tridiagonal matrices A and B, putting the result in matrix
248
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It turns out that the product C will be pentadiagonal:
1f Hi=jf » 2, then Cij = O. Using this fact, one can
devise an algorithm in which the number of scalar
multiplications 1is reduced from o(u?), for the usual,
general method, to O(N), where N is the matrix dimension.
The special purpose method simply clears elements of the
output matrix lying off the five principal diagonals. Then
it traverses those diagonals, filling in components of C.
Each is the sum of at most three products of elements from A

and B.

We have not yet developed optimization algorithms
capable of performing specializations as sophisticated as
this one automatically. However, we have begun building a
Symbolic Evaluator (SE) for EL1 which will serve as the
basis for furthur work on source-to-source transformation.
The SE is now capable of providing the key analytical facts
(such as the pentadiagonality of C) which would enable this
specialization to be derived We will describe the SE and
then sketch how it could be useful 1in the matrix product

derivation.

The Symbolic Evaluator is an analyzer for EL1 programs
which builds a data base of deduced facts about them. Its
major components are:

(1) a symbolic interpreter, which embodies the semantics of
EL1 and which builds and manages the program data base,

(2) analyzers for those control structures which give rise
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to recurrence equations among program variable values,
namely loops and procedures, and

(3) a simplifier/theorem prover which manipulates and
reduces the expressions developed during symbolic

evaluation.

The SE's symbolic interpreter begins where the
Expression Analyzer 1leaves off. To every program variable
it attaches a location description, which contains the mode
of the variable and some representation for values of the
variable in every program context which 1lies within its
scope. Variable values are manifest constants, where
possible, and otherwise they are symbolic expressions
(SEXPRs) composed of pure arithmetic, logical, and
structural functions. Sharing patterns among locations,
including conditional patterns, are carefully tracked by the
symbolic 1interpreter and are wused to account for all
possible side effects when the value of a particular
variable is being fetched. A context graph 1is constructed
which reflects each branch of control in the program and
which records the symbolic predicate that conditions each
branch. The conjoined predicates leading from the entry of
the program to a particular context comprise the "path
condition" of that point. Path conditions are extremely

useful 1in reasoning about variable behavior (yet most

compilers pay no attention to them).
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When it encounters a 1loop, the symbolic interpreter
processes the 1loop body, obtaining for each variable an
expression representing the effects of a general cycle of
the 1loop as a function of the values of variables at the
beginning of the cycle. Then the loop analyzer is called in
to try to solve the resulting recurrence equations,
producing, when possible, closed-form expressions for 1loop
variable values as a function of the cycle number. The loop
analyzer also determines the symbolic condition for 1loop
exit and attempts to derive the total number of cycles of
the loop. This result is then used to produce values for

variables after loop exit.

A component of the 1loop analyzer called the "row
solver" specializes in solving the recurrence equations
which arise for array variables in loops. Here the problem
is complicated by the wuncertainty as to which component
location is being affected by a given array assignment.
Using only a general recurrence equation solving method, the
row solver is frequently able to describe each output array
element as a function of initial variable values only. As a
simple illustration, the matrix transpose loop:

FOR I TO N REPEAT

FOR J TO I-1 REPEAT
Swap(M(1,J], M[J, 1))
END

END

results in the following expression as the value for M:

array(<i,j>, <Nq,N9>, Mq[3, 11)

Here, "array" is a structure-valued SEXPR function which
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yields an array, in this case two-dimensional, with both
dimensions equal to Nq, the symbolic value of N. i and 3
are dummy parameters ranging between 1 and their
corresponding dimensions. The third argument describes an
array element at position <i,j>. My is the symbolic value
of M at the beginning of the outer loop. In other words,
this expression describes an N x N array which is the

transpose of the original M.

The procedure analyzer (which has been designed but not
yet implemented) handles non-recursive and certain simple
recursive procedures. It analyzes each once in isolation
and then applies the resulting analysis to each point of
call. The treatment of recursive procedures again produces
recurrence relations to be solved, and the procedure

analyzer shares the loop analyzer's tools for doing so.

The simplifier/theorem prover attempts to reduce SEXPRs
to manifest constants. In the process, it places them in a
normal form so that those with equal values will tend to
have the same representation. Syntactically equivalent
SEXPRs are replaced, using a hash coded translation table,
by a wunique 1list structure representative. This greatly
speeds up SEXPR equality checking and allows the simplifier
to attach attributes to SEXPRs by direct hashing. In
addition to the conventional rules for arithmetic and
logical reduction, the simplifier includes a "linear

solver". The linear solver takes conjunctions of 1linear
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inequalities involving rational variables and tests them for
consistency. 1If they are 1inconsistent, it replaces the
conjunction by the constant "false". Otherwise, it tries to
derive strict equalities, or bounds on 1linear combinations
of wvariables implied by the original conjucntion. Finally,
the logical simplification algorithms include a resolution
theorem prover for the ground case. We expect to extend the

theorem prover to assertions involving quantifiers in the

near future.

A more detailed descripntion of the Symboliec Evaluator

will be found in [Cheathami1, Cheatham?, Townley].

To return to the problem of deriving a specialized
product algorithm for tridiagonal matrices, let us consider
how we would use the SE to motivate specializations. From
the general matrix multiplication loop, the SE derives the
value for the output matrix C:

C = array(<i,j>, <N,N>, finite\sum(x, 1, N, Ali, k1*8(%,j]))
(Here the expression finite\sum(k, L, U, f(k)) means

f(L) + f(L+1) + ... + f(U)
if U 2 L and is zero otherwise.) The tridiagonal condition
is expressed as the SEXPR

M[i1i,j] = cond(-1 le i-j and i-j le 1, M[i,j], 0)
(Here cond(p, x, y) may be read 'if p then x else y'.) Using
this fact for the input operands A and B, the simplifier

would produce

o e —
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C = array(<i,j>, <N,N>,
finite\sum(k, 1, N,
cond(-1 le i-k and i-k le 1 and
-1 le k-j and k-j le 1,

Ali,k] * Blk,j],

0)))
When the linear solver is applied to the predicate of the
conditional, it produces the derived conjunction -2 le i-j
and i-j le 2. Only when this condition 1is satisfied will
there be non-zero contributions to C[i,j]. 1In other words,

C will be pentadiagonal.

Since only five values of i-j are involved, we can use
case analysis to try to eliminate the finite\sum and thereby
eliminate a loop in the program. With i-j chosen to be -2,
the linear solver determines that the conditions for
non-zero terms are k = i+1 and i le N-2. This CL:,31 =
Ali,i+1] * B[i+1,i+2] in this case. The case when i-j = 2
is similar. When i-j is fixed at -1, the relations i le N-1
and i le k and k le i+1 result. So in this case the sum
expands to

cli,j] = Ali,i] * Bli,i+1] + Ali,i+1] * Bli+1,i+1]
The case i-j = 1 is similar. Finally, when i = j, we have
max(1, i-1) le k and k le min(N, i+1)
Since the spread of possible values for k (and hence the
number of non-zero terms) 1is at most three, the program
transformer might opt for complete expansion of the

finite\sum.
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Thus, we derive the new symbolic expression for C:

C =
array(<i,j>, <N,N>,
CHOOSE
-3 16 =2 =5 @:
i-j = =2 => A[i,i+1] ® B[i+1,i+2];
i-j = =1 =>
Al1,1) * Bli,i+1) « Al1,141] ® Bli+1,1+1];
=0and i = 1 and N = 1 => A[1,1] * B[1,1];
Jrandibti= s EandiaNE st =D
[1y1] » B[191] C A[1y2] * 8[2’1];
J and 1 gt t and i = N =>
(N,N-1] * B[N-1,N] + A[N,N] * B[N,NJ];
J and i gt T and 1 1t N =>
[i,3=1] ® Bid-1.1] » AU4.17 % Bl1,1] «
Ali,i+1] * B[i+1,1i];
Joa=s e =>
Afi,i) * B[i,i-1] + A[i,i-1] * B[i-1,i-1];
j i-=1] #
3
,

= [WRR
o= 1 e — i | e — i |

[R

=2 => Ali, B{(i-1,1-2];

(Here the expression CHOOSE pq => eq; pp => ep; ... END is
a multi-arm conditional SEXPR in which the predicates pq,
pp2, ... Aare mutually exclusive.) From this symbolic value,
the transformer can plausibly synthesize a new loop to
produce the appropriate value of C. In fact, it can use
several loops: doubly nested loops for the cases in which i
and j have no fixed difference (e.g., i-j 1t -2), and single
loops when j 1is a function of i. No loop at all need be
used when i and j are constants. Sinee, by construction,
the cases are mutually exclusive, the order of the loops is
immaterial.
FOR i TO N REPEAT
FOR j TO N REPEAT
i=-j LT =2 => c[i,j] <=0
END
END;
FOR i TO N-2 REPEAT
Cli,i+2] <= Ali,i+1] * Bli+1,i+42];
END;

FOR i TO N-1 REPEAT
Cli,i+1] <~
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Al1,3] % Bl1,1+41) + Af1,4+1] ® Bli+1,1+1]:
END;
N=1->cCl[1,1] <- A[1,1] ® B[1,1]
NGT 1 -> C[1,1] <- A[1,1] ® B[1,1
N GT 1 =>
C[N,N] <- A[N,N-1] * B[N-1,N] + A[N,N] * B[N,N];
FOR i FROM 2 TO N-1 REPEAT
C[lpl] <‘
al1,i-1] * Bli-1,1] + Af1,1) * Bl1i,1i] +
Ali,i+1] * B[i+1,i];

]+ Al1,2] * B[2,1];

END;
FOR i FROM 2 TO N REPEAT
Cli,1=1] <-
Ali,1] * B[1i,i-1]1 + A[i,i-1] * B[i-1,1i-1];
END;
FOR i FROM 3 TO N REPEAT
Cli,1=-2] <= A[1,i-1] * B[i-1,i-2];
END;
FOR i TO N REPEAT
FOR j TO N REPEAT
i-j GT 2 -> cli,j] <=0
END
END;

This 1is a much more efficient program than the
unspecialized version. Of course, further improvements can
be made to tidy it up. Loop reduction could be wused to
simplify the first loop to

FOR i FROM 4 TO N REPEAT

FOR j TO i-3 REPEAT
cli, j1 <-0
END
END

for example. Loop fusion could also be wused to combine

those loops with compatible parameter ranges.

The point of presenting this example has not been to
represent the SE as a complete tool for program
transformation. It is not, and we appreciate the difficulty
of automating such transformations in general. We are

confident, however, that the Symbolic Evaluator provides a
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suitable basis on which to develop source-to-source
specialization techniques, whether user-guided or completely

mechanical.

OPTIMIZED MACHINE CODE GENERATION

However sophisticated our source-to-source optimization
techniques become, they will still need to be complemented
by compilation algorithms which produce efficient machine
code. We have therefore implemented an optimization pass
for ECL's compatible compiler. Called IMPROVE, it walks the
program tree output by ANALYZE (the analysis phase) and
produces a modified tree for input to CODE (the code
generation phase). We have chosen to concentrate on the

problem of eliminating redundant subexpressions, and on the

so-called "invalidation problem" for potentially available
expressions. Other machine code optimization issues,
including code motion, dead code elimination, and

optimization of register assignment, have been examined in
building the SPECL compiler for a systems programming subset
of ECL. SPECL, which will be described below, also uses

ANALYZE and IMPROVE as a front end.

The IMPROVE Phase
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The invalidation problem arises because sharing
patterns among variables and data structures permit hidden
side effects to destroy the availability of expressions not
manifestly affected. For example, suppose X and Y are LIST
variables, and conzider the sequence

HEAD(TAIL(X))

Y <- NEWLIST;

HEAD(TAIL(X))
Unless it can be shown that Y is shared neither with X nor
with TAIL(X), the value of HEAD(TAIL(X)) must be recomputed;
that is, it is invalidated by the possible side effect. In
a language with the rich potential for sharing that ECL has,
the relationship between X and Y may be quite obscure,
particularly if they are formal parameters or free variables
of the procedure being compiled. This is sometimes called

the "aliasing problem."

Our approach in IMPROVE is to cope as effectively as we
can with the 1invalidation problem without engaging in
intense analysis. Fortunately, a significant number of
potentially damaging side effects can be ruled out on very
simple grounds of scope, storage status (heap versus stack)

or data type.

Two types of common subexpressions are distinguished:
pure values and proper objects. Pure values are expressions
like X + Y and LENGTH(A) whose values are transient; that
is, they occupy no identifiable place 1in storage. The

availability of a pure value for reuse ends if any of is
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subexpressions 1is redefined. When this type of redundant

expression is removed, its replacement acts like a "runtime

constant": storage for the value is allocated at procedure
entry and is initialized when the '"parent" or defining
occurrence 1is evaluated. Thereafter it may be referenced

but not changed.

Proper object expressions are those with identifiable,
reusable storage locations, such as A.FIELD[I] and VAL(P).
When found reodundant, they too are replaced by references to
temporaries. But proper object temporaries behave like
shared variables, rather than constants. For example, the

sequence

DECL A:RECORD;
PRINT(A.FIELD[I]);

A.FIELD <- NEWFIELD;
PRINT(A.FIELD(I]);

would be replaced, in effect, by

DECL A:RECORD;
DECL T1:ANY SHARED A.FIELD;
DECL T2:ANY SHARED T1[I];
PRINT(T2); :

T1 <- NEWFIELD;
PRINT(T2);

Care must be taken to see that stack space for proper object
temporaries 1is allocated at the same block level as the
parent object (RECORD A in the example above). If it were
allocated at the procedure 1level, for example, dangling

references could outlive an object allocated on the stack,




leading to confusion for the storage manager.

As IMPROVE walks the program tree, it maintains an
Available Expression List (AEL). Only simple expressions
using built-in operators are included; control expressions
are not. Each expression listed in the AEL is classified by

mode, by context of creation, by expression type (pure or

proper), and if proper, by scope and locale (local versus
global, stack, heap or unknown). As a new simple expression
is walked, it 1is tested for redundancy with existing

available expressions. Two expressions match when

(1) they have the same operator, and

(2) they have the same number of operands, and

(3) each pair of corresponding operands match recursively.
If the new expression matches none of the AEL members it is

made available by adding it to the list. Otherwise it is

linked to the existing expression subtree.

Various transitions and events in IMPROVE's walk of the
tree cause it to scan the AEL and prune invalid elements. A
change of context, for example, may cause some expressions
to become "unavailable" while the validity of others is
re-established. A control excursion, such as a call to a
procedure whose effects are unknown, forces all available
expressions to be dropped except those depending strictly on
"hidden" 1local names. Pruning expressions at an assignment
is essentially a pattern matching process, using the object
descriptions stored with AEL members. When the object being

assigned is well defined, e.g. an unshared 1local variable
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of known mode, affected expressions can be pruned quite
precisely. 1In less well resolved cases of course, more AEL
elements may have to be removed to guarantee correctness.
For example, VAL(INTPTR) <- I + 1 invalidates not only the
expression being redefined but also all INT expressions not

known to reside on the stack.

Even so,the inexpensive optimization schemes wused in
IMPROVE provide an efficient complement to the more powerful
tools that will become available through symbolic

evaluation.

The SPECL Compiler

The SPECL (Systems Programming in ECL) project is
intended to extend the wuse of ECL into areas normally
reserved for so-called "implementation languages." SPECL is
a dialect of ECL that can be compiled to stand-alone machine
code that runs without the support of ECL's runtime
facilities. It offers the opportunity to "contract" ECL for
special applications, since SPECL-produced code can be
augmented by Jjust the runtime support (such as storage

management or I1/0) that is needed.

SPECL also offers access to the implementation of
operators and the choice of underlying data representations
at the hardware level. For example, suppose a programmer

wants to implement doubly linked lists using a minimum of




25

storage for the links. One trick is to give each element a
single link field containing the bitwise exclusive-or of the
address of its predecessor with that of its successor.
Given pointers to any two successive elements it is then a

simple matter to move forward or backward along the list.

SPECL is ideal for such an application since it permits

the user to manage storage as he chooses and allows him to

give machine code definitions for the necessary pointer

operations. Access to the hardware level is isolated in
code generation templates called Compiler Control
Expressions (CCE). A CCE consists of a specification of a

set of methods that may be used by the compiler to translate
the application of an operator to a set of operands.
Included in the CCE are constraints on the order of
evaluation of operands; information regarding which, if any,
of the operands and the result are proper objects; whether
operands are modified or merely referenced; and a set of
methods of generating code to evaluate the operator. The
methods include information about the form and dispositions
of operands and result, side effects, additional registers
needed, the cost of code generated, and of course, the code

template itself.

SPECL compilation begins with the same two phases,
ANALYZE and IMPROVE, used by the ECL interpreter-compatible
compiler. The two compilers thus share the same redundancy

recognition scheme. The rest of the SPECL compiler consists




26

ot five passes. They are, first, an initial pass (LAB1) in
which the program tree is labelled with information needed
for later passes, an order of evaluation is chosen, and an
initial selection of methods for operator compilation is
made. The second pass, LAB2, is a reverse-order pass, made
to determine the 1lifetime of- values of variables and
operator results, and the distance between references to
those values. This information is wused by the two
allocation passes, ALLOC1 and ALLOC2 which determine which
items are allocated to registers, interpose the necessary
loads, stores and other adjustments, and generate the
conflict network used by the register assignment program
ASSIGN. After assignment a final pass, EMIT, generates the

actual instructions.

Starting from a trial ordering of the expressions in
each context (straight-line program section), the
temporary-minimization procedure examines the variation in
storage requirements over each context. The vicinities of
peaks in the requirements are scanned for target positions
that meet a simple numeric criterion based on the temporary
usage and result size of the neighboring computations.
Expressions are moved to these favorable positions in order
to reduce overall storage use. Subtrees free of common
subexpressions move as units, subject to safety constraints.
Most of the time used by this process is actually spent in

recalculating the temporary requirements after a move.
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The register assignment algorithm first makes a
live-dead analysis of variables and common sub-expresseions
and determines the minimum distance to next wuse for these
items. This gives the information needed to perform
register allocation optimally in straight-line code.
Assignment is straightforward in such branch-free regions as
well. With control structure, however, the problem is to
match assignments at branches and join points. Heuristics
are used to reduce the computation from a "try all

assignments" approach.

In summary, then, SPECL extends to the hardware 1level
the methodology that characterizes program design using ECL.
Users are permitted to become involved in the optimization
of their programs, and they need not forsake good structure

to achieve highly efficient performance

Further details on the SPECL compiler can be found in
[Udin]. At present the basic translator/optimizer is
essentially complete as described. Missing are portions for
handling certain specific EL1 constructs such as THUNKS and
MARK-RETURN. Most of the actual operators of EL1, other

than control structures and assignment, have been left to be

implemented as Compiler Control Expressions.
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SYNCHRONIZATION OF SYSTEMS OF CONCURRENT PROCESSES

Coordination of multiple concurrent processes 1is an
area of software engineering 1in which automated aids to
program reliability are especially eritical. . Correct
synchronization of complex systems of interacting parallel
processes 1is a tricky problem under the best of
circumstances. Conventional multiprogramming facilities
often aggravate the problem by forcing programmers to think
in terms of low level synchronization primitives within the
individual processes. A more natural approach is to view
synchronization in terms of the state of the system as a
whole. One would like to construct a model of the system
reflecting all of its significant states and the conditions
for state changes, and then generate code from that model to
be wused by individual sequential processes in effecting

state transitions.

We have constructed an experimental facility which
implements this centralized approach to synchronization with
the ECL system. SYNVER is a tool which allows designers of
multi-process systems to specify the coordination of
processes in a high 1level specification 1language (an

extension of EL1). SYNVER verifies the consistency of the

user's model, checking, Tor example,  for deadlock
situations. It then generates synchronization code to be
used by the individual processes. These synchronization

functions are expressed in terms of ECL's multi-path control




primitives [Prenner].

SYNVER has been successfully applied to a wide variety
of synchronization paradigms. A complete description of

SYNVER with examples of its use is contained in Griffiths].

Because code generated by SYNVER depends on the control
interpreter of the ECL system, a relatively high level
facility, it is interesting to consider how SYNVER-created
synchronization functions could be translated to use very
low level (and easily implemented) synchonization
primitives, such as Dijkstra's semaphores. Unfortunately,
brute force translation of such functions to the semaphore
level gives very inefficient results. However, the
existence of a high level specification including invariant
assertions made by the wuser, plus the knowledge of
constraints on the functions generated by SYNVER, permits
significant optimizations to be performed on semaphore code
produced from them. We have studied algorithms for
generation of optimized semaphore code, and have described

them in detail in [Steele].

ARPANET ACCESS FROM ECL

To widen ECL'S applicability to probelms of interest to
the ARPANET community, we have extended ECL's I/0 facilities
to permit general use of network connections without leaving

the system. Thus interfaces with remote databases or
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program tools can be constructed easily within ECL.

To test

the new facility and provide an example of its use, the

TELNET protocol has been implemented in ECL.

——
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