
R)i~..AO1e3 Un LOCKICED—CALIFORNIA Co BURBANK F/S 9/2
SUMMARY OF 1976 INDEPENDENT RESEARCH ON ENGINEER ORIENTED REMOT—EICCU)

UNCLASSIFIED LR—28005

lit IU~t ~Et:I

EN D

I..I..II.UUI II~~~U~~~~~
IANK F C A % I ~~ORNIA, U S A

D D C ~

J Apprc •~d k i j~ubt . ~~~;tEI ~~~~~~I L_’J ~~~~~
-S... — ~~~~~~~~4 —

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ‘r~:



__________ 
-. -.~~~~~~~~ 

... 
—

L O C K H E E D  • C A L I F O R N I A  C O M P A NY
A D I V I S I O N  O F  L O C K H E E D  A I R C R A F T  C O R P O R A l  0

REPORT NO. ~. LR-2800 
-~~ - -

DATE 6-30-77 ~~~~~ 
-

MODEL Independent Resea.rch

TITLE COPY NO.~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~

~ SU!v~ APY OF 1976 .INDEPENDENT R~ SEAPCR O!~
• ENGINEER ORIENTED R1~ 1OTE COMPUTfl~G ,

L

REFERENCE _____________ 21-37 155QL__

CONTRACT NUMBER(S)

PREPAREft.BY /(. .~~~~~~~
-

~~~~~~~~~~~~ ~~~~~~~~~~

) i~~
. ~~~~ 7.l~~ixIgar d~’ Sd . Comp. App. Spec., Sr.

S

~

i

~

t ion Analysis ~~ogra 1ng

APPROVED BY ________________________________

P. Weinberg , Group Engineer
Simu1~~ion Analysis Progra~Tm~ing

APPROVED BY

~~ D-~ Little , Departaent Mana~ei
Scient ifi~~dnal~

rtical Programming

APPROVED BY ______________________________

~~. B, rry, J~,,fnager
Scientific C7~p~ting Division

“

• • 26

. 7  
.
~~~ ..~~

_________ ________

REVISIONS
) REV. N0.~ DATE ~REV~~~~ PAGES AFFECTED REMARKS

FORM 402 2
~~~ .1 !

-

~ ( 

... . .~~~~~~~~ .• .



-~~~~~ • • —-
~~~~~~ F-

LR 28005

FOR~~ ORD

This document is a report on the second year ’s accomplishm ents

on the Calac independent research task entitled, ttEngineer Oriented Ren~ te

Computing” (project number 76011102). The author is indebted to Dean Saiki

who assisted in the design and. implementation of many improvements to the

production system. The author is also thankful for the many construct ive

suggestions made by Howard Weinberger and Thomas R. Jones during the

course of this task.

:1.
LOCKHEEO

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ • ..
- .---- —--..

• ~~~~~~~~~~
.--.--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

LR 28005

ABSTRACT

The usefulness of computers in solving scientific problems is a

function’ of the ease with which users can communicate with existing hard-

ware and software. This research is aimed at improving such man-comp.~ter
communication. Specifically, a computer system has been designed and

partially implemented which will provide a software interface between

users, possibly inexperienced in computer processing techniques, and

available programs and analysis systems.

This system, denoted as ASSIST (A Scientific Software Interface

System for Terminal-users), aids users in accessing and utilizing existing

applicat:~ons software from remote terminals. The system provides three

basic functions. It helps users find programs relevant to their problems;

it assists them in preparing required input data; and it aids in the

actual submittal of programs and data for computer processing. In addi-

t ion, the system monitors usage of the facilities and provides information
for aiding management in making decisions for ensuring the efficient and

proper use of available computer resources.

The basic approach has been to design a language which pro-.

grammners can use to describe program characteristics (function, input

format, submittal requirements, etc.). 
\~~

hese descriptions can then be

interactively interpreted by ASSIST to aid individuals wishing to use any

available program. Thus, t he user has a helpful inter face system he can
converse with while he is trying to find, prepare input for, or submit a
program.

)

ii
LOCtC HEED

-- ____ •
~~~~~~~~~~~~~~~~ ____


Fir , . .,.

~~~ 

..- —- -—,- —---

~

----- --

~

-,-—-,-- .--—..-- .-.

LR 28005

TABLE OF CONTENT S

Page

FORES~JORD i

ABSTRACT Ij

TABLE OF CONTENTS iii

INTRODUCTION V

1.0 OVERVI~~ 
1-1

1.1 OBJECTIVE 1-1

1.2 BACKGROUND 1-1

1.3 SYSTEM DESCRIPTION 1-3

1.11. PROGRESS 1-6

2 .0 PROGRAM SUBMITTAL 2-1

2.1 OBJECTIV E 2-1

2.2 APPROACH 2-1

2.3 PROGRESS 2-2

2 .3.1 Conditional E~cpansion 2-3

2.3.2 Interactive Coinniunication 2-3

2 .3.3 Iter at ion 2-3

2.3 L1. Character Manipulation 2_Il.

2 .3.5 Progranmier Aids 2-il.

2 .3.6 Other Features under Development 2-~4

3.0 INPUT PREPARATION 3-1

3.1 OBJECTIVE 3-1

3.2 APPROACH 3-1

3.3 PROGRESS 3— 2

3.3.1 Parameter Description 3-3
3.3.2 Format Descr ipt ion 3-3
3.3.3 Type Specification 3—3
3.3.11. Limit Specification 3.11.

iii
LOCK HEED



•~~~~~~~~ , 

LB 28005

)
11 .0 PROGRAM SELECTION

+.l OBJECTIVE tt~i
11.2 APPROACH

11.3 PR OGRESS

5.0 USAGF ‘.~OI~rroRIT~c A:S~ CC~TROL 5— 1

5.1 CBJ A~~ WE 5-1

5.2 APPROACH 5-1

5.3 PROGRESS 5—2

6.0 CONCLUSIONS

APF~~DDC A GU IDE TO WRITING A ~SI ~~~~~~~~~~~

APPENL~~ B THE INPUT DESCRIPTION LA i~GUAGE B—l

A PPENDIX C “ASSIST ” SURVEY RESULTS

REFERENCES 5-1

)

)
iv

LOCKHEED



LB 28005

INTRODUCTION

Technological advances in hardware have made computers practical

and economical tools for ever increasing numbers of users. ~Iore and more

people with less and less programming experience will be using computers

in the years to come. No longer can systems be designed without consid-

eration of these ultimate users. The effectiveness of future systems

will be measured by the ease with which man can communicate with them.

Although a great quantity of problem solving software is

available today, most is usable only by those possessing reasonable

backgrounds in computing. In order to make most present sy stems and
programs useful tools for the non computer oriented individual, they must
either be redesigned, or some communication ’s interface between the user

and the existing software must be developed. This latter approach, if

general enough, could extend many existing computing capabilities to non

programning users without costly redesign of applications software.

An experimental version of a system aimed at providing such an

interface has been developed. This system, denoted ASSIST (A Scientific

Software Interface System for Terminal-users), was designed to aid users

in accessing and utilizing existing applications software from remote

terminals. The system provides three basic functions for the user. It

helps him find programs relevant to his problems; it assists him in

preparing input for selected programs; and it aids in the actual sub-.

rnittal of programs and data for computer processing.

This report discusses the progress made during the second year

(1976) of this task. The preliminary design of ASSIST and the first

:,rear ’s progress are contained in the report, “Engineer Oriented Remote

omput ing ” (LB 27518).

V
LOCKH EEO

_ _



LP 28005

)

SL’CTIO:~ 1.0

OVERVIEW

1.1 TBJECT DJE

The principal object ive of this task is the development of a
user oriented system to cid in the solving of problems on computers.

This system, to be known as ASSIST (A Scient ific Software Interface
System for Terminal-users), will provide an interface between users,

possibly inexperienced in computer processing techniques , and the exist-
ing hardware and applications software . The goals of this system are t o

reduce both job turnaround time and costs associated with the use of ex-
isting batch oriented software.

1.2 RA CKGROTJND

Over the years an extensive collection of application programs

and systems has been produced. Making effective use of this software,

however, usually requires both considerable knowledge of individual pro-

grams and familiarity with computer processing techniques in general.

In particular , one must know what specific programs exist , what input
data is required for each, in what form such data must be supplied, and

what information must be provided to the computer operating system to

effect the actual processing of programs and data.

Non programming users at Calac have traditionally depended upon

professional programmers as their interface with existing software. In

the computing environment prior to 1975 (Figure 1), it was the professional

programmer who directly accessed both the computer and the library of ex-

isting programs. A non programming user, with a problem to solve, would

)
1_i

L O C K H E E D  

—--- .- . -- — • —  , — -~~-~~- -- .----- ~— •



F— . --

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

LB 28005

U

Figure 1. The Environment Prior to 1975

1-2
LOCKHEED



• --- ,.

~

.
--. 

- • . --•
~~~~~

— — •
~~~~~~~~~~~

• .. . .- - •- --- -—
~~~

--— -

~~

- . -

LB 28005

explain it to some programmer who would perform the necessary tasks to

prepare a computer acceptable form of the problem (i.e., put together

program and data with required system control information). The programmer

would then accomplish the actual computer processing and return the results

to the user. This mode of operation had obvious inefficiencies for many

kinds of problem solving. There were often delays in processing and errors

due to misunderstandings. ..~ith more and more people requiring more and

more computer processing there was clearly a need to put them in closer

contact with the computer.

As a consequence of this conclusion, a irect Computer Access

System, DCAS, was established which logically extended the computer to

allow access to it through remote terminals (Figure 2). Initially ITAS

existed only as a subset of IT’s Time Aharing Option (TSO). .~1though

this gave a user direct access to the computer, it did not improve his

access to the Ubrary of programs. This research deals primarily with

the task of extending LC~S to improve the user ’s ability to directly

utilize this collection of existing applications software. In effect,

the goal is to automate the interface function previously provided by

the programmer. In order to accomplish this the programmer imist be

provided with some means for transferring his ‘knowledge” (or information

in his keeping) regarding the use of specific analysis software to DC.\S.
• ~. ICT is that augmentation of TSO which gives CAS this capability.

1.3 S~~Th’~ f 555 IP r•T:

•\SSIS T has been designed to bring together information regarding
existing application programs and potential users in an interactive envi-

oninent (see Figure 3) . ~or each program to be made available through

‘551ST , certain descriptive information will be provided by a programmer.

This information includes a general program description, a complete and

and precise input specification, and certain job control information

1-3
LOC~(HE ED

_ _ _ _ - — -•-- •~~~- .. •~~~-rn~~ • . ~~~ • .• . ~~~~~~~~.•~~ • ._ _~~~~~~~~~ - - .- • • ••

~ - . • • . •• -•-~~~~~~~~~~~~~--~~~~~~~~~~~~~ • - - . ~~~~~—.. - .-

LR 28005

a)

(I)

‘a03

C)
C)

I

Figure 2 . The DCAS Environment

1 ~14
L O C K H E E D

_ _ _ _ _ • —-— • ---- ~~~ -• -~~— — — — - - — — - - -..• ----. ~~~•
.

•==~~~~
-

• ,. --~~~~~
~-

- .~~~~~~. • - .~~ ..- -- ~~~~~~~.- -— .-~~~

T,P 2B005

_ _

I

-

~~~~~~~~~~~~ 5.

HIr T~J _ _ _ _  _ _ _ _

)
~~~~ I 0 .- I—I P., I e~P 1 .  I k~~~~. C

C/D C.)
C...

LY
~~~~~~~~~~~~~J

F~~HCD
-~

Figure J •  AS SIST

)
1-5

LOCK HEED 

~~~~~~~~~~~~~~~~~~~~~~~~ . . . . . . . . .: n J~~ —-.-- . —.—--.-—.—....-—--- •


LB 28005

necessary for running the program on the computer. The user will then be

able to interact with various components of • . . . 5 , wh ic . have access to

this programmer supplied information, for solving some problem. Tf he

needs information regarding the availability of certain sof~wnre, he will

access the Program Selection component . • h~.s wi~ l ~~]• 1 h im abou t existing
programs in a particular category he se1ec~s. :c e :~e knows which program
to run he may elect to access the Input pnr~ ion c.)nponent to assist him
in preparing his data . He may ask to he pr.)upitd S)r ever:T cjuantity needed
or merely to have his data checked for completeness and , to same degree ,

correctness. Finally the user will be able to access the Program , ubmittal

component which will automatically create all necessary job control in-

formation and submit the specified program and data for execution.

1.11- PROGRESS

During 1975 a preliminary design of ‘55151 wa~ completed . The

component of the System which assists users in submitting programs was

developed and put into controlled use for testing.

In 1976 an initial production version of ASSIST, containing
extensive users aids for program submittal, was completed and put into

use. Other aids were implemented and several more were designed including

software to help users in preparing program input data. .~~ detailed account

of the 1976 progress on the various components of ASS IST is presented in

the following sections.

/

L O C K H E E D 1-

r •s 55005

STCTIO S 2.0

•
~~~~~~~~~

2 .1 OBJECT WE

The purpose of this component of 55: 131 is ~o simplif~
r the task

of program submittal by automatically generating the necessary job control
information required by the operatin~ system for Drograni execution. The
fundamental concept is that non programming users should not -e  required

to learn the details of interfac ing with the operating system in order to
run jobs on the computer . he .)sers should be able to coxnnr.in i cn t e  the i r

needs in terms meaningful to them not in the languag e of the operating
system. Tor example, a user desiring plot output should merely hav e to
say, “ PLOTS ” or respond affirmatively to the question , “ o you want the

output plotted?” rather than have to know how to appropriately modify the
AD ~1at a efiriition ) statement of’ the associated plot file. Such capabil-

ities could be of great benefit to the experienced programmer a~. well , for

even with a knowledge of JCL (.Tob Control Language), it might bc ar

simpler to allow ‘
~SSIST to automatically generate necessary controi in-

formation. Certainly there is much less chance of error for either the

experienced or inexperienced user when the program setup and control in-

formation are produced automatically.

2. 2 APPROACH

The approach taken in this  research for assisting users in pro-
gram submittal has been to design a language, and interpreter for it,

which can be used by programmers for expressing the information necessary
for running programs on the computer. This language, known as the M’I

(Trogram Setup Instructions ) aero language, is an augmented job control

language (JCL ) which allows construction of generalized sets of JCT for

2-1
L O C K H E E D

_ 
_ A



LB 28005

the IB’l operating system. The interpreter acts as a preprocessor or
macro processor, expanding programs written in this language into complete
and valid jobs to be execut ed on the comput er .

In a typical case , a progr ammer who is familiar with a particular

progr am and the JCL required to run it will develop a generalized set of
job control instructions called a PSI macro . This PSI macro will then be
placed in an on—line library and , hence , will be available to all users
through the PSI macro processor known as RTJT~PROG. Once a PSI macro has
been so creat ed for a given program, users can run that program by access-
ing RIJNPROG, without regard to any JCL concerns. Furthermore, changes
that may be required in the JCL due to program modifications, system

changes , or operational considerations can be usually made in the single

version of the generalized JCL in the PSI macro library without requiring

any change on the part of the users. In cases where programming changes

were made, all users will au tomatically get access to the latest version

of the program. Thus, t~:is component of ASSISi can help not only the user

in program submittal, but he programmer in program maintenance.

2.3 PROGRESS

Turing 1975 a preliminary version of the program submittal

component (RssJ sRos) was developed and put into limited production use.

fbis vers ion contained only capabilities for substitution of parameter

values , obtaining ,Cser related information , simple communication with the

user , and submittal of the complete job for batch processing . Turing 1976
the capabilities of the program submittal component were greatly expanded.

The most significant of these are described below and a complete descrip-

tion of the current capabilities of RJTNPFOG is given in Appendix A , “Guide

to Ariting a PSI ~5acro.”

2—2
LOCK HEED

•

~

L :

~

- • -,-- - . ,



LB 28005

2 .3.1 Conditional F~cpansion

The first major capability added to RUNPISOG was conditional ex-
pansion . A preprocessor statement similar to the IF statement of FL/I

was implemented within the PSI macro language. hith the “IF” a JCL state-

ment or group of statements can be included or excluded in the job being

built based upon some test. These IF statements can be nested to any

depth.

2.3.2 Interactive Communication

Capabilities were implemented to allow communicat ion with the
user during execution of the PSI macro. A PUT statement allows the
writer of a PSI macro to cause a message to be displayed at the user ’s
terminal, and a GET statement permits the reading of a line of information

from the terminal. Thus , a macro can be written which asks the us~~ to
supply some informat ion and then reads in what is given .

2 .3.3 Iterat ion

A capability, not in the original design of BUNPROG , was added
which allows the repeated execution of a series of macro statements. The

preprocessor statement used for this purpose is the “ DO-W’H]IE ” and is
s imilar to the same construct in FL/I. The group of statements to be
executed may include any number of JCL or preprocessor statements. These

stat ement s iimnediately follow the DO-%’THILE stat ement and conclude with a
preprocessor END statement . Then execution reaches the END statement,

control is transferred back to the corresponding DO-TJGILE . Part of the

rC .[HILF is a condition test just as in the IF statement . As long as the
condition remains true the group of statements following the DO-~-THILE is
executed again. Once the condition fails , control is transferred to the
statement following the associated END statement . hO-~HILE’s can be nested

to any depth.

L O CK H E E D  2-3

L . .• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



LB 28005

2.3.11 Character Manipulation

A capability was added to the design and implemented which

allows the extraction of a substring from a given string of characters.
This function , called SUBSTR, operates identically with the corresponding

FL/I function. Any consecutive string of characters can be extracted from

a g iven string by specifying the beginni~ g position and the number of
characters to take.

2 .3.5 Progra.nmier Aids

Software has been designed and implemented to aid progr ammer s in

adding, modifying, and deleting PSI macros from the on-line library. A

complete log of’ changes to PSI macros is maintained by the system. This
log contains the time and date of the action , the identification of the
progr amuer taking the action , the name of the macro involved , and the
type of action taken.. The software also checks the user’s identification

to ensure he is authorized to modify the macro library .

A capability has also been added to aid programmers in testing
newly developed PSI macros . This feature, called TEST’AA C, operates like

RUI~PROG except it accesses a macro in the programmer ’s library and directs

a listing of the job built back to the terminal rather than submitting it

to the computer for execution . Thus , the pr ogrammer can watch the job
being built , card by card, and discover any errors as they occur .

2 .3.6 Other Features under Development

The original design of RtJNPROG included the capability to in-

voke one PSI macro from within another and the ability to copy a data set
into the job being built. These capabilities are currently under develop-

nient and will be implemented in the production version during the ~bi~’d
quarter of 1977.

2-ti.
L O C K H E E D  

~ 

_ _



LB 28005

‘iso included in the original design was the ability to place
arbitrary expressions wherever constants are allowed within preprocessor
statements. Although this capability has been fully developed, the core

limitations of the current TSO environment in which R’SA PROG operates, have

made its installation impossible.

The design of RUNFROG was modified to include as a diagnostic

aid the capability to get a symbol table dump (i.e., a listing of all

macro variables and their current values), and several new functions.

In order to compensate for the lack of arithmetic capability of ~ TAT ~CG ,

LNCR (increment) and DECR (decrement) functions were defined. IiJCR allows

increasing the value of a quant ity by some given amount while - 5CR allows

for reduction in a similar manner . Three other functions added to the

design were IND EX , LENGTH and CONCAT . These are string manipulation

functu ns which correspond exactly with similar constructs in FL/I.
INDEX allows the determination of whether one string is a substring of

another and, if so, returns the position at which the substring begins.

LENGTH returns the number of characters in a g iven string , and CONC TT

allows the concatenat ion of two strings . These functions are scheduled

for implementation during the second quarter of 1977 .

Other extens ions of RUNP ROG which will be studied in 1977 in-

clude the GO—TO statement, a dynamic naming or array facility, and the

ability to do indirect addressing. Also during 1977, effort will be
directed at improving the responsiveness of RUNPROG.

2-5
L O C K H E E D



LR 28005

SECTION 3.0

INPUT PREPARATION

3. 1 OBJECTIVE

The purpose of this component of ASSIST is to aid the user in
preparing input data for a program he has chosen to run . It will do
three things for the user. It will tell him what input quantities are
required for a given program; it will enable him to pr ovide those values
in a convenient manner (without requiring that he know the specific data

formats required by the program); and it will check the dat a he provides

both for completeness and correctness. Furthermore, this component can
be used interactively, prompting the user when necessary and allowing
him to correct errors as they are discovered. The effect of this com-
ponent is to put a user ’s guide to a program on-line and in such a way
that the user can converse with it.

3.2 APPR OAC H

The approach taken for this component is basically the same as
that used for program submittal (i.e., RUNPROG). In particular a language

has been developed which allows programmers to describe program input
requirements. Actually this language is just an extension of the PSI

macro language since the fundamental requirements of this component are

identical with those of’ program submittal. Namely , it must interact with
a user , providing some information and obtaining other information, and
based on that, construct a data set . In the case of program submittal,

the data set built is job stream input while in the case of input pre-

parat ion , it is a data set for input to some program. These differences
in no way effect the logical operation of the component of ASSIST which

interprets programmer written descriptions and interacts with users.

3-1
LOCKHEED



.R ~~O35

‘S.

)

.11 that is required , therefore , to be able to pr ov i ic~ ‘~c i ~~~~nc~ to  ~he

user in input generat ion is to add certain constructs to the ‘~x is~ iri~
macro language . In particular , constructs are needed ~ñiich allow ~h€

description of required input parameters , including types and ran~r~s or

acceptable values , and the format in which the program expects ~Te rn o Se
given .

,lith such an expanded macro language , a progr amrrer can describe
the input requirement s for any program in such a way that dat a prepared
for that program can be aut omatically checked for completeness and correct-
ness , and, if desired, the input can be prepared in an interactive mode.

In the latter case, information will be requested of the user through an

input description (ID ) macro written by a programmer . Normally , this
request will be a list of input parameters for which the user must supply

values . Additional messages can be displayed to the user at the discretion
of the programmer writing the ID macro. The user can ask for a description
of any parameter requested and the values he supplies will be checked for
proper type (e.g., character, integer, etc.) and limits (e.g., O<X-a.lO)
according to information specified in the ID macro. The user will be

immediately notified of any errors and allowed to correct them. The input

values will then be formatted as required by the program. Tlhen this corn-

ponent is used just to check a prepared data set, the data set must be
properly formatted. In this cas e , a list of all discovered errors will be
returned to the user. The use of this component could result in significant
savings of computer resources by helping users to pr epare program input data
which are correct the first t ime.

3.3 PROGRFES

A software specification for the extended macro language has
been developed , and the design , coding and testing of the required software
modules are in progress. Implementation will be accomplished during the

LOCK HEED 3-~



-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

LR 28005

third quarter of 1977 . The major features added for the purpose of de-
scribing program input requirements are given below . A complet e descrip-
tion of the language constructs for the ID language is contained in
Appendix B.

3.3.1 Parameter escription

A capab ili t~r has been included to allow a description to be

associated with each input parameter . This is accomplished with a 5EF I~TE.

statement . hen a variable is so defined , its descr iption is available to
users on request dur ing input preparation by typing a “ ? “ and the name of

the parameter or parameters desired .

3.3. 2 Format ~escription

A statement is included for describing input formats. It can

be used to specify a list of parameters and the format in which they must

be supplied to the program . it is an extension to the P”i’ statement and

is identical in form to the PUT Fl IT capability in P1/I. However , instead

of taking element s in the list , converting them , if necessary, and out-

putting them according to the format given, the PIT statement takes the

elements and checks them against any type or limit specifications g iven

in the macro (see below ) and then , only if they are correct , output s them
as specified in the  format . ~~rors in input values will be displayed to
the user and he will be allowed to correct them . The PUT stat ement will

then be re-executed aut omatically.

3.3.3 Type Specification

A TYPE statement has been included which allows specification

of the type requirements , if any , which a parameter or set of parameters

~rist satisfy. For example, a set of parameters can Se required to be

LOCKHEED 3-3

~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ .. ~~~~~~~~~ __________  -


LR 28005

integers or real numbers or characters. The P112 statement will check each
parameter in the list to see if a type specification has been given for

it. If so the value supplied will be checked against the type specified.

3.3. 11 Limit Specification

In a similar manner a range or set of acceptable values can be
specified for sets of parameters. This is done with the LPUTT statement.

For example, a parameter can be required to be between the values 0 and

100 or be one of the values 0, 1, or A . Limit specifications are handled

in exactly the same manner as type specifications .

1,

I

I
I

3-11
LOCK HEED

- -~~~- ~~~~~~~ -~~-

LB 28005

SECTION 1 .0

PROGRAM SELECTION

1.1 OBJECTIVE

The purpose of this component of ASSIST is to provide information

to the user regarding available applications software. The nature of this

information will be such that he may determine which , if any, ava ilable

programs might be applicable to a given problem. Program tit les , abstracts ,
development and revision dates , names of responsible programmers, and pro-

cram identification (Reference File) numbers are examples of the information

to be provided. Additionally, this information will be made conveniently

accessible from a terminal. Specifically, a user will be able to give a

keyword or list of keywords and a list or program titles will be searched

for the occurrence of the word or words g iven . The program titles corre-

sponding to matched keywords are returned to the user . He may then list

the abstract and other information desired for selected programs . One of

the pr imary advantages of such a capability is that it provides an effec-

tive means for disseminating information regarding available softwar e

thr oughout a large community of users.

4 .2 APPROACH

The approach taken in the development of this component has been to
create an on-line data set containing an entry for each PSI macro accessible

throu~ih t he pr~~ ram submittal component . In some cases there may be more
than one macro for a g iven available progr am, but there is always at least

one. The entry for a given macro contains its name (a one to eight char-

acter identification), a title, the name of the responsible programmer, and

LOCKHEED

L. ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~

TJ~ ~5OO5

the program reference fi le (RF) number of the program accessed by the macro .
This RF number is a key into an existi:ig data Lase of program description

information, the Program Reference P ile . This dat a base is maintained Ly

the Cc i en t if ic C omput ing ivision and coataias the remainder of pertinent

information for applications programs . his data L’~se will be placed o~.-
line an d, the capability to access it fr om terminals will be provided.

4.3

•n on-l ine data base containing entries for all 1C~I macros was

created , and software was developed to permit accessing t hi s i:-iformation

from terminals. In addition , facilities were developed for addi~~ ,

deleting, and modifying the data base informat ion. Tn fact , the software
which allows programmers to add TSI macros was designed to recu ire that a

descript ive title be given tefore the macro is added to the macro library.
Then a macro is modified the descr iptive title can be ~:h aaged and when a

macro is deleted so is its title entry. Thus, the data i ase of descript ive

titles always reflects the current status of available programs . Two
commands hav e been provided for accessing information in this data base.
The first command, called FES CUA C , can be used to obtain the descriptive
title for a PSI macro by giving its n ame . The second , S- UI ~• .CS , scans

the entire data base for a keyword supplied and returns all entries con-

tam ing that word.

:~lthough the Program Reference File data base has been placed

on-line , the link between it and the U~I macro data base has not been
completely established , and the capability to access it fr om a terminal
has not been developed. These items are scheduled for completion during

the third quarter of 1977. Also the feasibil i ty of extending the search-

ing capability to include Boolean combinations of keywords will be studied .

Thi s capability would , for example , allow a user to ask for all macro

titles containing both the words structural’t and “analysis” or just the

)

14.: —
LOCK H EED


~~~ -‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~

LB 28005

S.
’

single word “structures” or to ask for all titles containi ng the word

loads ” but not the word “dynamic”. A second extension will also be

studied which would allow direct searching of the Program Reference File

data base , includiriC abstracts , in a similar manner . These extensions

will te evaluated during the  fourth quarter of 1977 .

LOC K HE ED



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~ --
_ .

~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

IJ~ 28005

OJUTilT U 5. 0

U 5 - , 5 C~-h TO-:-

5.1 0RJ~CTW~

The purpose of this component of ASSI~T is to easure the

efficient usage of available computer resources Sy developing ade~uote

system controls and throug h the monitoring of user activitU. ‘ iuce ex-

tensive computer software and hardware resources have ~ee: uade a;ailai i1 e

to non programming users , there is a need to prevent iuadver~ent misuse
due to lack of computer experience. ~s a mininri’n, sufficielit iuf~ r~n~~ ion
must be collected in order to determine whether the resources are Icing

—

efficiently utilized. The information so collected, since it will reflect

user activity, will also be valuable for guiding efforts to impiove the

efficiency of ASSIST itself.

)
5.2 A PPROACH

In an environment where virtually all computing capabilities

have been given to non programming users, it is a practical impossihility

to protect the hardware and software from deliberate misuse . The approach

in this research is twofold. Firstly, wherever possible, the accidental

misuse of resources will be preve~ited.
‘-li compone nts of .01ST have been

designed so that the checking of user supplied values and requests is

possible, and in many cases the required parameters which effect the usage

of resources are automatically determined . Secondly, statistics regarding

the usF~ e of resources will be collected. Chile misuse, either accidental

or deliber at e , can not be prevented this way, it can at least be discovered

after the fact . This can , of course, be a great det erren t t o pot ent ial

inisusers as well as a means to correct practices which result in ineffi-
ciencies .

)
5-1

LOC K HEED

~~ - _. - — -~ ~~- - —~~~~~
_ _

~~~-~~~~~~~ - - -~~~~~~~-~~~~~~~~~~~~~~~~~~~~~

IF. 28005

S.

’

5.3 PROGRESS

The accomplishments toward prevention of accidental misuse of

resources were designed and implemented within the Program ubmittal and

Input Preparation components of -~SS lOT. By their very nature these com-
ponents eliminate many sources of user errors • She Program Oubmittal
component automatically determines many required parameters, and both

components have capabilities for checking the correctness of user supplied

values. In the case of program submittal , the computer resources requested

(e.g. core, time, lines of output, etc.) can be controlled, and , in the

case of input preparation, the execution of runs with erroneous data can
be prevented.

Beyond these capabilities, the primary method for ensuring the

eff icient use of resources has been throngh the collection and analysis
of data relating to user activity. U’uch of the relevant data is available
for terminal sessions just as it is for normal batch work throug h t he

standard accounting procedures. In addition to t h is data , a module has
been designed and implemented experimentally which collects information
regarding batch subniittals made by terminal users. The standard account-

ing procedures, of course, collect the same information about these re-

motely submitted runs as they do for normal batch jobs. ;h is new module,
however, additionally collects the following information for each run.

o Userid of s’ubm,itter

o }~ I macro used
o Time, line, and card estimate~
o ‘riority requested

o - ate and time of submittal

This data can be used not only to ensure the proper use of

resources by terminal users, but to determine the level of -~se and actual

5-2
LOCKH E ED

_ _ _



L~ Th005

5

)

users c~f each PSI macro. -‘-lthough this module has teen coded a:.d tested ,

it has not been implemented in a production mode Leca~ se ‘ c a rr ’ ’:. re-

sponse problems during submittal will not permit the mor , i 4 or i r ~~ ~1’ a ct iv i ty .

:--nce re sponse improves to a satisfactory level , t i s  :n o d Je  can he n d d e d .

luring 1977 the feasibility of monitoring oth er ac t i vit i e s  of

‘us ers will be considered and. software will be developed to produce rn ’ - :.-

ingful reports fr om all available informat ion on user act ivi ty .

)

)
‘ - — 3

LOC K HEED

— 4



hR -a005

SECTIOTI 6.0

F L’ ‘S IT US

The success experienced with early vers ’ - :,s of .UU’TOT has cc:.-

t inued with improved implementat ions. he present, ‘iersi ’ . clearly de-
monstrates the practicality of augme r~~i:ig e x i s t i n g  appl icat ion software
with a communications interface sys~ em. 

‘ome of th e  specific benefit s
of this system are as follows:

J (i) By eliminatiug the need for communicat ion with professional programmers,
errors due to misunTerstandings disappear and elapsed processing time

is reduced.

(2) By providing simple and direct communication wi th  the computer , the

productivity of the user is increased.

5 (3) by checking user input data and automatically generat ing job con t roj

information , execution errors are great ly reduc ed.

( L 1)  ‘-Taking information about software centrally and easily avai1~U i e  and

providing a convenient means for using it result s in a greater

utilization of available softwar e and less duplication ef prof-ram

development of effort .

By the end of 1976 , 180 programs , or versions of programs , were

directly available to users through ‘-00 lOT. Included in t h i s  :ium~ er are

several major computing systems, such as F - U I ’S ( - l ut t e r  nd “at r ix  i~ e~ ra

:‘yst~ n) and the l’4OTRAN (IT-Isa STnuct.x al O’Talysis) system. In addition ,

-1 0 1ST includes utility functions to allow users to print and punch data

sets and to compile small FOHTRA . and Pt/ i programs. he : nml-er of users

)
6-1

LOCKHEED



r 
“

~~~~

‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_

Lb 28005

at the end of 1976 was 172, and more than 100 runs were being made daily

through ~
‘1UP. ‘-0010 1 has been used to great advantage in almost every

ur ea of eng ineer ing analysis , as well as some areas of financial analysis,
an d recently in manufacturing. Significant cost savings hav e resulted,
primarily due to reductions in elapsed time to complete analyses and
tnro’n~ h the  el imination of many sources of error . For example , the

st ructura l  engineering organization has reported that ASSIST was , in part ,

responsible for obtaining a dramatic improvement in both cost and schedule

in de termin inn  external strength level loads for the L-lOll—500.

- - u tur e  developments in the area of user oriented remote c om-

put ing  will be at two levels . For th e  short term, efforts will he

directed at improving the performance characteristics and basic capabil-

ities of the present version of ASSIST. The major effort, hc~ever, will

be directed toward determining the proper hardware and software con-

figuration for providing users with remote computing capabilities. hoth

the short term and long term efforts have been strongly influenced by the

results of a questionnaire which was distributed to 1 CT IS users on Pay T0 ,

1976. The complete results and analysis of this questionnaire are given

in Appendix C.

Although the responses to the questionnaire indicated a highly

favorable attitude toward -lOS 1ST, there were many constructive su~’gest ions

for improvement. The main criticism of the system was its poor responsive-

ness , a problem not with the ASSIST software but with the overall hardware

and system software environment in which ASSIST is imbedded. Peither the
1FT’ 360/9 1 hardware nor the CF/’-~~T software ( the current operating system )
wer e designed to support time sharing applications . :onsequent ly, T OO ,

:-p’: ’ s t ime sharing system which hosts ASSIST, has severe performance pro—
bTem ,~. 0u’ thcrmore , due to the wide acceptance and overall success of

F”IS , the number of users is expected to grow steadily over the next several

:/-~‘rs , addi ng to the diff icul ty  of providing adequate performance.

)
LOCKHEED

- - ~~~~~~~~~~~~~~~~~~~~~ ~— - - -  —~- - z’—uu



~~~~~~~~~~~~~~~~~~~~~~ ‘_ -~~ _ _

LR 28005

Several approachs toward improving system responsiveness and
capacity are possible. The first is simply to dedicate sufficient com-

puting resources to achieve the desired level of response for the current

number of users, an expensive but simple solution. The second approach is to

replace TSO with a time sharing system designed to ccmpensate for some of

the inadequacies of the existing hardware and operating system software.

1lthough such systems exist, none offers the range of capabilities avail-

able under TSO, and extensive retraining of users would be required if

such a change were made. Because systems still must contend with hardware

and operating system software which are inherently inefficient for the

purposes of time sharing, a truly efficient replacement system is im-

possible. A third approach is to move the interactive functions from the

Th~T 360/91 onto a machine or machines better designed to support such

activity. In this environment, a user would be connected to a satellite

computer capable of handling interactive functions directly and be con-
nected to the]IBT-C host machine to provide remote batch capabilities. Such

a distributed system, while possibly solving the major performance pro-

blems, introduces many other potential difficulties. Tio t the least of

which are those related to the communication between the satellite com-
puter(s) and the host. The major effort on this research task during

1977 will be to determine the potential value and practicality of suc h a
distributed system for providing user-oriented remote comput ing capabilities.

LOCKHEED 6-3

~_ “--~~~~~~~~~_ —_— -—~~~~ ‘--‘rn ’- -- ~~-

-
~

-‘ ~~~~-‘--‘ -~~ ~~~~~~~~~~~~~~~~~

LR 28005

APPENDD(A

GIJIDE TO T’ TRITII TG A PSI T - ACRO

A.1 INTRODUCTION

A PSI (r ~’ogram Setup Instructions) macro is just a generalized

set of JCL (where JCL is taken to mean all actual JCL, LISP control state-

ments, linkage editor input, etc.). This generalized JCL is analyzed by

a preprocessor (RUNPROG), and from it a complete job for batch execution

is built. In writing a PSI macro it is usually best to start with a set

of JCL as would be required for a batch submittal and make modifications

to it as indicated in the following sections.

1.2 STRUCTURE OF A PSI T .iA CRO

) A PSI ‘Tacro can contain three types of statements:

(1) Systen Control Statements

These are the IBr ,T System/360 JCL statements, LASS statements ,
linkage editor input, and other data. These obey the normal rules

for syntax except they may optionally contain PSI variables (see

section A .14).

(2) Comment Statements

Comments m a y be wr itter. in columns 2-80 of a card if a ‘C’ is placed

in column 1. Comment cards are ignored by the prepr ocessor .

(3) Preprocessor Statements

These are special statements which control the creation of the job

to be submitted. These statements are coded in column s 111-72 and

)
- ‘ -1

LOCKHEED

—
_ _ _ _ _ _ _ _- - -

‘--- . ‘ --~~~~~~ ‘-~~~~~~~~~~~ -~~~~-~~~~~~-

LR 28005

must be prefixed with a ‘%‘ symbol in column 1. These statements

are stream rather than card oriented and hence each must be ter-
minated with a semicolon. The preprocessor statements currently

available are:

(a) The T iacro Definition Statement (See Section A .6)

(b) The ‘-Tacre End Statement (See Section A .6)

(c) -The Input Statement (GET — see Section A.9)

(d) The Output Statement (PUT — see Section A.9)

(e) The Conditional Statement (IF - see Section A .l0)

(f) The Group Delimiting Statements (Do & END - see Section A.lO)

(g) The Assignment Statement (See Section A .ll)

(h) The Iteration Statement (DO i’J}fILE - see Section A.12)

A PSI macro should beg in with a macro definition statement and
end wit h a macro end statement (although neither is presently
requi r e d) . The other preprocessor , comment , and system control
statements can occur anywhere within a PSI macro.

4.3 NOTATIO NAL CONVENTIONS

ilhen describing the syntax of preprocessor statements, the follow-

ing notat ional convent ions will be used.

(1) The brackets, ‘ [‘ and ‘] ‘ will surround items which may optionally
be present.

() The braces , ‘
~~~

‘ and ‘3 ‘ will mean that one of the enclosed items

must be chosen.

( 3)  Strings of lower case letters are used to indicate variables which

must be replaced with some value.

‘ a
LOCKHEED



15 28005

)
~4) Strings of upper case letters indicate information which must be

present exactly as written.

( 5 )  The ellipsis, ‘ ...‘ , indicates that the previous item may be re-

peated an arbitrary number of times .

For example , in the specification

ASSIGN identifier [{
~
j constant] ... TO subscript

‘ASSIGN ’ and ~1l ~ must appear literally, ‘identif ier ’ , ‘ constant ’ ,
and ‘subscript ’ are variables which must be replaced with values

whenever they occur, .(±) constant ’ is optional and it may occur

sequentially any number of times, but each time a choice must be

made between ‘ + ‘ and ‘ - ‘ .

FBI VAR IABLES

Any item (or portion of a statement) within a JCL set which
may assume different values with different submittals may be given a

symbolic name so a value can be assigned when the actual submittal is
made . Thi s name can consist of up to eight (8)  characters. It must

beg in with a letter and can contain only letters , digits, break characters

~~~~~~, 
and national characters ($,~~, l) . This symbolic name can be used for

any item in a JCL stat ement by enclosing it between the symbols ‘K’ and
I-’’ and writing this string in place of the given item. For example,

suppose the running time for some program varies with the input dat a .
One could then write the following statement :

/ ~~T.~~IN LIN~~ =2O ,CARDS=50 ,TI’~~= < I R U N T 1 T~ 1 1T-~

Thi s would allow specification of value for the variable RUl~TI~~ when
the program is submitted for execution.

)

LOC K HEED -3

LR 28005

When the substitution of a value occurs , that value normally

replaces exactly the string ‘ K ’ followed by the variable name followed

by ‘ >~ (for exceptions to this see Section A .5). If th e length of the

value is less than that of the string it replaces then the remainder of

the statement will be moved left so as to immediately follow the value

inserted. Correspondingly if the value is gr eater in length than the

string it replaces, the remainder of the statement will be shifted right

an appropriat e number of spaces . If more than one variable is to be

replaced in a statement, replacement proceeds fr cmi left to . right .

This substitution of values can cause a statement to exceed

the maximum allowable length for that type of statement . b r actual JCL

and LASP statements, RTJNFROG automatically produces continuation cards

when this condit ion occurs . Ill other statement s are truncated after 72

columns .

FBI variables may also be used in preprocessor stat ement s as in

any programming language. In this case they are not surrounded by the :1
delimiters ‘

~~~~.
‘ and ‘ 1”’  • The same variable name may appear in bot h a

system control statement (surrounded by ‘K’ and - ‘) and in a pre-

processor statement and will have the same value in both contexts.

4.5 SPECIFYING COLTOT-SIS FOR OTSIN:; bI- PLAO}bI- ’F’~-fl1S

Somet imes it is necessary to insure that the value replacing

some variable name begins in a particular column . This can be accomplish-

ed by prefixing the variable name with the symbol ‘ ‘ and the desired

column number . For example, an accounting card could be written as

follows :

/ ~~:, C. USERNIOIEI ~l9~ 00.R~I ~~ ‘ -33 01111F :“ ~~~~~~~~ ~~~~~~~~~

L O C K H E E D



LR 28005

In this  case 4 ’he ’;alue of I:.’SR/~ vould ‘t e g in in column 19, the value of

CODE in column 33, and so on. ea~ ’ .’:u ~~,t proceeds from left to right so

if the same columns are ai’1”-~cted by two replacements the latter one over-
r ides the  former. FL~r’ example , . i ’ ~ Se value of Cl-SF had length 2 it would

occupy column s ~~~ and 35 af t e r  ~~.e r ’ : -0’~r..’~ ’m ’ nt .  ‘Towever , the replacement

of EI~5- - h y its value would modi f;i col ~mn 3
1~ again and the second character

of CODE in ‘nis sta~~-:nent w~-~1d be -~estr~ged.

A literal s t r i n ~ can alsc be placed in a specified column by

enclosing it w i t h in  quotes. -o r  example , t h e  accounting card could be

rewrit ten as follows :

/t .’c~. u s ;AT1E ~~- J9-L ’:~
r; >< q33 11t>(q t1231~t > < ql44$p p # > . . .

This would place a ‘1’ in column 33 and the string ‘123L~’ in column s 3~+

through 37.

h’:’-,T ’lItN G A PSI ‘ SO- SO

The name of a 1111 macro should begin with the letter ‘F ’, which

should be followed by the reference file number for the progran being

executed, and this can optionally be followed by any string of aiphameric

characters. The total length c~f the name , however , may not exceed ~
characters. Other names may be used if there is suff ic ient  reason and

if prior approval is obtained .

This macro n ame should appear ~n a macro d e f ’i n i t i on  sTh~e’meu

which should he the  f i r s t  s t a t e me~ of ‘h e  macro. T h e  form ~f t h i s  st .e-

ment is as follows:

name: ~I’~CR0 identifier=co: stan~ [, i~ien~ ~f i e r = ~ .~n s t a n t J

)
—5

L O C K H E ED



LR 28005

)
where ‘name’ is the PSI macro name

‘identifier ’ is any variable name
‘constant ’ is an integer or character string default value for

the variable (see Section -1 .7)

The macro name may also appear on the macro end statement which
should be the last statement of the macro.. The form of this statement
is as follows :

-% ‘CE11E name

where ‘name ’ is the PSI macro name .

-Is an example suppose a PSI macro were being dev~~ oped t o

execute a program whose reference file number was ‘123)4’. The macro

would probably be named P123)4 and would begin with the statement

~ P123)4 : ~TAC RO;

and end with

) % I EN1D P123)4;

This macro name will also be used in storing the macro into the FBI macro
library (see Section A. l )4 ) .

A .7 ESTABLISHING DE~’AULT VALUES FOR V’IRI.-IBLES

Default values may be given to PSI variables ty list  in~’ them

on a macro definition statement (see Section .E for a complet e Oescrip-

tion of this statement).  For example, suppose one v’~.nted t o  h ave  a

default running time of 2 minutes for some program ‘tuit s t i l l  al low t h e

user to override the time if necessary. bhis coul d ~e ‘iceompllsh ’l ty

using the following macro definit ion st a t em en t .

0 5123)4 : TI ACRO RUNTI ’-TE=S ;

: efault values can be established only for t hose vn riaK~’s w~, 1 cn :. r ivt -

been assigned va lues prior to invocation of the macr o . ha~ ~s . s ~rn~

L O C K H E E D  - - -



~~~‘~~~ ‘-~~~~~~~~

FR 28005

)
var i able names have -

~ I T — i n det’a- ,it vni .~es , and tue u cro def~ n~~ ion

s ta temen ~ cannot b e ‘:ned to specify di .~o~ -r left .~lt values. ,l complete

L i s t of these sps t~- m v - r i ’~~1es and ~ - ,ei r ~e;~~” its is - .h’en in t ”ae TaE~~ on

the following page.

The s- ,’a t on v ’ r~ ’tLles fall in~o 2 c1a~ses.

(1) s~ r . f : z ’ u - ’ . ,u , P n at- las

Inese co a t ’ . a u , for a i :t i -u~, re lnt in~ to the user and ‘ neir values .,ra

mat icail ; i det ex ’min ed bused upon tue ‘~~se~’i -:j ” and “ acco ’.~nt ’

spec ified by the us-?r at ‘c- on.

‘pecifically they are :

(a) iid3 ’lRIIl — userid

(b) -~,CS R: ; — dcas account number

(c) ~cir
’
~scs~ — class-work order , ewa, and serial nu’nher associated

) with dcas account number

(d) ~‘Si~ - department number associated with account :, u’nl en

(e) $G~~ - group number associated with account :.um’t er

(f) JOBNOs”IE — name to be given the sub mi tted jot

(g) U C [R TT -I ’- ”Jb - user name associated with userid

(h) USERDE IS - department number associaaed with us~ rTd

(i) BTN/~ - address (i.e. building auuter or t i n u-umter~
where output Is to be sent

(2) ‘orivenience Variables

I he remainder of the variables listed in t he : -b l e were provided merely
-as a convenience in using the early vers ion s of ib” ; - - ~; which did not

~i1 Low the setting of ’ default values. -t some t ime in the fu tu r e t he
defaul t v-nines for all of these v ari at -] rs will be eliminate-I. There-

forE , new macros should explicitly specify the defnu1~ s for any of
these variables -osed , and existing macros should be so modified.

)

L O CKHE E D

_ _ _ _ _ _
-- - -- ‘ - ~~~~~~~-“~~~~~~~~~~ -— ~~

- - -

LB 28005

Variable Name Default Value

•~CL’-_SS ‘B’

- :C}’LARGEt~ automatically determined

~CSR~ automatically determined
automatically determined
automatically determined

-~LINE S ‘5’

$FRTY ‘0’

‘200K’

~TIT- ~ ‘1’

.~USERID automatically determined

BIN# automatically determined

~ 0 L~~~

a null data-set
aut omatically determined

OBJECT a null data-set

‘)469000’

‘0’

SOURCE a null data-set

automatically determined

automatically determined

KOIIIP. ‘A ’

j at-le. RuTIPR E KI System Variables and Def aults

- p

L O CK H E E D

I

~

‘ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
‘ . - -~~~~~~-~~~- - “~~~~~~~~~~

DR 2~~OO5

)
A default value may be any preorocessor constant . Teprocessor

constants may be numb ers or character s t r i n gs . A number may be wri ’ te i ’,

as a fixed point or floating point decima l number . A f ixed point decimal

number consists of 1 to 15 decimal digits with an optional decimal point .

If no decimal point appears, the point is assumed to be inunediately to

the right of the rightmost digit. A floating point decimal numb er is

~rrft’ten as a fixed point decimal nwd er followed by the letter ‘-
, I’ ~-ll-cwed

by an optionally signed decimal in teger exponent (of no more than 2 di0- i t5~~.

Any numeric constant may optionally be preceded b~ a al us or minus sina .

Flanks may not appear within a numeric consta n~~. The foliowian are ~uc-

amples of valid numeric constants.

3.1141593

732

003
.0012

) 3141593E-6

7.325+2

•O03E3

A character string constant is any string of up to 80 valid

characters enclosed withi~ single quotation marks, If a single quotat ion

mark is a character in the string, it must be written as two s ing le
quotation marks with no intervening blanks. If two single quotation marks

are used within the string to represent a single quotation mark they are
counted as a single character. .A null character strino constant is

written as two quotation marks with no interleaving blank. E~xamples of

character string constants are:

‘TITLE ’
‘SHA KESPEI\RE ’ ‘S ’ ’ ’ ‘ ‘tLA ’ - ’J- FIT ’ ‘ ‘ V

‘3. 1)41593 ’

‘‘ (null character string constant)

)
A-9

L O C K H EE D

LB 28005

:1.8 OV’FRRlL IL-TO DEFAUL T VALUE S

If a default value has been provided for a variable , it may be
overriden by the user as follows:

(1) He must include the specification T ’ -IO RL P -IFT (y s o)” when using the
RUTUECOI conunand (See Section A .l6). For example:

ROT T?P dl ~13)4 DATA (X.TI-IT~) MOREP-IR~.T(YFS)

(2) b PFb dT will then give him the opportunity to override default values.

For each variable he wishes to change he must type the variable name

followed by an equal sign followed ‘by the value he wishes t1~~t var-

iable to have (character string values must be enclosed in quotes but
,umeric values need not be). “ultiple specifications can be given

by separating them by blanks or conunas. Entering a null line termi-

nates this mode and RIFTPROO resumes processing of the macro.

°0’ -~ -~~2I C , A I I T L ; - ITH THE USER

Input (oi - .T) and output (PUT) stat ement s are available for
obtaining and providing user information. The GET statement has the

form,

GET identifier ;

vnere ‘identifier 7 is any variable name

he ex e cut Ion of such a statement will cause one line (80 characters) of

i:,I’orrnation to be read from the user ’s terminal. Trailing blanks are
€ ‘lIimU.ated and the resulting string is stored as a value for the variable

specified by ‘identifier ’. A null line or a line of blanks are interpreted

as a single blank character . A separate GET statemen± is (presently) re-

C ared for each value to he obtained.

A-b
L O C K H E E D

‘ - ‘~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ - -~~~~~ - - - -

LR 2~0O5

)
Since execution of the GET statement will cause the pro~~’an to

pause and wait for the u~ er to respond, it is usually necessary to give

him some prior indication as ‘to what information will be required of ~,irn.

This can be done with the PUT statement. In fact the S’]f statement can

be used anytime it is desired to issue a message to t he user. It’s form

is us follows:

O prj~ identifier
- - constant

where ‘identifier ’ is any variable name

and ‘constant ’ is any preprocessor constant (Cee Section ,A.7)

The execution of a RUT statement will cause the value of the identifier

or constant specified to be displayed at the terminal. A separat e I~PT

statement is (presently) required for each value to be output. -‘n example

of the use of the GET and PUT statements is as follows:

PUT ‘~~~EASE STJEY-LY A VAL’JE FOR ‘U;

) ~~ GET X;

Connnunication with the user can also occur without the explicit

use of the GET and PUT stat ements. ‘Thenever a variable is encountered

for which no value has been assigned (either by th e system or from some

prior statement within the macro), RUSTET OG will prompt the user for a

value. For example , if no value had been given for the variable R’P T’T I “h ,

‘the processing of the statement.

/~ ‘niIT -I LIIT-s=2o,c--iRns=5 ,Tl’TE=<R’r I-CrI’Ini’

would result in the following message being displayed at the user ’s

terminal.

=

b~~A HOG would then accept a value from the user for this variable , j ust

as if a ‘lET statement had been executed , and process the st a4 ement using

the supplied value. i b i s variable will now have the value specified by

)
‘i-il

L O C KH E E D

-4

LR 28005

the user , unless altered by an assignment statement (see Section !h.1l) or

an explicit input statement, for the remainder of the processing of the

macro. Hence, if another statement containing the same variable name is

encountered ,

// ~ (EC FORTLG,CAR’-T .G=<RLUTTTT-TE i’

the same value will be used and the user will not be prompted again.

The user may also specify values for variables using the same

technique as was required for overriding default values (see Section - .8~
even for variables with no established defaults. The user could thus

supply all required inputs at once and avoid being prompted for each item

individually except i cases where the explicit input (GET) and output
(HIT) statements are used. (The ‘ThT statement will always require the

user to supply a new value for a varie’ole even if the variable already
*

has a value).

SPECIFYING .ITEET~o1Tr~rES

FEI macros may be written in such a way as to cause some JCL

statements to be included in the job being built only under certain

conditions. IhiS may be accomplished by use of the preprocessor con-

ditional statement. For example, suppose a given program ceuld optionally

produce plot output. The macro could be written in such a way as to in-

clude the setup and PD cards for the plot tape and the necessary instruc-

tions to the operator (via operator cards) only for the runs which actually

Cene rate plots. A variable , say PT -S IT , could be selected as t he test var-

intle and one could write

IF :- i O’TS= ’ ’{FS’ i-~u~s-:

/~ S b h F ’ b - ::o’ -:= PT PT A-’ ,...
his would cause the setup card to b e i n c lud ed only if :,e value of hi

was ‘‘C S ’. If P OTO had not been ass~~Tned a value prior ~o execu
4 b of

- -1~LOC K H E E D

I R 28005

)
the IF’ statement then the user would be prompted for a value. f more

than one statement is to be optionally included ‘based upon some test then

that group of statements must be preceded by the preprocessor s tatement ,

DO;

and followed by the preprocessor statement

- -

For example, one might write the following :

IF PI C-T 5 ’ ‘(ES ’ : FIG

~
c DO;

/*sETu F DLIF- -Th =± -i. OTT AFF ,

/*opIF~ ToR ..

~ END ;

In this case the setup and operator cards will all be included or all

omitted depending upon the value of PLOTS.
)

The conditional statement ~ru~t have the following form.

-
~~ ~~~

‘ identif~er relop iden’f if~er THEN stat ement-block
constant constant

where ‘identifier ’ can be any variable n ame

‘const ant ’ can be any preprocessor constant (see A ect io r i A .7 ’
~

‘relop ’ must be either the relational operator ‘ = ‘ (equal) or
‘
~~~~~= ‘ (not equal )

‘statement-block ’ can be either a single statement or a group

of st atements preceded by a DO statement
and followed by an END statement.

Conditional statements may be nested to any depth. The follow-

ing are valid examples of the use of IF statements.

IF’ - ‘ =1 TTtII N

- I ’ DO;

(group of statements )

)
- ‘--13

L O C KH E E D



LB 25005

IF B=2 TIThN

DO;

(group of statements)

IF 0=3 THE N

(statement)

h U T;
- 3 ‘- ‘~~‘

- ;

U’ 0=1 THEN

~ 00;

(group of statements)

IF B=2 -THELT

DO;

(group of statements )
‘1

(group of statements)

-3 - - -  ‘

.11 ASS ISSING V -11 ‘.5 TO V’~RTABLES

A limited form of an assignment statement is available in the

present version of I - P0 1. This statement is written as follows .

‘f, identifier = constant;

where ‘ identifier ’ is arry variable name

‘constant ’ is any preprocessor constant

“ne example of the use of this statement is the following :

~~- IF T l’TI E 7=2 TInO ;

~

here ETY is given the  value 3 as long as TIT LE is 2 (presumably the

deI~~J t  value), otherwise bET’! is changed to 1.

A -b~LOCKHEED



T b ’ . 280o~

)
A .12 h’IRF A-Phii JC; ITERATION

Sometimes it is necessar ,’ ~ re-p. a’ a s’~ emen’t or group of

statements within a job being b u I l t . This repe*iti on can ~-e accomplished

with the preprocessor DO .~T 1 I  sta* enI~
,
~4’ . ‘ s syn t ax is as follows :

- identifier identifierDO “H ILE ( relop ,constant c o s  - - -

where ‘identifier ’ is any variable name.

‘constant ’ is any valid preprocessor constant,
‘relop’ is either the relational operator

‘= ‘ (equal) or ‘ 7~~’ (not equal )

The end of the repetition loop is indicated by the preprocessor ES”- state-

merit.. The loop may contain statements of any type (preprocessor, O TT ,

etc.), and the group will be repeated as long as the condition of the

DO ‘~1i]1E remains true. For example, suppose the input data to some pro-

gram could exist on several data-sets which would have to be concatenated
together in order to make a run. Rather than requiring the user to do t he
necessary merging , the following code c~~ld be included within a PSI macro .

//sYsITi DD T )S N= <.INPUT > ,DIS P=SHR

~ FJ’I’ ‘SI ‘PPLY NEXT INPUT DATA—S ET NA ‘bE ’ ;

~‘f, “J]T ‘OR HIT CARRIER RETUR N IF b-iOhT ’ ;

~ GET INPUT ;

% DO H’EIIE (IRU’T ~r 7 =  ‘ ‘) r

// DD T)SN= < INPUT - ‘ ,DISP=SHTR
~ H TT ‘SUPPLY NEXT INPUT DATA-SET TAT TIE’;

PiTT ‘OR HIT CARRIER RETURN IF SPITE’;

~ GET INPUT ;

- f , EUT ;

)
A-15

L O C KH E E D

_ _ _ _ _ _ _ _  --_ _



LB 2~OO5

After the initial ‘DD’ card is written into the job stream t h e
user is prompted for another data-set name by use of the Ffl and I~ I

statements (see Section A.9). The loop is then entered provided the value

supplied was not null. A con catenat ion ‘ID ’ card is generated and the user
is again prompted for another data-set name . Control returns to ~ne DC
I’JHILE statement and the leop is exeeuted again as 1 on,~’ as th ” T e s t

value provided was not null. This process continues trntil a ~1l ‘j ab ~e

is given for a data-set name. Control then transfers to the statement

following the END statement. -

A.13 BUILT-IN FUNCTIONS

The built-in functions which are available for use in writing

PSI macros are described below.

A.13.l DSN Built-in Function

Definition: t~ N convert s a valid TSO specification of a data
set name into a form acceptable for use in a Data Definit ion (P D) state-

meirt, retur ning the converted form ‘to the point of invocation. ( Ilithin
TSO a user may refer to one of his data sets without explicitly including

the top level index, namely his “userid ”. He may also refer to his own
or any other catalogued data set by specifying the full data set name and
enclosing it within single quote marks ( ‘ ) .  In a PS statement, however,

F the full data set name, without enclosing quotes must ‘be given).

Reference: DSN (string )

Argument: The argument “string” represents the string from

which a full data set name is to be constructed.

-0-16
LOCKHEED



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~

‘ ‘

~~~~~~~~~~~~ ~~~~~~~~~~

‘

~~~~~~~~~~~~~~

“

~~~~~~~~~~~~~~~~

‘

~~~~~~~~~~~~~

LR 28005

)
Result: If “string” has enclosing quotes the value returned by

this function is the “string ” with the enclosing quotes removed. Other-
wise , the value returned is a string consisi ing of the current user ’s
“us erid ” followed by a point (“ .“ ) followed by the argument “string ”.

Exan~p,les: If INPUT had the value

‘El23l~56 .I TV .I~AT0’

the stat ement

~f, 00TAS~~I LXIN ( IINHJT ) ;

would assign the value

E1231456.XYF .P OTA

to the variable - T AP- HI .

If ITTi7ST had the value
T(YS • DATA

and the current user was E6514321 then the statement above wo’:Jd.

) ~~~~~~~ the value
E65~432l .XY I . TI-AlA

to be assigned to DL TAi’ HF .

A.13.2 StJBSTR Puilt-in PunctioxA

Definition: S’JBSTP extracts a s-~ibstring of progr ar~ner defined

length from a given string and returns the substring to the point of
invocation.

Reference: S ’PT TP ( str i : ig, [i  ,j J

Arguinents: The argument “string ” represents the s~’ring from
which a substring will be extracted. - ‘-.rg’-ment “i ’ represents the starting

po Lnt of the substrinE and “j” represents the length of the substring .

)

- ‘ -17
LOCKHEED



LR 28005

Arguments “1” and “j ” must be integers or variables with integer values .

Assuming that the length of “stri ng” is k , arguments “i ” and “j ” must
satis fy the following condit ions :

(i) j must be less than or equal to k and greater than or equal to 0.

(2)  i must be less than or equal to k and greater than or equal to 1.

(3) The value of i + j - J. must be less than or equal to k .

Thus , the substring , as specified by “i” and “j ” must lie within
“string ” . If “j ” is not specified , it is assume d to be equal to the value
of k - I + 1. In other words , it is assumed to be the length of the re-

mainder of “string ” , beginning at the ith pos ition in “string ” .

Result: The value returned by this function is a character

string determined as follows:

(1) If j =0 , the returned value is the null string .

(2) If j is greater than 0, the returned value is t hat substring be-

ginning at the ith character of the f irst argument and extending j
characters .

(3 )  if j is not specified , the returned value is that substri ng be-

ginn ing at the ith character and extending to the end of ‘ strin~ ” .

E~cample: If CHARGE is the character string

21-3715 51407
the stat ement

= SUBS TR(CHARGE ,1+ ,14);

will cause a 14-character substring to b e extracted from ‘
~ bA~’ I ~~ ,

start ing at the 14th character . ‘i’hiS substri ng , —

3715
will then be assigned to the variable ‘TO .

- ‘--18
LOCKHEED



[ P  23005

)
o.ih A L’i RC -VhiI. :.pI E ynp USE

:o,ie a I I macro han b ee~ wri’te:. it must b e copied into the
I~’I macro litrary b e f or e  i t  can be used with - - I 0 . This  library is a
part it ioned Oa t a set wI~,e ri’ eac:, n€’m~er is a macro. The member name should

be exact ly the same as ~I- ,e ‘ .ame T’; e~, t ne :na( ro .

A special , OAP :‘o~Ln~ :, -~ is available for put t ing a new member in
the library or cI.an~~ino an exi~~~tnw memher . I h i s  command is named ATDF-T TI~O

and has ~wo posi~~iona 1 parameters, he f i rst  is tbe name of a control

(CUTS )  dat a set containing he macro to be airle d or replaced and the second

is the name of the macro , or example ,

o: -P~’ x’ : ~~~314
will put the dat a set userid .’TY” .CNT L into the macro library with member
name P123)4 . Sotice that the data set specified must be of type CNT L and

exist in the library of the current user and neither the uaerid or type
) are specified on the ASFTTA C command.

An existing macro can be changed by first copying the appropriate

member of the macro library (which is named TSOGIJRU.DCASJCL.CN’ITL), making

the desired changes in the copy and using AID T TI-’~C with th is new data set
and the original member name.

0 .15 REITOVIHG A PSI MACRO FROH T}~~~ LIBRARY

~~ [bi l macro can be deleted from the library by use of the DEL MA C

command. This comm and is written as follows:

ITI-1IU -.AC macro—name

where macro-name is the name of the macro to be removed. SELMA C will
give the user the opportun ity to specify additional macros to be deleted

by prompting for more names, thus , allowing several macros to be deleted

at once.

)
0-19

L O C K H E ED



r ~~~~~~~~

LB 28005

A.16 EXERCIS ING A PSI MACRO

The DCAS command , RUNPROG , is used to invoke a PSI macro to

build and submit a job. Its form is as follows:

RUI~PROG macro—name keyword (value) J
Here, ‘macro—name’ is the name of the PSI macro tO be used and

k
eyword(value) j .., ‘ is a (possibly empty) list of keyword parameters

and values as needed for the particular run . The following ten keyword

parameters may be used with RUNPROG.

(1) SOURCE

(2) DATA

(3) OBJECT - data-set names
(14) CASEDATA

(5) MATDATA

(6) MADOL

(7) XCHAR - character(s) to be appended to userid (or jobid) for
use as a jobname

(8) MDPROG - progr am name

(9) MOREPARM - indication as to whether more parameter values are

to be specified by the user
(10) SUBMIT - indication as to whether the built job is to be

submitted~

The first  eight of these are provided merely as a convenience;
they may be omitted here even if it is desired to override their default
values (see Section A.7). Values supplied for the data-set names (par-

ameters 1-6) can be specified according to TSO conventions. RUN’PROG will

automatically add the userid if necessary (that is, RUN’PROG will perform

the I~ N function (see Section A.l3) on supplied data-set names). The

seventh parameter allows the specification of a character or string of

characters to be used in the construction of a jobname for the job to be

A-2 0
L O C K H E E D



LR 00005

submitted. The jo’b name will ‘be the userid or jobid, if one has been

established for the current user, followed by the character (s) of X~’ii00.

If th e ,jobname so formed is greater than eight characters, it will be

truncated to eight. The eight parameter is merely some name. It can be

given any value, up to eight characters in length.

The ninth parameter is used to indicat e that additional par-.

axneter values (other than those given on the PI:Ji - RCYG statement) are to be

provided by the user. This can be done by specifying MOREPARM (YES); the

default value is :~c (see Section A.8). iSie tenth parameter indicates

whether or not the job being built is to be submitted for batch execution .

The default value is YES. If S’JB’TTE(oc) is specified then RTJ STROG will

build and list a complete job but will not submit it • It will save the

job in a data-set named JOB. CUTL in the current user ’s library. If

su’BMflI’ (LIST) is specified, the job will be listed and saved as JCF.CNTL

as well as being submitted.

It should be noted that R0iTF R~~ is a ISO command procedur e

(CLIST) and as such allows the use of abbreviations for keyword parameter

names . Only enough characters need be specified to insure the unique

identification of a given parameter. For example, one could write,

RUN’PROG P123)4 so (sc ur ~o~ .i”cRT ) D ( T - A T A .DATA ) o (ci~JE-oT .oATo ) x(o)

:1o(YES) so(oo)

A .17 TESTING A PSI T’ACRO

A PSI macro can (and should) be tested with the ~TvST”,.TIC command

before placing it into the macro library. ‘Thi s comman d is very similar to

the RU TP R S~ coimnand except for the following :

(1) It accesses a macro existing as a dat a set in the library of t he  in-

dividual using the TE OT ’ -~A0’ command .

)

L O C K H E E D



IF 28005

(2)  The Job Control Language (JCL) statements produced by processing the
macro will not be submitted but will be disDlayed at the terminal

as they are being built. Prompting messages, if any, will appear as

they are encountered within the macro. Hence they may be interspersed

with the JCL statements being built. These messages should he answer-

ed as usual.

The form of the TEST MAC command is as follows :

TESTMAC data-set-name yword(value)

The ‘data-set—name ’ specifies the name of the data set containing ‘the

macro to be tested . Ihe name must include the type qualifier. The key-

word par ameters are specified in exactly the same manner as for the

RUNIPROG command. All ‘but the SUBMIT keyword can be used with TEl 5 -105 .

The following is an example demonstrating the use of TZST MA C to check a

newly written macro, created as a TSO data set named P29141. CUT T , where a
value for the keyword DATA and an indication that more parameters are to
be supplied are given :

TESTMAC P29141.CNT L DA TA ( P2 9)4l .DATA ) 1- OP - .-MAY (YES )

A .18 SPECIFYING DATS- 0-M’ 50-105 55

In ISO a user may refer to a catalogued data-set outside his own

:1 library by enclosing the name in quotes. nfortunately quotes are also

used as delimiters in tSO and uL/I (the language of 5010 o- !~~~). This re-
quires that one often write two successive quotes to indicate one actual

quote character. Several levels of passing these characters can lead to

a proliferation of quotes.

• Sithout going into the reasons why , the following rules are
given as a guide for specifying a quoted data-set name to B 1J1flT- ~~ .

)

A -22
L O CK H EE D

L



LB 2’1005

( i)  -[hen specifying a data-set as SST 1}TCE , OBJECT , DA TA , I I A P E I S T A , ‘-10 TDA TA,

or MAJOOL as part of the RUN’PR CG statement or when specifying such a
data-set with any of the DCAS conixnarids , FR1[F, POSH , FRI~TOIJT , DRIT1 ’TDS ,

SHOTS, TT1UR , 551fT 01101R , GFTDS or PUTDS, the name must be preceded
by four (14 ) quotes and followed by four ( 14) quotes.

(2) 1’[hen the data-set is specified as an additional “-am meter (using the

1-IORE PAF J -(YES) option), the name must be both preceded and followed

by three (3) quotes.

(3) iThen prompted for a data-set name, only single quotes are requ ired

both pre ~~ ing and following it.

Data-sets which are within the user ’s library are specified

identically in all cases; that is, the complete data-set name, exclusive

of the ‘userid’ and its following decimal point is given.

)
A .l9 DD-’J-IJOL E OP A PSI ~1ACMA-

The following Figur e is an example of a PSI macro. ‘ard 1 is

just a connnent . Card 2 is a macro definition statement g iving the macro

the name , E(01 IFI E , and establishing default values for the par ameters ,
T IME , PRIORITY, FR~~ PAJ-10, and CLA ’ S . ‘ard 3 tests the variable, TIME . If

TI~~ is n~t a 2 (i.e. a value for TI1 0~J was specified using the ‘-1ORETARM (YE~’)

option) the statement on card 14 is executed. Hence PRIORITY will be 3 if
T IME is 2 and 0 otherwise. -~‘ards 5 through 8 are JCL cards in which par-

ameter substitutions will be made . 50 50-10, ,~T~5ERI5 , USERILAI-i , ~‘5R~’,

$D~~~, ~GP~t , and BIN# are automatically determined based on the logon in-

formation. The other parameters get their values from the defaults spec-

ified on card 2 , frQm information given by the user with the 1-1CRE FA R -1( Y” u~ )

option , or as determined by the macro 5tself (as possibly for PR IORITY ) .

Card 9 is another comment. Card 10 iests the variable , PLOTS . Since PLOTS

)

L O CK H E E D

~

•

~ ‘



-

LB 28005

u

_ : u

- ‘ .-
. - - - ‘~~ ~~~~~~~

_~~~~~ ‘u

— -~~~~~u O -  ~— --:~~~ u c  ~~~~~~ c :  — a -

2 ~~~~~~~ — — n u _ u - -

l igure. Example of a RI Macru

A_2L~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -



ru
i_.PUuuu.. ‘~‘~~~~ ~U T ~ T~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -‘

LR S1’~O95

is not a sys tem variable, and no default has been established for i~ , the

user will be prompted for a value (unless he has already supplied one

u sinu the 1 IORE PA R- 1(YES ) option). If the user supplied value is ‘YES ’,

that is, there will be plots produced, cards 12 thro ugh 15 (those between

the DO statement on card 11 and the ENS statement on card 16) will be in-

c 1’ :de ° in the job being built . Otherwise , they will not . Thu s , appro-
priat e operator in s tr -  ~ctions and a SETU P card will ‘be included if there
is no be plot output , in th i s  case , the values for 0 1055, i D I D E J T Y ,

U 5 M A l 1 0 -~~, D I D - , ~~~~~ [‘l50, and -1555- , will be substituted as before . The
user will be prompted for a value for tie variab le , PAI l’S , unless he gave

one earlier , and that value will be substi tuted. in card 1~4 . ards 18

through 23 are JCL statements. ‘I he values , if any , supplied by th e  user

on nhe  SLIT S tI state:nent for 50015SF and 0501551 will be substituted in

card 15 and 19. if no values were given the  system defaults will be used.
lard 2~ is again a comment. ‘ard 25 is anoth er  test , checking to see if

an output data is to be saved. The user will he prompted for a value for

OUTS’L unless he previously gave one , and the statement s between the DO

on e~r’I 2~ and the  END on card 30 will be executed only if the value of

‘[I T’lL is not ‘50 ’ . In that case its value will be taken as the name to

be given the output data set. The statement on car d 27 performs tOe 1 ’ IT

f’:ncnion on the name (see Section A .l~~),  converting it from a valid ILlS

specification of a data set name in an OS acceptable form. The sub-

snJOtution of th is name is then made to ‘lhe DD s tat ement  g iven on curls

28 and 29. ‘ards 31 and 33 check the value of FT 105.1 aoain and the appro-

priuze Di) card, either 32 or 31~ will be included. ‘lard 35 and 3to nrc 10 1

cards. A valve will ‘be substituted for the variable 1 -iTO ir card 35 as
was specified by the user or by default if none was spec i f ied . I inally

card. 37 in icates the end of the macro.

- - ‘5
L O C K H E E D

—



LB 25005

)
‘I Al 1 - 551,1K P

1115 L 1}’TJI DE SCRII- i IT 1-1 1 : 5 ; 1  r : ;E

0.1 ITITRODUC TLT1

The ID (Inrut - escript ion) lnng’~i€e is just an ex
nension uf ~he

- I (I rogram Setup Instructions ) language. be basic rules for orslr ‘~c ’ inc

macros are the same as for i-SI macr os , and all statements wh icu ur n

in SI macros are legal in ~~ macros. ihe  addi t ional  Tan nn~ace cons’lr’:c’s

for input descript ion are given in the following sections .

lEI f ’C RI PINl ;  111051 1 ARAIPJT EP .S

A character string giving the meaning of an input parameter (or

any macro variable) can be associated with its name by means of a ‘P1 1015

) s ta~ euent . The form of this statement is as follows :

DEF IIT’E ident ifier (character s t r ing) ;

wher €-  ‘ identif ier’ is any variable name

‘character string ’ is any string of characters

Fo r  example , :he string ‘ 1-10CH 1ITJ1 1I1ER ’ can be associat ed with

thn v’tria’ble name ‘5’ as follows:

~ FT 151 : : ( : 1 0 IN T J M E E P ) ;

A mure involved description is also possible as ind,icatcd by

he followinl-; example.

~, 0551115 i soi ( i 011011 00 ION —

1 -051=0 FOR STANDARD PRINT,

0 1=1 FOR 51F”Y15Y 15151 O N J Y )

)

1 -l
L O C KH EE D



LB 28005

)
Here the variable , 15151, is a flag by which the user may specify one of

two output options.

Once a parameter has been so defined a user may obtain the

associated description by typing a ‘?‘ followed by the parameter name.

This may be done whenever a response of some kind is expected from the

user . This action interrupt s the normal processing and , after providing

the information requested, execution of the macro resumes automatically.

5.3 DESCRIBING L50JT 0051-SIC

Lu order to describe the formats in which a program expects its

input to be given tue FIJI’ statement has been expanded to allow a format

specification. Syntactically this statement resembles the ~T r J’ 11111

statement in I’D/i. It is wr it ten  as follows :

~; 
i tT ( identifier [, idenni fie r ]  ...) (format list )

where ‘identifier ’ is any variable n ame

‘ format list ’ is a~y valid IL/i format list

‘Spon execut ion of this s ta tement  the  specified list is writ ten

on the output file according to the format specifio~ Lio-~ u example of

th i s  form of the PUT statement is given below .

~ 1- UT (K , Y , ) ( i ( 3 ) , x( 2 ) , 2 \ ( 5 ) ) ;

SM E C I P Y I I J  I il-0I’- IF51ER TYPES

i’arameters may b e declared to be of one of three types -

character , in teger , or real . I his is accomplished with the  TYP E s t n t e —

L O C K H E E D



15 2E005

)
ment. It is written as follows :

-~ CHAR
“

~ TYPE (identifier L,ide1~
t
~~

’i
~
e
~’J 

. . .)  IIIT E flEB
R EAL

CHAR
[(identifier [,identifier~ . . . )  1)115555

where ‘identifier ’ is any variable name

For example, one could specify X and Y to be real numbers;

I, J, and K to be integers; and ABC to be a character s tr ing as follows :

~ TYI F ( :‘I , Y) REAL,(I,J,K) INTEGER , (os-c ) ‘MA il ;

“hen a parameter has been so typed, any value supplied for it

will be checked for compliance. If the value is not of the proper type,
the user is isnnediately notified and prompted for a new value if the

macro is being executed interactively. Otherwise, an error message is

written on the output file.

B.5 SPECIFYING P f dTh TETiIER LL- ITS

A range or set of acceptable values can be specified for a

parameter with the IL-ITT statement. It can be wri t ten as follows :

~~
- LIMI T range ~,range~
where ‘range ’ can be one of the following:

identifier = (constant [,constant ] . . .)

identifier = constant

)
5’ — 3

L O C K H E E D  

~~~~~~~~~~~~~ - -‘
~~~~~~~~~~~~~~~~~ -



LB 28005

constant 
= } identifier [{< = } constant

constant 
= } identifier [{ ,,‘ 

} 
constant 

]

where ‘identifier ’ is any variable name

‘constant ’ is any valid constant

111th the LIMIT stateni e~ t a paramet er can be requir ed to be one

out of a set of values or to lie between two values. -~ultiple ranges or

sets can be given for a single parameter in which case they are logically

DR-ed together . For example , to specify that the variable X nru.st be

either between 0 and 3. or the value —99, one could write,

~ LIMIT 0 <~ 
X < =  1, X = -99;

Several parameters may be given limits with the same statement

as in the following example :

% LIMIT 0 <=  1< = 10, X > 0, A = (‘K’ ,’L’)

This statement says that I must lie between 0 and 10 (inclusive),
that X mist be greater than 0 and that A mast have either ‘K’ or ‘L’ as a
value.

-
‘

B-1~L O C K H E E D  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


-~~~~~~~~~~~~~~~~~~~~~~~~~~

LB 28005

)
ii’Fi N D , t~C c

‘‘ 1011) 1 D ’RViI Y ‘ - ‘ : 51 0’S

0.1 I01I’POIIU 111-05

On Day 20, 1976 a questionnaire was distributed to all 105-10

users outside the Administrative/Computer Services organization. The

purposes of the questionnaire were to evaluate the Program Submittal

(R’SIFROG) component of ASSIST (A Scientific Software Interface System

for Terminal-users) and to obtain information for guiding the development

of additional capabilities. The result s of 28 completed questionnaires

are presented and analyzed in the following section.

C.2 RESULTS

The first question at-tempted to get an indication of the dis-

tribution of users according to their degree of activity on the system.

The question and number giving each response are given in Table 1. The

results indicat e a fairly even distribution.

T~uestion two tried to determine whether users felt the RI DTRCtI

capability to be of help in their work. The results were overwhelmingly

affirmative. The primary reasons sighted for this cent ered around the

fact that RUNPROG gave them a s imple , convenient means for getting a job
submitted and run quickly. The complete responses to this question are

given in Table 2.

The third question asked users to describe any difficulties
they had experienced with BUNPRCX~. The major problems stated were that
the RUINPROG command itself was slow to execute and that the documentation

for it was incomplete or confusing. Table 3 contains the complete set of

responses .
)

C-].
LOC K H E E D

LB 28005

Please estimate your activity on DCAS as follows :

a) Terminal use

7 (25%,), heavy user (more than 10 hours/week)

7 (25%) moderate user (5 - 10 hours/week)

5 (i~~), light user (1 - 5 hours/week)

9 (32%) occasional user (less than 1 hour/week)

b) RUNPR OG use

4 (i4%) heavy user (more than 20 times/week)

9 (32%J moderate user (10 - 20 times/week)

5 (1~~~ light user (3 - 10 times/week)
10(36%) occasional user (less than 3 times/week)

Table 1. BOAT Activity

‘ -2
LOCK HEED

15 28005

)

Do you feel that the R5 1 51B0~3 capability is a benefit in your

present work?

214 (36)~~ yes

1 (1)~~~ no
1 (L ~/) yes & no

2 (7j1) no response

If so how?

6 (21%) it impr oves job turnaround time

5 (18)~~ it provides faster way to submit a job

) 5 (18%) it’s simplier than generating JOL

3 (11%) it’s essential
2 (7%) it allows direct submittal by user

2 (7%) it’s convenient
1 (L J ~) it’s efficient
1 (4%) it reduces error s

If not, why not ?

1 (Li ”,) it ’s too slow

1 (1)~~~ it’s not applicable

- al i’~ 2 • L enefit of RUNPR OG

)

L O C K H EE D

L _
_ _ _

LR 28005

I’That difficulties (if any) have you experienced in your use

of RT 10JFPCXS ?

6 (2 1%,) it’s too slow
6 (21%) the options are confusing (poor documentation and

non-standard keywords)

2 (7)~~ machine problems

1 (1+%,~ lost output

1 ()~~
hard to run multiple cases

1 (4%) many user errors not caught (e.g. incorrect data

set name)

Table 3. R I’ i f l ’BCx ’ 1-ifficulties

)

— ‘ — [4
L O C K H E ED

LB 28005

)
-luestion four asked users what changes were felt to be necessary

— in RUNIPRCG. The most coxrunon response was that they wanted it to run faster.

The results of this question are given in Table 4.

In question five ucers were asked to rate RUNPPP0 by comparing

it to past methods of operation . Approximately 43/ felt it was a signif-

“ icant improvement and 6~~ felt it was at least some improvement. linfortu-

nately 32~ did not respond at all, most of them indicating they did not
know what they were supposed to compare RUi- 1PR C~1 to. The intent of the

question was to determine whether users felt that having a capability to

submit jobs fr om a terminal , without having to be concerned with JOL , was

better than giving instructions to a progranuner and, having him submit the

job. lIven though many seemed to misunderstand the question, the responses

-

-

from those who did clearly indicate a great satisfaction and acceptance of
-

I RU ’NPROG. The complete responses to this question are given in Table 5.

) Question six asked users to express their opinions regarding the

usefulness of a capability to obtain information describing available pro-

grams from the terminal. A majority (~4~) of the users strongly favored

the addition of such a capability, and 32% thought it might be useful. ~5ost

thought it was important to have access to such information, but many felt

on-line access was not necessary. The responses are listed in Table 6.

Question seven asked users for their opinions of an interact ive

capability for assisting in preparing program input. Again 54l~I felt such a

capability would definitely be beneficial. Another 21% said “maybe” while

l8-~ said “no” and 7% did not respond. Those favoring the addition of this

capability thought it would reduce errors and make input preparation easier.

Those responding negatively generally could not see how it would help them

in their work. Table 7 gives the complete set of responses.

LB 28005

That changes (if any) ~ould you like to see in the way RU:P P ,(Y)

operates ?

6 (,21%) improved response
2 (7%) more flexibility in overr iding JCL

2 (, 7%) check data set names for correctness
1 (4%) be able to view JCL and correct mistakes befor e

submittal

1 (4%) better terminal availability
1 (4%) be able to enter multiple cases at once

1 (4%) be able to reuse a data set without making a copy

Table 14~ RUNFROG Improvements

‘That is your overall rating of the FUL’?ROD capability?

12 (43%) a significant improvement over past methods of operation

6 (21%) somewhat better than past methods

1 (4%) comparable to past ways of operating
0 (o%) somewhat worse than past methods
0 (o%) a definite step backwards
9 (32%) no response

Table 5. pIT 5 f lB Q(; Bat in f-

)

c-6
L O C K H E E D

_

_

LB 28005

)

Currently being desi~ner1 is an on-line capability which would

allow DCAS users to obtain information describ ing available computer pro-

grams (i.e., a capability enahl in~ remote users to ~et a list of program

titles and optionally abstracts for existing software in a specified

category). IoniC you find such a capability usefu1~

15 (5 4 /) yes

6 (i4%) no

9 (32%) maybe

E~cp1ain :

8 (29%) it would make information conveniently available

6 (21%)~ it’s not necessary to have an on-line capability; a

batch capability would be sufficient

3 (11/) it would reduce duplication of software development

2 (7%) it should not impact overall 11005’ response

1(4%) it would increase use of existi :nz pr~~ rarns

1 (4%) information must be kept np-to-date

1 (4%) fellow workers are a bet er so urce of information

Table 6. Information Retrieval ‘ apal i l ity

)

(‘_7
LOCK I 4E EO

LB 28005

Also in the design stage is an interactive capab ility which
would assist DCAS users in preparing input data for program selected to run

a capability which would prompt users for information and properly

format it to meet program input specifications). llould you f i nd such a

-:aD nbill ny useful?

15 ç5LAl) yes

5 ç l Q u) no

6 (2l;% maybe

2 (7/) no response

E~plain :

5 (13/) it should not slow do~~ overall response

S (14%) it would reduce input errors

3 (11/) it would help the novice or occasional user
2 7% it would be more convenient

2 (7 % buTT is usually sufficient for input preparation

2 7;~) no foreseen use

1 ~ 14 ‘ 1 it would be more efficient
1 4~) it would save time

1 (LA ’) it would be helpful for 50-100 matrices

1 (14/-) it should provide user with enough information

1 (4:110 it must be optional
1 ([4%~) it would be impractical for large amounts of data

Table 7. Input ~reparation ‘apab i0 ity

)

L O C K H E ED

15 10~ OO5

)
uestion eb10~t nake d , users wOnt ~~,Oer cap ab i l i t ies tbey would

like :o sue in corp or ’ ued in t o 1 ‘1010 . o~ t users w’bu ed capab i l i t i e~
available under ISO but not included in the ISO s n net provided “r ith DOOl ’ .
“sers also ind icat ed they “ra nted bett~:-r ’ respunne. ‘She coap let e list of

responses is given in able S.

inally, ques t ion nine “-ne use r s a chance tc make any -~~~ D en

comments regar i~in~- I JAB . The tee-i for better response was ‘u- ’ul n mentione ~,
and a des i re to hav e POd S avail’10le fo r a longer period was also exu -r en sed.

-011 the comment s given are list-ed in Table 9.

CO5’ILUSIOIrS

Based upon the responses ~:o t he quest ionnaire , the foil-owing

conclusions can be drawn :

(1) The ROS-OBOG capability is a highly accepted and us eful tool for DCAS

users and , therefore , should be fully developed .

(2) Poor response is the biggest problem with 10 b u b u l and BOOS in general .

LI f f o rt s to make improvements in this area must be in i t i a t e l .

(3) The documentat ion of RUN’PBOG and other DCAS capabilities is inac~eauate

and should be improved.

(4) The development of a capability to obtain information about existing
programs from a terminal would probably be beneficial . It might be

sufficient , however , to allow only the request for informat ion t o he

niade at the termincti and hav e the actual information found and p r i n t e d

in a batch mode .

(5) The development of a capability to assist in the preparat ion and check-

~ng of’ program input data would help many ‘001, users , b -ut the use of

) to it capability should ‘be optional

.0 C K HEED

- - .

“
~

‘ - -~~~~~~~~~~~~~~~~ --~~~~- ‘ -

LB 28005

Si-at other capabili t ies would you l ike to see incorp or - ”ted i nto

‘510’S that ;cu,Jd make it easier for you to use exis t in c’ applications sot” ware ?

-
‘ 7 ’ bebter response

2 (7-’% f o , ’enroun ’J execution capabi l i ty

2 (7 improved doc’amentnt ion

1 bu- I expanded ‘101ST capability
-: 40)~ all of t he TSC comman ds

1 4%) ability to print data sets with ooi’,irnn and title head,, ags

1 (0)’-) reduced default track allocations for late s~ts

1 (4 % more user disk space
1 -‘ S % capability to store data at t e r m i n a l s Os: ‘~aper ‘ ape or

cass ettes

Table 8. DOAS Improvements

Additional ‘onrnents:

S)lLA’) need better response

2 - 7% need ~‘uregrourid execution capabil i ty
2 (7) need longer BC,”ui availability (601 to 6s ~~
1 (% need better machine reliability

1 ~ 4 ’) need capability to l ist nnn ~ ents nt a bud’—~. I lib’ary

meith er

1 (S ’ need capability to get a list when punching a data set

1 (LA)) should be able to specify that pun ch be in t e r p r et ed

1 ~, 14 ’ the print of a data set sho’OI ’l start at thr ’ top of a m :a~’~
1 (LA-I) log-on t ime should be rr ’duccd
1 -

-

1 4) users should be taught to read ..

i 4/) it’s a :nef’01 system

able ~. ‘ornni ent s
)

- -10
L O C K H E E D

--- ‘- -

~

‘ -~~~~~~~~‘ .- - - --.-. ‘ -—- -- ,. ‘.

LR 28005

)

1. - ‘u ’ : t er ,r ~~ihi cs Designer ’ s Sanual, 1 1 1 - 1 , Lockheed~ralif’ornia

‘-s1P a:~5’, :- ,sr’bank. California, 1970.

2. ~o::versational Togramrning System (1005 ’), Terminal ‘ ser ’ s lanual,

d b u D - 0758 , IF: “orporat ion, 1’[hite laThs, dew lork , l9’~O.

3. “Slutter And ‘latrix Algebra System (FAI15~s) ‘- ‘anoal ,” 05 10 3 657 ,
Lockheed- -Salifornia Company , Burbank , ‘al ifo rn i a , 1970 .

14 . 12’- System/360 Operating System: Time Sharing Option i u i d r ± , 10

TB - Corporation, “ihite Plains, Slew York, 1973.

5. Anderson , R. H. and Sibley, ‘1. L., “A Bew Approach to ~~ogranuning

“Ian-~Iachine Interfaces,” R-876-ARPA , The Rand Corporation,

) Sant a ‘lonica, California, 1972.

6. S,shok , iS.,. “User Requirements in ian-l achine Interactive Systems,”

S -ISO- 5-20, Southwest Regional Educational Laboratory, Inglewood,

California, 1972.

7. JarlLisle , J. H., “ Interactive Man-Machine Communication ,” TR-5l ,
Yale University, New Haven, Connect icut , 1972.

8. Elson , -‘14 , Concepts of Programming Languages, Science Research

Associates , Inc., Chicago, 1973.

9. Fajman , B. and Borgelt, J., “Wylbur: An Interactive Text Editing

and Semote Job Entry System,” Comm. ACM 16, 5 (‘lay 1973), 314-322.

)

15-1
L O C KH E E D

r ~~~~~~~

‘ ‘

LR 28005

10. clarrocq, C. 0 . and Hurley, B. J., “The IF ’JSU System: A Future Banage-

ment/Engineering/Design Environment,” Proc, ~dC’i/IEEE 11th design

Automation Jorkshop, Denver, Colorado, June 1971~.

11. Gries, D., Compiler Construction for Digital Computers, ~‘i1ey,

Jew York , 1971.

12. Lingard, B. IT., “Engineer Oriented Remote - ‘omputing ,” LB 27518, ‘ oekhc’e-i-

California Company, Burbank, California, 1975.

13. larks , S. 1., ‘ The JOSS Years: Reflections on an E~cperiment ,” - -91 ,

The Ba-nd Corporation, Santa Tonica , alifornia, 1971.

14. Bart in , J., Sesign of ‘-lan-Computer I’ialogues, ~‘ent ice Sall , Inc .,

Englewood Cliffs, Sew Jersey, 1973.

15. dotestine, B. F., “Graphics and :oi~ ’oter Aided esint i a e r ~ sprce ,”

Proc . SeP T05’ 1973 51CC , Vol. 142 , AJ ’I :f’ Press, ‘ontvale , ew erse”.

16. Sac1~nan, H., “Rudiments of a Oeal- lnrld Iheorv of ‘ Ian- omp ; er ‘rob~~em

Solving, R—1491—NSF, The Tand orr-, ’at d,~n , - ‘a,:;a ‘- ‘eriicn ,

California, April 1974.

17. Shaw, J. C., “- l O S S : A Designer ’s View of -an Oxperlmeat al ‘~~I i :.~”

lomputing System,” I —~‘922 , She Rand - ‘c’rpora ion , Santa tuiTha,

California , 1964 .

13. ‘pro’ii , R. S . , ‘ 5~ar amsdric Suzfaces in a - ‘omp:iter raphics I-esi gn

.i~ stem , ” hR 26903, l-ockheed— -ialifornia ampany, J’:’urbank,

‘aliforn ia , 1974 .

l)~. Thompson, 5. ‘-1. , “The iS f5’-FSPI;TT System - On-r ine at a ‘‘ ana~’emen t , ”

015 26797, 1,oc kheed- ’aliforn ia ‘~omp any , ‘b~rl,ank, ‘alifornia, 1974.

)

B .2
L O C KH E E D

— ‘~

LB 28005

7
20. Ilasserman, A. I., “The Design of ‘Idiot-Proof ’ Interactive Programs,’

Proc. AFIPS 1973 NCC, Vol. 42, AFIPS Tress , “ontvale , Sew Jersey.

1111. :ilczy-nski , IS., “An Approach to Bun Time I-lödificat ion of 1-ata 11th

Special Application for ‘-114001 Programs,” 515 23529, Lockheed-

California Company, Burbank, California, 1970.

)

R-3
L O C KH E E D

T~1

ENGINEERING REPORT INITIAL DISTRIBUTION LIST ~~EPO” t N : T d 2 ~~C25 - - - -

-~~EE Ce” .’ 4 - U I 1 ~~ 3 -
nILE MOU FL ‘ , I , : - ,~~~~T v c L A ’ ; N L A

S~~d.tA,RY OF 1976 ~~ F 11 S10 l~~ :sI~~EiARCH ~~~~~~~~~~~~~~ __~~~~ 7-29-77 - -

ON F G1N~~5R 1021014115-10 S TIlT S 1- Tl- ~~~rT JG
-

‘ ‘~‘~ 4,/i /2
- - : ~~~~

‘ —;
~~~~~

‘ - - —
~~~~~~~~~~~~~

— —
~~~~~~~ 

— ,.,‘ ‘-~~‘~~~

ScientifIc .‘na~ ,T~.c~el ‘r-: :s’u:s~ng (90-3’5 ) /
it~ntific -1omputtn€ ..iv±s tOn 

___

H-- - - - ’ - - - - - — 

— , _,_ _ ____ .,__- - _~_._~~~~~~~~~~_,,_ ______ C O M M E RC I A L  E NG I N E E R I N G
-j ”  LW A  C O M M E R C I A L  E N G I N E E R I N G  e R A N C ’ I  R E P O R TS I

- 
W O R K O R D E R  E W A ’ 

~~ ~“
_ /

~~~
“ /1 ~ ‘ — -

‘~ EMA ’RKS “~“‘~ PN’ØOUCT EV A L UA T I O N GROUP

~~~~~~ ~~~~~~- ~~~ -. 7;~-
~ ~~~~ 

,, ~L E G A L  ~ R A ? ~.~~H ‘ P A T E N T  S E C TI O N  S T A T E  A N Y  R ES T R I C T I O N S I
I 

~~~
‘

______ ________________________________ _______ L_ ~~ ~~~~ ~ ‘~
-
~“ ~-s 7 ~~~~~~~ .L~ ’

L IMITATION ON ACCESS TO DATA .

UNLESS L I M I T A T IO N S ON S U B S E Q U E N T R E L E A S E OF THIS RE P O R T A R E STATED BELOW COP I ES t~ ~,L EE MADE F R E E L Y

ACCESSIBLE TO ALL CORPORATION EMPLOYEES IF L IMITED , SUBSEQUENT R E L E A S E TO OTHER OA t O N I Z A T I0 N S

REQUIRES COMPLETION OF FORM ?229

LIMITED TO

REASON -

DATE ON WHICH L I M I T A T I O N MAY BE L IFTED

WOULD IT BE B E N E F I C I A L TO CLA LAC TO R E L E A S E THIS R E P O R T TO THE PUBLIC V j A \ -~SA Do D L I H U A H I E S ’ ~~~~‘ ES ~~\O
ANSWER THIS QUESTION COR I N D E P E N D E N T _R E S E A R C H OR I N D E P E N D E N T O E V E L u E ’ ’ L N - T FUNDED REPO~~~ c -T NL”___ -— —

~~~~~ DISTR~~ U 1~ON I X  P O PE

1 . ASSIGN COPY NO TO H A R D C O P I E S  ONLY (~ - ‘
‘

~
“

~~ —— - ~4——- ,-- —--.~’ ~TOPY 2, LIST MICROFICHE AND ABSTRACT RECIP IENTS LAST // Q’ / 1’ 
~~ 

- ~ / , 30
3 E X T E R N A L  COPIES INDICATE T R A N S M I T T E R  / ~~ ~~~/A

” 
~~ ~c / /

4 CI RCLE COPY NO . OF REPORTS A L R E A O Y  D I S T R I B U T E D  j  Y-~0~ - -
~
‘ - -10 ~~ -‘ - ‘

— -
~~“ v, 0 z”4 -’ fl :,p. r- t=tr - ~-t_r- L- - - -

I N D I C A T E  W H E R E  F I L E D :  I -
VA S T E R  DREPO RTS S E R V I C E S  GROUP - 

- 
I

OPLIB L ICATION S E R V I C E S  GROUP , PROJECT - - -
- 

(TO BE T R A N s M I T T E D  BY 
— - 

-

- -

1 V I T A L  RECORDS RE PORTS S E R V I C E S  GROu P~ S 
- ——~~~~~~~~— -.— -~~~-- -— ‘~~~~~~~~ --— ~~~~ - —.- -~~~ - - ‘ -

2 REPORT S S E RV I CE S GR O UP 1,~~~~~, ~~~~~

3. 4 C E N T R A L  L I B R A R Y  — - - - -

5 A. N . Baker 70-01 63 A-i ~ x x -‘--—-l- ‘

~~~ 

—- “

~~

“ “
~~~~~~

“

6 D. L. Bickel 86-il 67 A-i x x 

I~ --~ -~
j x 

- -

8 P. Prunelli 28-06 146 B—i x x
-— -“- - .~~~~~~~~ ‘.-—-“- - - -~~ -.- - - - --  - - - -- - - i -

_ _ _ _ _
~

_ _ 
~~~~~~

‘ ‘~~~~~~I
9 A. L. Byrnes 75-41 63 5-1 x x 1

}O ItLIC Co~~m 75- T2 63~~~~1 - 2
ii D. ‘- ‘. Crawford 86—11 67 A—i

-

I x x

_ _ _ _ _ _ _ _

80-37 F17 A-i x~ x
13

--
A . F’ . Curtis 72—71 311 r--6 1 1 X

S . miott
-
75-41 63 1-1

-
x

15 ‘5. T. F~,anB 86-11 67 5,-i x ~
-

16 R F~rria, Jr (c’) 87-14 -1 274
—

x x
—

L .
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ _



r 

“

~~~~~~ 

_ _ _ _ _ _ _ _

ENGINEERING REPORT INITIAL DISTRIBUTION LIST A U, PORT NO. _~E~ ” ” ~~
5

SEE EPM 4 0 7 1 ‘ E- ,E _ ? - — _ 3
= T I TL E M O U I ,’ L N[C ’ ,, - ‘ ~ L ., A C N I —— -

I . P . ~,o2cL’-13SsF:FID
-

- - - -__
- 5 - I - ‘‘ - I (l I V t , Q N “ I’ , , N I L R

___ ______ C O M M E R C I A L E N G I N E E R I N G
WO/ EWA 21 3715 511~Q7 I (C O M M E R C I A L E N G I N E E R I N G B R A N C H R E P O R T S)

CLASS W ORK ORDER E,W, A ,
‘
~
‘
~~ 1A RX S ——

PR OO U CT E V A L U A T I O N G R O U P

LEGAL B R A N C H - P A T E N T S E C T I O N S T A T E A N Y R E S T R I C T I O N S)

L IMITATION ON ACCESS TO DATA:
UNLESS LIMITATIONS ON SUBSEQUENT RELEASE OF THIS REPORT ARE STATED BELC- C~, COPIES VF ILL BE MA DE FREELY
ACCESSIBLE TO ALL CORPORATION EMPLOYEES. (IF LIMITED , SUBSEQUENT RELEASE T O OTHER ORGAN IZATIONS
REQUIRES COMPLETION OF FORM 7229 I

LIMIT ED TO:

REAS ON:

‘

DATE ON WHICH LIMITATION MAY BE LIFTED.

WOULD IT BE BENEFICIAL TO CALAC TO RELEASE THIS REPORT TO THE PUBLIC V IA NASA : DoD L I B R A R I E S ’ DYES ENO

IANSWER THIS QUESTION FOR INDEPENDENT RESEARCH OR INDEPENDENT DEVELOPMENT FUNDED REPORTS ONLY
DISTR IB UT RDN PU ” N ~~~~O~~~~~ L O L u ~~~-S~~~~

1 , ASSI GN COPY NO , TO HARD COPIES ONLY , 0 ~ C’ T Y P E 7 ‘~~7’

COPY 2, LIST MI CROFICHE AND ABSTRACT RECIPIENTS LAST . ~
‘ J j ~ / i~ - ~~

,,, ~~~~ -~~~ /0 ~P-~NO.
~ EXTERNALCOP IES: INDICATE TRAN SMITTER ,

~~~~~~~~ & / J( ~~
’

(~

, ‘
~~ /~~

4 C IRCLECOP Y NO OF REPORTS A L R E A D Y  DISTRIBUTED _, /?I~ ~~~~~~~~~~~~ ~~~~
( INDICATE WHERE FILED,

MASTER DREPORTS SERVICES GROUP
OPIJBLICATIO N S E R V I C E S  GROUP ,  PROJECT 

x~~ ~~~~~~~ 

— — — —

- 
17 F. W. JoI~naon 75-73 90 A-i 

~ — —

18 T. R. Jones 80—36 67 A-]. 
~ —

19 D. K. Kawa~noto 80—34 67 A—i

20 P. II. Kretsinger 80-36 67 A-]. X X

21 B. W. LingaH 80-36 67 A-i 
— 

)( x
22 J. D. Little 80-36 67 A-i X X 

—

23 3. 3. Lucas 80—34 67 A-i X X 
____ — 

I
21~ R. F. OtConneil 75-71 63 A-i X X

25 B. B. Ostrom 75.72 63 A-]. X X
_ _ _  _ _  _  -

26 R. R. Plank 70-01 63 A-]. X X - S

27 W . L. Rakness 75~72 90 A-]. X X - 
—‘—— ‘ - - ‘—— - - - t -- -— . - ’4 - —

25 S. W . Robinson 80-36 67 A.l X X I

29 D. H. Saiki 80-36 67 A-]. x x - S 
~~~~~~~~ -- ‘ - — - — ‘ - —_ — ——  ‘—— — -  - - - -— - ‘- — - ‘ -- ~~~ - - -~~ S

30 J. F’. Sherman (L~~c) 19-40 102 x x

G. E. 01 67 A-i
-

x j x~ i
-

~ II i
r A l .r Encu cl tO I

_ _

—~~~~~- --- - .. - , - - ,--- ,, ,, ---
, - - -- - -

ENGlNE Ern r~~ l H - ’O~~T INIT IAL DIST ~fl~~t J f I I IN LIST :5
3 ~~~

- 3
-~~~~

T
~~~ 02:111110:10  10

- - - -~ -‘f . i

‘ • ~~~~~~~~~~~~~~~~~~~~~~~~~~ U~~~~~, , O ’ , ~~~~~~~~~ 
~7

— — - — ,, I, - ‘ ‘ ‘ ,‘ I l, ( I A L ,  I N - ,I N 1 1 1 1 - r d  C .
-, ‘:‘‘j~ T5 ,, ’Y’ C ’  ‘~~‘~~I 1 :~ S L t N I , , I 1 • l  I . I I NG  l l l ,A N L I’  II I, P O R T S I

C , , ’ ,’, “ ‘I’ “ 1 1 =  1 P 
- 

L . A
- 

I’ I - . C I , l J T E V A  . A 1 ’ 1 ”, , I - 4() 1’

LI  ~~A L  O I ,A N C H  l A T E N T  ‘ . 1 ,  Y I C ) ’s , I , , I, A N Y  1 , 1  N T I I C T I O ’ . S ,

LI ‘.11 .‘, 11 .1 ’ . U ‘~ ~. ss ’ O :  A I A

‘ . L E i ~S L ’.’ I ’ ’ . ’ ‘ .~ ,~~~‘,, S 1 J J I ’ . E L ~~~~~~ r,~~~ , T L : IC1i T c =I ’i i S” ’ , T ’. D I i t : .L - , , i- ~~
AC - S ~~I’1 I E  :. ‘ - I - . - ’ , ’ ’ . ’ ~~~~~~~~~ L, ’ ’, U S  ‘ I r  t I L l I T L Lj S.,, IJL.F~~ I ’.~ ‘~~t _ L - \ S L  T O O ’ : ’ I E O k : -, ’, I Z , T ~ L’.’
U, ’OU ) ) 4 ’  S LU ’.’ ’ . C T I U ’ . :)F I . r ’  I

l c D  I’) 
- - -

j A T 1  ci ’-~ .‘, - I C ’ I  L I  I I A r I C N ’ ’ , . I  B~ L 
-

IL DI ’ LE H L L ’ i i IC I . , I  ~O L - ’. - . . ’ T ’) i= i L i , :. ,: r , . , S k EpT) R’ l ’ r() .
~ ~~~~~~~~~~~~~~~~~~ l - D i , , ’ - . . ’ I F S ’ ’, ! ’ c

— 
,‘,3 , ’, .. T . I S QLJ,, , T I , ,. ’ I~~~:I :~~~./u

,
~~ ’,L :~~~, ‘ LI , ,JUT.~1 i I ’.~4 C i ’ . ‘ ‘. ‘1 ’,I ’.’~ELC’’  .~~~~I T ,,~~~~’l P, i’

— — 
J I I I — _ —

- 1 .‘. L , = ’ . L 2 P c ’, : 1I.’, :P CO I T I S / ’ = Lv  ,,- ‘ v ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .

2 L I S l ’,’ I~~ r - I I’  ., ‘ I A ’ T . f l T I ’ I IE ’ .T 1 L~~ST ‘
~~~~ ~

‘
- - ,. - - - ‘ ‘

~~~ ~~
. -

3 E , 1 E - ’. , L ’O ihI I~~~~
, ’.. II 4T . T ’ .’, ’. ’,’ i ’ r LU ~~~~ - ‘

“ ‘  v~~~~~-
- - . , - , L 1  - - -C

- 4 
~ - -

~
‘
~ F “ U  ‘, : - ~2 ’ C , - -

~~/ ,‘, I H F - . : ;  ‘ - ‘ ‘ ‘- :‘ - ~~~~~~~~~ ‘ = - _
- .‘ “  ‘,.I’ f RE I t  . 0 

-

v -  . r E I =  , - - - ‘ - P T , 5 )  L O O T S  U- -  P 
I

L:, ’ CA  ‘ I l - N -
~~ U . L , r ’,. : ,~~, j I ’  PRC ’ J I  CT  I

~10 J. ~~ r-o’.~’j 75-42 63 5-1

33 T .~~ . - U2:10:or ’or 33-3T 67 5-1 
-

5. ::. ‘ ‘ir-’i 83— 0], -‘ 10—I

~~~~~ /~~~~~~~~ i ’ O i / ’ ’ ,.~~~y - — - — -  .~ ~~ -_ ‘~~~~
.

_ - - . - - -

2

II I -

