D=AQ43 484 LOCKHEED=CALIFORNIA CO BURBANK F/6 9/2

SUMMARY OF 1976 INDEPENDENT RESEARCH ON ENGINEER ORIENTED REMOT==ETC(U)
JUN 77 R W LINGARD
UNCLASSIFIED LR=-28005 NL

] Lz L .
AD -
H

. b
e

\
1]

ADA(

BURBANK, CALIFORNIA, U.S.A.

i
X !
3 ¢

.
|

| DISTATUTION SYRTaenT B]

- ————————

Approind for pubibic relassng
Distnbution Unlingted A

LOCKHEED - CALIFORNIA COMPANY
A DIVISION OF LOCKHEED AIRCRAFY CORPORATIO

3 REPORT NO. __ LR-2800‘5 Tl 5 TS
DATE 6-30-77 s DEY
MODEL_IndmndenLResﬁa.mh___

TITLE COPY NO. 36 B O’]
~ SUMVARY OF 1976 INDEPENDENT Ri:SEARCH ON e
_ENGINEER ORIENTED REMOTE COMPUTING ,
- |

REFERENCE 21-3715 5407
CONTRACT NUMBER(S)

PREPARED. BY /(M/ i"‘ﬁ@‘f/

Einga.rd, Sci Comp. App. Spec., Sr.
tion /Analysis Programming

APPROVED BY

on Analysis Programming

APPROVED BY

Little, Department Manager
Scientific Analytical Programming

APPROVED BY st

R. B. Perry, Mfnager

Scientific C ting Division
L1 T A
| he . AUE 26 1977
i)i ¥ !

5 i
REVISIONS B
REV.NO.| DATE |REV.BY PAGES AFFECTED REMARKS

FORM 402-2

LR 28005

FOREWORD

This document is a report on the second year's accomplishments
on the Calac independent research task entitled, "Engineer Oriented Remote
Computing" (project number 76011102). The author is indebted to Dean Saiki
who assisted in the design and implementation of many improvements to the
production system. The author is also thankful for the many constructive
suggestions made by Howard Weinberger and Thomas Re. Jones during the

course of this task.

LOCKHEED

CALIFORNMIA COMBANY

=

LR 28005

ABSTRACT

The usefulness of computers in solving scientific problems is a
function of the ease with which users can communicate with existing hard-
ware and software, This research is aimed at improving such man-computer
conmunication, Specifically, a computer system has been designed and
partially implemented which will provide a software interface between
users, possibly inexperienced in computer processing techniques, and

available programs and analysis systems.

This system, denoted as ASSIST (A Scientific Software Interface
System for Terminal-users), aids users in accessing and utilizing existing
applications software from remote terminals. The system provides three
basic functions. It helps users find programs relevant to their problems;
it assists them in preparing required input dataj; and it aids in the
actual submittal of programs and data for computer processing. In addi-
tion, the system monitors usage of the facilities and provides information
for aiding management in making decisions for ensuring the efficient and

proper use of available computer resources.

The basic approach has been to design a language which pro-
grammers can use to describe program characteristics (function, input
format, submittal requirements, etc.). Ymhese descriptions can then be
interactively interpreted by ASSIST to aid individuals wishing to use any
available program. Thus, the user has a helpful interface system he can

converse with while he is trying to find, prepare input for, or submit a

program.

ii
LOCKHEED

5

TABLE OF CONTENTS

FOREWORD
ABSTRACT
TABLE OF CONTENTS
INTRODUCTION
1.0 OVERVIEW
1.1 OBJECTIVE
1.2 BACKGROUND
1.3 SYSTEM DESCRIPTION
1.4 PROGRESS
2.0 PROGRAM SUBMITTAL
2.1 OBJECTIVE
2,2 APPROACH
2.3 PROGRESS
2.,3.1 Conditional Expansion
2.3.2 Interactive Communication
2.3.3 TIteration
2.3.4 Character Manipulation
2.3.5 Programmer Aids
2.,3.6 Other Features under Development
3.0 INPUT PREPARATION
3.1 OBJECTIVE
3.2 APPROACH
3.3 PROGRESS
3.3.1 Parameter Description
3.3.2 Format Description
i 3.3.3 Type Specification
3.3.4 TLimit Specification

i
LOCKHEED

CEOBNA COMEA

=

ii
abils

1-1
1-1
1-1
1-3
1-6
2=-1
2-1
2«1
2-2
2-3
2-3
2-3
2.4
2.4
2.

4.0 PROGRAM SELECTION

4.1 OBJECTIVE

4.2 APPROACH

4.3 PROGRESS
5.0 USAGE MONITORING AND CONTROL

5.1 OBJECTIVE

5.2 APPROACH

5.3 PROGRESS
6.0 CONCLUSIONS
APPENDIX A GUIDE TO WRITING A PSI MACRO
APPENDIX B THE INFUT DESCRIPTION LANGUAGE
APPENDIX C "ASSIST" SURVEY RESULTS
REFERENCES

iv
LOCKHEED

=

L1
L1
L-1
L2
5-1
5-1
5-1
5-2
6=1
A-1
B-1
%)
R-1

LR 28005 :

INTRODUCT ION

Technological advances in hardware have made computers practical

and economical tools for ever increasing numbers of users. More and more
people with less and less programming experience will be using computers
in the years to come. No longer can systems be designed without consid-
eration of these ultimate users. The effectiveness of future systems

will be measured by the ease with which man can communicate with them.

Although a great gqueantity of problem solving software is
available today, most is usable only by those possessing reasonable
backgrounds in computing. In order to make most present systems and
programs useful tools for the non computer oriented individual, they must
either be redesigned, or some communication's interface between the user
and the existing software must be developed. This latter approach, if
general enough, could extend many existing computing capabilities to non

programming users without costly redesign of applications software.

An experimental version of a system aimed at providing such an
interface has been developed. This system, denoted ASSIST (A Scientific
Software Interface System for Terminal-users), was designed to aid users
in accessing and utilizing existing applications software from remote
terminals. The system provides three basic functions for the user. It
helps him find progréms relevant to his problems; it assists him in
preparing input for selected programs; and it aids in the actual sub-

mittal of programs and data for computer processing.

This report discusses the progress made during the second year
(1976) of this task. The preliminary design of ASSIST and the first
vear's progress are contained in the report, "Engineer Oriented Remote
“omputing” (LR 27518).

LOCKHEED

LR 28005

SECTION 1,0

OVERVIEW
ol OBJECTIVE

The principal objective of this task is the development of a
user oriented system to aid in the solving of problems on computers.
This system, to be known as ASSIST (A Scientific Software Interface
System for Terminal-users), will provide an interface between users,
possibly inexperienced in computer processing techniques, and the exist-
ing hardware and applications software. The goals of this system are to
reduce both job turnaround time and costs associated with the use of ex-

isting batch oriented software.
L2 BACKGROUND

Over the years an extensive collection of application programs
and systems has been produced., Making effective use of this software,
however, usually requires both considerable knowledge of individual pro-
grams and familiarity with computer processing techniques in general.

In particular, one must know what specific programs exist, what input
data is required for each, in what form such data must be supplied, and
what information must be provided to the computer operating system to

effect the actual processing of programs and data.

Non programming users at Calac have traditionally depended upon
professional programmers as their interface with existing software. In
the computing environment prior to 1975 (Figure 1), it was the professional
programmer who directly accessed both the computer and the library of ex-

isting programs. A non programming user, with a problem to solve, would

1-1
LOCKHEED

i

LIBRARY
OF
PROGRAMS

LR 28005

PROGRAMMER
Y

COMPUTER

ENGINEER

Figure 1. The Environment Prior to 1975

LOCKHEED

LR 28005

explain it to some programmer who would perform the necessary tasks to
prepare a computer acceptable form of the problem (i.e., put together
program and data with required system control information). The programmer
would then accomplish the actual computer processing and return the results
to the user. This mode of operation had obvious inefficiencies for many
kinds of problem solving. There were often delays in processing and errors
due to misunderstandings. With more and more people requiring more and
more computer processing there was clearly a need to put them in closer

contact with the computer.

As a consequence of this conclusion, a Direct Computer Access
System, DCAS, was established which logically extended the computer to
allow access to it through remote terminals (Figure 2). Initially DCAS
existed only as a subset of IRM's Time Charing Option (TSO). Although
this gave a user direct access to the computer, it did not improve his
access to the library of programs. This research deals primarily with
the task of extending DCAS to improve the user's ability to directly
utilize this collection of existing applications software. In effect,
the goal is to automate the interface function previously provided by
the programmer. In order to accomplish this the programmer must be
provided with some means for transferring his "knowledge" (or information
in his keeping) regarding the use of specific analysis software to DCAS,

ASSIST is that augmentation of TSO which gives DCAS this capability.
43 SYSTEM DESCRIPTION

ASSIST has been designed to bring together information regarding
existing application programs and potential users in an interactive envi-
onment (see Figure 3). For each program to be made available through
ASSIST, certain descriptive information will be provided by a programmer.
This information includes a general program description, a complete and

and precise input specification, and certain job control information

1-3
LOCKHEED

wajsAg $52900y Jajndwo) 399ITJ

*

LR 28005

HHIOANOD

sa

*

SNVEO0H
40
AIvadLT
I YE008d
—~ —~

The DCAS Environment

Figure 2,

1-L4

weas .

LOCKHEED

28005

“

LR

NOI LNDHXH
HOLYVL HOJd
JHLLINEAS
d0r

AN

I YHO0Hd

NOILVNECANT
TOYINOD

gor

LVOIAIDHAS
hARYEl

DOINT

o

INENOJINOD
TYLLINGNS

NYYD0Yd

INANOZHOD
NOILLYHYARdd A”.n
INANT

NOI LdIHOSHA
NygHodd
TVHINED

A 1

i |

NOILOHTHAS
WYE0dd

INHNOJINOD | A
[l

ISISSY

Syod

ASSIST

3.

Figure

1-5

LOCKHEED

- - -

LR 28005

necessary for running the program on the computer. The user will then be
able to interact with various components of ASSIST, which have access to
this programmer supplied information, for solving some problem. If he
needs information regarding the availability of certain software, he will
access the Program Selection component. This will tell him about existing
programs in a particular category he selects. nce he knows which program
to run he may elect to access the Input Preparation component to assist him
in preparing his data. He may ask to be prompted for every quantity needed
or merely to have his data checked for completeness and, to same degree,
correctness. Finally the user will be able to access the Program Submittal
component which will automatically create all necessary job control in-

formation and submit the specified program and data for execution,
1.k PROGRESS

During 1975 a preliminary design of ASSIST was completed. The
component of the system which assists users in submitting progrems was

developed and put into controlled use for testing.

In 1976 an initial production version of ASSIST, containing !
extensive users aids for program submittal, was completed and put into :
use, Other aids were implemented and several more were designed including |
software to help users in preparing program input data. A detailed account
of the 1976 progress on the various components of ASSIST is presented in

the following sections.

LOCKHEED

=

LR 28005

SECTION 2.0
PROGRAM SUBMITTAL
il OBJECTIVE

The purpose of this component of ASSIST is to simplify the task
of program submittal by automatically generating the necessary job control
information required by the operating system for program execution. The
fundamental concept is that non programming users should not be required
to learn the details of interfacing with the operating system in order to
run jobs on the computer. The users should be able to commnicate their
needs in terms meaningful to them not in the language of the operating
system, For example, a user desiring plot output should merely have to
say, "PLOTS" or respond affirmatively to the guestion, "Do you want the
output plotted?" rather than have to know how to appropriately modify the
DD (Data Definition) statement of the associated plot file. Such capabil-
ities could be of great benefit to the experienced programmer as well, for
even with a knowledge of JCL (Job Control Language), it might bc ‘&r
simpler to allow ASSIST to automatically generate necessary controi in-
formation, Certainly there is much less chance of error for either the
experienced or inexperienced user when the program setup and control in-

formation are produced automatically.
252 APPROACH

The approach taken in this research for assisting users in pro-
gram submittal has been to design a language, and interpreter for it,
which can be used by programmers for expressing the information necessary
for running programs on the computer. This language, known as the PSI
(Program Setup Instructions) Macro language, is an augmented job control

language (JCL) which allows construction of generalized sets of JCL for

2-1
LOCKHEED

R

g

IR 28005

the IBM operating system. The interpreter acts as a preprocessor or
macro processor, expanding programs written in this language into complete
and valid jobs to be executed on the computer.

In a typical case, a programmer who is familiar with a particular
prrogram and the JCL required to run it will develop a generalized set of
job control instructions called a PSI macro. This PSI macro will then be
placed in an on-line library and, hence, will be available to all users
through the PSI macro processor known as RUNPROG, Once a PSI macro has
been so created for a given program, users can run that program by access-
ing RUNPROG, without regard to any JCL concerns. Furthermore, changes
that may be required in the JCL due to program modifications, system
changes, or operational considerations can be usually made in the single
version of the generalized JCL in the PSI macro library without requiring
any change on the part of the users. In cases where programming changes
were made, all users will automatically get access to the latest version
of the program. Thus, tnis component of ASSIST can help not only the user

in progrem submittal, but the programmer in program maintenance.

2¢3 PROGRESS

During 1975 a preliminary version of the program submittal
component (RUNPROG) was developed and put into limited production use.
This version contained only capabilities for substitution of parameter
values, obtaining user related information, simple communication with the
user, and submittal of the complete job for batch processing. During 1976
the capabilities of the program submittal component were greatly expanded.
The most significant of these are described below and a complete descrip-

tion of the current capabilities of RUNPROG is given in Appendix A, "Guide

to Writing a PSI Macro."

2=2

LOCKHEED

LR 28005

2 i | Conditional Fxpansion

The first major capability added to RUNPROG was conditional ex-
pansion. A preprocessor statement similar to the IF statement of PL/I
was implemented within the PSI macro language. With the "IF" a JCL state-
ment or group of statements can be included or excluded in the job being
built based upon some test., These IF statements can be nested to any
depth.

232 Interactive Communication

Capabilities were implemented to allow communication with the
user during execution of the PSI macro. A PUT statement allows the
writer of a PSI macro to cause a message to be displayed at the user's
terminal, and a GET statement permits the reading of a line of information
from the terminal. Thus, a macro can be written which asks the user to

supply some informstion and then reads in what is given.
2633 Iteration

A capability, not in the original design of RUNPROG, was added
which allows the repeated execution of a series of macro statements. The
preprocessor statement used for this purpose is the "DO-WHILE" and is
similar to the same construct in PL/I. The group of statements to be
executed may include any number of JCL or preprocessor statements. These
statements immediately follow the DO-WHILE statement and conclude with a
preprocessor END statement. When execution reaches the END statement,
control is transferred back to the corresponding DO-WHILE. Part of the
DO-WHILE is a condition test just as in the IF statement. As long as the
condition remains true the group of statements following the DO-WHILE is
executed again., Once the condition fails, control is transferred to the
statement following the associated END statement. DO-WHILE's can be nested
7 to any depth,

LOCKHEED 2=3

@;

T

LR 28005

2.3.4 Character Manipulation

A capability was added to the design and implemented which
allows the extraction of a substring from a given string of characters.
This functicn, called SUBSTR, operates identically with the corresponding
PL/I function. Any consecutive string of characters can be extracted from
a given string by specifying the beginning position and the number of

characters to take.

25355 Programmer Aids

Software has been designed and implemented to aid programmers in
adding, modifying, and deleting PSI macros from the on-line library, A
complete log of changes to PSI macros is maintained by the system. This
log contains the time and date of the action, the identification of the
progr ammer taking the action, the name of the macro involved, and the
type of action taken. The software also checks the user's identification

to ensure he is authorized to modify the macro library.

A capability has also been added to aid programmers in testing
newly developed PSI macros. This feature, called TESTMAC, operates like
RUNPROG except it accesses a macro in the programmer's library and directs
a listing of the job built back to the terminal rather than submitting it
to the computer for execution. Thus, the programmer can watch the job

being built, card by card, and discover any errors as they occur.

2,346 Other Features under Development

The original design of RUNPROG included the capability to in=-
voke one PSI macro from within another and the ability to copy a data set
into the job being built. These capabilities are currently under develop-
ment and will be implemented in the production version during the $hird
quarter of 1977.

LOCKHEED

=

LR 28005

Also included in the original design was the ability to place
arbitrary expressions wherever constants are allowed within preprocessor
statements. Although this capability has been fully developed, the core
limitations of the current TSO environment in which RUNPROG operates, have

made its installation impossible.

The design of RUNPROG was modified to include as a diagnostic
aid the capability to get a symbol table dump (i.e., a listing of all
macro variables and their current values), and several new functions.

In order to compensate for the lack of arithmetic capability of RUNFROG,
INCR (increment) and DECR (decrement) functions were defined. INCR allows
increasing the value of a quantity by some given amount while DECR allows
for reduction in a similar manner, Three other functions added to the
design were INDEX, LENGTH and CONCAT. These are string manipulation
functions which correspond exactly with similar constructs in PL/I.

INDEX allows the determination of whether one string is a substring of
another and, if so, returns the position at which the substring begins.
LENGTH returns the number of characters in a given string, and CONCAT
allows the concatenation of two strings. These functions are scheduled

for implementation during the second quarter of 1977.

Other extensions of RUNPROG which will be studied in 1977 in-
clude the GO-TO statement, a dynamic naming or array facility, and the
ability to do indirect addressing. Also during 1977, effort will be

directed at improving the responsiveness of RUNPROG.,

2-5

LOCKHEED

LR 28005

SECTION 3.0
INPUT FREPARATION
ek OBJECTIVE
The purpose of this component of ASSIST is to aid the user in

preparing input data for a program he has chosen to run. It will do

three things for the user, It will tell him what input gquantities are

required for a given program; it will enable him to provide those values
in a convenient manner (without requiring that he know the specific data
formats required by the program); and it will check the data he provides
both for completeness and correctness., Furthermore, this component can
be used interactively, prompting the user when necessary and allowing
him to correct errors as they are discovered. The effect of this com~
ponent is to put a user's guide to & program on-line and in such a way

that the user can converse with it.

3.2 APPROACH

The approach taken for this component is basically the same as
that used for program submittal (i.e., RUNPROG). In particular a language
has been developed which allows programmers to describe program input
requirements. Actually this language is just an extension of the PSI
macro language since the fundamental requirements of this component are

identical with those of program submittal. Namely, it must interact with

a user, providing some information and obtaining other information, and
based on that, construct a data set. 1In the case of program submittal,
the data set built is job stream input while in the case of input pre-
paration, it is a data set for input to some program. These differences
in no way effect the logical operation of the component of ASSIST which

interprets programmer written descriptions and interacts with users.

LOCKHEED

5

R 28005

All that is required, therefore, to be able to provide assistance to the
user in input generation is to add certain constructs to the existing
macro language. In particular, constructs are needed which allow the
description of required input parameters, including types and ranges of |
acceptable values, and the format in which the program expects them to be

given,

WJith such an expanded macro language, a programrer can describe
the input requirements for any program in such a way that data prepared
for that program can be automatically checked for completeness and correct-
ness, and, if desired, the input can be prepared in an interactive mode.
In the latter case, information will be requested of the user through an
input description (ID) macro written by a programmer. Normally, this
request will be a list of input parameters for which the user must supply
values. Additional messages can be displayed to the user at the discretion
of the programmer writing the ID macro. The user can ask for a description
) of any parameter requested and the values he supplies will be checked for
proper type (e.g., character, integer, etc.) and limits (e.g., 0<<X<10)
according to information specified in the ID macro. The user will be
immediately notified of any errors and allowed to correct them, The input
values will then be formatted as required by the program. When this com-
ponent is used just to check a prepared data set, lhe data set must be
properly formatted. In this case, a list of all discovered errors will be
returned to the user. The use of this component could result in significant
savings of computer resources by helping users to prepare program input data

which are correct the first time.
3.3 PROGRESS
A software specification for the extended macro language has

been developed, and the design, coding and testing of the required software

modules are in progress. Implementation will be accomplished during the

LOCKHEED

@

LR 28005

third quarter of 1977. The major features added for the purpose of de-
scribing program input requirements are given below. A complete descrip-
tion of the language constructs for the ID language is contained in
Appendix B.

3341 Parameter Description

A capability has been included to allow a description to be
associated with each input parameter. This is accomplished with a DEFINE
statement., When a variable is so defined, its description is available to
users on request during input preparation by typing a "?" and the name of

the parameter or parameters desired.

332 Format Description

A statement is included for describing input formats. It can
be used to specify a list of parameters and the format in which they must
be supplied to the program. It is an extension to the PUT statement and
is identical in form to the PUT EDIT capability in PL/I. However, instead
of taking elements in the list, converting them, if necessary, and out=-
putting them according to the format given, the PUT statement takes the
elements and checks them against any type or limit specifications given
in the macro (see below) and then, only if they are correct, outputs them
as specified in the format. Frrors in input values will be displayed to
the user and he will be allowed to correct them. The PUT statement will

then be re-executed automatically.

3.3:3 Type Specification

A TYPE statement has been included which allows specification
of the type requirements, if any, which a parameter or set of parameters

mist satisfy., For example, a set of parameters can be required to be

LOCKHEED 3=3

B2

h-' —

LR 28005

integers or real numbers or characters. The PUT statement will check each
parameter in the list to see if a type specification has been given for

it. If so the value supplied will be checked against the type specified.

3.3.4 Limit Specification

In a similar manner a range or set of acceptable values can be
specified for sets of parameters. This is done with the LIMIT statement.
For example, a parameter can be required to be between the values O and
100 or be one of the values O, 1, or A, Limit specifications are handled

in exactly the same manner as type specifications.

3L

LOCKHEED

o

LR 28005

SECTION 4.0
PROGRAM SELECTION
A OBJECTIVE

The purpose of this component of ASSIST is to provide information
to the user regarding available applications software. The nature of this
information will be such that he may determine which, if any, available
programs might be applicable to a given problem, Program titles, abstracts,
development and revision dates, names of responsible programmers, and pro-
gram identification (Reference File) numbers are examples of the information
to be provided. Additionally, this information will be made conveniently
accessible from a terminal. Specifically, a user will be able to give a
keyword or list of keywords and a list ol program titles will be searched
for the occurrence of the word or words given. The program titles corre-
sponding to matched keywords are returned to the user. He may then list
the abstract and other information desired for selected programs. One of
the primary advantages of such a capability is that it provides an effec=
tive means for disseminating information regarding available software

throughout a large community of users.
L.2 APPROACH

The approach taken in the development of this component has been to
create an on-line data set containing an entry for each PSI macro accessible
through the program submittal component. In some cases there may be more
than one macro for a given available program, but there is always at least
one. The entry for a given macro comtains its name (a one to eight char-

acter identification), a title, the name of the responsible programmer, and

LOCKHEED

TN e et

IR 28005

the program reference file (RF) number of the program accessed by the macro.
This RF number is a key into an existing data base of program description
information, the Program Reference File, This data base is maintained by
the Scientific Computing Division and contains the remainder of pertinent
information for applications programs. This data base will be placed on-

line and the capability to access it from terminals will be provided.

4.3 PROGRESS

An on-line data base containing entries for all PST macros was
created, and software was developed to permit accessing this information
from terminals., In addition, facilities were developed for adding,
deleting, and modifying the data base information., In fact, the software
which allows programmers to add PST macros was designed to require that a
descriptive title be given before the macro is added to the macro library.
When a macro is modified the descriptive title can be changed and when a
macro is deleted so is its title entry. Thus, the data base of descriptive
titles always reflects the current status of available programs. Two
commands have been provided for accessing information in this data base.
The first command, called DESCMAC, can be used to obtain the descriptive
title for a PSI macro by giving its name. The second, SCANMACS, scans
the entire data base for a keyword supplied and returns all entries con-

taining that word.

Although the Program Reference File data base has been placed
on-line, the link between it and the PSI macro data base has not been
completely established, and the capability to access it from a terminal
has not been developed. These items are scheduled for completion during
the third quarter of 1977. Also the feasibility of extending the search-
ing capability to include Boolean combinations of keywords will be studied.
This capability would, for example, allow a user to ask for all macro

titles containing both the words "structural" and "analysis" or just the

LOCKHEED

’——rvw
\
)
e e —

R — . ——

'IIF""""""""""".-'-l!"'lll'lIll!'llIlllllll!l!llll!lll!llllll-lulu-u-n--n—--—uL e

LR 28005
~
single word "structures" or to ask for all titles containing the word
"l oads" but not the word "dynamic". A second extension will also be
studied which would allow direct searching of the Program Reference File
data base, including abstracts, in a similar manner. These extensions
will be evaluated during the fourth quarter of 1977.
\

LOCKHEED

9

LR 28005

SECTION 5.0

USAGE MONTITORING AND CONTROI

St OBJECTIVE

The purpose of thid component of ASSIST is to ensure the
efficient usage of available computer resources by developing adeguate
system controls and through the monitoring of user activity. Since ex-
tensive computer software and hardware resources have been made available
to non programming users, there is a need to prevent inadvertent misuse
due to lack of computer experience., As a minimum, sufficient information
mist be collected in order to determine whether the resources are being
efficiently utilized. The information so collected, since it will reflect
user activity, will also be valuable for guiding efforts to improve the

efficiency of ASSIST itself.

5.2 APPROACH

In an environment where virtually all computing capabilities
have been given to non programming users, it is a practical impossibility
to protect the hardware and software from deliberate misuse. The approach

| in this research is twofold., Firstly, wherever possible, the accidental
misuse of resources will be prevented., All components of ASSIST have been
designed so that the checking of user supplied values and requests is
possible, and in many cases the required parameters which effect the usage
of rescurces are automatically determined. Secondly, statistics regarding
the usr.ze of resources will be collected., While misuse, either accidental
or deliberate, can not be prevented this way, it can at least be discovered
after the fact., This can, of course, be a great deterrent to potential
misusers as well as a means to correct practices which result in ineffi=

ciencies,

LOCKHEED

LR 28005

53 PROGRESS

The accomplishments toward prevention of accidental misuse of
resources were designed and implemented within the Program Submittal and
Input Preparation components of ASSIST. By their very nature these com-
ponents eliminate many sources of user errors, The Program Submittal
component automatically determines many required parameters, and both
components have capabilities for checking the correctness of user supplied
values. In the case of program submittal, the computer resources requested
(e.g. core, time, lines of output, etc.) can be controlled, and, in the
case of input preparation, the execution of runs with erroneous data can

be prevented.

Beyond these capabilities, the primary method for ensuring the

efficient use of resources has been through the collection and analysis

\ of data relating to user activity. Much of the relevant data is available
for terminal sessions just as it is for normal batch work through the
standard accounting procedures. In addition to this data, a module has
been designed and implemented experimentally which collects information
regarding batch submittals made by terminal users. The standard account-
ing procedures, of course, collect the same information about these re-
motely submitted runs as they do for normal batch jobs. This new module,

however, additionally collects the following information for each run.

o Userid of submitter

o PSI macro used

o Time, line, and card estimates
o Priority requested

o Date and time of submittal

This data can be used not only to ensure the proper use of

resources by terminal users, but to determine the level of use and actual

5=2
LOCKHEED

users of each PSI macro. Although this module has been coded and tested,
it has not been implemented in a production mode because the current re-
sponse problems during submittal will not permit the monitoring of activity.

Once response improves to a satisfactory level, this module can be added.

During 1977 the feasibility of monitoring other activities of
users will be considered and software will be developed to produce mean=-

ingful reports from all available information on user activity.

LOCKHEED

5

LR 28005
SECTION 6.0
CONCLUSTIONS
The success experienced with early versions of ASSIST has con=-

tinued with improved implementations. The present version clearly de-
monstrates the practicality of augmenting existing application software
with a communications interface system. Some of the specific benefits

of this system are as follows:

(1) By eliminating the need for communication with professional programmers,
errors due to misunderstandings disappear and elapsed processing time

is reduced.

(2) By providing simple and direct communication with the computer, the

productivity of the user is increased.

(3) By checking user input data and automatically generating job control

information, execution errors are greatly reduced.

(k) Making informaticn about software centrally and easily available and
providing a convenient means for using it results in a greater
utilization of available software and less duplication of program

development of effort.

By the end of 1976, 180 programs, or versions of programs, were
directly available to users through ASSIST., Included in this number are
several major computing systems, such as FAVAS (Flutter And Matrix Algebra
System) and the NASTRAN (NAsa STRuctural ANalysis) system. In addition,
ASSIST includes utility functions to allow users to print and punch data
sets and to compile small FORTRAN and PL/I programs. The number of users

LOCKHEED

CALFORNA COMBANY

LR 28005

at the end of 1976 was 172, and more than 100 runs were being made daily
through ASSIST. ASSIST has been used to great advantage in almost every
area of engineering analysis, as well as some areas of financial analysis,
and recently in manufacturing. Significant cost savings have resulted,
primarily due to reductions in elapsed time to complete analyses and
through the elimination of many sources of error. For example, the
structural engineering organization has reported that ASSIST was, in part,
responsible for obtaining a dramatic improvement in both cost and schedule

in determining external strength level loads for the L-1011-500.

Future developments in the area of user oriented remote com-
puting will be at two levels, For the short term, efforts will be
directed at improving the performance characteristics and basic capabil~
ities of the present version of ASSIST. The major effort, however, will
be directed toward determining the proper hardware and software con-
figuration for providing users with remote computing capabilities. RBoth
the short term and long term efforts have been strongly influenced by the
results of a questionnaire which was distributed to DCAS users on May 20,
1976. The complete results and analysis of this questionnaire are given

in Appendix C.

Although the responses to the questionnaire indicated a highly
favorable attitude toward ASSIST, there were many constructive suggestions
for improvement. The main criticism of the system was its poor responsive-
ness, a problem not with the ASSIST software but with the overall hardware
and system software environment in which ASSIST is imbedded. Neither the
IBM 360/91 hardware nor the 05/MVT software (the current operating system)
were designed to support time sharing applications. Consequently, TSO,
IBV's time sharing system which hosts ASSIST, has severe performance pro-
blems. Furthermore, due to the wide acceptance and overall success of
DCAS, the number of users is expected to grow steadily over the next several

years, adding to the difficulty of providing adequate performance.

6=2

LOCKHEED

4 FORN A COMPANY

5

LR 28005

Several approachs toward improving system responsiveness and
capacity are possible. The first is simply to dedicate sufficient com-
puting resources to achieve the desired level of response for the current
number of users, an expensive but simple solution. The second approach is to
replace TSO with a time sharing system designed to ccmpensate for some of
the inadequacies of the existing hardware and operating system software.
Although such systems exist, none offers the range of capabilities avail=-
able under TSO, and extensive retraining of users would be required if
such a change were made, Recause systems still must contend with hardware
and operating system software which are inherently inefficient for the
purposes of time sharing, a truly efficient replacement system is im-
possible, A third approach is to move the interactive functions from the
IBM 360/91 onto a machine or machines better designed to support such
activity., In this environment, a user would be connected to a satellite
computer capable of handling interactive functions directly and be con-
nected to the IBM host machine to provide remote batch capabilities. Such
a distributed system, while possibly solving the major performance pro-
blems, introduces many other potential difficulties. Not the least of
which are those related to the communication between the satellite com-
puter(s) and the host. The major effort on this research task during
1977 will be to determine the potential value and practicality of such a

distributed system for providing user-oriented remote computing capabilities.

6-3

LOCKHEED

g

Al

LR 28005

APPENDIX A

GUIDE TO WRITING A PSI MACRO
INTRODUCT ION

A PSI (Program Setup Instructions) macro is just a generalized

set of JCL (where JCL is taken to mean all actual JCL, LASP control state-

ments, linkage editor input, etc.). This generalized JCL is analyzed by

a preprocessor (RUNFROG), and from it a complete job for batch execution

is built. In writing a PSI macro it is usually best to start with a set

of JCL as would be required for a batch submittal and make modifications

to it as indicated in the following sections.

A.2

(1)

(2)

(3)

STRUCTURE OF A PSI MACRO
A PST Macro can contain three types of statements:

System Control Statements

These are the IBM System/360 JCL statements, LASP statements,
linkage editor input, and other data. These obey the normal rules
for syntax except they may optionally contain PSI variables (see
section A.L).

Comment Statements

Comments may be written in columns 2-80 of a card if a 'C' is placed

in colum 1, Comment cards are ignored by the preprocessor.

Preprocessor Statements

These are special statements which control the creation of the job

to be submitted, These statements are coded in columns 2-72 and

A=l

LOCKHEED

B

- . —

A.3

must be prefixed with a '%' symbol in column 1. These statements
are stream rather than card oriented and hence each must be ter=~
minated with a semicolon. The preprocessor statements currently

available are:

(a) The Macro Definition Statement (See Section A.6)

(b) The Macrc End Statement (See Section A.6)

(c) The Input Statement (GET - see Section A.9)

(d) The Output Statement (PUT - see Section A.9)

(e) The Conditional Statement (IF - see Section 4.10)

(f) The Group Delimiting Statements (DO & END - see Section A.10)
(g) The Assignment Statement (See Section A,11)

(h) The Tteration Statement (DO WHILE -~ see Section A,1l2)

A PSTI macro should begin with a macro definition statement and
end with a maero end statement (although neither is presently
required). The other preprocessor, comment, and system control
statements can occur anywhere within a PST macro,

NOTATIONAL CONVENTIONS

When describing the syntax of preprocessor statements, the follow-

ing notational conventions will be used.

(1) The brackets, ' [' and 't]' will surround items which may optionally

be present.

LOCKHEED

g

-

(2) The braces, ' {: and 2}' will mean that one of the enclosed items

must be chosen.

(3) Strings of lower case letters are used to indicate variables which

must be replaced with some value.

A=2

LR 28005

(k) strings of upper case letters indicate information which must be

present exactly as written.

(5) The ellipsis, '...', indicates that the previous item may be re-

peated an arbitrary number of times.
For example, in the specification

ASSIGN identifier [{i} constant] ens 1O sUbSCTIipt

'ASSIGN' and 'TO' must appear literally, 'identifier', 'constant',
and 'subscript' are variables which must be replaced with values
whenever they occur, ' : constant' is optional and it may occur
sequentially any number of times, but each time a choice must be

made between '+' and '-'.
AL PSI VARIABLES

Any item (or portion of a statement) within a JCL set which
may assume different values with different submittals may be given a
symbolic name so a value can be assigned when the actual submittal is
made. This name can consist of up to eight (8) characters. Tt must
begin with a letter and can contain only letters, digits, break characters

(_), and national characters ($,#,2). This symbolic name can be used for

e ey e € A A Al I b AR

any item in a JCL statement by enclosing it between the symbols '<\' and

' >' and writing this string in place of the given item. For example,

suppcse the running time for some program varies with the input data.

One could then write the following statement:

/*MAIN LINES=20,CARDS=50, T IME=<_RUNTIME >

This would allow specification of value for the variable RUNTIME when

the program is submitted for execution.

LOCKHEED A=3

=

IR 28005

When the substitution of a value occurs, that value normally
replaces exactly the string '<' followed by the variable name followed
by '>' (for exceptions to this see Section A.5). If the length of the
value is less than that of the string it replaces then the remainder of
the statement will be moved left so as to immediately follow the value

inserted. Correspondingly if the value is greater in length than the

string it replaces, the remainder of the statement will be shifted right
an appropriate number of spaces. If more than one variable is to be
replaced in a statement, replacement proceeds fram left to right.

This substitution of values can cause a statement to exceed
the maximum allowable length for that type of statement. For actual JCL
and LASP statements, RUNPROG automatically produces continuation cards
when this condition occurs. All other statements are truncated after 72

columns.

PSI variables may also be used in preprocessor statements as in
any programming language. In this case they are not surrounded by the
delimiters '<' and '>'. The same variable name may appear in both a
system control statement (surrounded by '< ' and ' ') and in a pre=

processor statement and will have the same value in both contexts.
AeH SPECIFYING COLUMNS FOR STRING REPLACEMENTS

Sometimes it is necessary to insure that the value replacing
some variable name begins in a particular column, This can be accomplish-
ed by prefixing the variable name with the symbol ' ' and the desired
column number. For example, an accounting card could be written as

follows:

/*AC< USERNAME > < @19$CSR# > <@33CODE ><@3UPROGH > <@LLIDP# >,

A=L

LOCKHEED

Y

LR 28005

In this case the value of $CSR# would begin in column 19, the value of
CCDE in column 33, and so on. Replacement proceeds from left to right so

if the same columns are affected by two replacements the latter one over-

rides the former. For example, if the value of CODE had length 2 it would
occupy columns 33 and 34 after the replacement, However, the replacement
of PROG# by its value would modify column 34 again and the second character

of CODE in this statement would be destroyed.

A literal string can also be placed in a specified column by
enclosing it within quotes. For example, the accounting card could be

rewritten as follows:

/*AC< USERNAME ><@19$CSR# >&@33'1') { @34 1234 ' > (BhUSDP4 > ...

This would place a 'l' in column 33 and the string '1234' in columns 34

through 37.
A6 NAMING A PSI MACRO

The name of a PSI macro should begin with the letter 'P', which
should be followed by the reference file number for the program being
executed, and this can optionally be followed by any string of alphameric

characters. The total length of the name, however, may not exceed 8

e Mo S AN o e 7

characters. Other names may be used if there is sufficient reason and

if prior approval is obtained.

This macro name should appear on a macro definitior statement
which should be the first statement of the macro. The form of this state-

ment is as follows:

% name: MACRO identifier=constant [,identifier=constant] cos}

LOCKHEED

i

LR 28005

where 'name' is the PSI macro name

'identifier' is any variable name
'constant' is an integer or character string default value for

the variable (see Section A.7)

The macro name may also appear on the macro end statement which
should be the last statement of the maero.. The form of this statement
is as follows: f
% MEND name

where 'name' is the PSI macro name.

As an example suppose a PSI macro were being devel oped to
execute a program whose reference file number was '1234'. The macro
would probably be named P1234 and would begin with the statement

% P1l234: MACRO;
and end with
) % MEND P123L4;
This macro name will also be used in storing the macro into the PSI macro

library (see Section A.1lh4).
Ao ESTABLISHING DEFAULT VALUES FOR VARIABLES E
Default values may be given to PSI variables by listing them E

on a macro definition statement (see Section A.6 for a complete descrip-

tion of this statement). For example, suppose one wanted to have a g

default running time of 2 minutes for some program but still allow the
3
user to override the time if necessary. This could be accomplished by 1
|
using the following macro definition statement,
% P1l234: MACRO RUNTIME=2;

Default values can be established only for those variables which have not

been assigned values prior to invocation of the macro. That is, some
h=6
LOCKHEED

LR 28005

variable names have built-in default values, and the macro definition
statement cannot be used to specify different default values. A complete
list of these system variables and their defaults is given in the Table on

the following page.
The system variables fall into 2 classes.
(1) User Information Variables

These contain information relating to the user and their values are
automatically determined based upon the "userid"” and "account"

specified by the user at logon.

Specifically they are:

(a) $USERID - userid

(b) &CSR# - decas account number

(¢) &CHARGE# = class-work order, ewa, and serial number associated
with dcas account number

(d) $pp# - department number associated with account number

(e) $cp# - group number associated with account number

(f) JOBNAME - name to be given the submitted job

(g) USERNAME - wuser name associated with userid

(h) USERDEPT - department number associated with userid

(i) BIN# - address (i.e. building number or bin number)

where output is to be sent
(2) Convenience Variables

The remainder of the variables listed in the Table were provided merely
as a convenience in using the early versions of RUNPROG which did not
allow the setting of default values. At some time in the future the
default values for all of these variables will be eliminated. There-
fore, new macros should explicitly specify the defaults for any of

these variables used, and existing macros should be so modified.

A=T7

LOCKHEED

Variable Name

$CARDS
$CLASS
$CHARGE#
$CSR#
$DP#
$GP#
$LINES
$PRTY
$REGION
$TIME
$USERID
BIN#
CODE
DATA
JOBNAME
OBJECT

USERNAME
XCHAR

IR 28005

Default Value

0!
15t

automatically determined
automatically determined
automatically determined
automatically determined
151

19t

'200K'

1

automatically determined
automatically determined
o1

a null data-set
automatically determined
a null data-set

'L69000"

lol

a null data-set
automatically determined
automatically determined
TAt

Table., RUNPROG System Variables and Defaults

LOCKHEED

%

A=8

A

LR 28005

A default value may be any preprocessor constant. Preprocessor 1
constants may be numbers or character strings. A number may be written
as a fixed point or floating point decimal number. A fixed point decimal !
: number consists of 1 to 15 decimal digits with an optional decimal point.

If no decimal point appears, the point is assumed to be immediately to

the right of the rightmost digit. A floating point decimal number is
written as a fixed point decimal number followed by the letter E, followed
by an optionally signed decimal integer exponent (of no more than 2 digits).
Any numeric constant may optionally be preceded by a plus or minus sign.
Rlanks may not appear within a numeric constant. The following are ex=-

amples of valid numeric constants.

3.141593
732
003
.0012

) 3141593E-6
T.32E+2
.003E3

A character string constant is any string of up to 80 valid
characters enclosed withi: single quotation marks. If a single quotation
mark is a character in the string, it must be written as two single
quotation marks with no intervening blanks. If two single quotation marks

are used within the string to represent a single quotation mark they are

counted as a single character. A null character string constant is
written as two quotation marks with no interleaving blank. Examples of

character string constants are:

'TITLE'
'SHAKESPEARE''S' ' ' "HAMLET''' "’

'3,141593"
'* (null character string constant)

LOCKHEED

=5

LR 28005

~N
A8 OVERRIDING DEFAULT VALUES
If a default value has been provided for a variable, it may be
overriden by the user as follows:
(1) He must include the specification "MOREPARV(YES)" when using the
RUNPROG command (See Section A,16), For example:
RUNFPROG Pl234 DATA(X.DATA) MOREPARM(YES)
!
(2 RUNPROG will then give him the opportunity to override default values.
Yor each variable he wishes to change he must type the variable name
followed by an equal sign followed by the value he wishes that var-
iable to have (character string values mist be enclosed in gquotes but
numeric values need not be)., Multiple specifications can be given
" by separating them by blanks or commas. FEntering a null line termi-
nates this mode and RUNPROG resumes processing of the macro,
A9 COMMUNICATING WITH THE USER
Input (GET) and output (PUT) statements are available for
obtaining and providing user information. The GET statement has the
form,
% GET identifier;
where 'identifier' is any variable name
The execution of such a statement will cause one line (80 characters) of
information to be read from the user's terminal. Trailing blanks are
eliminated and the resulting string is stored as a value for the variable
specified by 'identifier'. A null line or a line of blanks are interpreted
as a single blank character. /A separate GET statement is (presently) re-
quired for each value to be obtained.
)

A=10
st contne

=

LR 28005

Since execution of the GET statement will cause the program to
pause and wait for the user to respond, it is usually necessary to give
him some prior indication as to what information will be required of him,
This can be done with the PUT statement. In fact the PUT statement can
be used anytime it is desired to issue a message to the user., TIt's form
is as follows:

identifier

b FUT 1 onstant

b

where 'identifier' is any variable name

and 'congtant' is any preprocessor constant (See Section A.7)

The execution of a PUT statement will cause the value of the identifier
or constant specified to be displayed at the terminal, A separate PUT
statement is (presently) required for each value to be output. Z#An example

of the use of the GET and PUT statements is as follows:

% PUT 'PLEASE SUPPLY A VALUE FOR X';
% GET X3

Commmication with the user can also occur without the explicit
use of the GET and PUT statements. Whenever a variable is encountered
for which no value has been assigned (either by the system or from some
prior stafement within the macro), RUNPROG will prompt the user for a
value., For example, if no value had been given for the variable RUNTIVE,

the processing of the statement.

/*MAIN LINES=20,CARDS=5,TIME=<RUNTIME>
would result in the following message being displayed at the user's
terminal,

RUNTIME = ?

RUNPROG would then accept a value from the user for this variable, just
as if a GET statement had been executed, and process the statement using

the supplied value., This variable will now have the value specified by

A=11

LOCKHEED

%,%

LR 28005

the user, unless altered by an assignment statement (see Section A,11) or
an explicit input statement, for the remainder of the processing of the
macro, Hence, if another statement containing the same variable name is

encountered,
// EXEC FORTLG,PARM,G=<RUNTIME >

the same value will be used and the user will not be prompted again,

The user may also specify values for variables using the same
technique as was required for overriding default values (see Section 4.8)
even for variables with no established defaults. The user could thus
supply all required inputs at once and avoid being prompted for each item
individually except l: cases where the explicit input (GET) and output
(PUT) statements are used. (The GET statement will always require the
user to supply a new value for a varieble even if the variable already

has a value),
A,10 SPECIFYING ALTERNATIVES

PSI macros may be written in such a way as to cause some JCL
statements to be included in the job being built only under certain
conditions. This may be accomplished by use of the preprocessor con-
ditional statement. For example, suppose a given program cculd optionally
produce plot output. The macro could be written in such a way as to in-
clude the setup and DD cards for the plot tape and the necessary instruc-
tions to the operator (via operator cards) only for the runs which actually
generate plots. A variable, say PLOTS, could be selected as the test var-
iable and one could write

o

% IF PLOTS='YES' THEN
/*SETUP DDNAME=PLOTTAPE,..,.
This would cause the setup card to be included only if the value of FLOTS

was 'YBS', If PLOTS had not been assigned a value prior to execution of

A=12
LOCKHEED

LR 28005

the IF statement then the user would be prompted for a value. If more
than one statement is to be optionally included based upon some test then

that group of statements must be preceded by the preprocessor statement,

% DO

and followed by the preprocessor statement

> END;
For example, one might write the following:
% IF PLOTS='YES' THEN
% DO
/*SETUP DDNAME=PLOTTAFE,...
/*OPERATOR. .,
/*OPERATOR. .,

% END;

In this case the setup and operator cards will all be included or all

omitted depending upon the value of PLOTS,

The conditional statement nmust have the following form.

¢ Ir { identifjer} relop {identifjer} THEN statement-block
constan an

cons

where 'identifier' can be any variable name

'constant' can be any preprocessor constant (see Section A,7)

'relop' must be either the relational operator '=' (equal) or
' =' (not equal)
'statement~block' can be either a single statement or a group
of statements preceded by a DO statement
and followed by an END statement.

] Conditional statements may be nested to any depth. The follow-
| ing are valid examples of the use of IF statements.
i 9% IF A=l THEN
% DO
(group of statements)

A=13
e o e

==

: IR 28005
\
% IF B=2 THEN
% DO;
(group of statements)
% IF C=3 THEN
(statement)
% END;
% ENDj
% IF A=l THEN
% DOj
! (group of statements)
% IF B=2 THEN
% DO;
(group of statements)
% END3
(group of statements)
\ % END;

A1l ASSIGNING VALUES TO VARIABLES

A limited form of an assignment statement is available in the

present version of RUNPROG., This statement is written as follows.

7 identifier = constant;
where 'identifier' is any veriable name
'constant' is any preprocessor constant
One example of the use of this statement is the following:
% PRTY=33
IF TIME 7=2 THEN
% PRTY=1j

Here PRTY is given the value 3 as long as TIME is 2 (presumably the
default value), otherwise PRTY is changed to 1.

A=k
i

f ‘;E§§§§:FT

LR 28005

A.12 PERFORMING ITERATION

Sometimes it is necessary to repeat a statement or group of
statements within a job being built, This repetition can be accomplished

with the preprocessor DO WHILE statement. Tt's syntax is as follows:

identifier
constant

identifier

DO WHILE (constant

)$

relop

where 'identifier' is any variable name.
'constant' is any valid preprocessor constant,
'relop' is either the relational operator
t=' (equal) or '7 =' (not equal)

The end of the repetition loop is indieated by the preprocessor ENT state=-
ment, The loop may contain statements of any type (preprocessor, JCI,
etc.), and the group will be repeated as long as the condition of the

DO WHILE remains true. For example, suppose the input data to some pro-
gram could exist on several data-sets which would have to be concatenated
together in order to make a run. Rather than requiring the user to do the

necessary merging, the following code could be included within a PSI macro.

//SYSIN DD DSN= < INPUT >,DISP=SHR

% PUT 'SUPPLY NEXT INPUT DATA-SET NAME'j
% TUT 'OR HIT CARRIER RETURN IF NONE';
GET INPUTj

% DO WHILE (INPUT 7= '')3

// DD DSN=< INPUT >>,DISP=SHR

% PUT 'SUPPLY NEXT INPUT DATA-SET NAME'j;
% PUT 'OR HIT CARRIER RETURN IF NONE';
% GET INPUT}

% END;

R

A=15
LOCKHEED

LR 28005

After the initial 'DD' card is written into the job stream the
user is prompted for another data-set name by use of the PUT and GET
statements (see Section A.9). The loop is then entered provided the value
supplied was not null, A concatenation 'DD' card is generated and the user
is again prompted for ancdther data-set name. Control returns to the
WHILE statement and the leop is exeeuted again as long as the last
value provided was not null. This process continues umtil a null value
is given for a data-set name, Control then transfers to the statement

following the END statement.

A.13 BUILT=IN FUNCTIONS

The bullt-in functions which are available for use in writing

PSI macros are described below.

A.13.1 DSN Built-in Function

Definition: DSN converts a valid TSO specification of a data
set name into a form acceptable for use in a Data Definition (DD) state-
ment, returning the converted form to the point of invocation. (Within

TSO a user may refer to one of his data sets without explicitly including
J the top level index, namely his '"userid'". He may also refer to his own
or any other catalogued data set by specifying the full data set name and
enclosing it within single quote marks ('). In a DD statement, however,

the full data set name, without enclosing quotes must be given).

Reference: DSN (string)

Argument: The argument "string" represents the string from
which a full data set name is to be constructed.

A<l6
b T

—

IR 28005

Result: If "string” hes enclosing quotes the value returned by
this function is the "string” with the enclosing quotes removed. Other-
wise, the value returned is a string consisting of the current user's
"userid" followed by a point (".") followed by the argument "string".

Exgggles: If INPUT had the value

'E123456,XYZ,DATA"
the statement
% DATASET = DSN(INPUT);
would assign the value
E123456.XYZ . DATA
to the variable DATASET.

If INPUT had the value
XYZ,.DATA
and the current user was E654321 then the statement above would
osuse the value
B654321 ,XY7, DATA
to be assigned to DATASET,

A 3.2 SUBSTR Built-in Function

Definition: SUBSTR extracts a substring of programmer defined
length from a given string and returns the substring to the point of
invocation.

Reference: SUBSTR (string,(i ,J])

Arguments: The argument "string" represents the string from
which a substring will be extracted. Argument "i" represents the starting
point of the substring and "J" represents the length of the substring.

A=17
LOCKHEED

=

e i

IR 28005

Arguments "i" and "J" must be integers or variables with integer values.
Assuming that the length of "string" is k, arguments "i" and "j" must
satisfy the following conditions:

(1) J must be less than or equal to k and greater than or equal to O.
(2) 1 muist be less than or equal to k and greater than or equal to 1.
(3) The value of i + j - 1 must be less than or equal to k.

Thus, the substring, as specified by "i" and "j" must lie within
"string". If "j" is not specified, it is assumed to be equal to the value
of k =1+ 1, In other words, it is assumed to be the length of the re-
mainder of "string", beginning at the ith position in "string".

Result: The value returned by this function is a character

string determined as follows:
(1) If j=0, the returned value is the null string.

(2) If j is greater than O, the returned value is that substring be-
ginning at the ith character of the first argument and extending jJ

characters.

(3) If j is not specified, the returned value is that substring be-
ginning at the ith character and extending to the end of "string".

Example: If CHARGE is the character string
21-3715 5407
the statement
WO = SUBSTR(CHARGE,U4,k4);
will cause a L-character substring to be extracted from CHARGE,
starting at the Lth character, This substring,
3715
will then be assigned to the variable WO.

A=18
LOCKHE_EP

=

I T oA O

AJdL MAKING A PSI MACRO AVAILABLE FOR USE

Once a PST macro has been written it must be copied into the
PSI macro library before it can be used with RUNPROG., This library is a
partitioned data set where each member is a macro. The member name should

be exactly the same as the name given the macro.

A special DCAS command is available for putting a new member in
the library or changing an existing member. This command is named ADDMAC
and has two positional parameters. The first is the name of a control
(CNTL) data set containing the macro to be added or replaced and the second

is the name of the macro. For example,

ADDMAC XYZ Pl23L4
will put the data set userid.XY/,CNTL into the macro library with member
name P1234, Notice that the data set specified must be of type CNTL and
exist in the library of the current user and neither the userid or type
are specified on the ADDMAC command.

An existing macro can be changed by first copying the appropriate
member of the macro library (which is named TSOGURU,DCASJCL,CNTL), meking
the desired changes in the copy and using ADDMAC with this new data set

and the original member name.
A5 REMOVING A PSI MACRO FROM THE LIBRARY

A PSI macro can be deleted from the library by use of the DELMAC

command, This command is written as follows:
DELVAC macro~name

where macro-name is the name of the macro to be removed. DELMAC will
give the user the opportunity to specify additional macros to be deleted
by prompting for more names, thus, allowing several macros to be deleted

at once.

A=19
e

=

IR 28005

A16 EXERCISING A PSI MACRO

The DCAS command, RUNPROG, is used to invoke & PSI macro to
build and submit a job. Its form is as follows:

RUNPROG macro-name | keyword(value)| ...

Here, 'macro-name' is the name of the PSI macro to be used and

' |keyword(value) | ..."' is a (possibly empty) list of keyword parameters
and values as needed for the particular run. The following ten keyword
parameters may be used with RUNPROG.‘

(1) SOURCE

(2) DATA

(3) OBJECT \ -~ data-set names

(4) CASEDATA

(5) MATDATA

(6) WMADOL

(7) XCHAR ~ character(s) to be appended to userid (or jobid) for
use as a jobname

(8) MDPROG ~ program name

(9) MOREPARM ~ indication as to whether more parameter values are
to be specified by the user

(10) SUBMIT - indication as to whether the built job is to be

submitted.

The first eight of these are provided merely as a convenience;
they may be omitted here even if it is desired to override their default
values (see Section A.7). Values supplied for the data-set names (par-
ameters 1-6) can be specified according to TSO conventions. RUNPROG will
automatically add the userid if necessary (that is, RUNPROG will perform
the DSN function (see Section A.13) on supplied data-set names). The
seventh parameter allows the specification of a character or string of

characters to be used in the construction of a jobname for the job 1o be

A=20
LocKHEED

LR 28005

submitted., The jobname will be the userid or jobid, if one has been
established for the current user, followed by the character(s) of XCHAR,
If the jobname so formed is greater than eight characters, it will be
truncated to eight. The eight parameter is merely some name. It can be

given any value, up to eight characters in length.

The ninth parameter is used to indicate that additional par-
ameter values (other than those given on the RUNPROG statement) are to be
provided by the user. This can be done by specifying MOREPARM(YES); the
default value is NO (see Section A.8). The tenth parameter indicates
whether or not the job being built is to be submitted for batch execution.
The default value is YES., If SUBMIT(NO) is specified then RUNPROG will
build and list a complete job but will not submit it., It will save the
job in a data-set named JOB.CNTL in the current user's library. If
SUBMIT(EIST) is specified, the job will be listed and saved as JORB.CNTL

as well as being submitted.

It should be noted that RUNPROG is a TSO command procedure
(CLIST) and as such allows the use of abbreviations for keyword parameter
names. Only enough characters need be specified to insure the unique

identification of a given parameter. For example, one could write,

RUNPROG P1234 SO(SOURCE.FORT) D(DATA.DATA) O(OBJECT.DATA) X(A)
MO(YES) SU(NO)

Al7 TESTING A PSI MACRO

A PST macro can (and should) be tested with the TESTMAC command
before placing it into the macro library. This commend is very similar to
the RUNPROG command except for the following:

(1) It accesses a macro existing as a data set in the library of the in-

dividual using the TESTMAC command.

A=21
ook

B, 3

LR 28005

(2) The Job Control Language (JCL) statements produced by processing the
macro will not be submitted but will be displayed at the terminal
as they are being built. Prompting messages, if any, will appear as
they are encountered within the macro. Hence they may be interspersed
with the JCL statements being built. These messages should be answer-

ed as usual.

The form of the TESTMAC command is as follows:

TESTMAC data-set-name |keyword(value) | ...
The 'data-set-name' specifies the name of the data set containing the
macro to be tested. The name must include the type qualifier. The key-
word parameters are specified in exactly the same manner as for the
RUNPROG command., All but the SUBMIT keyword can be used with TESTMAC,
The following is an example demonstrating the use of TESTMAC to check a
newly written macro, created as a TSO data set named P2941.CNTIL, where &
value for the keyword DATA and an indication that more parameters are to

be supplied are given:

TESTMAC P2941,CNTL DATA(P2941.DATA) MOREPARM(YES)
A.18 SPECIFYING DATA-SET NAMES TO RUNPROG

In TSO a user may refer to a catalogued data-set outside his own
library by enclosing the name in quotes. Unfortunately quotes are also
used as delimiters in TSO and PL/I (the language of RUNFROG). This re-
quires that one often write two successive quotes to indicate one actual
quote character. Several levels of passing these characters can lead to

a proliferation of quotes.

Without going into the reasons why, the following rules are

given as a guide for specifying a quoted data-set name to RUNPROG.

A=22

%

LOCKHEED

LR 28005

(1) When specifying a data-set as SOURCE, OBJECT, DATA, CASEDATA, MATDATA,
or MADOL as part of the RUNPROG statement or when specifying such a
data-set with any of the DCAS commands, PRNT, PNCH, PRNTOUT, PRNTPDS,
PRNTR, PNCHR, PRNTOUTR, GETDS or PUTDS, the name must be preceded
by four (4) quotes and followed by four (4) quotes.

(2) When the data-set is specified as an additional parameter (using the
MOREPARM(YES) option), the name must be both preceded and followed
by three (3) quotes.

(3) When prompted for a data-set name, only single gquotes are required
both preceding and following it.

Data-sets which are within the user's library are specified

identically in all cases; that is, the complete data-set name, exclusive

of the 'userid' and its following decimal point is given.

AL19 AMPLE OF A PSI MACRO

The following Figure is an example of a PSI macro. Card 1 is
just a comment. Card 2 is a macro definition statement giving the macro
the name, EXAMPLE, and establishing default values for the parameters,

TIME, PRIORITY, PROGRAM#, and CLASS. Card 3 tests the variable, TIME, If
TIME is net a 2 (i.e. a value for TIME was specified using the MOREPARM(YES)
option) the statement on card 4 is executed. Hence PRIORITY will be 3 if
TIME is 2 and O otherwise. Cards 5 through 8 are JCL cards in which par-
ameter substitutions will be made, JOBNAME, $USERID, USERNAME, $CSR#,

$DP#, $GP#, and BIN# are automatically determined based on the logon in-

i formation. The other parameters get their values from the defaults spec-
ified on card 2, frem information given by the user with the MOREPARM(YES)
option, or as determined by the macro itself (as possibly for PRIORITY).
Card 9 is another comment. Card 10 tests the variable, PLOTS. Since PLOTS

LOCKHEED

@F

Vi)
GIALEM

(RECER TGRS

000
VR))&

LI ¢y

I ¢
34 D

{94

oLl

}
a3

{1

[eo B W S

W

131
i

03]
1

iigure. Ixample of

DT

R PR

{1

PST

k)

y

F

158

WO THE
DAY LT
i

[

()

(T

]

1)

LR 28005

is not a system variable, and no default has been established for it, the
user will be prompted for a value (unless he has already supplied one
using the MOREPARVM(YES) option). If the user supplied value is 'YES',
that is, there will be plots produced, cards 12 through 15 (those between
the DO statement on card 11 and the END statement on card 16) will be in-
cluded in the job being built. Otherwise, they will not. Thus, appro-
priate operator instructions and a SETUP card will be included if there
is to be plot output. In this case, the values for JOBNAME, PRIORITY,
USERNAVE, BIN#, $DP{, $GP#, and $CSR# will be substituted as before., The
user will be prompted for a value for the variable, PAPER, unless he gave
one earlier, and that value will be substituted in card 1k, Cards 18
through 23 are JCL statements. The values, if any, supplied by the user
on the RUNPROG statement for SOURCE and OBJECT will be substituted in
card 18 and 19. If no values were given the system defaults will be used.
Card 24 is again a comment. Card 25 is another test, checking to see if
an output data is to be saved. The user will be prompted for a value for
OUTPUT unless he previously gave one, and the statements between the DO
on card 26 and the END on card 30 will be executed only if the value of
OUTPUT is not 'NO'. In that case its value will be taken as the name to
be given the output data set. The statement on card 27 performs the DSN
function on the name (see Section A.l3), converting it from a valid TSO
specification of a data set name in an OS acceptable form. The sub-
stitution of this name is then made to. the DD statement given on cards

28 and 29. Cards 31 and 33 check the value of PLOTC again and the appro-
priate DD card, either 32 or 34 will be included. Card 35 and 36 are JCI
cards, A valuve will be substituted for the variable DATA ir card 35 as
was specified by the user or by default if none was specified. Finally

card 27 indicates the end of the macro.

LOCKHEE_D

- | y

LR 28005

APPENDIX B
THE INPUT DESCRIPTION LANGUAGE
B INTRODUCTION

The ID (Input Description) language is just an extension of the
PSI (Program Setup Instructions) language. The basic rules for constructing
ID macros are the same as for PSI macros, and all statements which are legal
in PSI macros are legal in ID macros., The additional language constructs

for input description are given in the following sections.
B.2 DESCRIBING INPUT PARAMETERS

A character string giving the meaning of an input parameter (or
any macro variable) can be associated with its name by means of a DEFINE
statement, The form of this statement is as follows:

+

¢ DEFINE identifier (character string);
where 'identifier' is any variable name

'character string' is any string of characters

For example, the string 'MACH NUMBER' can be associated with

the variable name 'M' as follows:

9, DEFINE M(MACH NUMBER)j;

A more involved description is also possible as indicated by
the following example.
% DEFINE PRNT(PRINT OPTION -

PRNT=0 FOR STANDARD PRINT,
PRNT=1 FOR SUMMARY PRINT ONLY);

B-1
LOCKHEED

%

Here the variable, PRNT, is a flag by which the user may specify one of

two output options.

Once a parameter has been so defined a user may obtain the
associated description by typing a '?' followed by the parameter name.
This may be done whenever a response of some kind is expected from the
user. This action interrupts the normal processing and, after providing

the information requested, execution of the macro resumes automatically.
B3 DESCRIBING INPUT FORMATS

In order to describe the formats in which a program expects its
input to be given the PUT statement has been expanded to allow a format
specification. Syntactically this statement resembles the PUT EDIT

statement in PL/I. Tt is written as follows:

% PUT (identifier [,identifier] ee.) (format list)
where 'identifier' is any variable name

'formet list' is any valid PL/I format list
Upon execution of this statement the specified list is written

on the output file according to the format specification. An example of

this form of the PUT statement is given below.
% PUT (X,Y,Z2) (A(3),X(2),2A(5));
B.k4 SPECIFYING PARAMETER TYPES

Parameters may be declared to be of one of three types -

character, integer, or real. This is accomplished with the TYPE state-

LOCKHEED

=

-4

LR 2E005

It is written as follows:

ment.

CHAR

% TYPE (identifier I:,identifier] eso) { INTEGER
REAL

CHAR
[,(identif‘ier [,identifier] .os) { INTEGER 1 | oo 3

REAL

where ‘'identifier' is any variable name

For example, one could specify X and Y to be real numbers;

I, J, and K to be integers; and ABC to be a character string as follows:

% TYPE (X,Y) REAL,(I,J,K) INTEGER, (ABC) CHAR;

When a parameter has been so typed, any value supplied for it
will be checked for compliance., If the value is not of the proper type,
the user is immediately notified and prompted for a new value if the
macro is being executed interactively. Otherwise, an error message is

written on the output file.
BeD SPECIFYING PARAMETER LIMITS

A range or set of acceptable values can be specified for a
parameter with the LIMIT statement. It can be written as follows:
% LIMIT range [}range] s 3
where 'range' can be one of the following:
identifier = (constant Econstant]...)

<

~

identifier constant

>

Lo

B-3
i covan

5

LR 28005

constant { = } identifier[< constant]
<= <=
constant ;i L identifier[‘;= constant }

where 'identifier' is any variable name

‘constant' is any valld constant

With the LIMIT statemeht a parameter can be required to be one
out of a set of values or to lie between two values, Multiple ranges or
sets can be given for a single parameter in which case they are logically
OR-ed together. For example, to specify that the variable X must be
e ither between O and 1 or the value =99, one could write,

% LIMIT 0 { = X<{=1, X = -99;

Several parameters may be given limits with the same statement

as in the followiig example:

% LIMIT O A= I< =10, X >0, A = ('K','L')

This statement says that I must lie between O and 10 (inclusive),
that X must be greater than O and that A must have either ‘K' or 'L' as a

value.

B=k

LOCKHEED

i

LR 28005

"ASSIST" SURVEY RESULTS
.1 INTRODUCTION

On May 20, 1976 a questionnaire was distributed to all DCAS
users outside the Administrative/Computer Services organization. The
purposes of the questionnaire were to evaluate the Program Submittal
(RUNPROG) component of ASSIST (A Scientific Software Interface System
for Igrminal-users) and to obtain information for guiding the development
of additional capabilities. The results of 28 completed questionnaires

are presented and analyzed in the following section.
@2 RESULTS

The first question attempted to get an indication of the dis-
tribution of users according to their degree of activity on the system.
The question and number giving each response are given in Table 1., The

results indicate a fairly even distribution.

Question two tried to determine whether users felt the RUNPROG
capability to be of help in their work. The results were overwhelmingly
affirmative. The primary reasons sighted for this centered around the
fact that RUNPROG gave them a simple, convenient means for getting a job
submitted and run quickly. The complete responses to this question are

given in Table 2.

The third question asked users to describe any difficulties
they had experienced with RUNPROG. The major problems stated were that
the RUNPROG command itself was slow to execute and that the documentation
for it was incomplete or confusing. Table 3 contains the complete set of

responses.

LOCKHEED

=

LR 28005

Please estimate your activity on DCAS as follows:

a) Terminal use

heavy user (more than 10 hours/week)

-3
N
\
=58

7 (25%) moderate user (5 -~ 10 hours/week)
5 (184) 1light user (1 - 5 hours/week)

9 (32%) occasional user (less than 1 hour/week)

b) RUNPROG use

4 (14%) heavy user (more than 20 times/week)
\ 9 (32%) moderate user (10 - 20 times/week)
5 (18%) 1light user (3 - 10 times/week)
10/36%) occasional user (less than 3 times/week)

Table 1, DCAS Activity

C=2
LOCKHEED

%
- A

-

S
[AOI (UVI AN, I A6 T (@)
i e [e [
E & k[
[$) S [S) (S G&

~ |

IR 28005

Do you feel that the RUNPROG capability is a benefit in your

present work?

N
i
L~
(09)
N
S

yes

3
=

no

'_l
=
A
e g

yes & no

no response

n |-
?ié‘

If so how?

it improves job turnaround time

it provides faster way to submit a job
it's simplier than generating JCL
it's essential

it allows direct submittal by user
it's convenient

it's efficient

it reduces errors

E

o
e s
=
03*0
a—

g

If not, why not?

1 (4%) it's too slow
1 (4%) it's not applicable

Table 2, Benefit of RUNPROG

C=3

LOCKHEIED

=

e e e t—————————

LR 28005

What difficulties (if any) have you experienced in your use
of RUNPROG?

6 (21%) it's too slow

6 (21%) the options are confusing (poor documentation and
non-standard keywords)

2 (7%) machine problems

1 ((4%) lost output

1 ((4) hard to run multiple cases

1 (4%) many user errors not caught (e.g. incorrect data

set name)

Table 3., RUNPROG Difficulties

Cely

LOCKHEED

B

A

AT

e e

LR 28005

Question four asked users what changes were felt to be necessary
in RUNPROG., The most common response was that they wanted it to run faster.

The results of this question are given in Table 4.

In question five users were asked to rate RUNFROG by comparing
it to past methods of operation. Approximately 437 felt it was a signif-
icant improvement and 647 felt it was at least some improvement. Unfortu-
nately 32% did not respond at all, most of them indicating they did not
know what they were supposed to compare RUNPROG to. The intent of the
question was to determine whether users felt that having a capability to
submit jobs from a terminal, without having to be concerned with JCL, was
better than giving instructions to a programmer and having him submit the
job. Even though many seemed to misunderstand the question, the responses
from those who did clearly indicate a great satisfaction and acceptance of

RUNPROG. The complete responses to this question are given in Table 5.

question six asked users to express their opinions regarding the
usefulness of a capability to obtain information describing available pro-
grams from the terminal. A majority (54%) of the users strongly favored
the addition of such a capability, and 32% thought it might be useful. Most
thought it was important to have access to such information, but many felt

on-line access was not necessary. The responses are listed in Table 6.

Question seven asked users for their opinions of an interactive
capability for assisting in preparing program input. Again 54% felt such a
capability would definitely be beneficial. Another 21% said "maybe" while
18% said "no" and 7% did not respond. Those favoring the addition of this
capability thought it would reduce errors and make input preparation easier.
Those responding negatively generally could not see how it would help them

in their work. Table 7 gives the complete set of responses.

C=5

LOCKHEED

=

LR 28005

What changes (if any) would you like to see in the way RUNPROG

operates?

(o))
n

=

<
N—"

improved response
more flexibility in overriding JCL

check data set names for correctness

|
=
- |
QQ\Q
N

1 (4%) be able to view JCL and correct mistakes before
submittal
1 (4%) better terminal availability

be able to enter multiple cases at once

=
&

'_J

=
S
N—

be able to reuse a data set without making a copy

Table 4. RUNPROG Improvements

What is your overall rating of the RUNPROG capability?

12 (439 a significant improvement over past methods of operation
6 (21%) somewhat better than past methods
1 (4%) comparable to past ways of operating

£l

somewhat worse than past methods
a definite step backwards

1

o
S
. P

9 (32%

no response

Table 5. RUNPROG Rating

LOCKHEED

B, > 2

- ——

LR 28005

Currently being designed is an on-line capability which would
allow DCAS users to obtain information describing available computer pro-
grams (i.e., a capability enabling remote users to get a list of program
titles and optionally abstracts for existing software in a specified

category). Would you find such a capability useful?

15 (54%) yes
6 (14%) no

9 (32%) maybe

it would make information conveniently available

it's not necessary to have an on-line capability; a

bR |

o
?
n
=
S S
N—

batch capability would be sufficient

it would reduce duplication of software development

nn jw
=
— e

<

it should not impact overall DCAS response

=
0&0

~—

it would increase use of existing programs

information must be kept up-to-date

i

fellow workers are a better source of information

H

=
S
IN—

Table 6, Information Retrieval Capability

LOCKHEED

5

LR 28005

Also in the design stage is an interactive capability which
would assist DCAS users in preparing input data for program selected to run
(i.e., a capability which would prompt users for information and properly
: format it to meet program input specifications). Would you find such a

capability useful?

yes

'_.J
\n
B
a5
'~ N

no

maybe

o\
B
X
N

Mo
L~
-3
S
p—

no response

it should not slow down overall response

£§ '5 L
=

1o ©

[€2) [

S =}

it would reduce input errors

i
7 i
-
e
S

3 (11%) it would help the novice or occasional user
2 (7%) it would be more convenient ;
2 (Th) EDIT is usually sufficient for input preparation
2 (7%) no foreseen use
49) it would be more efficient

l—~.

it would save time

el L
= | £
S S

H
L=
I i
(&)

it would be helpful for FAMAS matrices

—
L—~
>

it should provide'user with enough information

it must be optional ﬂ

it would be impractical for large amounts of data

.

=

S Y
N

Table 7. Input Preparation Capability

C«8

LOCKHEED

Bt 3

L—-—nﬁ‘—.____' — P ——

~—

S — .

cuestion eight asked users what other capabilities they would

like to see incorporated into DCAS., Most users wanted capabilities
available under TSO but not included in the TSO subset provided with DCAES.
Users also indicated they wanted better response. The complete list of

responses is given in Table 6.

Finally, question nine gave users a chance tc make any other
comments regarding DCAS. The need for better response was again mentioned,
and a desire to have DCAS available for a longer period was also expressed.,

All the comments given are listed in Table 9.
O CONCLUSIONS

Based upon the responses to the questionnaire, the following

conclusions can be drawn:

(1) The RUNPROG capability is a highly accepted and useful tool for DCAS
users and, therefore, should be fully developed.

(2) Poor response is the biggest problem with RUNPROG and DCAS in general.

Efforts to make improvements in this area must be initiated.

(3) The documentation of RUNPROG and other DCAS capabilities is inadequate
and should be improved.

(4) The development of a capability to obtain information about existing
programs from a terminal would probably be beneficial. It might be
sufficient, however, to allow only the request for information to be
made at the terminal and have the actual information found and printed

in a batch mode.

(5 The development of a capability to assist in the preparation and check-
ing of program input data would help many DCAS users, but the use of

this capability should be optional

C=9

LOCKHEED

@F

IR 28005

What other capabilities would you like to see incorporated into

DCAS that would make it easier for you to use existing applications software?

O
L~

~3
a2

—

e e T T ST T
|~ L~ L~

=leilese = s

OQ* (=) (S} < S

N~ SN N S

o e
~—~ L~
E N E
S IS ()
~ |~ |~

better response
foreground execution capability
improved documentation
expanded CLIST capability
all of the TSO commands
ability to print data sets with column and title headings
reduced default track allocations for data sets
more user disk space
apability to store data at terminals on paper tape or

cassettes

Table 8. DCAS Improvements

Additional Comments:

147

[0 | =
L~
~
s

o

+ |3

< o
—

-
=
o 8

l::
o
NG

o

—
+ |=
Q:"- GSL

o e
l L
e B U
=) < ()Q
N

LOCKHEED

=

need better response

need foreground execution capability

need longer DCAS availability (6AM to 6FPM)

need better machine reliability

need capability to list contents of a PANVALET library
member

need capability to get a list when punching a data set
should be able to specify that punch be interpreted
the print of a data set should start at the top of a page
log-on time should be reduced

users should be taught to read JCI

it's a useful system

Table 9. Comments

C=10

SV WA

4---u-lI-IIlllllllllIIllllllllllllllllllllllIllllun-n-u---n---—ug..,'

IR 28005

REFERENCES

138 Jomputer Grephics Designer's Manual, 1TMC-1l, Lockheed-California

“ompany, Burbank, California, 1970.

2a ‘onversational Programming System (CPS), Terminal User's lanual,
H20-0758, IBM Corporation, White Plains, New York, 1970,

3. "Flutter And Matrix Algebra System (FAMAS) Manual," LR 23657,

Lockheed~-California Company, Burbank, California, 1970,

L. IBM System/360 Operating System: Time Sharing Option Cuide, GC28-6698,
IBM Corporation, White Plains, New York, 1973.

5. Anderson, R. H. and Sibley, W. L., "A New Approach to Programming
Man-Machine Interfaces," R-876-ARPA, The Rand Corporation,
) Santa Monica, California, 1972.

6. Ashok, D., '"User Requirements in Man-Machine Interactive Systems,"
SWRL-PP-20, Southwest Regional Educational Laboratory, Inglewood,

California, 1972,

7. Carlisle, J. H., "Interactive Man-Machine Communication," TR-51,

Yale University, New Haven, Connecticut, 1972.

8., Elson, M., Concepts of Programming Languages, Science Research

Associates, Inc., Chicago, 1973.

9, Fajman, R. and Borgelt, J., "Wylbur: An Interactive Text Editing
and Remote Job Entry System," Comm., ACM 16, 5 (May 1973), 31k-322.

|
:
:
[
i

: LOCKHEED

X

——cctlil]

3o,

13.

1L,

15.

16.

17.

18.

19.

LR 28005

Garrocq, C. A. and Hurley, M. J., "The IPAD System: A Future Manage-
ment/Engineering/Design Environment," Proc, ACM/IEEE 1lth Design

Automation Workshop, Denver, Colorado, June 197k,

Gries, D., Compiler Construction for Digital Computers, Wiley,
New York, 1971.

Lingard, R. W., "Engineer Oriented Remote Computing," IR 27518, Tlockheed-

California Company, Burbank, California, 1975.

Marks, S. L., "The JOSS Years: Reflections on an Fxperiment," R-918,

The Rand Corporation, Santa Monica, California, 1971.

Martin, J., Design of Man-Computer Dialogues, Prentice Hall, Inc.,
Englewood Cliffs, New Jersey, 1973.

Notestine, R. E,, "Graphics and Computer Aided Design in Aerospace,"”
Proc. AFIPS 1973 NCC, Vol. 42, AFIPS Press, Montvale, llew Jersey.

Sackman, H., "Rudiments of a Real-World Theory of Man-Computer Problem
Solving," R-1L9l-NSF, The Rand Corporation, Santa Monica,
California, April 197k,

Shaw, J. C., "JOSS: A Designer's View of an Experimental On-line
Computing System," P-2922, The Rand Corporation, Santa lMonica,
California, 1964,

Sproul, R. G., "Parametric Surfaces in a Computer Craphics Design
System,' LR 26863, Lockheed-California Company, Burbank,
California, 1974,

Thompson, J. M., "The DISKEDIT System - On-Iine Data Management,"

LR 26797, lockheed-California Company, Burbank, California, 197k,

LOCKHEED

, =
..."'i-'.-.-llllllll=Eiiiiiiiiiih--u--iii----.-.-u-.-.-i.-r~- o =

LR 28005

20. Wasserman, A. I., "The Design of 'Idiot-Proof' Interactive Programs,"
Proc. AFIPS 1973 NCC, Vol. 42, AFIPS Press, Montvale, lew Jersey.

21, Wilczynski, D., "An Approach to Run Time Modification of Data With
Special Application for MADOL Programs," LR 23529, Lockheed-
California Company, Burbank, California, 1970.

R=3

LOCKHEED

ENGINEERING REPORT INITIAL DISTRIBUTION LIST

reporT No. _ LR 28005

(SEE EPM 4-071 PAGE _ l, — O F 3 —
TITLE | MODEL | SECURITY CLASS, ” DATE
Do His !
SUMMARY OF 1976 INDEPENDENT RESEARCH __ . UNCIASSIFIED | 7-28-77
- o v~ APPRG 3
ON FENGINEER CRIEWIED REMOTE COMPUTTNG i /)
gt
"ORIGINATING ORGANI AT TITLs & DEPT. NO.) DIVISION ENGINEER
: o o
,.,x_ient Fie 1.na'4,':ical Programming (£0-36) |
Secientific Computing Division o L e = = e
COMMERCIAL ENGINEERING
WO/EWA 21 3715 5)'4’07 (COMMERCIAL ENGINEERING eRANcn REPORTS)
TLASS = WORKORDER ~—~ ~ EwWA™ ‘/'{n i Q7472 AR = Dl O
REMARKS o =5 pPROGUCT EVALUATION Gnour

P i

LEGAL BRA

/ & /1-”1 neY Al
H PATENT SECTION (STAYE ANY RESTﬂICTIONS)

/'u &'»d(o /L ‘c";rwx 5k

LIMITATION ON ACCESS TO DATA:
UNLESS LIMITATIONS ON SUBSEQUENT RELEASE OF THIS REPORT ARE STATED BELOW, COPIES WILL BE MADE FREELY
ACCESSIBLE TO ALL CORPORATION EMPLOYEES. (IF LIMITED, SUBSEQUENT RELEASE TO OTHER ORGANIZATIONS
REQUIRES COMPLETION OF FORM 7229)
LIMITED TO.

REASON:

WOULD IT BE BENEFICIAL TO CALAC TO RELEASE THIS REPORT TO THE PUBLIC VIA NASA DoD LIBRARIES? BYES CNO
(ANSWER THIS QUESTION ‘:OR INDEPE‘\JDENT RESEARCH OR INDEPFNDtNT DEVELOPMENT FUNDED REPORTS

 DISTRIBUTION 7__PUT "X’ IN PROPER COLU 7
1. ASSIGN COPY NO. TO HARD COPIES ONLY. /&G ;;‘/“ L &/
coPyY 2. LIST MICROFICHE AND ABSTRACT RECIPIENTS LAST S o, '
B 3. EXTERNAL COPIES INDICATE TRANSMITTER. it f &o v/
b 4, CIRCLE COPY NO. OF REPORTS ALREADY DISTRIBUTED. ~C Y
; I | Ry
(MASTER IND|521E;$(‘)NRHTESRSEE:'VL|€CDES GROUP f ‘ 1 !
OpUBLICATION SERVICES GROUP, i __PROJECT i i | ; i
(TO BE TRANSMITTED BY | [] T I_i
1 VITAL RECORDS 'REPORTS SERVICES GROUP | x| x| | : ! |
l | sl
2 REPCRTS SERVICES GROUP [x x | *’ i i
- i e - e
| | | | f
3.4 CENTRAL LIBRARY i | x| « 1
I ‘l i |
5 A. N, Baker 70-01 63 A=l i l x1 x
e : ‘ S S T
6 | p. L. Bickel 86-11 67 Al I x| x | =f
| ! ' [i
. 80-36 A=l I x| x| i
;i B, L, Blvens ~ 80-36 o7 7 __4_“*_5_4 10 I (S . l
8 | ». Prunelnt 28-06 146 -1 | *' x| x |
L2 PR s bt d SR e —e L2 L d
: B PR 2 R 2o SRSIRERR e N - IRREINEERS N 16 e S S M
10 L. C. Cowgill 75-72 63 A<l | _1| x| x|
— —— - ——e —_— - IA;A_.“Y - __4‘ —————— e
: 11 D. M, Crawford 86-11 67 A=l | x| x|
ST | St - = e L T : il
12 | D. R, Crawford 80-37 67 A-l | | x} X |
| ‘ i 1 R =
' 13 A, R, Curtis 72-71 311 B=6 ' | % | X | \
- - — i - ——en - —— — e Y
| 1 |
1k ‘R, D, Elliott 75-41 63 A-l | x| x| ; I
—fp e ————— - - e e ol] e - -
15 M. T. Evans 86-11 67 A-1 [x| x| | {
———— - ——— e . B ——— e W—— SE——t S AL -
7 i
: 16 R. Harris, Jr. (GEIAr') 87-lh E-lB 274 [Xl x) 1 }1 _h
CALAC FURM 5759.5 S D e T e o

REPORT NO. _LR _25Q05

ENGINEERING REPORT INITIAL DISTRIBUTION LIST

(SEE EPM 4.07) PAGE _ 2 ___oF._3 ‘
TITLE 1 MODEL , SECURITY CLASS ‘ DATE i
I, R. | UNCLASSIFIED 7-28~7T

e e

CRIGINATING ORGANIZATION (TITLE & DEFT. NO.) DIVISION ENGINEER

COMMERCIAL ENGINEERING

WO/EWA o7 3715 51:07 (COMMERCIAL ENGINEERING BRANCH REPORTS)
CLASS WO IO R D B E e R i radp e | S s SO) S R e e e e
REMARKS PRODUCT EVALUATION GROUP

LEGAL BRANCH - PATENT SECTION (STATE ANY RESTRICTIONS)

LIMITATION ON ACCESS TO DATA.:
UNLESS LIMITATIONS ON SUBSEQUENT RELEASE OF THIS REPORT ARE STATED BELOW, COPIES WILL BE MADE FREELY
ACCESSIBLE TO ALL CORPORATION EMPLOYEES. (IF LIMITED, SUBSEQUENT RELEASE TO OTHER ORGANIZATIONS
REQUIRES COMPLETION OF FORM 7229.)
LIMITED TO:

REASON:

WOULD IT BE BENEFICIAL TO CALAC TO RELEASE THIS REPORT TO THE PUBLIC VIA NASA/DoD LIBRARIES? OYES ONO
(ANSWER THIS QUESTION FOR INDEPENDENT RESEARCH OR INDEPENDENT DEVELOPMENT FUNDED REPORTS ONLY)

DISTRIBUTION 7 PUT X' IN PROPER COLUMNS _/
1. ASSIGN COPY NO. TO HARD COPIES ONLY. YIRS
copy 2. LIST MICROFICHE AND ABSTRACT RECIPIENTS LAST. & /R
£ 3. EXTERNAL COPIES: INDICATE TRANSMITTER. & & s <
4. CIRCLE COPY NO.OF REPORTS ALREADY DISTRIBUTED. & RS Y2
G INDICATE WHERE FILED:
(MASTER OREPORTS SERVICES GROUP % X
(OPUBLICATION SERVICES GROUP, _ PROJECT
17 F, W. Johnson T5~73 90 A=l x | x
18 T, R. Jones 80~36 67 A-1l i NS
19 D. K. Kawamoto 80-34 67 A-l x| x
20 P. H. Kretsinger 80-36 67 A=l X (X {
21 | R. W. Lingard 80-36 67 A-1 X |x f
22 J. D. Little 80~36 67 A-l X1 X
23 J. J. Lucas 80-34 67 A-1 X1 x ‘
24 R. F., 0O'Connell 75-71 63 A-l X | X
25 R, B. Ostrom 75<72 63 A=l X | x !
26 R. R, Plank 70-01 63 A-l XX
27 W. L. Rakness 75-72 90 A-l F X | x =
R PSS [RESSAREE = T
28 S. W. Robinson 80-36 67 A=l : x| x i
(PR e N R I TR | LI, I PR lll
29 D. H. Saiki 80-36 67 A-l E x| x l \ J
——— —_————————— ———————— ¥ - —_— e — - _.r ;;;;; — -+ —
30 J. E, Sherman (LMSC) 19-40 102 x| x |
——— —— = . e s | SEE ¢ —f— — vt
31 G. E. Smith 80-01 67 A=l X I x l
e e s e i S A i _,_,__JJ..._._. R S—— ____J‘ S

I' T TR TR

i e e it

=] 4 NO 4 28
ENGINEERING [CPORT INITIAL DISTRIBUTION LIST RERORT ; —LR 20005 _
SEE EPM 407 PAGE F 3

TITLE o [MOTEL T SECURITY CLASS. DATE
| | yoarAY poies T
| T.R, UNCLASS IF) 7 ?8-77 i
[APPROVALS 4 A SF
c/77» 2
] RPN T ORIt o - {
RIGITGAT Ty Jilaealal A% N(TITLE & ’ N OIVISION E AINEER 1
|
oy = COMMERCIAL ENGINLERING

WO EWA .:_l . 3715 3 5)_'07 T (COMMERCIAL ENGINEE RING BRANCH REPORTS)
&

» W A
REMARK 7 PROLUCT EVALUATION GROUP

ASS WORK OF bR

LEGAL BRANCH - PATENT SECTION (STATE ANY RESTIRICTIONS)

LIMITATION ON ACCESS TO DATA

UNLESS LIMITA N N SUESEQUENT RELEASE OF THIS REPORT ARE S 3ELLOW, COPIES WILL BE MA REELY
ACCESSIBLE T ALL CORPORATION EMPLOYEES. (IF LIMITED, SUBSEGUENT RELEASE TO OTHER ORGANIZATICONS

REQUIRES COMPLETION OF FORNM 7229,)
{ LIMITED TO

REASON

DATE ON WrICH LIMITATION MAY BE LIFTED
WOULD IT BE BENEFICIAL TO CALAC TO RELE

__IANSWER THIS QUESTION FOR INDEPENDE

THIS REPORT TO THE PUBLIC VIA NASA DaD LIBRARIES? DYES OINC
EARCH OR INDEPENDE NT FUNDED REPOR
] DISTRIBUTION

ASSIGN COPY NO. TO HARD COPIES ONLY

1

| 2. LIST MICROFICHE AND ABSTRACT RECIPIENTS LAST
3. EXTERNAL COPIES INDICATE TRANSMITTER

’_4 CIRCLE COPY NG. OF REPORTS ALREADY DISTRIBUTE

| INDICATE WHERE FiLS
OREPORTS SERV

l‘i £S5 GROUP
:" OPUEBLICATION SERVICES GROUP, y PROJECT
T L e e R R e N e T i : !
32 |l Jo« F. Stroud 75-42 63 A-1 i x i x
Y i i 1
33 | H, P, Weinberger 80-36 67 A=l e | x|
e SN R e i SN Rt N O Ml [T O R TR TR IS T
3k | 5. 3. rars 83-01 67 A=l o Ll ‘

