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ABSTRACT

A practical algorithm is described that allows an

LR parser to parse past the point at which an error was

detected. By thus parsing, context beycnd the point of

error detection is gathered . We prove several important

properties about this “forward context” and demonstrate

its usefulness in the selection and evaluation of error

repairs. At first specifically restricting our consi-

deration to single occurrences of errors of insertion ,

deletion , or replacement of a single terminal symbol,

we show how to use the algorithm and suggest possible

error repair strategies. Then we suggest a generalization

to encompass recovery from any number and type of error.

Our work is related to the similar work of Graham

and Rhodes for simple precedence par sers. We not only

extend their concept to LR parsers but derive properties

about forward context that can significantly assist an

error repair strategy. 
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Chapter 1.

INTRODUCTION

Graham and Rhodes [G&R 75] have proposed an error

recovery scheme for bottom-up deterministic parsers that

involves “condensing” context about the point at which an

error was detected . A “backward move” condenses the con—

text to the left of the error point, and a “forward move”

gathers context to the right of the error point. Such

context is valuable input to an error repair strategy.

In their paper they show how the condensation is done

for simple precedence parsers, and give an error repair

strategy that uses the condensed context.

We investigate the condensation prob lem for LR

parsers (by which we mean to include LR(k) and all

its variants -- SLR (k), LALR (k), etc.). We give a

practical algorithm that allows an LR parser to perform

the forward move, prove several properties about the

algorithm relevant to error repair , and suggest ways that

the “forward context” may be used in an error repair

strategy . We do not treat the backward move since we are

not convinced of its usefulness in LR error recovery.

Chapter 2 introduces terminology,  both standard and

nonstandard, to describe the concepts involved in LR

______ - —~~~~~~~.- - ~~~~~~~~~~~~~~~ —~~~~ -~- - .. - - -- -~~~~~~.
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parsing. Chapter 3 gives a preliminary version of the

forward move algorithm . The algorithm works by carrying

along in parallel all possible parses of the input text

following the error point, halting when the parses do not

agree as to the next move the parser should make, when the

parser must make reference to the context to the left of

the error point in order to proceed , or when another error

occurs. The halting conditions give the algorithm important

properties that can substantially assist an error repair

strategy in the selection and evaluation of repairs. These

properties we prove in Chapter 4. The most important is

that the forward context produced by the forward move

algorithm can be used to efficiently verify that a repair

attempt is in a sense “consistent” with the input text

consumed by the forward move.

In Chapter 5 we give a framework for error recovery :

error recovery algorithm = forward move + error repair

strategy. Limiting ourselves initially to the consideration

of a few (but the most cosrunon) types of errors: errors of

insertion , deletion , or replacement of a single terminal

symbol , we show how to use the forward move algorithm to

gather forward context. We suggest ways that the forward

context may be used to assist an error repair strategy ,

based upon the properties proved in Chapter 4.

Finally we convert the algorithm in Chapter 3 to an

- — - ., T~~~L’~~~~~~~~— - ---— - - ——-- - -— ~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~ - . . . - - - - - -
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I
equivalent but practical algorithm. The algorithm in

Chapter 3 explicitly carries along the parallel parses; in

Chapter 6 we recode the algorithm in terms of additional

— . 
states and transitions between them , in essentially the

same way a n~ndeterministic finite-state machine is con-

verted to a deterministic finite-state machine. The

recoded algorithm carries the parallel parses implicitly ,

and is about as efficient as the LR parsing algorithm.

Chapter 7 summarizes and lists further areas of

research. .

Druseikis and Ripley [D&R 76] have solved the forward

move problem for SLR parsers; we contrast our technique

to theirs.

__________________________________________
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Chapter 2.

DEFINITIONS AND TERMINOLOGY

We assume the reader is familiar with LR parsers

and their construction. We establish terminology for

them, both standard and nonstandard . By “LR” we mean to

include LR(k) and all its variants -- SLR(k), LALR (k) ,

etc. Those unfamiliar with LR parsers should consult

[DeR 69,71].

A context free grammar (CFG) is a quadruple

G = (N,T,S,P) where N, T, S, and P represent the

terminals, nonterminals, start symbol, and productions,

respectively. We define V = N U T and , un less we

otherwise specify, adhere to the following conventions

for Latin letters:

w,y C V*

u , v c T ~

A , B  ~~N

s,t e T

We use -b for the “generates” relation , •.b.
* for its

reflexive-transitive closure , and -~~~ for its transitive

closure. Productions are elements of this relation. Thus,

define ÷ on V~ x V~ as

— ____J1______ —~~——~-----~.--—-- .. .: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~ - 
- —.— -

- — — --—— --.. ~~~~~~. . 
~~~~~~~~~~~~_
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w1 
-
~~ w2 if f for some A c N, v e T*, w , y e V~ ,

= yAv and w2 = ywv and A + w c P.

This is the rightmost derivation; for the purpose of LR

parsing we are not interested in any other definition of

derivation. Further , we assume that the grammar contains

a production of the form S -
~~ ~‘t ~ 

where S and j
appear in no other producticn , S’ c N, and 

~ 
e T. A

(rightmost) sentential form of G is a string y c

such that S -~~~~~ y. A sentence of G is a sentential form

consisting entirely of terminals.

Associate with each production A + w e P a special

symbol #A+w not in V. If, for some A .
~~ N, y,w c V*

and v c T*, S +* yAv + ywv , we define ~~~~~~ to be

the characteristic string of the sentential form ywv,

and any prefix of yw is called a valid prefix of G.

Each sentential form of an unambiguous grammar has a unique

characteristic string , and the set of all characteristic

strings of a grammar is a regular set. A characteristic

finite—state machine (CFSM) of G is a deterministic

finite-state machine taat r.~cognizes the characteristic

strings of G (DeR 69].

A finite-state machine (FSM) is a 5-tuple (K ,START,

SIGMA ,V,F) where K is a finite set of states, START e K

is the start state, F çK is the set of final states, V

the vocabulary , and SIGMA the transition function mapping

—

~

...- — 
~~~~~~.— ~~~~~~~~

—— - ,
~~-—-o—-- -- .-.~-.-C---- ’:’- —~~~~

- - . .~~~
- .-

~~~
—---.~ - .  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4
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K x v into K. Let G= (N,T,S,P). A CFSM of G is the

FSM (K,START,SIGMA ,V’,F) where Vt = Nt) Tt) {# ~ f p C P}

and the states of K are sets of items, marked productions

of the form A + x.y (‘ . ‘ is the marker) where A + xy c P.

START contains the item S + .S’L, among others. Each

nonempty state q in K has one or more successors under

SIGMA. START has the successor state { S + 5’ .J) , among

others. In general, a state g has an s-successor for

each symbol s in N U T that is preceded by the marker

-

• dot in one of q ’s items. If q contains an item A + w.

with a marker to the right of all symbols in the right part

of the production (such an item is called a final item), q

has a #A+w -successor that is the empty set, which is the

only final state (i.e. F = ~ U } ) .  The s-successor of

q is called a terminal read successor if $ C T , non—

terminal read successor if s c N , or reduce successor if

s e j p e P}. The reader should consult (DeR 69] for

the details of the computation of K. We express the fact -

that SIGMA (q,s) = q ’ by the transition q —
~~

-—> q ’. All

nonempty states have a unique accessing symbol defined as

follows: if a state q is the s-successor of a state q ’,

then the accessing symbol of q is s. This definition

does not cover the state START , to which we assign the

accessing symbol 
~~~~
.

A CFSM state having only read successors is called

________________________ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ — — ---~~ —.--
--—— .. —
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a read state. Any state having one reduce successor and

zero or one nonterminal read successors is called ~ reduce

state. States having two or more reduce successors or

having one or more reduce successors and one or more

terminal read successors are called inadequate states.

All states in K are covered by these three definitions

except the final state U .
A path of the CFSM is a sequence of states

-‘ 

q0, q1, ..., q such that there exist transitions

> q1, q1 > q2, ... , q~_1 
n 

> q
~ 

in the

CFSM, and w = w1w2 ... w~ is the string spelled out ~~

the path. W C V’* describes a path from q0 to q
~

in the CFSM if f there exists a path q0, ..., a’:d

the path spells out w. For brevity we say “q0 gets to

q
~ ~~ 

w” . For any path P, Top P indicates the last

state in the sequence, i.e. if P = q0, q1, ..., q1,~ then

Top P = q
~
. If q0 gets to 

~~ 
by w , then [q0:w]

is the sequence of states q0, q1, ..., q~ that is the

path from q0 that spells out w (in a CFSM this path

is unique). w accesses q if START gets to q by w.

We abbreviate [START:w] by [w]. The concatenation of

two paths [q:y] and [q ’ :y’], where T&p [q:y] = q ’ ,

is written [q:y] [q ’ :y’] and designates [q:yy ’l (that

is, we do not repeat the state q ’ in the concatenation

of the paths).

.

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . . - ~~
- — - - -~~~ ~~~~~~~~~~~~~~~~ -——~~ ---~~~~~~~~~~~~~ -~~-~ -—- ~~~~~~~~ ~~~~--
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For parsers with 1-symbol look-ahead a look—ahead set

of terminal symbols is attached to each final item in the

states of the CFSM. (Computation of the look-ahead sets

may or may not affect the construction of the CFSM.) We

use function LA (q,A + w) to represent the look—ahead set

for final item A + w. in state q. The LR parser for

G is the CFSM of G plus a parser decision function

PD im~pping K x V into 2Pu {read}u {accept} PD(q,s) =

{read q —
~~—> q ’ and s c T-{J)} U ~A + w g A+w 

>

and s C LA (q,A + w ) }  U {accept j q  = (S + S’ .j ) and

= L}. The grammar G is LR if f ~PD(q,s)~ ~ 1 for

all q C K , s c V. Equivalently, for each inadequate

state, the 1—symbol look-ahead sets for final items are

disjoint, and if the state has an s-successor , then s

is in no look-ahead set.

For later reference we present the LR parsing

algorithm, which uses the CFSM , PD, and a pushdown

store called the state stack. By “reading a symbol” we

t 

mea.n that the parser strips the input text of its first

terminal symbol , exposing the next symbol to be read.

We assume that the last symbol, and only the last symbol,

of the input is J . Parsing is accomplished by the

following:

LR parsing algorithm (LRPA).

Push START on the (empty) state stack

4 ~~~~~~~~ . . 
-. ~- -~~~~~~~ ,-— --—.-~~~~~ —~~~~—— ~~~~~~~~~~~~~~~~~~~~~~~~
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Repeatedly parse according to the following:

Let h = head of input , q = state on top of

state stack.

do case PD(q,h):

case read}: Read the symbol h and

push SIGMA (q,h) on the stack.

case (A + w }: Pop 1w ! items off the stack .

Let g be the new top of stack.

Push SIGMA (q,A) on the stack.

case U: Halt, signalling an error

and rejecting the input.

case (accept}: Halt, accepting the input.

case otherwise (i.e. PD(q,h)J > 1):

Halt, confused ; the parser cannot decide

between the actions presented it. If G

is LR, this step will never be

encountered .

end LRPA

We refer to a configuration of the parser as a pair

(Z,R) where Z is the state stack and R is the remain-

ing (unread) portion of the input. Thus the parser starts

out in the configuration (START,R) where R is the

input. The parser makes transitions from one configuration

to another via moves, members of P t) (read ) U {accept}.

PD maps K x V into a set of moves. We use ~
_. to 

- .
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— 

indicate the parser ’s transi tions from one confi guration

to another , and 
~
- and as the reflexive-transitive

and transi tive closur e of 
~
— , respectively . Thus case

(read) of LRPA can be stated as (Zq,hR) (Zqq ’,R)

where q ’ = SIGMA (q, h ) ,  and case (A -
~ 

w) as

(Zqq 1q2 q~~~ ,hR I— (Zqq~~hR) where PD(~~j~~j ,h) =

(A  + wi and = SIGMA (q ,A). The parser accepts if f

(START, R) 
I~~~

- (ES’] ,j ) ; we use the synonym accept for

( [s ’] ,J ) . We define the relation reduces to as follows :

(Z ,hR) reduces to (Z’ ,hR) if f PD (Top Z’ ,h) is either

(read) or (accept), i.e. all possible reductions on Z

with h as the next of input have been carried out, and

the parser is prepared to read or accept.

(Many LR parser implementations do not attach look-

ahead sets to final items in reduce states, but only to

final items in inadequate states .  This allows somewhat

s.naller parse tables, a slightly faster parser , and perhaps

less look-ahead set computation time. We regret that

the forward move algorithm precludes the use of this

efficiency technique. However , the payoff is earlier

detection of errors and better error re covery than when

the e f f i ciency technique is employed.)

_ _ _  — — ~~~~ 
.
~~ —~~~~~~~~~

-.
~~~ --~~~~ —

- .--- ~-.-— -- —~~~~~~~~~~~~~ -- .-~~~~~ •—---~~.- .~~~~~~~ - —----- -----—- -—- --~ —~ •---~~~ -— - - -
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Chapter 3.

FORWARD MOVE ALGORITHM

When an error occurs during parsing (case {} of LRPA),

we would like to invoke a mechanism that performs the

“forwar d move” of Graham and Rhodes, i.e. parses some of

the remaining input without regard to the text already

parsed. In an LR parser , this means that the forward

move proceeds without referencing the left context already

developed on the state stack. For example , the Algol

symbol “do” can appear in two contexts: in a “for” or

“while” statement. If “do” is unexpectedly encountered

by LRPA , the forward move would resume parsing without

knowing which of these two contexts the “do” actually

appears in (if ei ther ). We would parse ahead as far as we

could without referencing the context to the left of the

error point, halting when we can no longer parse independent

of that context, and ending up with a fragment of a

sentential form representing the text we parsed . A grammar

for an Algol-like language appears in Figure 1. Consider

the would-be program in this language

begin integer X , J; J := 0;

for x := 1 step 1 until do begin J : X end

end .

~~ri11J~ --~~~ ___—.- --- — —~- - ~~~~~~~~~~ —‘~------ - —•-~~~~~~~~~ —a- - -~~ ~~~~~~~~~~ 
- - - 

~~~~~~~~~~~~~~~~~~ ~~~~ - -~~~~ ~~~~~~~~~~~~ -
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I

— where we omitted the limi ting value in the “for ” statement.

Upon detecting the error , LRPA’s state stack (writing

only the accessing symbols of the states) would appear as

~ 
begin Stint ; Stint ; for Id := Exp step exp until

where we have capitalized nonterminals and left terminals

uncapitalized. Now, mark the top of the stack with the

symbol ?, and attempt a forward move. We might read as

far as the penultimate “end” , resulting in the new stack

J~ 
begin Stint ; Stmt ; for Id := Exp step Exp

until ? do Stint

The forward move halts presumably because the appearance

of the last “end” indicates that we should reduce either

with the production “Stint + for Id := Exp step Exp until

Exp do Stint” or with the production “Stint + while Exp

do Stint”, and we do not know which is applicable without

looking at the stack to the left of the ?. Reducing the

text “do begin X := J end” to “do Stint” did not require

reference to the context to the left of ?; no matter

whether a “for” or a “while” appears earlier on the stack,

“do begin X := J end” should always be reduced to “do

Stint” . We call the text read during the forward move the

forward text and that phrase fragment to which the text

is reduced the forward context.

We describe an algorithm that achieves this forward

move by carrying along in paral lel  all possible parses of

1i111_A .~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . .~~~. S.. ~~~— ~~~~~~~~~~~~~~~~~~ . -- - - - - - -
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the forward text , as long as all parses agree as to the

next move to make , and no parse refers to context to the

left of the error point. For this algorithm we have not

states but sets of states appearing on the stack. (In

Chapter 6 we convert the sets of states to states them-

selves and recode the algorithm so that it is practical.)

The algorithm has two initialization steps, followed by

repeated parse steps .

Forward Move Algorithm (FMA)

Push?: Push ? = K on an empty stack.

Readh: Let h = head of input.

Push (q ’ q —p--> q’ and q C

on the stack. Read h.

Parse repeatedly according to the following rules:

Let h = head of input, Q = state set on top of stack.

Let PD = PD(q,h).

do case PD:

case (read): Read h and push

{q’ I q —fl ----> q ’ and q C Q}.

case {A + w}: Per form a reduction :

Ensure that there are at least 1w ! state

sets on the stack following the ? (i.e.

ensure tha t the entire right hand side w

resides on the top of the stack).

If not, halt.

—‘

~

——--

~

—

~

——.— — ~~~~~~~~ .— ---~---- ‘ --- - -—. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
- 

~~~~~~~~~-- - - -~~~~~~~~~~~ 
______________________



- ~~~~~~~~~~~

14

Otherwise, pop wi state sets off the stack.

Let Q be the new top of stack.

Push {q ’ I q —> q’ and q C Q).

case U-: Halt, signalling an error.

case (accept): Halt; we have consumed all but

the j.

case otherwise (i .e.  I P D I > 1): Halt.

FMA essentially follows all paths star ting at any state in

the CFSM that allow the parsing of the input text, halting

(1) when two different paths end up in states that disagree

as to how to continue the par se (this dif fe rence is caught

in case “otherwise” of FMA), (2) when all paths end up in

states requiring a reduction over the ? (case (A ~ w} ),

(3) when we read the entire input (case (accept}), or (4)

when we encounter another error (case {)), i.e. no path

can be continued .

We illustrate the halts of case (A + w} and case

“otherwise” by Examples 1 and 2 below, where the grammar

involved is a simple arithmetic expression grammar .

Figure 2 contains the granunar and its CFSM augmented

with LALR(l) look-ahead sets.

Example 1. Let the erroneous input string be

i ( i ) J

—~~ - -- - -  ——------ - - —-5-.-——-- - ,  ~~~~~~~~~~~~~~~~
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LRPA stops with state stack

[ i ]

The following displays the execution of FMA on the

remainder of the input

FMA step Stack after

just made FMA step Rest of input —

Push? ? ( i ) j
Readh ? 

~~~ 
i I

(read) ? 
~~~~ 

{i 0 } ) I
(p  + i} ? 

~~0~ 
{P0
) ) j

{T + P1 ? ~ ~~ 
(T0

} ) j
{E + TI ? ~ ~~ 

(E1} ) J
(read ) ? U-o k (E1} U- o~ I
(p  + (E)} ? (P~ } I.
{T -

~ 
pI ? (T 0, T1IT2} I

The algorithm halts here becaus€

PD (T QIJ ) U PD (T11j) U PD (T21j)

= {E + E + T, T -
~ P ** T, E -‘ TI

Example 2. Input is () J .

LRPA halts with state stack [(1.

FMA step Stack Rest of input

Push? ? )j

Readh ? j

Halt: PDO 0,j) = (P + ( E )J- , and there are less than

three items on the stack above the ?. 

-- — -. ~---—- —---- ~~~~~~~~~~~~~ 
, --.

~~~
----- --

~
-
~
.--- ~~ L L ~~ s5-.... 

~~~~~ 
._-.— —_ -—--—- — -
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In Example 1, we face the possibilities of reducing

by three different productions. E + T is the proper

reduction only if what immediately precedes the T is a

“ (“  or the start state; E -
~

- E + T is the proper reduc-

tion only if what immediately precedes the T is “E + “ ; —

and T + P ** T is correct only if “P **“ precedes the

T; the ? to (T0,T1,T2} ’ s left indicates no knowledge

of what precedes the T. Thus we cannot continue parsing

without making a guess, and must halt. In effec t the three

different places in the CFSM in which a T can be read

yield three different decisions as to what to do with the T.

In Example 2, we attempt to reduce with P + ( E ),

but find that “ (  E” does not precede “ ) “  on the stack.

The attempted reduction gives us an indication of what the

user intended , however, and provides useful information

for an error recovery algorithm, as we shall see later.

The second initialization step Readh of FMA

guarantees that the algorithm produces a forward context

of length at least one . If we did not force FMA to read

the first symbol , then it might also consider reductions

that have the first input symbol in their look-ahead sets;

possible choices between a read and some reductions might

have caused FMA to halt immediately in case “otherwise” ,

making no progress whatsoever . (We assume also for the

remainder of this paper that we never invoke FMA on the

—------.— - --- —5- —-—- - ,- ~~—-’--~~~.---------—--- - - .---——---—--- ----
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input consisting only of j , otherwise we would immediately

read j  in step Readh.)

FMA computes state sets dynamically; there is no

reason why these state sets and the transitions between

them cannot be precomputed , resulting in an FSM. This

is formalized in Chapter 6. Meanwhile , we can use Chapter

6’ s results to extend the concepts of transitions and paths

to FMA’s state sets. Hence, if FMA consumes forward

text u from string uv and produces forward context U,

we may write (?,uv) l -~ 
([?:U] ,v). U represents a

“condensed” or “partially parsed” ver sion of U: u ++ u

(we may write U +
+ u instead of U -~~~~ u since l u l  ~~ 1).

To prevent confusion between LRPA and FMA , we prefix

moves of FMA by “FMA :” , as in FMA~ (?,uv) ~~
- ((?:U] ,v). 

- -  . - . - - - - - . - - -  . .
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Chapter 4.

THE WEAK VALID FRAGMENT PROPERTY AND FMA

Suppose FMA:(?,uv) 
~ 

([?:U],v). Relative to the

string uv from which FMA reads u, the forward context

satisfies an important property called the “weak valid

fragment property .” First, we define the “valid fragment

property” and then weaken it. Informally, for some s u f f i x

uv of a sentence, U 
~ V~ is a “valid fragment” of uv

if f U -~~~~ u and for every y such that S -~~~~ yuv,

S --- a yuv +~~~ yuv ,

and yU is a proper prefix of the characteristic string

of yUv. That is, if S yuv not only must u be

derived from U in the generation of yuv (if it is not,

then the grammar is ambiguous), but the derivation step

deriving yUv must involve the last symbol of U. We

define this formally in terms of parser actions:

Definition. For some suffix uv of a sentence,

U C V* is a valid fragment of uv if f U -
~~~~ u and for

every valid pre f ix  y such that  ( [y ] ,uv) -
~~~ 

accept,

( [ y ] ,uv) 
~~
- ( E y t J ] , v ) .

In ocher words , any state stack fy] satisfying the

conditions of the d e f i n i t i o n  must cause T P J~A to read all 

~~~~~~~~~~ -p~~~~~_ ~~~~~~~~~~~ - -. -_ _ - . _
~~& . _
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of u and develop the valid fragment U on its state

stack , i.e. reduce u to U.

In the context of error recovery , this concept has

the following significance: Suppose LRPA encounters an

error and halts in configuration (Z,uv), with uv a

suffix of a sentence. (We deal with the case where uv

is not a suffix in Chapter 5.) Let us propose that by

substituting [y] for Z we could cause LRPA to accept.

How could we verify this proposition? By running LRPA ,

to be sure. But if we had many such strings fyi to try,

running LRPA could be costly. Now, suppose that we had

some valid fragment U of uv. A necessary (not suffi-

cient) condition that (fyl, uv) 
~

-
~
- acce~~ is that a path

starting at Top [y] spells out U, i.e. there exists

some path [Top[y] :U], implying that (since U -~~~~ u)

( ( y ] , uv) i -
~~ 

([y] [Top[y]:U],v) = ( [yU ] ,v ) .  Thus, valid

fragments give us a useful tool with which to limit our

selection of fyi ’s.

It turns out that since FMA reads as its first

step, the forward context U that it provides does not

quit-~ satisfy the valid fragment property . It is, however ,

a “weak valid fragment” and can be used in a testing pro-

cedure similar to that described above. Informally, for

some suffix uv of a sentence, U C V~ is a “weak valid

fragment” of uv if f U -~~~~ u and for every y such

111.1k - . — . - - . -------—-—. --—-—-—- _,_ _t_______-______ .
__

~~ —a 
~~~~~~~ - __________
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that S +~~~ yuv , there exists y ’ c V~ such that

S -~~~~ y ’Uv +~~~ y ’uv +~~~ yuv ,

and y ’U is a proper prefix of the characteristic string

of y’Uv. That is, if S -~~~ yuv , not only must u be

derived from U , but there exists a y ’ such that

y and the derivation step producing y ’Uv involves

the rightmost symbol of U. Formally :

Definition. For some suffix uv of a sentence ,

U c V~ is a weak valid fragment (WVF) of uv iff U +
~~~ u

and for every valid prefix y such that ([y] ,uv) -
~
-

accept, there exists a y ’ C V* such that

([y] ,uv) i -f- ([y’l,uv ) 
~ (Ey ’U] ,v).

In other words , any state stack ly] that causes

LRP A to accept uv must cause it to reduce [y] to some

fy ’] ,  read all of u and develop the weak valid fragment

U on its state stack. We shall prove that the forward

context returned by FMA satisfies the WVF property .

The reason for the complication of reducing [y] to y ’]

.s because FMA does not consider reducing as its first

move.

Suppose now that LRPA encounters an error in con-

figuration (Z,uv), and that uv is a suffix of a

sentence. If we propose that replacing Z by [y] could

cause LRPA to accept, the forward context U of uv 

~~_ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ____________
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provided by FMA gives us a necessary condition on

the validity of [y] as a replacement. ([y],uv) I -~
accept only if there exists y ’ such that ([y],uv)

~~~~ 
([y’],uv) (by a series of reductions), and there

exists a path from Top (y’J that spells out U, i.e.

((y’],uv) -
~~

- ([y ’l[Top[y ’]:U],v) = ([y ’U J ,v).

We shall now show that the U returned by FMA

satisfies the WVF property. In Lemma 1 we explore the

nature of the state sets manipulated by FMA. We use this

lemma to prove Theorem 1, which establishes the WVF

property as a corollary . Theorem 2 gives us the additional

result that FMA in some sense tries as hard as it can

by cor~suming the longest possible forward text. Theorem 2

is not essential to our error recovery techniques but

reassures us that the techniques perform as well as they

can.

Lemma 1 captures the fact that if LRPA starting

with any left context on its stack makes the same series

of moves as FMA does in parsing string uv , then FMA

has kept track of LRPA ’s state stack in its state sets.

Lemma 1. Suppose FMA : “? ,uv) 
~ 

(?Q 1 °2

... v). If ((y ’l , uv) 
~ 

... (Z,v), then
1 r

Z = fy ’] q1 q 2 where C 
~~~~~~~ 

1 ~ i � in.

—S.— ~~~~~— __s — — —  — — a_np 
— — - 
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Proof. By induction on r. For r = 1: M1 = read

by step Readh of FMA , and FMA has stack ? Q1.

LRPA , after making move M1, has stack (y’i q1, where

q1 = SIGMA (Top[y ’],u1). Now = {q ’ I q > q ’ and

q c K) by Readh, hence q1 C Q1.

Assume the hypothesis true for r = k; thus FMA

has halted with stack ? Q1 Q2 Q~ , and LRPA has

stack fy ’] q1 q2 ... ~~~~~~~ 
Consider move Mk+l.

(1) Mk+l = read; let the symbol to be read be S.

Then LRPA pushes state = SIGMA (q~~s)

by case (read) of the parsing algorithm.

FMA pushes state set 
~m+i 

= (q ’ I q —
~~

-—> q ’

and q c But since C

C

(2) Mk+l 
= A + w

FMA pops Iw i state sets, leaving stack

? Q1 Q2

where m - wi > 0 (since there are at least

J w J state sets above ? on the stack). It

then pushes 
~rn-Iw l+i = (q ’ I q —

~~~
--> q ’ and

q C LRPA pushes state 
~~~~~~~~ 

=

SIGMA(q~_ j~~1 1 A) on the stack. Since

cim _ I w l  C 

~m -iw I 
by the inductive hypothesis,

~ °‘t-iw i +l~
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(3) Mk÷l = accept; the stacks remain the same for

both FMA and LRPA .

Theorem 1. Suppose FMA:(? ,uv) i~ 
... I~ ((?:U] ,v).

1 r
Let h = head (v). Then for every y and Z such that

([y] ,uv) 
~~

- (Z,v) and PD (Top Z,h) is either (read) or

(accept) , there exists y ’ such that ([y],uv) 1~!

((y ’],uv) i~
- ([y’U] ,v).

Proof. Choose some y and Z such that ((y],uv)

~ 
(Z,v) and PD (Top Z,h) is either {read} or (accept).

We let [y’i be such that ([y],uv) reduces to ((y’],uv).

Thus, ([yl ,uv) ~
-
~~

- (1  y ’J,uv) and the first move LRPA

takes out of configuration ([y ’i , uv) is read (=M1).

We now prove by induction on r that LRPA ’s next r

moves from configuration ((y’i , uv) are M1 ... Mr •

For r = 1: M1 = read by step Readh of FMA . We

know that LRPA must read as its first move from configu-

ration ([y’],uv), by our definition of y ’. Now let

the theorem hold for r k. By Lemma 1, FMA ’s stack

after move Mk ~~

? Q l Q2~~ •~~
Qm

and LRPA ’s stack after move Mk is

[y ’l q1 q2

where q
~ 

C Q~ , 1 � i � in. Let the next symbol in the

input be s (s is either in u or is the first symbol 

.—- -— ,_-. -_--,__
_,_-____- - -

~~~ 
- —~~ ~~

--
~~ 

_-
~ ~~~~~~ 
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of v). FMA now makes move Mk+l. Consider LRPA ’s

possible actions:

(1) It makes no move at all.

If s is in u , then this case is impossible

since ([y],uv) I - ~
- (Z,v). If s = h, then if

s 
~ 

J ,  then LRPA must be able to move since

PD (Top Z,h) = (read) or (accept) implies

that LRPA eventually accepts or reads h;

if s = j ,  then the only way LRPA cannot

move is if its previous move was accept; but

r then FMA ’s previous move (by induction)

would have been accept, and it cannot then

make move Mk+l.

(2) It makes move M
~+l ~ 

Mk+l.

Then M
~÷1 

= PD(q~~s).

But then -
~
j
~ 

PD (q,s) would contain both

Mk+l and Mj~÷1 
since C Hence by

case “otherwise” of FMA , FMA would not make

move Mk+l. This contradicts the fact that

FMA makes move Mk+l.

Thus we have shown that the next r moves LRPA

makes from conf iguration ((y ’],uv) are M1 ... Mr • But

by Leznma l,

FMA :(?,uv) 
~~ 

(?Q1 Q2 ... Q~ , v)

-~~~ 
.
-—- .

~~~~~~~~~~
- - ---5-. 

-——
~~~~

-
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and

([y’],uv) ‘M ‘
~~r 

([y’] q1 q2 ... v)

where c Q~ , 1 < i < in. Since ? 01 ~2 
0m 

=

[? :U] , [y ’] q1 q2 ... = [y’J [Top (y ’]:UJ = fy ’U].

Corollary. If ([yi ,uv) i - ~ 
accept, then there exists

* *y such that ([y],uv) ([y’],uv) 
~
— ([y U],v) (the

WVF property for U).

Proof. If ((yi,uv) I -f- accept, then there exists

Z such that ([y] ,uv) -
~~
- (Z,v) and PD (Top Z,head (v)) =

(read) or (accept). The corollary now follows.

The next theorem is not essential to the correct

fragment property , but reassures us that FMA goes as

far as it can without making a decision based on context

to the lef t of the ? state set.

Theorem 2. Consider suffix uv of a sentence. If

there exists a sequence of moves M1 Mr (r > 1) such

that

( i )  M1 = read ,

(ii) there exists a valid prefix y such that

([y] ,uv) I~ ... ~~~~~ ([yU] ,v)
1 r

and LRPA never pops any of [y] from the

state stack ,

—~~~~~~~~~~~~~~ - —~~~
—

~
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~~~~—~~~~~~~~~~
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(iii) there do not exist valid prefixes y, y ’

and k < r such that

( [ y ] , uv) i~ 
... (Z,R) 

~ 
( Z ’ ,R ’ )

1 k k+l
(y ’ I ,uv) . . . i~ (Y,R) ~, (Y’ ,R’

1 k k+l
and Mk+l ~ Mj~÷i,

then FMA: (? ,uv) i~ ... I~— ([?:U],v).
1 r

Proof. By induction on r. For r = 1: FMA makes

move M1 
= read by step Readh. Let the theorem hold for

r = k , and let y be the valid pref ix  of hypothesis ( i i) .

By Lemma 1,

FMA :(? ,uv) I —  ... I — (? Q Q ... 0 , R)M1 Mk 1 2  in

and

([y] ,uv) ~ 
... i~ 

((y]q~ q2 ... R)
1 k

where C Q~ . Let the next symbol of input be s (s

is either in u or is the f i r s t  symbol of v) .  We show

that FMA makes move Mk+l. Consider the possible

actions of FMA .

(1) Mk+l is A -
~ w, but FMA cannot make that

move because there are less than 1w ! state

sets following ? on the stack. This contra-

dicts hypothesis (ii): LRPA would then have

to pop some of (y] from the state stack.

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — --~~~~~~~~5-~~~~-—-—-~~~~~~~- - ~~~~~
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(2)  FMA makes some move M~~ 1 ~ Mk+l. But by

Lemma 1, Mk÷l c ~J Q PD (q,s) and thus FMA

has a choice of at least two moves to make.

Thus FMA cannot make move M
~÷l .

(3) FMA halts due to another error , i.e.

q
’
~~
’Q PD (q,s) = (I. This cannot occur ,

since by Lemma 1 Mk+l C PD (q, s).

(4 )  FMA halts in case “ otherwise” because it has a

choice between two or more moves (one of them

Mk+l ) .  Let one of the moves , d i f fe ren t  from

Mk÷l f be Mj~+i. Then there is some path

q0, q1 ~~~• •  •~~~ q such that q. C Q.- , 1 < i m,

PD (q~~s) = (M~÷1}, and q0 c ?. Let y ’

access q0. Then for some Y, Y’ , and R’’ ,

( ( y ’ J , uv) i~ ... (Y ,R) ~, (Y ’ ,R ’ ’ ) .
1 k k+l

This contradicts hypothesis (iii).

We have shown possibilities ( 1) through ( 4 )  to be

contradictory , thus the only possibility left for FMA is

to make move Mk+l , and the inductive step is proved.

Theorem 2 is somewhat tedious, but proves that FMA

simulates LRPA in all the (possibly infinite) situations

in which LRPA has already parsed some valid prefix y

- ~~~~~
- 5- 5-

~ ~~~~~~
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that causes LRPA to read head (u) . Thu s the ? state

set can really be regarded as representing the set of all

such valid prefixes .

Parts 1 and 4 of the case analysis demonstrate how

FNA proceeds without any knowledge of left context. In

part 1, reducing would cause FMA to interrogate context

to the left of ? to determine what state to go to on non-

terminal A. In part 4, we have 2 or more choices for FMA ;

the correct choice depends on left context. Parts 2 and 3

capture the fact that the choices FMA is presented with

contain all choices that LRPA would ever consider.

In summary , if LRPA encounters an error in configu-

ration (z,uv), and FMA reads u from uv producing

forward context U , we know that FMA makes as many moves

as possible and U satisfies the WVF property. We can

verif y that some proposed replacement of [y] of 2

satisfies a necessary condition for ([y],uv) i !~ accept
by the following process, which we call CHECK VALID and

which takes as arguments [yJ , uv , and U:

CHECK_VALID

Determine y ’ such that (Iy) ,uv) reduces to

((y ’),uv). (Note: there may not be any such y ’,

in which case we fail , i.e. ~y] is unsatisfactory.)

Determine tha t a path [Top (y ’j : U ]  ex i s t s .  This

can be accomplished i n  the f o l l o w i ng fash ion :  

-- 

_

~
— - —-—- —
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L e t U = a  a ...a.1 2  in

Let Stack = [y’].

for i :=lto m do
a.

if Top Stack 1 
> q exists for some q

then push SIGMA(Top Stack ,a
~
) on Stack

else we fail

We succeed if the for loop runs to completion .

end of CHECK_VALID

CHECK_VALID is a simple , efficient test to check the

viability of a proposed stack repair. The essential tactic

that guarantees this result is that forward moves never

proceed after FMA encounters an inadequacy , a reduction

over ? , or another error . Making some arbitrary choice

between the alternatives in an inadequate transition in an

attempt to continue parsing is a serious mistake; it makes

an unwarranted assumption about the context to the left of

the error point. The assumption has no foundation and is

just a guess that may be wrong. - •

The WVF property of a forward context U gives us

the CHECK_VALID procedure , but there is still another

property of U that can aid error repair. If uv is

the suf f ix  of some sentence , and F M A : ( ? ,uv) -
~~

- ( [ ? : U ] ,v ) ,

then FMA cannot halt  in case { } (the error step): the

possible set of moves PD will  never be empty . The moves

in PD can give us information re la t ing to the class of

5- - - - . .
~~~~~~~~~~~
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valid prefixes y such that S --~~ yuv. We elaborate on

the use of this information in the subsequent chapter , but

prove a property about it here. Theorem 3 states the

property and needs Lemma 2 for its proof.

Lemma 2. Let FMA:(?,uv) 
~~~~ 

(f?:tJJ ,v) = (?Q
i

Sn’ v). For any path [y’U] in the CFSM where p =

Top[y ’J , [Top[y ’]:U] = p g 1 ... q~ and q
~ C

1 < i < in.

Proof. Let p = Topty ’] and U = a1 ... a~ .
p C ?, hence by step Readh or case (A + w) of FMA ,

= SIGMA(p, a
1
) C {q ’ 1 q 

a1 > 
~~ and q c ?}.

By a simple induction on in, we have the result.

Theorem 3. Let uv be a suffix of a sentence,

FM A :(? ,uv) i~ 
( [ ? : U ] ,v ) ,  and PD = qeTop[?:U] PD(q,

head (v)). Then

(1) PDf > 1

(2 ‘~ For every y ’, Z’ , v ’, M ,

([y ’U] ,v) 
~ 

(Z’ ,v’) implies that M C  PD.

Proof. If PD were empty , then there could be no

y such that S +
~~~ yuv, and hence uv would not be a

suff  ix of a sentence. Hence conclusion (1). Consider now

fy ’01. Toply ’U] C Top[?:U] by Lemma 2, hence

PD (Top[y ’UJ ,head (v) ) C PD. Hence conclusion (2).

-4- —-±~— —- ~~~~~~~~~ . 4 ~~~ S .. ~~~~~~~ .~~— 4- - -- _  
~~~~~~~~
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Thus if LRPA halts in some configuration (Z,uv),

and uv is a suf f ix  of a sentence, applying FMA to uv

yields a set of moves PD such that if we propose some

substitution fy) for 2, there must exist some y ’

such that ((yl ,uv) f -~
- ([y’UJ ,v) 

~~ 
(Z’ ,v’) and M C  PD.

Suppose , for example , that PD = (A -* w} and that

Iw i > l u l . Then M = A -
~ w , and some s u f f i x  y ’’  of

y ’ must be such that y ’’tJ = w. Hence we know something

explicit about y ’. We delay application of this until

the next chapter. We call the property guaranteed by

Theorem 3 the “next move” property .

In summary, we have shown the following three

properties to hold of FMA when applied to a sentence

suffix: the returned forward context i~ a WVF ; it parses

ahead as far as possible; and it halts with a non-empty

set of moves, one of which must be taken next. We have

seen how the first property yields an efficient algorithm

for validating proposed error repairs , and have hinted at

the value of the next move property . In the next chapter

we learn how to use FMA to gather forward con text in

particular error situations and how to use the next move

property as an aid to error repair.

We emphasize finally that the results of this chapter

do not def ine any error recovery stra tegy , but merely

provide useful tools that any strategy may use.
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Chapter 5.

USING FMA IN AN ERROR REPAIR ALGORITHM

In this section we concern ourselves with determining

the best way to use FMA to gather forward context in

conjunction with some error repair strategy . As mentioned

in the introduction , we restrict ourselves at f~rst to

considering only a single occurrence of one of three types

of errors: in ser tion , deletion , and replacement ~ f a

single terminal symbol. We note that the errors in the

sample test program of Graham and Rhodes [G&R 751 are all

of this type. We call this assumption the “simple error

assumption .”

We can describe these three situations in the follow-

ing manner (x, z e T* , and s , t C T ) :

Insertion error : S +~~~ xz but S-71-~~ xtz .

Deletion error : S -~~~~ xtz  but S-7L4” X Z .

Rep]acement error: S -~~~~ xsz but S.7L,’~ x tz .

We view an error recovery algorithm as being composed

of two phases : (1) the gathering “f forward context, and

(2) the application of an error repair strategy (which uses

the forward context). Given the simple error assumption ,

we first investigate how use FMA to acquire forward

context. Then we show how an error recovery strategy might

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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use the forward context, leaving the error recovery

strategy itself unspecified , but providing general hints

as to how it might work.

Gathering forward context. We investigate the

different situations LRPA encounters when it detects

an error , determine how best to gather forward context in

each case , and develop an overall strategy based upon the

case analysis.

In the insertion case , LRP A may detect the error

before or after reading t, i.e. it may halt in conf i-

guration (Z , t z )  or in (Z , z ’)  ( z ’ is a s uf f i x  of z ) .

In the latter case, the inser .~ed symbol t has been

absorbed into the left context z. The possibilities

are the same for the replacement case. In the deletion

case , LRPA halts in (Z, z’) (again, z’ is a suffix

of z). We consider halting configurations (Z ,tz) and

(Z,z’) separately.

We distinguish between the concepts error and -~rror

symptom. When LRPA encounters an unexpected symbol

(case { }  of the LR algorithm) , we say that it detects

( the existence of)  an error and that the symptom of the

error is that LRPA fails on the symbol. It is the goal

of error recovery to eliminate the s~-mptom.

Ca~~ (Z,tz). (We have an insertion or replacement

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
~~
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error) .

Where Graham and Rhodes and Druseikis and Ripley

resume the parse by immediately performing a forward move ,

we do not. Since the symbol t heads the input,  such an

action would necessarily start us off in the wrong context.

We instead delete the t from the i-~put, and then invoke

FMA . Since our simple error assumption guarantees that

z is a sentence suf f i x , the forward context developed is

both a WVF and satisfies the next move property .

Case (Z,z’). Either LRPA has absorbed t on its

stack (in the replacement/insertion case), or a deletion

error occurred . LRPA halts in configuration (Z,z’).

Since t has been absorbed onto the stack , z’ is

a sentence suffix and we merely submit z’ to FMA .

Combining the case analyses. Since we cannot know

a priori which case is the actual circumstance when an

error is detected , we must combine case strategies into

one. This combination works as follows: Not knowing

whether the unexpected symbol is in error or not, we

always initially skip over it, then perform the forward

move. By the assumption that the program is mutilated

by only a single error , this forward context is derived

from a sentence suffix. Then we determine if the un-

expected symbol can F~ attached to the front of the

—----_- —— -~~~ --—-- -. ‘—~~~~~ —~~ —~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . 
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already developed forward context. If it can , it is most

likely not in error (we are thus in case (Z,z’)); if it

cannot, then with an exception (case “otherwise” of RCA

below) we are most likely in case (Z,tz). Therefore,

assume LRPA halts in configuration (Z,suv), where

S c T , u , v C T+ (uv is a sentence suffix). Compute

the forward context by the following algorithm:

Right Context Algorithm (RCA) .

Determine U such that FMA:(?,uv) I±~ ((?:U],v).

Then, try to attach s to the front of U as

follows:

Determine s’ such that (?,suv) 
~
— ([?:s) ,uv)

-
~
- ([?:s ’] ,uv) where FMA has made as many

moves as it can without reading head(u).

Let PD = 

~~~~Top[?:s’] 
PD (q,head (u)).

do case PD:

case (read): Determine if path [?:s ’UJ exists.

suv is a sentence suffix only if the path

exists. If it does not , then discard s;

we are in case (Z,tz), with s = t. If

it does, then try to continue the forward

move farther from configuration ([?:s ’U],

v), i.e. determine U’ such that

([?:s ’UJ ,v) I±~ ~[?:U’J, v ’).

- ~~ --- - —-~ — ~~~~~~~~ - 4- -.~~-~ 
- 
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It is likely (but not certain) that we

are in case (Z,z’).

case U :

We may conclude that s is a bad symbol,

and discard it; we are in case (Z,tz),

with s = t.

case otherwise (i.e. PD~ ~ 1):

We cannot conclude anything definite about

s. We then end up with two forward con-

texts , Is ’] and [U].

end RCA

RCA sometimes can tell us whether we are in case

(Z,tz) or (Z,z ’), and in most situations produce a

single forward context with which to validate potential

error repairs. The single exception is case “otherwi se”

where we have two. But in all situations we have a forward

context (U or U’) that is a WVF and satisfies the

next move proper ty,  since it is the result of applying

FMA to a suff ix of some sentence .

This completes the discussion of how to gather right

context .

Error repair suggestions. We do not intend to

provide a complete error repair strategy . Rather , we

offer only some suggestions and indicate how the forward

r

_ _ _  
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37

context might be used to aid the strategy.

In case (Z,tz), the obvious thing to try is the

deletion of the unexpected symbol and the replacement of

it with all other terminals; the former is achieved by

applying CHECK_VALID to the existing stack Z and the

forward context U of RCA , the latter by applying it

to Z modified by appending to it all possible terminals.

Given the simple error assumption we must be able to hit

upon the proper correction.

In case (Z ,z’), since t (or its absence) is

buried in the stack Z, complex stack modifications may

be required to repair the error. We illustrate this

with the fol lowing , where a deletion causes LRPA to

erroneously reduce the stack into a “higher context.”

Suppose that the text “if I=K then I=J else 1L ”

were altered to “I=K then I=J else I=L”. Rather

than detecting the deletion of “if” , LRPA assumes it

is parsing an assignment statement, and halts when the

unexpected “then” is encountered , in configuration

([Left_part = Exp], then I=J else I-=Lj). Were

the “if” not omitted , upon encountering the “then”

LR1~A would be in configuration ([if Bexpi , then I=J

else I=Lj, - We need a stack modification to transform

[Left_part = Expi to [i f  Bexp) -- a tall order. This

example illustrates how er’oneous reductions greatly

5- - -j- -- -  __ _ _ ___ ___~__-:____.__ - - ,-SAS. _ 
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complicate error repair .

(The occurrence of such erroneous reductions is the

reason that we are not convinced of the efficacy of the

backward move espoused by Graham and Rhodes and Druseikis

and Ripley . The backward move seeks to cause just such

reductions.)

To aid the invention of stack repairs , we suggest the

use of the next move property , which says that af ter FMA

halts, we have a set PD of moves, one of which must

eventually be made. (Although if erroneous reductions

have occurred , the “easiest” repair may not include any

of those moves.) If FMA terminates in case (A -.- w}

with an attempted reduction over ? , then (given our

simpl e error assumption) we know what phrase was intended

and what move we must make (viz., the reduction) . In the

previous example, suppose the forward context U~ computed

in case (read) of RCA was such that (? , then i=J else

1= Lj) J -~- ([then Stint else Stmt],j), with FMA halting

in case (If stint -
~

- if Bexp then Stint else Stint); we then

know that, in this example , [Left_part = Expi must be

modified to “if Bexn” . After thus modifying the stack we

can effect the reduction and resume normal parsing . As an

approximation to this we could simply search for some state

preceding the ? that reads the nontermirial If_stint;

after finding $lch a state q we delete all states on top

___ __ __ ___ -__ ___ _____ __ _ p ~~~~~~~~~~~~~~~~~ 
_ _ s _ _ __ - ___. - .
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- of it and push SIGMA(q,If_stmt) on the stack. In the

example, we would delete the top three states, leaving

only the start state (=q) on the stack, and resume

parsing in the new configuration ([If stint] ,L)• While

- not correcting the actual error, we in effect modify

- LRPA ’s stack so that it behaves as if the error were

corrected . We call this technique SF for “stack forcing” ,

t because it tries to “force” a production to fit the stack.

r If FMA terminates in case “otherwise” , we are given

~ choice of one or more productions to try to use or

- possibly a read transition . Only some of these choices

are of practical use in improving a repair strategy , as

follows. Classify the productions as either “long” or

“short” depending upon whether reduction by them would

- 
consume the ? state. Long productions give us an m di—

cation of what the stack preceding the ? should be; we

- can submi t each of these to SF , in the hope that at least

one can be forced to fit. Short productions can also give

us some information with regard to this portion of the

stack; this information is not explicit but is buried

within the CFSM transitions and the items in the states .

- A way to extract it is to perform the reduction and continue

parsing, awaiting a long production that can tell us some—

thir--g explicit.  We believe such an approach may be too

cumbersome to be useful .

L -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ~~~~~.
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If a read transition is among our choices , let the

items associated with the read transition be A. -
~ x . . ty.

1 1

where t is the symbol to be read. If we choose to read

t, then one of the strings x must match the top of the

stack , and we can verify this before reading t. There

are both long and short such strings x1, and the long

strings can give us information about the stack preceding

?. Unfortunately, to use the read items we must keep the

actual items around during parse time, a requirement that

is uneconomical in space.

Among all of the possibilities presented when FMA

halts with an inadequate transition , the next move property

tells us that one must be the “correct” choice . As we have

noted , long productions may be of immediate use, but we do

not see obvious or simple ways of using the other choices.

Summary. Thus, an error recovery algorithm incor-

porates (1) the gathering of right context , which RCA

outlines how to do, and (2) the application of an error

repair strategy , which we have not specified , but for

which we have made some suggestions. We further suggest

that if the strategy fails to succeed , then we apply the

algorithm recursively, again gathering right context and

attempting error repair in the hope that some later correc—

tion can repair more than one error . The recursive approach

- — - - ——~~~~~~--.-~~~~~--~~~~~~~ - -~~~~— —— — ——-- a,— 
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ensures that we never stop try ing to parse the input,

therefore preventing the algorf thm from totally fail ing

, when we cannot correct some error , or when there are

multiple errors in the input.

-.~~~ — - 
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Chapter 6.

MAKING FMA PRACTICAL

In this section we show how to convert the state sets

manipulated by FMA into other states and precompute the

transitions between these new states.

We have described FMA as an algorithm that manipu-

lates sets of states in an attempt to keep track of many

state stacks at once. FMA computes state sets dynamically

by referring to the CFSM; e.g., cases (read) and

(A -* w} compute the next state from the previous state

Q by calculating (g ’ I q —
~

-—> q ’ and q c Q) (s is

h or A). There is no reason why we cannot precompute

these state sets and the transitions between them; this

gives rise to an error recovery FSM (ERFSM) . For a grammar

G, let (K,START,SIGMA ,V’ ,F) be its CFSM. The ERFSM

of G is the 6-tuple (K’ ,?,ERSIGMA ,V’ ,F’) where ? = K

and F’ = ( {f }  f c F) = { ( ( }  } ). K’ is computed as

follows: Begin with K’ = {?}. Repeatedly add to K’

the successors of state sets in K’ , where if S C V’,

the s-successor of Q C K’ is {q’ q —~~
—> q ’ and q c Q}.

Thus for Q, Q’ C K’ , S C V ’ , ERSIGMA (Q,s) = Q’ iff Q’

is the s—successor of Q in the ERFSM. We can in a

simple way specify the look-ahead function LA (QI,A -
~ w)

-- - - -
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for elements of K’ ; LA(Q,A -
~~ w) = q~~~Q 

LA (q,A ~~- w ) .

The parsing decision function can now be computed as for

the CFSM; due to the construction of the ERFSM, we can

show that for Q C K’ , s C V’ , PD (Q,s) = qVQ PD(g,s).

Figure 3 shows the ERFSM for the CFSM of Figure 2.

FMA now need not do dynamic state computation; we can

use the ERFSM and algorithm FMA ’ below to achieve the

same effect:

FMA ’.

Push?: Push ? on the stack.

Readh: Let h = head of input.

Push ERSIGMA (?,h) on the stack; read h.

Parse repeatedly according to the following rules :

Let h = head of input, Q = state on top of stack.

Let PD = PD (Q,h).

do case PD :

case {read}: Read h and push ERSIGMA (Q,h).

case (A -
~ w}: Ensure that I w l  states reside

on the top of the stack following the ?

state. If not, halt.

Otherwise, pop Iw l states off the stack.

Let Q be the new top of stack.

Push ERSIGMA(Q,A) on the stack. —

case fl: Halt, signalling an error . J

- - -  
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case {accept}: Halt; we have consumed all

but the 
~
.

case otherwise (i.e. ~PD! > 1): Halt.

end FMA ’.

The fact that FMA and FMA ’ are equivalent should not

be difficult to see based on the construction of the ERFSM.

Note that FMA ’ is much like the normal parsing algorithm

in that it manipulates only states.

Now that FMA ’ manipulates states rather than state

sets, we can suggest a space optimization on the ERFSM.

Suppose for some q c K , (q} C K’ (this occurs often;

see Figure 3). If q —
~~—> q ’ is a transition of the

CFSM, then (q}~~_!~ > {q ’} is a transition of the ERFSM.

Once FMA ’ pushes a state {q} on its stack, and until

it sometime later pops {q}, it will behave as if it had

pushed state q on its stack. Thus we may “share ” state

{q} in K’ with state q in K; states in K’ having

transitions into {q) can be modified to instead have

the same transitions into q. Such sharing reduces the

storage in the final parser + error recovery package. The

ERFSM may share every state (q} with its corresponding

state q in the CFSM. The following criterion , satisfied

by (but not only by) the singleton states in K’ , determines

whether an ERFSM state can be shared with a CFSM state:

(State shar~ p~ criterion) for any q C K , Q C K ’ , Q may

_.__ a- - ~~~~-



- ~~~~~~~~~~~~~~~~~~~~~ a - V ’  
- ~~ 

-
~ 

--

- l

45

share with q if f for every y e V ’ * , if q gets to p

by y and Q gets to P by y then PD (p,h) = PD (P,h)

for every h c V. Phrased differently , if y describes

a path from q to p in the CFSM and a path from Q

to P in the ERFSM, the parsing decisions that P and

p make must be the same. States in K’ other than

singleton sets satisfy this criterion . To see this, let

t0 = {A -
~ t.) and t1 = (A -

~~ t., B -
~ t.} , both members

of K. Let {t0,t1
} C K’ . Note that t

0
t.) t1 

= t1.

Then if PD(t1,h) = PD({t01 t1},h) for every h c V ,

{t0,t1} may be shared with t1. This is the same as

requiring that the look-ahead for production A -
~~ t in

state t0 be a subset of the look-ahead for production

A -
~~ t in state t1. Non—singleton states that can be

shared occur in practice, but they are non-trivial to

check for. Singleton states are very easy to check for

when generating the ERFSM , and the LALR generator at

UC Santa Cruz does this. Figure 4 shows the shared ERFSM

for the ERFSM of Figure 3.

For grammars we have run, which include a grammar

for PASCAL, from 60 to 80 percent of the ERFSM states

may be shared , resulting in a substantial savings in space. —

FMA ’ resembles the technique of Druseikis and Ripley .

However , they (1) do not have a unique start state with

which to begin the forward move, (2) do not consider states :

_ . - 5-
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in the ERFSM to be sets of states in K but rather

actual item sets (our research independently started out

that way but study revealed that the item sets were unions

of item sets of states in K, so that ERFSM states were

con~eptually better modelled and computed as sets of states

in K), (3) handle the problem only for SLR grammars

(they claim that the generalization to LALR is straight-

forward , but their paper does not indicate the greater

difficulty in computing LALR look-ahead sets for the

ERFSM; they merely attach SLR look—ahead sets to every

production in the ERFSM, and SLR look-ahead sets are

computed independently of the state in which the final

item appears). Our technique works in general for LR

parsers of any type, handling SLR as a special case. In

addition , the number of states in our CFSM plus the number

of states in our ERFSM can be up to VI — 1 fewer than

the number of states needed by Druseikis and Ripley to

implement the parser and error recovery machine; this is

due to the IV I start ~- tates needed by their error recovery

ma chine.

La- —5-—-- — - -~~~~~~~~~~~
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Chapter 7.

CONCLUS ION

We have provided a method to do the forward move

of Graham and Rhodes for LR pa’sers in a practical and

efficient manner . We have shown that our algorith:~ FMA

carries the forward move along as far as it possibly can
I

before halting, and that the results of it are useful in

selecting and validating error repairs. Given the simple

error assumption we have described how FMA can be used

to gather forward context, and have indicated how an error

recovery strategy might employ the gathered context. At

UC San-Pta Cruz an error recovery strategy ‘icing for~’ard

context is in development which so far has proven success-

ful in practice.

Further research. We have left unexplored many areas

related to FMA . In particular , some of them are

( 1) How large is the ERFSM in comparison to

the CFSM?

Are their sizes linearly related?

How is this related to the grammar?

(2) On “the average” , how much forward text does

FMA consume? 

— -- - —-a— —a--- - ~~~~ 

a~~~~ - - - _ 5-  -— ~a-a- a-X..- - 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ‘“



48

What circumstances permit FMA to consume a

lot of forward text?

How are these circumstances related to language

constructs?

(3) We define a grammar ’s “robustness” to be pro-

portional to how much forward text FMA consumes

on “ the average” .

Is there an algorithm that indicates weak spots

in a grammar , i.e. wthere the grammar is not

robust?

(4) What better or other ways may forward context

be used in error repair?

- ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~ h~ - - - -



_ _ _ _ _ _ _ _ _ _ _— w r~ ~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~ y -

T~~ - r~~~~~~~~~~~~~~~a-a - 
—-  . -  -

49

REFERENCES

[A&U 75] Aho , Alfred V. and Jeffrey D. Ullman ,
The Theory of Parsing, Translation and Compiling,
vols. I and II, Prentice-Hall , 1972.

[DeR 711 DeRemer , Frank ,
Simple L R (k )  Languages ,
CACM, July 1971.

[DeR 69] DeRemer , Frank ,- 
-

~~ Practical Translators for LR(k) Languages,
PhD thesis, Dept of Electrical Engineering ,
MIT, Cambridge, Mass. , 1969.

[D&R 76] Druseikis, Frederick C. and G. David Ripley,
Error Recovery for Simple LR(k) Parsers,
DepE of Computer Science , Univ. of Arizona,
Tucson, Az. 85721 , 1976.

[G&R 751 Graham , Susan L. and Steven P. Rhodes,
Practical ~y~~ actic Error Recovery,CACM, Nov. 1975.

[OHa 76] O’Hare , Michael F.,
Modification of the LR(k) Parsing Technique
to Include Autom~~Tc ~yntactic Error Recovery,
senior thesis , Univ. of Calif. at Santa Cruz,
Santa Cruz, CA. 950E4 , 1976.

-
- - - - - - - - - - - - - -- - - - - 5 -  5- - -- — 5 - --—- — -



- - - - ~~~~~~~~~~~ - 5- 

-

- 

— 

_ 
-a-a.a.~~~~~~~a~ -a- -~~ ~~~~~ - -

50

S + Program J
Program ÷ Stmt

Stint -- integer Id list,

Id := Exp

+ for Id := Exp step Exp until Exp do Stint

-. begin Stint list ; end

-
~ while Exp do Stint

Exp -
~ Id

-+ m t

Id ‘<IDENTIFER> ’

m t  ‘<INTEGER> ’

Figure 1. Grammar for a simple Algol-like language.
‘<IDENTIFER> ’ and ‘ <INTEGER> ’ represent the generic
classes of identifiers and integers respectively .
“A list B” means a list of A ’s separated by B’s.
Capitalized strings are the only nonterminals.

Li 
—-

~ -5-——.-



!~
‘ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ - .. 

~~~~~~~~~~~~~~~~~~~~~~ 
- V~ a aar~ ~- --. .,.-~ ~~~~~~ “-~~~

— 51

S + E j

E ~~E + T

T + P * * T

P - ‘- ( E )

Figure 2a. A simple arithmetic expression grammar . 

- - ---- ~~~~~~~~~~~~~~~~~~~~~~
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Figure 2b. CFSM for grammar of Figure 2a.
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I + ) 1.
+
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_ _ _ _ _ _
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-
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E ) P...(E)U }

[ +

~ f+ ,),i}

~ {Stop~ ( ~ 
{Po1

0- 
1(~~~~}

+

—0-

0 
{ )0J

Figure 3. ERFSM for CFSM of Figure 2b. Reduce transit ions
from ? have been om itted .
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Figure 4. ERCFSM with singleton states sha red
with the CFSM. Reduce trans itions from ?
hav e been omitted- 12 of the 15 states in
Figure 2 have been shared.
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