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ABSTRACT

This paper is both a description of an existing backgammon program and a
theoretical discussion of some important issues in evaluation. The program plays a
generally competent game at an intermediate level of skill. It correctly solves a high
percentage of intermediate level problems in books. Although it only doubles and
accepts doubles during the running game, it does several non-trivial things perfectly.

In discussing the structure of evaluation, we consider partitioning all game states
info mutually exclusive state-classes. These state-classes are very useful in 2
knowledge-based system, as they allow relatively easy assimilation of new
knowledge. They also permit the building of opponent models based upon what
evidence shows the opponent knows in each state-class.




I. Why Yet Another Game?

Backgammon is a game of skill and chance. It is played on a vector of 24 “points".
From a predefined starting position, both sides move in opposite directions, with the
object of first removing all 15 of one’s own men off the end of the vector. There
are rules for moving, capturing, re-entering captured men, blocking points so an
opponent cannot move there, and finally removing men from the board near the end
of the game. The reader not familiar with backgammon would do well to scan the
rules of a standard work such as Jacoby & Crawford [Ja73] before proceeding
into this paper in great detail.

The thing that makes backgammon an interesting object of study for Al is that in any
given position (of with there are 1020 [Le76]), there are 21 possible combinations that
the throw of two dice can produce. Each of these, can be played legally in the
average board position about 40 different ways. Thus if one were to investigate a
backgammon position by tree searching, it would be necessary to deal with a
branching factor of more than 800 (!) at every node. Clearly this is completely
impractical. Therefore backgammon must be approached with evaluation and
knowledge in mind. Position P1 will have to preferred over position P2 because it
has features that more endear it to the player who can produce it than the features
that obtain in P2.

In a game such as chess, it has been customary to search very large trees of 5000
to 2 million terminal nodes. In such a paradigm, the execution of a terminal evaluation
function requires a certain amount of time, which must then be multiplied by the
expected number of terminal nodes in the search. Thus designers of chess programs
are very circumspect in creating evaluation functions which require lengthy
execution times. For this reason certain knowledge that is not trivial to compute is
usually [left out so that the program may operate faster and search more. Since
there can be little or no searching in a practical backgammon program, these
contingencies will not apply. On the contrary, it is desirable to apply all possible
knowledge {o successor positions of the root node, in an attempt to find the best
next move. Further, the fact that modern backgammon involves doubling and
accepting doubles places an even greater emphasis on the use of knowledge for
knowing when to double and when to accept doubles. It is the encoding of
knowledge and the subsequent selection effectiveness of the evaluation function that
is of interest. This subject is treated in depth in sections IV and V. However, before
going fo that part of our research, we describe certain peripheral artifacts that
are important for understanding the whole project.

II. The Structure of BKG

BKG is an interactive backgammon program. It is the result of about one man-year of
effort since mid-1974. It is written in BLISS [Wu71], a system implementation
language, and runs under the TOPS-10 monitor on the PDP-10’s at Carnegie-Mellon
University. It encompasses more than 80 pages of code, occupies 19K of 36-bit
words in core and a further 11K of tables on secondary storage. BKG runs
interactively on four different kinds of video terminals (including a graphics
terminal which moves the men with a graphic hand, and will upset the board
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occasionally when BKG loses), and a standard model 33 teietype. These routines were
wrillen by Phil Kariton and Steve Rubin at Carnegie-Mellon University.

BKG operales, similarly to many game playing programs, by execuling a minor cycle
which makes moves within a major one which plays games. When BKG is running
interactively, it displays appropriate outputs and prompts at each step of the cycles.
The minor cycle (see Figure 1) operates as follows: First, BKG checks to see if the
side whose turn it now is wishes to double (checking first that it would be legal for
that <ide to do so). If a double is made, BKG asks if the double is accepted. If so,
BKG adjusts the position and denomination of the doubling cube and proceeds. If not,
the game is over and BKG exits to the major cycle. Next BKG checks to see if it is to
throw dice, or receive a roll from the console. BKG uses a random number generator
to throw dice. It then generates a list of all possible legal moves for the given roll.
If it is the program’s turn to play, it serves these potential moves up, one at a time, to
the evaluation procedure. It then selects the best. If it is not the machine’s turn
to play it waits to receive a move from its environment. It then checks the legal
move list to see if this move is on the list. If not, it requests a legal move. If the
received move is legal, BKG puts it into canonical form. It then executes the legal
move by updating the board configuration. If the conditions for one side winning
have been met, it exits to the major cycle.

The major cycle is activated whenever a new game is about to begin. If a game is
just over, BKG adjusts the overall record of the current competion in faver of the side
that just won. It then asks if another game is desired (unless it has been preset for
a certain number of games and this number has not been reached as yet). If the
answer 1s negative, the program terminates. Otherwise, it sets the board up, throws
dice to see who starts, and yieids control to the minor cycle.

BKG can operate in several different modes. It’s usual mode is to play a human
opponent interactively at a video terminal. However, it can also monitor a game
between two opponents while rolling dice for both, and doing the bookkeeping for
doubling and accepting decisions. It can also play itself, either while displaying all
actions at the terminal, or by only reporting the results of a series of games. For this
simuiation mode, it is neccessary to type in a starting position and the number of
itterations desired. For certain types of positions that BKG can play well, this mode
can be used to determine within reasonable limits of accuracy what the chances of
the respective sides are.

When one or more human opponents are involved, there is the option of letting the
lhumans throw dice for themselves and entering the roll when the program prompts
for it. For ordinary purposes this is much too siow a way of playing the program.
There s, however, a practical reason for this mode. In tournaments it will be
necessary to actually throw dice at the table for both sides, and a method must
exist for entering the rolls. It is rather interesting to note as an aside, that while we
have seen quite a few illegal moves made in tournaments, this should never happen
to BKG, as if a move is not on its legal move list, it would not accept the opponent
playing it.
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111. Basic Procedures
A. The Move Generator

In discussing move generation, we will refer to the movement of a single man in
accordance with the value of a single die face as a move, and the total set of moves
associated with a roll of the dice as a play. At first blush it would seem that the
desizn of a move generator for a backgammon program should be a trivial
exercise. However, this turns out to be not quite so easy. The reason is that, while it
is no problem to attempt to move each man in turn the number of spaces
corresponding: to the pips on a die face, there are several special conditions that
control the way a roll may be played. The basic situation is this: each man may be
moved the number of pips on one of the die faces, it the destination space is not off
oard and not blockaded by the opponent (he has two or more men on it).
made one move of one man corresponding to one die face, the same
re is applied with respect to the other die face. In the case of doubles, the
vation of one die face is applied four times. By simple recursion it is possible
ipply each die face to each man in turn, and thus enumerate the whole set of legal
moves.

However, there are problems. Firstly, the above procedure will generate many
duphicates which we would hope to avoid or eliminate after generation. Secondly,
and more importantly, the procedure outlined will not work for situations in which
the moving side has men on the bar (and the only legal moves consist of entering men
from the bar), and for those situations where all the men are in the home board (when
it is legal to move men to the next point beyond the end of the board and in certain
cases even beyond that). Thus on careful examination we determine that there are
three distinct states that a board situation can be in:

1) Men on bar,
2) Able to bear off,
3) All other situations.

Further, it is possible for the state to change during a single play, and the move
generator must be able to come to grips with such a situation to generate all legal
moves, and only legal moves. A final complication introduced by the rules of
backgammon requires that if a full play cannot be made according to the roll, the
player must play the largest possible part of the roll. This means that if he can play
the full roll, he must do so; and if he can play either die face, he must piay the larger.

The move generator understand exactly what moves are legal in each of the three
states. As moves are gencrated which could form a legal play, these are put into a
tree form. When move generation has been completed, the tree is scanned and those
plays that are legal by our final criterion (use maximum part of roll) are marked as
legal plays.

In view of these considerations, we implemented the move generator in the following




way. We have a recursive procedure which can call itself a maximum of three
times (for doubles) and once for non-doubles. The procedure starts at the location
of the man that is furthest away from home for the moving side. It then scans
toward home, pausing each time a point is found containing one or more men of the
moving side. The die faces are labelled arbitrarily FACEl and FACE2. The move
generator first determines which of the three states the board position is in. It
then attempts to apply the current die face to a man on the current point. If it fails
in this, it continues the scan until there are no more men or points, whereupon
it backtracks. If it succeeds, it updates the board, and if there are still more die
faces to apply, it calls itself. In this case, a parameter of this call is the point at
which the next scan should commence. For non-doubles this is the same point
where the first recursion began. However, for doubles a large saving can be
realized by using the current point as argument (since all opportunities to
apply the denomination of the die face earlier in the recursion must already have
been tried!). This algorithm will generate all legal moves and only legal moves. For
instance, in the case of doubles, if there are more than one man on a point, when the
recursive call occurs, the algorithm will attempt to apply the remaining die faces
to be played to the remaining men on the point before continuing the scan. Thus, for
doubles this algorithm will not generate duplicate plays, while for non-doubles it
will. For this reason we use a small modification of the procedure for non-doubles, but
this does not concern us here.

B. Special program functions

There are several special functions which the program must be able to perform in
order to be able to play an interactive game. These include receiving moves,
updating the internal represention and that of any display device being used,
scending appropriate prompts and messages to the user, being able to double, accept
doubles, resign, and accept resignations. We consider all but doubling and
resignation to be quite straight forward, so we will only describe the peculiarities of
those four functions here.

1. Doubling

According to the rules of modern backgammon, the game is played with a doubling
cube which has both a denomination and position. The cube is initialized at value "1",
and located in the center (between the two players). The rules specify that either
player may before rolling, if the cube is not on his opponent’s side, offer to double
the stakes by saying "I double", changing the value of the cube to be twice its current
value, and offering it to his opponent by placing it on 'his side. If the opponent
accepls the double, he gains possession of the cube, so that he is the only player
who is next entitled to double, and the game continues for twice the previous stake.
If he refuses the game is over, and the appropriate game ending actions must be
taken.

It is generally considered by backgammon experts that doubling is what separates
the men from the boys (meaning that il is relatively easy to make the right move most
of the time but hard to know when a position is good enough to double and bad
enough to refuse an opponents double) To implement even a mediocre
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doubhng and accepting algorithm is an extremely difficult task. Because of this, BKG
al present only permits doubling (in games in which it is playing) in situations
where the two sides have disengaged so that captures are no longer possible. This
limitation is being remedied in the version we are currently working on. The problem
of constructing such decision algorithms are freated in later sections; here we
discuss only the requirement for the program to handle doubling in game.

Since it would be rather boring to ask each human player before his roll (if he
were legally entitled to double) "Do you want to double?”, we have instead
created a doubling flag for each human opponent. If a human feels he may want to
doublie on the next roll, he should enable the doubling flag before making his current
move. This will result in BKG prompting him with an asterisk before the dice are rolled
for him next time (and untii the flag is turned off). When the prompt appears, the
player may double or just continue. When the doubling flag is not set, BKG wilil just
roll the dice without asking about doubling. This speeds up the game considerably. Of
course, for itself BKG does not need such a flag as it can consider its doubling actions
in a few microseconds.

When BKG has been doubled, it decides whether or not to accept using the same
procedures it uses in deciding whether to double. Whenever a double has been
accepted or rejected, the bookkeeping decisions that follow are rather trivial.

2. Resigning

It is, of course, possibie to play every game out until someone has actually won.
However, it is not infrequent that a situation is reached in which is is no longer
possible for one side to win, no matter how fortuitously the fales may treat him. In
such a situation it seems appropriate to resign in the interest of time saving and
start the next game. BKG will only attempt to resign or allow resignation after
the two sides have disengaged. It then calculates after each move the maximum and
minimum number of rolls that it could iake for each side to get all its men off.
Ciearly, if the minimum number of rolls of one side is greater than the maximum
number of the other side, the first side should resign. This criterion is currently used
both for resigning and accepting resignations. However, we do allow the program to
try to resign in situations where it may gel gammoned (although only when this is
somewhat remote) in the hope that the opponent may accept such a resignation. It is
also possible to resign a gammon or backgammon, using as criterion the number of
rolls needed to get one man off and to get all men out of the opponent’s home
board. The question of attempting to resign and accept resignations before
dinengagement will also be taken up in the version we are currently Dbringing up.
This ltoo will involve judgements as to when a position is too good to accept a
resignation (the gammoning chances are too high) and when it is so bad that one
should be happy to resign (because one could quite easily lose a gammon).

C. Evaluation

The real knowledge and intelligence of BKG are in the procedures that evaiuate moves
and positions. We describe these in detail in the next two sections.




IV. The Evaluation Procedures

In this section, we describe issues in measuring certain important facets of a board
position. It the next section, we describe how the outputs of {hese measuring
functions are used in the over-all evaluation. Finally, in section VI, we describe
limitations of various evaluation approaches, and give what we currently feel is the
bes! approach to this problem. In our discussions, we will refer to the two sides as
Onmove and Notonmowve (before a move is made) and Justmowved and Nexttomnove
after a move is made.

A. Blot danger calculation

A blot is a man that is by itself on its point. Such a ma. is in potential danger of
being hit (either right away or at some later time), and lieing sent back to await its
opportunity to re-enter and come around the board again. All other things being
equal, it is undesirable to leave blots. However, all other things are seldom equal,
and for a variety of reasons (including that it cannot be avoided) blots are left at
the end of a play. This procedure calculates the danger to the set of all biots of
the moving side, and delivers several values for use by the evaluation procedure.

There are many intricacies o appraising the danger that a set of blots is in. When
we first brought the program up, BKG merely noted the existence of blots. It
considered all blots equally likely to be hit, and merely delivered a value that
represented the total pipcount that would be lost if all blots were to be hit. This was
a term that the evaluation procedure attempted to minimize.

However, this measure proved very inadequate; it failed most importantly to
consider whether any particular blot could be hit by an opposing man. Our next
(very small) improvement was to determine that for a blot to be in danger at all,
there would have to be an opposing man somewhere in front of it. This
produced a small improvement in performance. However, it still failed to get at the
degree of endangerment of any blot.

Next we noted that for a blot to be hit it must be a distance of 1, 2,3, 4,5, 6, 7, 8,
9, 10, 11, 12, 15, 20, or 24 in front of the hitler, and that for each such distance
there is a hit probability corresponding to the number of possible combinations.
This new fact produced a very large increment in performance, but it still left
untouched several important situations. One of these is that even when a hitter is
the right distance away from a hittee, it is at times necessary to have available a
<et of intermediate points where the hitter is to land. Second, is what is called in
backgammon jargon duplication: it is impossible to apply a single die face to more than
one move. Thus there is a certain safety for a pair of blots if they can be hit by
different men (say) 4 pips away. The point is that if a 4 is rolled only one of the
blots can be hit, not both. Thirdly, there was the question of more than one blot
being hit with a single roll (something that it is usually wise to avoid), and the
question of a single biot being hit simultaneously by two men. This is known as
pointing on a blot, and is also something that it is wise to avoid.

As a resull of these considerations, we finally implemented a very detailed hit




probability procedure which we now describe. We consider any man which is
not paired on its point to be a blot, unless it is on the 1 or 2 point in the opponent’s
home btoard and the opponent has not yet made more than two points in his home
board. We consider any man to he a hitter unless it is part of a pair (and only a pair)
in its home board. The reason for the latter is that moving one of such a pair would
evpose the other to the hittee coming in on the next play, and thus wouid not really
constitute a threat.

We note that there are 40 different ways in which an arbitrary hitter can hit a
hittee. To illustrate this consider that there are 3 different ways in which a hitter
3 pips away from a hittee can hit it: by a 3, a 2,1, or using 3 parts of a 1,1. This
information 1s encoded in a table of masks which specify which intermediate points
must be free, or thal only one of a set of two points need be free.

Qur procedure scans the board, starting with the most advanced blot of the moving
side, and determines if it is in range of any hitters. If so, then for every hitter it
determines all combinations that couild be used to hit this blot. It then checks
whether the intermediate landing point conditions are satisfied. If so, it enters the
iocalion of the hitter in the word corresponding to this combination in the 40-
word vector of bit-vectors /hit. At the end of this first pass, the wvector Ahit
contains all the locations of potential hitters, the combination used for the hit, and
the location (implicitly) of the hittee.

Next the procedure determines whether the side next-to-move has O, 1, or more than
1 men on the bar. There is separate section of code for each of these situations.
Basically, the procedure examines each word of /lhit to see if this combination can
be used to hit a man. It starts with the combinations that use only one die face and
then goes to the more involved combinations. Each time it finds such a
combination it checks to see if the die faces needed for this combination have
not been used yet. If so, it marke the faces as used, updates the information on
hitling (always assuming that the most advanced blot will be hit if there is a choice),
and continues.

If it finds thiat a combination using only one die face can be used to hit more than one
blot, it knows that there exists a combination (the double with that die face) that can
be used to hit two blots. If it finds that biots can be hit with more than one
single face combination, this means either that a blot can be pointed on or that two
blots can be hit with a certain throw. Whenever a blot can be hit by a combination
involving two die faces, it checks whelher a biol exists on either intermediate point.
If <o, lhis combination would hit two blots. In all cases, the values are multiplied by
the unuced number of ways that this combination can be rolled. At the end of this
caomputation the following values are available:

Piploss = The total number of pips that may be lost due to blots being hit multiplied
by the number of rolls that can be used for each hit.

I’ = The number of rolls that it one or more men.

I’2 = The number of ways that more than one blot may be hit, plus the number of
ways that a biot may be pointed on.
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These data are very adequate to the task at hand. For instance, in situations near
the end of the game where one side must break up its safe pesition and run across
"no-mans-land” exposing some blots, BKG does a remarkable job of distributing blots
so as to minimize the clhance of any being hit. This can be quite difficult even for
a masler player at times, but this is one of about 3 or 4 area of backgammon play
where BKG plays perfectly.

However, there are still some inadeqLacies to the current approach. The principal
one is that the hit probability calculation assumes that it would be desirable to hit
any exposed blot. This is usually valid but not always. For instance, the man that
would be the hitter might be part of some important blockading or defensive structure
and would therefore not want to give that up in order io hit a blot. Aiso there is the
possibiity that if the blot were hit it would in turn leave a blot for the opponent.
Under certain circumstances (of which we already indicated one earlier) the
disadvantages of leaving a blot in the process of hitting a man outweigh the
advantages of making such a hit. We have in mind to improve the calculation to
report which men are the hitters and name points on which opponent’s blots would
be left after hitting a blot. However, the program does not seem to be as limited
by the lack of this information as by some other things, so this improvement will be
postponed until such a time as it seems necessary. We are also aware of tk. ad
hoc nature of defining what is a blot and what is a hitter, and will at some future tine
make these definitions more sensitive to the overall board situation. However,
as of this writing the hit probability computation is by far the most
sophisticated thing in BKG, encompassing some seven pages of code.

B. Blockading Factor

A Dblockade consists of a set of points "made" by one side, which prevent an
opposing man from having access to those points. Clearly, such points can have a
great effect on the opponent’s movements, and their location is of great importance.
The blockading calculation also has an evolutionary history. It became apparent very
early in the development of BKG that it is necessary to distinguish between
blockades that have one or more men trapped in front of them, and those that do
not. The latter consist only of a potential trap for any man that may be hit.

Initially, we counted the maximum number of contiguous blockading points and
squared this number to give greater weight to longer blockades. However, this
method overlooks the fact that a blockade of six-in-a-row cannot be spanned, the fact
that seven-in-a-row is not better than six-in-a-row, the fact that blockading points
do not always have to be contiguous to be effective, and the fact that blockading
strength is affected by the distance that a potential blockade runner is away
from the blockade. To overcome these objections we developed a table of
potential blockades.

We note that since there are only 15 men on a side, it is impossible to have more
than 7 blockading points. We then computed all combinations of zero to seven
blockading points at a distance of 1 to 12 spaces in front of a man. For each
configuration we computed the number of rolls that could legally be played by the
blockade runner. This is the best measure of the strength of a blockade that we
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have found. Since a byte of 12 bils uniquely identifies any blocking configuration,
and since the number of rolls that can resu! in getting past the blockade must be
between O and 36, we constructed a tabie with bytes of size 6 bits accessed by a 12
bit code describing the blockading configuration. This method results in quick lookup
of the essential data. We keep track of:

I’scapes = number of rolls that can be legally played from this point.

Contsq = The point between the location of the furthest back man and own 9 point
wihere the value of Fscapes is lowest.

Acontain= 36- Iscapes(Contsq).

Contain= 36- the lowest value of Escapes between our 24 point and our 9 point.
It has been found that this information satisfies our needs at the moment.

C. The Running Game

BKG will disengage the forces whenever it has the opportunity to do so, if it is even
just slightly ahead in the running game (the race to get all men off). Plays are then
evaluated in the following way: Any move that brings a man not already in the home
board into the homeboard gets credit for 3 heuristic points (HP). From this s
subtracted the number of men already on this point in order to give some
encouragement to spreading men out. If the man is brought to the 6 point it gets 10
more HP’s, and 10 HP’s are subtracted for every space to its destination beyond the
5 point. If all men are in the home board at the end of a play, 200 HP’s are added.

At the end of any potential play, BKG evaluates the placement of all men not yet in
ti.e horme board. For each such man, BKG computes the number of board-crossings
the man still has tc make to get into the home board, and where the man is placed
in its current board. In backgammon terminology a board is a sequence of 6 points
(of which there are four, the two home boards and the two outer boards). In
general, for the same number of total pips remaining, it is most desirable to have
the fewest men left, and have them placed as far back as possible in the board they
currently occupy. This allows the most efficient utilization of the most throws.
Thus BKG will multiply (3 - number of board crossings) by the depth of man in his
board. This function seems to produce the desired effect, because it gives the
greatest weight to the location of men closest to entering t : home board. If the
program’s side is in danger of gammon, BKG will try to m:.imize potential rolls of
doubles. Thus it will place men so that they can be brought home and one borne
off most easily in the event of double 6, 5, 4, 3, or 2.

BKG makes and accepts doubles only during the running game. Until the position is
advanced enouzh <o that bearoff tables that give the expected number of rolls to
pet all men off can be referenced, it uses an aigorilhm developed by Emmett Keeler
{Ke75] of the RAND Corp. This algorithm uses an adjusted pipcount which adds 4/3
pips for every man on the 1 point, 2/3 pips for every man on the 2 point, and 1/3
pip for every man on the 3 point. If one side has borne off fewer men then the
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other, the (Acount) of that side is increased by 2 pips for every extra man. Finally, it
checks the number of gaps (points unoccupied by own men) in the home board of
each side and subtracts the difference from the side having the fewest gaps. This is
the adjusted pipcount (/lcount) used in the following computation.

BKG will double if the cube is in the cenler if its opponent’s /lcount is 107 minus 2
pips greater than its own. It will double when it owns the cube if its opponent’s
Acount 1s 107 minus 1 pip greater than its own. It will accept doubles when it is not
more than 107 + 2 pips behind. This algorithm performs in a basically satisfactory way.

D. Bearing Off

To support decision making during the bearing off phase BKG has extensive tables
which give the probability for a given position of one side, of bearing off all men in
1,2,-- 8 rolls and the expected number of rolls (ENR) to bear all men off. These tables
were computed by James J. Gillogly of the RAND Corp. for our use. They are used
both in selecting a move and in making doubling and accepting decisions.

The tables cover all situations for up to and inciuding 8 men in the home board, and
“up to and including 25 pips worth of men in the home board. The latter value
assures that the tables can handle situations where, for instance, one side has all
his men on the 1 and 2 points, but at least 5 on the 1 point.

The use of the tables in move selection is simple. BKG moves to the position with
the lowest ENR. There is one exception to this case; that is when it is far behind or
far enough ahead to have a chance of winning a gammon. In the former case, it moves
to the position which has the greatest probability of bearing all men off in the number
of rolis that are expected for the opponent to get off. Here the values of probabilities
of getting off in N rolls are very useful. When it is far ahead it moves to the
position which gives it the greatest chance of bearing all men off in the number of
rolls it expects to have before the opponent gets his first man off. It does this by
giving additional weight in the computation to the probability of getting off in 1 --
n rolls, where n is the number of rolls it expects to have before the opponent
meets his objective.

For doubling and accepting doubles the situation is more intricate. Whenever, BKG
can legally double during this phase, or when it has been doubled, it executes a win
probability calculation. If the bearoff position of either side is not in the bearoff
probability table, then it uses the Keeler method described above. In that case, the
ENR 1s computed to be the larger of the Pipcount/7 and the (number of men
left+1)/2. This will usually overestimate the real ENR somewhat. If the ENR’s for
both sides are in the table then BKG can calculate the exact probability of the side
on move winning by itteratively calculating over N the following equations:

WeW+(1.0-W-V)*AWPRE(N)
VeV 1.0-W-V)xAVPRB(N)

Until W+V=1.0
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Here, W s probability of (Onmowve winning, and V is probability of Netonmone
winning. The AWPRB(N) are computed from the bearoff probability tables by the
following equation:

AWPRB(N)=WPRB(N)/(1.0-PRB7)
Where: PRBZ= SUM i=] to N-1 of WPRB(i).

If the moving side has a 657 chance of winning, BKG will always double. If the
moving side has more than a 797 chance of winning, BKG will always resign if it is
the non-moving side. In between there are many situations in which it makes a great
deal of difference how many rolls are left in the game, who has the cube (one should
be more cautious in doubling when giving up the cube), and where in between 517
and 657 the win percentage is. We wuse a set of ad hoc tables here, and
periodically adjust them when the program appears to be doubling too early or too
late.

It should be noted that BKG does a vastly better job of doubling and accepting when
using this algorithm than when relying on the Keeler approximation. This can be
noticed, for instance, when the position is close bul appears to favor one side. When
the position changes so that both positions can now be looked up, BKG will frequently
doubie, even though very little appears to have changed from the situation one roll
aco for both sides. Upon inspecting the value of the win probability for the moving
side, it is not unusual to find it between 607 and 657; values which were not
sufficient to activate Keeler’s approximation. For this reason, we are looking at more
precise ways of dealing with running game doubling, with the view of being abie to
obtain an estimate of the win probability of the side on move, rather than the double/
don’t double decision which Keeler's algorithm estimates. To this end, we are
looking at the work of Thorpe [Th75], and have some ideas ¢! our own for simple
approximations which can be tested using our simulation facility.

An example of the kind of thing we are tailking about is the position in Figure 2.
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Figure 2

Here the /Adcount for both sides is 36. 36x1.1 - 2 = 38, so that Onmove cannot
double. Yet Onmove has approximately a 657 chance of winning here, as evidenced
by simulations.

The power of the bear-off tables is very impressive. Here is another area where the
program plays perfectly. To illustrate the type of thing BKG does to amaze its author,
we show two examples.
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Figure 3

In the bottom part of Figure 3, White is to play a 6,2. The 6 must obviously be
played from the 21 point. But what is the correct way to play the 2? Almost every
human player would say 21-23. However, this is not correct; 22-24 is better. The
bear-off tables report the respective ENR’s to be 2.748 and 2.739. Upon
cxamination, it turns out that all sequences of future rolls produce the same results
in the two positions except when one of the next two roils is 1,1. If this occurred on
the first roll, it would in both positions allow taking 3 men off. In the preferred
posiion this would leave men on the 21 and 23 points, which allows 6 additional
combinations of getting them both off on the next roll over the other position where
the two men would both be on the 22 point. The situation is similar if the 1,1
occurs on the second roll.

The second example in the top part of Figure 3 has similar features. Here. Black is to
play a 6,1. The 6 must be played frorm the 4 point; the question is how to play the
1. Again human players would automatically play 2-1, but this is incorrect. 3-2 is
better in all future sequences. Again only those sequences involving a 2,2 make a
difference. This would allow getting off in 2 rolls unless the next roll is 2,1 in the
preferred case, but would do no good in the other. The respective ENR's are 2.794
and 2.777.
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It may seem that the advantage gained by making the correct play in these cases is
trivial; however, it is certainly worthwhile to improve one’s chances in the play
when it can be done at no risk. For these two exampies it would seem that the rule:
"When there are a small odd number of men on the board, play to maximize use
of doubles” would seem to be the correct way for humans to capture the knowledge
that is contained in the tables.

£. Spacing of men around the board

It is important in backgammon, all other things being equal, not to let groups of men
become disconnected from one another. Thus one does not want to advance any
men too far, or have any fall too far behind. At the moment we are taking care of
this problem by using a 2nd moment of inertia calculation which in general works
quite well. We firsl calculate the center of mass of the moving side after a play.
We then calculate Moment2 -- the 2nd moment of inertia of the men located back of
the center of mass. In the evalualion process this term will be a debit, and in
general BKG will try to minimize this term all other things being equal. It should be
notfed that this computalion also has the desired effect on the men in front of tre
center of mass (not too far advanced), since advancing men too far, advances the
cenler of mass, thus increasing the number of stragglers and their contribution.

However, as well as this does, it still leaves some things to be desired. Basically, the
real issue 1s whether any man or men is so far behind that it will be very difficult
for il to ever join the main force. Or whether any men are so far advanced that they
will not play any meaningful role in the game until the bearing off stage is reached.
These two issues are probably best treated separalely and we intend to do this in
our next revision. It is desirable to maintain stepping stones of safe points for
lagging men to join the main force, and it should be relatively simple to devise a
measure of the number and nearness to each other of such stepping points as an
index of the ease which which lagging men can be brought to safety. Likewise, far
advanced men can be debited according to how far advanced they are beyond
the last safe man of the opponent. Even with such measures available, we would stiil
plan to retain the 2nd moment term as a useful measure of dispersion of the total
force.

F. Other variables

BKG also computes the values of the following variables which are used in the
evaluation process.

1. Clasehoard -- Number of points closed in own home board --This is a simple
counting operation, except at present we subtract 1 for every enemy point in the
other’'s homeboard, and 1 for every two own blots in a homeboard. These
approximalions are heuristic and will probably be replaced by a more exact
calculation at some future time.

2. Hombhlots -- The number of blots in own home board.

3. Builders -- BKG at the end of a play decides which point it would next like to




17

make (based on those already made and a table of values). It then counts the
number of men that are exlira (single or more than 2 on a point) that are within 6
points in front of such a point. These men are builders that are available to make
this point on a future roll.

4. Slotted -- When BKG has identified the point it next wants to make, if one of its
men is already on this point (either as a result of the present play or a previous
one) BKG will assign a value to Slotied commensurate will the value of the point
(from the point table). Of course, if such a slotted man is in danger of being hit by
the opponent on the next roll, this value will be traded off against the risk
measured by the hit probability caiculation.

5. Iistack -- Accumulates values according to how overioaded this side’s points
are. It adds 1 point for the third man, 1 for the fourth, 2 more for the fifth, 3
more for the sixth, 4 more for the seventh, etc. This is a quantity to be minimized in

the evaluation procedure.

6. In addition to the above variables which require minimal computation, BKG also
assign to variables the following quantities:

Moasthack -- The point on which the furthest back man is located (could be the
bar). :

(Onhar -- The number of men on the bar.
Eapallin,Exploff,Expturns,Maxturns,Minturns,Maxloff,Minloff -- For these
variables the number of half-turns required to meet the stated goal are computed
afler a situation has been reached in which disengagement is near. Minimum
and maximum quarntities are self-explanatory. The EXP quantities are based on
the sum of the ceilings of the distance that must be covered by each man involved
divided by 3 1/2.

Mohility = Sum of Escapes over all men of a side.

Cethaekin(Closeboard,(Onbar) -- Heuristic table of values for each situation.

Winfactor = (Pipcount(Justmoved) + 4 +  /Aconmtain(Justmoved)*2) /[
(Pipcount(Nexttomove)+Acontain(Nexttomove)s2).

Caploss = Number of pips lost by Nexttomove due to captures.
Ldpe = Pipcount(Nexttomove)-Pipconnt(Justmoved)-4.
Contfactor = (Cnnmin((hunmm)a)/300.

7. BKG also can compute the foliowing functions on demand (necessary for
understanding next section):

Owninen(side,point) = Number of men of "side" on "point”.
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Manhame(point) = Returns binary value; true if "point” is in Onmone’s homeboard.
Nistance(A,B) = Number of pips required to move from "A" to "B".
V. The Evaluation Process

The evaluation process has a long history of experimentation which is still going on. It
was apparent, even in the early days of BKG, that a different evaluation procedure
had to be used for the running game (forces disengaged) from that used in non-
running game situalions. This is apparent when one considers that /lcontain,
Builders, etc.,, have no bearing on running game situations. Similarly, there are
cerfain factors which measure the aggressive worth of a position, the defensive
potential of position, and the ease with which men could be brought into the home
board, given that the forces are still engaged. Clearly, all these factors are not
applicable all the time.

To evaluate any position, we must decide which evaluation computations are
applicabie. The first step in this process is to decide whether it is a running game
position or the forces are still engaged. We explained in Section IV how running
game evaluation is done. When the forces are still engaged the evaluation proceeds
as follows:

The unit of evaluation is the heuristic point (HP). For all positions where the
sides are not yet disengaged the following GENER/IL evaluation is performed:

HP«HP+Caploss

+ Ownmen(Offhoard) * (if P1=0 then 22 else 3)

+ Mobility/5

+ Gethackin(Closehoard(Justmoved),0Onbar(Nexttomouve))
Piploss/ Winfactor
(if not Manhome(Mosthack(Justmoved)) then Moment2)
2 * (Ownmen(Justmouved,l) + Ownmen(Justinoved,2))
Hombhlots(Justmoved)©.

The evaluation now becomes more sensitive to specific situations. First we
determine whether Acontain(Justmoved) € 6 in which case Justmoved is considered
near disengagement anc the NE/IRDIS evaluation is performed:

I Justmoved appears to be winning; ie. Ildge20 or Acontain(Neattomove) > 16
then:
If P1<3 then the following SAFE evaluation is done:

HP«HP+ (if I'd gze>0 then I'Idgcz else nmumin(Nnxtmmovo)3/300)

-~ HNistack
+ (if OQwnmen(Mosthack(Justmored))<2-then 10)

(This makes it easier o break this point and move the men up)

+ (it Manhome(Maosthaclk(Justmored)) then
begin if Qwnmen(Mosthack(Jvstmoved)) MOD 2 =0 tihen 10;
if (Qwnmen(Mosthack(Justinoved))
+ Ownmen(Mosthack(Justmoved)+1))2 5 then 10;




end).

If this is the same state-class we were in previously then
if Caploss=0 or P1>(26-I’dge)/5 then
the following GAP evaluation is done:

HP«HP-(GAP(Justmonred)+P1)
*(Cont factor+Gethackin(Closchoard(Nexttomouve),1)/4)*6
/Distance(Offboard,Mosthack(Justmoved).

Else if this is a new state class then:
HPeHP+lcontain(Nexttamove)¥2-(IF Ed ge>0 then Edges3).

This factor is a measure of how desirable it is to be getting
near disengagement, and thus encourages or discourages
getting into this state.

Else if Justimmored is losing then:

HP‘-HP«*/)rnnlnin(Nnxlmmovn)3/300.
This faclor encourages maintaining the best possible actual
containment because disengagement is not in the interest ot Justmowed.

1f Distance(Masthack(Justmmoved),Masthack(Nexttomove))<2
or GAP(Justmoved)<l then:
HP«HP+(Expallin(Onmove)-Ex pallin(Justmoved)/10.

This factor encourages Justmoved to bring his men efficiently near or into the
homeboard, while being applicable only when Justmoved’s position. has no holes in
it. For this section the important ideas are: If we are ahead and were near
disengaged then try to bring men up with minimum danger.

¥ JTustmonved is not near disengagement then the foliowing NOTNEARDIS computation
is performed:

HP«-HP+Slatted(fustmaved)
+ Builders(Justmoved)

Ilistack(Justmored)

+ /Ironmin(/\’r'rllnnm1»0)3/300

+ Conmtain(Nexttomove)< /50

+ (If Onbar(Justmored)=0 then
Escapes(Justmoved,Mosthack(Justmoved))*2)

- Escapes(Neattomone Mosthack(Nexttomove))*2.

1f Justmoved is 107 behind in the Pipcount then the DEFENSI evaluation
function is computed. First we check to see if there is any danger of gammon or
backgammon. In that case:

if Contain(Nexttomove)215 or Closehoard(Justmored)24 then
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we consider if we wish to stay around in the hope of hitting @ man. This is because
we have some defensive potential in case we do hit the man. In that case the
following defensive potential is added in:

HPHP + N3x Distance(Mosthacl(Justmoved),Masthack(Nexttamone))*2-PRB(1)+100,

where N is the number of men that must cross, and PRB(1) is the probability of
their crossing in 1 roll. The latler quantity is found by using the bearoff tables
with the input shifted to make it appear that the edge of the board coincides with
the location of Mosthack(Justmoved).

If Aecontain(Nexttomove)216 then:
HP<HP+150+ /1contain(Nexttomove)*3.
This encourages hkeeping the opponent biocked in if at all possible.

Unless Acontain(Nexttomove)=36 (Justmoved has men trapped in front of a prime), the
foliowing BLOT DANGIER calcuiation is done:

HP«HP-(P 1*(Cetbackin(Closehoard(Nexttomouve),1)+Cont factor))
[Winfactor

-(P2+(Cethackin(Closehoard{(Neattomouve),2)+Cont factor))
/Winfactor.

if the current play involves changing the location of Mostback then if the new location
is further up than Contsq(Onmone) then:

HP < HP +( /]cnnlnin(()nmmm)z-/)conlm'n(ju.<lmmvcd)2)/50;

It is noleworthy that these evaluation functions produce almost all the recommended
ways of playing the opening rolls, thus obviating the need for “opening book
knowledge", and alsq confirming the validity of the evaluation process.

VI. State-Classes and their Utilization

The above evaluation funclions informally partition the state-space into a
considerable number of classes. This partitioning is defined purely by the recognition
predicales which invoke some evaluation functions and ignore others. The reader
will hhave noted that there are some terms in these funclions which are invoked only
if this is or is not a new stale. This type of recognition produces in effect a different
state-class for two identical positions, given that one is reached from a member of
{he same state-class and the other not. This action is but one unfortunate side-
effect of our current method of doing business. Another 1s that edge-effects
exist. An edge-effect is caused by the fact that there are sharp boundaries
between state-classes. Thus the program may stay in one state-class because
{ransistion to the next normal statc-class in the progression toward winning cannot be
done favorably -- at least not as defined by the evaluation function for the new
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state-class. This may result in loitering in the current state-ciass until there is no
choice but to make the transition, possibly under much worse circumstances than
would have been possible earlier. It is conceivable that if no state-classes
existed this type of transistion could be done more smoothiy.

However, it 1s almost self-evident that one evaluation function cannot serve to
order all  positions. To do this, incredible complexities would have to be
introduced. Consider the Slotied term. Before the opponent has build a strong
defensive position, it is worthwhile to expose a man in a slotted context in order
to improve one's own position. As the opponent’s position gets better, this becomes
less and less worthwhile. However, in certain desperate situations, it may again be
desirable to take such risks. Finaily, in the running game the termm has no meaning
at all. Clearly, the coefficient of this term must be sensitive to a great deal of
context, which in effect makes the coefficient non-linear and the resulting
evaluation functicn non-linear. Rather, than evaluate onc gigantic non-linear
evaluation function, it seems wiser to evaluate each position in its proper context.

Thus the whole issue of stale-classes and their associated evaluation functions is
born. The i1ssues associated with state-classes are these: We assume that it is
possible to parlition all game positions into mutually exclusive state-classes. This is
not difficult and can be accomplished by merely having recognizers for a set
of slale-classes, invoking these recognizers in a canonical order, and putting all
not-recognized positions into a grab-bag class. We further assume that within a
stale-class, a linear polynomial function exists which can order the members of this
class according to goodness. It is apparent that this is true in the limit, when there
i« a slate-class for each position; however, the degree to which this is possible
when there are alarge number of members in a given class is not clear. In practice it
1s possible to get very good (if not perfect) orderings, and to split a state-class
when the ordering procedure becomes too difficult.

In general, state-classes can be classified into the following categories: 1)
tcsentially won, 2) Favorable, 3) About even, 4) Unfavorable, 5) Essentially lost.
In all cases it is possible to further subdivide the classes into stable and unstable,
where in general slability can be thought of as the variability of the end result.
Thuos the following ordering of these categories represents their general desirability:
1) Won stable, 2) Won unstable, 3) Favorable stable, 4) Favorable unstable, 5)
Even stable, end even unstable, 6) Unfavorable unstable, 7) Unfavorable stable, 8)
Lost unstable, 9) Lost stable. Frequently, in order toreach a more favorable class
it will be necessary to go first to an unstable class; i.e. take a chance. In general,
the side that is closest o winning will want more stable positions and the side that is
closest to losing more unstable ones.

However, this is not always the case. The side that has a slightly better position may
want to introduce some instability in the hope it will result in an even more favorable
position (or even won), while risking losing the advantage or possibly getting slightly
the worse of it. This kind of decision i3 very difficult to program, if all positions
are evaluated only on their expectation or game-theoretic value.

Actually, notions such as progress and risk are crutches that are not needed when a
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universal measure of goodness such as expectation exists, as it does in
backgammon. Thus we shouid always move to the state with the greatest expectation,
and state-classes are not needed at all. However, as we pointed out earlier this is
only in a system with perfect knowledge. When there is imperfect knowledge,
such crutches allow for much smoother performance.

To give an example of move selection across class boundaries, consider the position of
Figure 4.

1234588|ack789181112

26 23 22 21 28 19 White 13 17 16 15 14 13
Figure 4

In this case Onmove is White. The current state-class (1) is characterized by Onmowve
being ahead in the pipcount by 15 pips or more, having to cross exactly two more
enemy points  with  his Mostback, and having /’1<3. We can now imagine an
cvaluation furction for this class which would consider the position of the doubiing
cube, the exact difference in the pipcount, the distance between Mostback and each
of the two points that must be crosced, Contain(White), the number of stepping
«tone points of White between the two points of Nexttomorve that must be crossed,
the value of Closehboard(White), and the number of pips that are available to be
played as slack before any of these values are decreased. Such a function could
conceivably deliver an output that would indicate the expectation of White in the
particular member of the state-ciass. Such a function could be derived either by




analytic means or by actual simulation of positions in the class to find out how each
of the above variables affected the expectation of White. Further, such a function
could be ftuned as experience is accumulated. Let us assume that such a function
evisis and predicled that in the situation of Figure 4 White should win 667 of the time,
vin a garamon 27 of the time, lose 307 of the time and lose a gammon 27 of the time,
for a net expectation for White of +.36.

Now from this position it s possible to move to four state-classes: the present one
(class 1), an unstable state-class where White has two points to cross, but has a
biot in ocanger of being hit, iie. PI1>3 (class 1), an unstable class where White has
only one more point left to cross (class IV), and a stable class where White has only
one point left to cross (class IlI). Further, if a biot is hit in state-classes I or 1V,
we have another state-class (V) in which White has a man on the bar which must
enler in front of Black’s blocking position. Each of these state-classes will have therr
own evaluation functions. Thus when deciding how to play a roll, the play vyielding the
best expectation will be chosen.

While’s win probability, W, in a state where he is to move is the SUM i=]1 to n (T;=W;)
where T; is the probability of transiting to state i on the play by playing it
optimally, and W; is the probability of winning once state i is reached. If it is Black to
play, White’s win probability can be compuled in 3 like manner.

This methed can be used to decide befween plays that result in differing state-
classes even though one class may be unstabie and the other not. Let us illustrate by
an example. Assume that W= .92 for positions in state-class IIl. W for positions in
~tate-class Il is PH * W5 + (1-PH) % W,, and W for state class IV is PH x W5 + (1-PH) =
W,4. Here PH = P1/36, W2 = .85, and Wgq = 92. To get W5 we must compute the
probabilily of White escaping over the biockade on his next roli, as otherwise he will
be doubled and will have to resign. If he does escape, he has about an even chance in
the resulting position. These constants should make clear the computation below. It
should be noted that when W for a side that is on roil and can double is > .75 (i.e.
his expectation 2 .50) he can double and force his opponent’s resignation. Thus such
terms should be ignored as their vaiue drops to 0. This is true for instance of the
term dealing with the situation where White is hit and contained.

We now use this method lo decide how to play a difficult roll, 6-1, in Figure 4. There
are basically two plays: run one man from the 12 point resulting in a position of class
I, or play both men from the 18 point remaining in class 1. For the first play:

W= 20/36 * .85 + 16/36 * 2/36 *5 = .48,

For lhe second play, there are 5 rolls which result in {ransition to state-class Il (2-2,
3-3, 4-4, 5-5, 6-6), 2 rolls that result in a class Il position (6-2), 8 rolls that result in
clfass [V positions (6-1, 6-3, 6-4, 6-5), and 21 rolis that result in remaining in state-
class 1. The appropriate computation is:

We S v .92 (state-class 111)
+ & (16/36 « 2/36 .5 + 28/36 »» .85) (state-class 11)
+ 2 (23/36 « 2/36 .5 + 13/36 +%.75) (s-c IV, 2 blots)
+ 21 %« .55 (s-c I, new W = .55)
e e v e e s
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/(36 = 28,61 / 3B = (57,

Therefore, it can be seen that it is better to make play two. It should be noted that as
the probability of containing a hit man varies with Black’s defensive formation, this
calculation will also vary accordingly.

The method we have described above can be used for deciding the very important
problem of wher {o move to a stale that is in a state-class different from the one we
arec currently in. However, the whole method assumes that an accurate evaluation
function exists for each state-class; i.e. it both orders properly and produces the
correct expectation for each member of its class. This is obviously never the case.

Therefore, it is necessary to show how such a system can operate adequately and
can be improved inthe face of error. For each state-class there are new state-
classes that can be reached in one optimal play for each side without a capture
being made. We call these classes forward with respect to the original class.
lLikewise, there are new classes that can be reached from the current class in one
opfimal play by each side, when there has been at least one capture of a man.
We call these classes backward with respect to the original class.

It 15 possible to start with a class for which we have excellent expectation data, i.e.
the class of bearing off positions that can be looked up in our tables (class B). Next,
we consider all classes for which class B is forward, and improve the evaluation
function for those classes, tuning the coefficents of existing terms and adding new
ones as required. This will improve these evaiuation functions. We also note all
classes that are backward to this class, and put them on a list together with the
name of the current class. We can continue this process indefinitely, but painfully
until every class has been encountered. Whenever the evalualion function of a class
that is on the backward list is improved, we go back and modify all the evaluation
functions of the affecled classes. '‘We can then continue our process or go back
to one of the classes whose function has just been modified and start anew from
there. It is clear that this is a converging procedure. It wouid probably be
necessary to eventually automate this proceedure, if for no other reason than that
eventually the evaluation funclions would become so good that they would do a
better job of ordering members of a class than the experimenter wouid. Such
automation except for the introduction of new terms has been previcusly done by
Samuel [Sa59] for checkers. It would appear likely that for a game such as
backgammon, it would be possible to get a selection of terms such that no new ones
will ever be required. Then it will be merely a matter of tuning old evalution functions,
pulling in a new (but known) term every once in a while to see if it can improve
prediction.

A« data are coliected and the evaluation functions improve, two things become
possible. It is possible to keep track of how the prediction works out for the
program’s own play, which can be used as an indicator of which functions need to be
tuned next. It is also possible to hkeep track of individual opponent’s results and
come to the conclusion that they don't appraise certain state-classes correctly,
and use this information in future games.
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Vil. Testing of BKG

When testing BKG on typicali beginners books, it gets the right answer in excess of
707 of the time. A much beiter appraisal of the program can be obtained by
analyzing its successes and failures on more difficult tasks. For this we chose the
problems in a very fine intermediate level book [Ho74). There are 74 dozble
problems in this book (BKG could not do those which involve doubling decisions
before disengagement). We have classified the probiems according to the major
knowledge required to get the right answer. This is a rather arbitrary way of
looking at things, but it is helpful in trying to understand the strengths and lacks in
the program. We divided the probiems into seven categories:

1) General positional,

2) Running game: bearoff,

3) Engaged: bearoff,

4) Back game (this a special defensive posture),

5) Timing (this involves advantages thatl presently exist going away
because one side or the other must destroy his position),

6) Defensive plays,

7) Ndvanced defensive plays (inciuding the return play).

We followed the practice in scoring the results of giving BKG part credit for
ancwers that were not perfectly correct but showed it understood the main point
of the problem, although the executicn was not perfect. We also deducted part
creait when it got the correct answer without understanding what the main protlem
was. Table | below shows the results of the tests.

TABLE I- Tests of BKG on "Better Backgammon"

Fosition Class Number Right Wrong Percent Correct
Fositional 28 18 374 38 1/4 67

Running Bearoff 5 5 g 188

Engaqged Bearoff el 2 g 22

Back Game 8 3 1/4 4 374 41

Timing 13 4 9 31

Advanced Defense 6 172 SRl e

Defense & 1 2 33

In evaluating these resulls, several things should be noted. The subject matter is
relalively advanced, and would for the most part come up in only one of 20 or more
zames, There are usually on the order of three plausible answers to a problem. BKG
i< pood enough in almost every case to know what these are; thus attaining a
«core of 337 or less could be regarded more or less as the result of chance. We
can see that BKG is exiremely good in running game play. Also it has a good
underatanding of the relative positional advantages. However, its performancce
n olher intermediale level aspecls of the game is at best mediocre. [t has
heuristics to help it do bearing off while stili engaged, but these are for run-of-the-

>
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mill  situations, not for the more sophisticated ones in the test set. It has no
specific understanding of the back game. Since the objectives in the back game are
rather different than anything else in backgammon, 1t will be necessary to

naplement a specific set of state-classes which recognize back-game potential and
how to maintain and destroy it. The problem of timing is one that will be resolved
soon. Essenlially, this requires having a mcasure of how many men are presently
bound to essential roles in the current evaluation, and how many pips are available
to be played by the remaining men before the important men will have to be
moved. BKG's only knowledge of defense is that described earlier. It does not
understand the concept of coverage, i.e. controlling points on which an opponent’s
blot may land in the next roli or two. It does not understand that at times it may
be beneficial to expose a blot in dire circumstances or to make the "return” play.
Thus this series of tests has pinpointed some specific knowledge that BKG lacks and
that is nol subsumed in ils present knowledge base.

VIIl. Use of Simulation Facihty

It 1s possible to give BKG a position and ask it to play both sides repeatedly any
number of times, In doing these simulations it will play as it ordinarily does; double
when allowed and appropriate. There are certain types of positions that BKG plays
alinost perfectly so that doing such simulations generates useful information for
evaluating the position. Included in this class are all running game positions and those
where one side is bearing off with one or fewer points to cross. Thus it is, for
instance, pocsible to determine the expectation of the bearing off side when there are
two opponent’s men on the bar, and his homeboard is closed. Such information is very
useful for understanding where certain break even points are. We have, in fact,
considered publishing tables of such data for general consumption.
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IX. A game

BKG does not piay a brilliant game, as one could for instance say of a chess program

when it makes a sacrifice. It plays weli and consistently, using its knowledge of
probability and positional facets of the game. It makes errors when these
facels are misinlerpreted due to its evaluation functions or when the

appropriate  knowledge is not present. The game below s representative of
the good games it plays.

White: Berliner Black: BKG
Roll Play Rol | Play
5.4 1-5,12-17 ShG 24-18-13
e 5-7-12 356 24-18-15
15 12-15X%,1-2 3,4 25-21,13-18
4.3 12-15,19-23 155 6-5,18-5
4,6 15-21X,17-21 6,3 25-22-16
3k 12-15-16X 25 25-23X-18
Bl 8-1,12-18 1,4 25-24-28
(Doubtful play as this blot is too exposed, but Black is lucky).
4.3 17-20X,16-28 3,4 25-22-18X
2.6 0-4,2-4
(Now would be a good time for Black to double and White should
refuse. Houever, BKG does not doubie until disengaged).
s 13-11,18-12X
(BKG does not knouw about back-game possihilities and thus is happuy to
hit all the blots it safely can. Here the back-game is unsound
anyuay) .
5,1 8-1,17-22 1,4 8-7,11-7
a8 19-22,17-28-23,15-18 3,4 12-9,13-3
3.4 19-23,18-21 Sis. 13-7,13-8
276 4-18-12 4,5 &-4X,9-4
1.4 8-1,12-16 5,4 13-8,9-5

(Making the 3 point improves Black's gammon chances, but BKG cdoes not
nwant to leave any shots).

i (s 1—3.18-17 3,6 5-2,8-2

e 17-20,21- 6,1 &8-2,8-7

G.2 3-98,22- 2 6,3 7-64

2.4 28-24,9-11 6,2 7-5

6.5 11-17-22 S 7-2,7-4

1 sl 22-24,23-24 3yl 4-3,6-3

S 19-24,19-22 1.4 4-8,6-5

G,1 1-7,22-23 3 6 6-8,6-3

6.3 7-13-16 4,6 5-8,5-1X

T No legal move (no luck) 2,2 5-3,5-3-1,2-8 (safe nou!)
S 8-5-7 4,2 2-9,4-0

5,6 7-12-18 6,4 4-8,2-98

oS 16-21,18-22 Double (nho chance of gammon remains)
fNesign
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