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Abstract:

This thesis applies and extends mathematical program verification to systems programs.
The thesis is both methodological (in proposing a methodology for the design and verification
of large programs), and theoretical (in presenting various results dealing with the correctness
of parallel programs).

The design methodology is based upon the use of abstract data types and the
construction and verification of both specifications and implementations for them. The
abstract data type is a means of modularization which encapsulates the representation of a
data structure and the algorithms which operate directly upon it. The specification technigque
appeals to various mathematical structures (e.g. sets and sequences) to describe an abstract
state for objects of a given type. The correctness of the formal specifications is cast in
terms of the proof of certain invariant properties of the abstract state. An axiomatic proof
rule is given to formulate the theorems necessary for proving the invariance of predicates
across formal specifications. 4

The applicability of the methodology to operating systems is explored. It is found that
a hierarchical decomposition is most amenable to verification, and that the implementation
language used is a function of that hierarchy. The example of a process dispatcher module
of a hypothetical operating system is used to illustrate the process of design, specification,
implementation, and verification using the methodology. Various properties are proven of the
abstract specifications, including one representation of the concept of fair service. Programs
are then written for the specifications and their correctness is verified.

Three different approaches to the total correctness of parallel programs are treated.
The first uses the weakest pre-condition concept to explore statically the combinatoric
interactions which may occur among parallel programs during execution. The method is
complete but computationally complex. A second approach extends the axiomatic weak
correctness results of Owicki to include a technique for proof of loop termination. The
concept of a steady state loop invariant is introduced and used to establish the total
correctness of an old scheme of mutual exclusion which appeals only to the indivisibility of
memory access for synchronization.

The third approach treats a syntactically restricted class of parallel programs. For this
class we give definitions for the weakest pre-conditions which guarantee weak correctness
and absence of blocking, deadlock, and starvation. We also formulate theorems which use
invariant assertions to circumvent the actual weakest pre-condition computation.
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1. Introduction

The primary motivation for the work contained in this thesis is the desire to apply and
extend mathematical program verification to the realm of systems programs. It has long been
recognized that the testing and debugging of large programs cannot instill much confidence in
their correctness, since it is rarely possible to cause large programs to execute all possible
paths. Thus there has been a steadily increasing amount of research done to discover
methods by which programs may be statically verified - i.e. deemed correct without any
execution at all.

It is not our contention that run-time debugging should be totally abandoned in favor
of correctness proofs, since any verification of a program, be it mathematical or otherwise,
requires the user of that program to take at least something on faith. In the case of
debugging, we must believe that all possible inputs (or at least a covering set of them) have
been checked against their outputs, and that the results conform to those predicted by the
program specifications. In the case of mathematical verification, we must believe that all
necessary theorems have been proven, and we must believe those proofs. In either case we
must believe that the program specificaticns are themselves ccrrect.

Of late, our inherent lack of confidence in both of these verification methods has led to
their (at least semi-) automation, so that programs now exist to debug other programs by the
generation of appropriate test data, and there are program verifiers which attempt to
generate and prove the theorems necessary for establishing the correctness of other
programs. Of course, we have merely pushed the problem off a little, since we are now
faced with believing that the automatic testers and verifiers are correct, but at the same time
we somehow gain confidence in the ultimate correctness of the target programs.

The result is that although we cannot in general be absolutely certain that our large
programs are correct, the more well-defined verification techniques we apply, the more
confidence we gain, and confidence is absolutely necessary in systems which perform critical
services.

Returning to the stated purpose of our research with some conviction as to its
usefulness, we find, alas, that really large programs are way beyond the reach of known
techniques of mathematical verification. This is due to the vast increase with program size of
both the number and complexity of required theorems. Although the automation of
mathematical verification mentioned previously is both necessary and useful, conventional
verifiers [Suzuki 75, Good 75] often cannot handle the complexity. Thus we find that
large programs, which are not wverifiable by testing, are likewise not verifiable
mathematically, and small programs, which are for the most part comoletely testable, are the
only 2nes which can be completely proved correct. This has not only caused research in
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mathematical verification to be scoffed at by industry, but has resulted in the discouragement
of many researchers.

Part of this thesis then, Chapter 2, deals with a methodology for verifying large
programs by making them appear to be small programs and applying known techniques. At
this point we might mention that those who are interested in verification (from here on we
will drop the prefix "mathematical") fall roughly into two camps - those who are interested in
techniques to verify arbitrary programs, and those, like us, who will settle for verifying
programs which were constructed with verification in mind. It is our firm belief that all
programs can be so constructed, and that their resulting performance, especially in view of
the ever-faster hardware being built, can be made to be very close to that of programs
written with only performance in mind.

We have thus far invoked the notion of a "correct” program several times, appealing to
an intuitive understanding of the term. The meaning of correct we have in mind requires
something to compare against - i.e. the "right" answer. It is very common when debugging a
program to find that the wrong answers it gives are due to an unsatisfactory or inconsistent
definition of correctness. Thus we can have a correct program (with respect to a given
definition of correctness) which is completely useless for the problem at hand. What is
needed is a description of what the program must do in a form other than that of the
program text itself, so that we may operate on that description to verify it without having to
appeal to the particular implementation chotces made by an actual program. In practice the
description often takes the shape of prose, but prose does not lend itself to mathematical
analysis. In Chapter 2, we discuss the related problems of constructing formal specifications
and transfcrming programs into something that can be conveniently compared with them.
Furthermore, in Chapter 2 we discuss an approach to defining the correctness of formal
specifications themseives, and provide a means to verify that correctness.

In Chapter 3, we are concerned with the application of the methodology of Chapter 2
to operating systems. We first examine the relative effects of system structure,
implementation language, and verification on one another. Subsequently we present the
design, implementation, and verification of a process dispatcher, paying attention not only to
proof of implementation, but also to proof of specifications as outlined in Chapter 2.

Operating systems employ a good deal of concurrency, and satisfactory techniques for
verifying parallel programs are not yet known, although work is beginning to be done on the
subject. Owicki [Owicki 75, Owicki 76] has extended the work of Hoare [Hoare 71a] so
that the insightful addilion of auxiliary variables to parallel programs will allow them to be
verified.  Griffiths [Griffiths 74] constructed a system which could verify certain
properties of parallel programs, although the method depends heavily upon the properties of
the ECL [Prenner 72] process confroller. Habermann [Habermann 72], Flon and
Habermann [Flon 76], Howard [Howard 76], and Saxena [Saxena 76] have all attacked
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the problem of verification applied to particular synchronization mechanisms from a data-
rather than process-oriented viewpoint. In Chapter 4 we explore two different approaches
to verif sing the total correctness of parallel programs. The first uses Dijkstra’s weakest
pre-condition semantics [Dijkstra 76] to consider the combinatoric interactions which may
occur during program execution, and results in a complete but computationally difficult
method of verification. The second approach is an extension of Owicki’'s methodology applied
to arbitrary programs, which facilitaltes proofs of strong correctness (loop termination).

Neither of the two approaches of Chaptcv 4 appear very promising for automation.
Since the verification of a large-scale system is guaranteed to be a large project, any help
which can be provided via automation is welcome. While we treat a fairly large class of
parallel programs in Chapter 4 without much automatable success, in Chapter 5 we discuss
the problem of parallel program verification for a restricted syntactic category of programs,
and present well-defined, automatable methods for verifying the weak correctness of
terminating parallel systems (i.e. verifying their output), and the strong correctness of non-
terminating, cyclic parallel systems. In particular, we give = formal definition of the weakest-
pre-ccndition of a cyclic parallel program that guarantees absence of blocking, deadlock, and
starvation. We also present a verification method for sirong correctness, along the lines of
the invariant method of sequential loop verification.

Chapter 6 contains a summary of the results, along with an identification of the
contributions this thesis makes to the field. We also evaluate the feasibility of completely
verifying a useful operating system, and identify what areas require more research to make
it practical.




2. Methodology

2.1. Programming Language

The programming language in which a program is written plays a vital part in
determining the amount of effort required to verify its correctness. We shall see later that
the specification language used to express the verification goals plays an equally vital part.
For the moment we will restrict ourselves to the former.

2.1.1 Level

In discussing the most appropriate language features for the implementation and
verificalion of large-scale systems, there are many considerations to be taken into account.
Among the most important are expressiveness, verifiability, and efficiency. Historically, the
first two have been thought by many to be in conflict with the third, but this is not the case.
For a long time, people were unwilling to write systems programs in anything other than
assembly language. This was due both to the inability of compilers for high-level languages
to generate efficient machine code, and to the inappropriateness of language features for the
problem at hand. However, since the early years of compiler development, work on
optimization has enabled compilers to generate code which is often better than that produced
by experienced systems programmers (e.g. [Wulf 75]). There is no question as to the
advantages of high-level languages for wverification. This is due in large part to the
unprotected nature of most assembler instructions with respect to the type and scope of
valucs which they may change. The Algol 60 concept of restricted scope, for example, is an
invaluable asset when it comes to verifying assertions of the form "and there is no other
way to change this value."

Better expressiveness is not quite so easily attributed to high-level languages, but it
wiill be seen in succeeding sections that the abstraction features which a compiler can
provide play a crucial role.

2.1.2 Modularity

We can subsume the concept of scope in that of modularity, since if the scope of a
variable or group of variables is to be limited to only part of a program, then that part is
ceparable from the rest. Exactly what constitutes a module is the subject of this section.

The first thing we must ask is, "What are the desirable attributes of a good modular
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decomposition?" One is that each module should constitute a separate work assignment, so
that small groups of pregrammers can work independently of one another (the "too many
cooks" syndrome). Another is that most reasonable changes made to the system should
require explicit alteration of as few modules as possible. While one way to achieve the latter
would be to limit ourselves to one module, this is effectively prohibited by the former. A
more reasonable way to achieve localization of changes i1s to assign to each module the
responsibility for implementing some design decision. The criteria for deciding what
constitutes separabie design decisions are certainly oper to discussion (see [Parnas 72b]),
but an extremely useful principle is to associate each module with the implementation and
management of a class or data structures. Modularizing along the lines of data structure
classes results in small, contained sub-programs, and therein lies the benefit to verification.
When assertions about the properties of a data structure can be verified once and for all by
only considering the implementation of a few accessing operations, then those "invariant
relations” can be assumed as given when verifying programs which use those operations.
Otherwise it is necessary to take into account every possible program statement which may
change the structure, and there may be very many. The complexity of theorems to be
proven decreases to a more manageable size if code to actually alter a structure occurs in
only a few places.

This principle plays an important role in the methodology we propose for verifying
large programs, and manifests itself in various ways. We state it more [ recisely here, chiefly
for emphasis, naming it the Principle of Maximal Encapsulation:

The usage of a program module should never affect its
correctness (although it affects that of the user). The coirectness
of a system decomposed into modules is then determined sclely by
the collective correctness of the individual modules.

If the principle of maximal encapsulation is adhered to in the decomposition of a
system, then the verification of that system should consist of a separate, independent,
verification for each module. It is only by this application of the divide and conguer strategy
that we can hope to verify a large-scale system. The onus is then placed on the designers
to create a good decomposition, but that is, after all, where it belongs.

2.1.3 Abstraction

Having decided to modularize a system on the basis of the implementation of data
structure classes, we must now decide on the representation of a module in a programming
language designed to support verifiable systems programs. Since the purpose of a module is
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to hide the details of the implementation of a data structure, that module represents an
abstraction to its users. This abstraction takes a behavioral form, as in for example
describing the properties of a stack without considering whether it is implemented as a list
or an array. One of the earliest examples of linguistic abstraction in programming is the
subroutine. The subroutine as it existed even in the earliest version of FORTRAN provides
the programmer with the means to 1) invoke the same program segment from several places,
thus caving multiple coding; 2) parametrize that program segment so that several similar but
slightly difierent segments could be collapsed into one; 3) defer the cocding of a program
segment untii necessary, or to permit someone else to work on it; 4) hide the details of an
algorithm from a programmer so as not to have them interfere in his own task,

The subroutine (or procedure as it came to be known in Algol 60) is clearly an
important concept, but is not in itself sufficient to provide the modularity we desire. Because
we want modules to restrict data structure access, we must not allow those data structures
to be declared in such a way as to permit direct access by other than the "privileged"” code
of a certain procedure. In basic Algol 60 syntax, the data must therefore be declared local
to the procedure which will cperate upon it. This cannot be done when more than cne
procedure must have the direct-access privilege. To solve the problem, we need to be able
to "encapsulate” the data declarations aiong with the applicable procedures in one textual
unit.

The first attempt at this kind of encapsulation was the class concept of Simula 67
[Dahl 68]. There has been much work since which has refined that approach. A discussion
of the basic issues may be found in [Liskov 74}, and in [Fion 74] along with a comparison
of Simula 67, Algol 68, and Pascal along these lines. Current research efforts include
[(Wulf 76, Schaffert 75, Popek 77, Ambler 77, Geschke 77, Johnson 76].

The refined syntactic mechanism has come to be known as the abstract data type.
Type is an equivalence relation which partitions program data into classes based upon the
operations applicable to each class. The abstract data type provides the means to
accomplish a very natural extension of the set of data types pre-defined in a language.
These pre-defined types usually include at ieast integer and boolean, and possibly real. Each
of the so-called "primitive" types is characterized by a set of abstract values, such as the
boolean values TRUE and FALSE, in addition to type-specific operations, such as the boolean
functions AND, OR, and NOT.

To extend the set of types, a programmer must describe both the behavior and
internal reprecentation of objects of the new type. The implementation details, namely the
representation used (which we will call the structure® and the algorithms which implement the
operations, are the design decisions which the new data type hides from users. A
description of the abstract values and the behavior of the operations is provided to users
through the module specifications.

|
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As a brief example, consider the extension of the set of types with the new type
"complex", which is intended to model the behavior of values in the complex plane. The
abstract values, then, are ordered pairs, and the behavior of such operations as complex
addition or multiplication is the same as vector arithmetic. A type definition in our language
will take the form:

type typename =
<structure>
<operations>

endtype

If we had such a definition for "complex”, we would be able to use it in a subsequent
program as follows:

var x,y,z: complex;
x<complex.create(1,2);
yecomplex.create(2,-3);
zecomplex.mul(x,y);

Here we assume that the call "complex.create(a,b)" creates an object of type complex with
, abstract value a+bi by invoking the "create” operation of the type, and that the call
t “complex.mul{x,y)" invokes the "mul" operation of type complex on the values x and Y,
returning the product. Then x=1+2i, y=2-3i, and z=8+i afterwards (if the implementation of
“complex” is correct). One definition of "complex" might be

type complex =
var re:real, imrreal;

cp mul(x:complex,y:complex):complex =
complex.create(x.rexy.re-x.imsy.im, x.rexy.im+x.imsy.re);

endtype

while another might be
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type compiex =
var rho:real, thetaireal;

op mul{x:complex,y:complex):compley =
complex.create(x.rhoty.rho, x.theta+y.theta);

endtype

In this way we are able to hide from users both the representation (rectangular or
polar coordinates) and the algorithms.

Using abstract data types as our modularization tool, we have a means to adhere to
the principle of maximal encapsulation. Since it is possible to directly alter an object only
from within the scope of that object’s type definition, only the cperations defined therein can
effect that alteration. If the operations defined are not too primitive (i.e. if they don’t defeat
our whoie purpose by allowing arbitrary assignment to critical subfields) and if they are
careful to check their parameters, it should be possible to have absolute faith in the
consistency of the data structure. Subsequent sections will discuss the concept of data
structure consistency more formalily.

2.2. Specification Language

The question of how to write formal specifications for the abstract data types which
comprice a system is very important, for it impacts not only the difficuity of constructing
those specifications, but also the complexity of verification - both the verification of a
particular data type implementation and that of "global” properties of the system. An
example of the latter distinction is the difference between verifying that a ready-process
rueve always has a valid queue structure, and verifying that processes on the queue are
serviced in Found Robin fashion. We will examine three specification techniques here which
ceem cu'rrently to be the most promising. Liskov and Zilles [Liskov 76] present several
specification techniques along with a similar type of analysis, although we shall draw some
differeni conciusions from theirs, We disagree also on the classification scheme used.

The three methods can all be classified as "axiomatic”, in that in each case, a complete
specification consists of a finite set of rules which 1) sufficiently describe the desired
properties of an object in a manner which in general allows for many different
implementations (in the sarie way that a given set of axioms of first-order logic allows many
different interpretations), and 2) when combined with rules of inference, provide the means
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for deductive proofs of theorems. The axiomatic methods are widely differing though, and
this can be attributed to differences in form as well as rules of inference. We further
classify the methods as 1) algebraic, 2) state machine oriented, and 3) predicate transforming.

2.2.1 Algebraic Specifications

Algebraic specifications have been examined by Guttag [Guttag 75] and discussed in
[Liskov 76]. The term “algebraic” stems from a formal basis in heterogeneous algebra. The
reader who is interested in further details is referred to [Guttag 75]. From a practical
point of view, the algebraic specifications of a data type consist of a domain-range
description of its operators, and a series of axioms which define those operators in terms of
their relationships to one another. As an example consider the algebraic specification of a
type "queue" (in fact a FIFO queue) of elements of some other type t, similar to that
presented in [Guttag 75].

Domains and Ranges:

newq: - queue <create an empty queue>

enq: queue X t 5 queue <create a queue with an element appended to taii>
deq: queue - queue <create a queue with an element removed from head>
first: queue -t <return vaiue of head element>

empty: queue - boolean <test for empty queue>

Axioms: q:queue, k:t

empty(newq) = true

empty(eng(q,k)) = false

first(newq) = error

first(ena(g,k)) = if empty(q) then k else first(q)
deqg(newq) = error g

deqlenq(q,k)) = if empty(q) then newq else eng(deq(qg),k)

Each axiom equates a call upon one of the operations with a primitive recursive function.
The set of axioms comprises a "sufficiently complete” description of the notion of FIFO queue.
For our purposes we will take this to mean "all necessary cases are accounted for" (see
[Guttag 75] for a more formal definition of sufficient completeness and for a discussion of
its proof). The presence of the term “error” in the specifications is a means of expressing
those cases which should never occur in any program correctly using these specifications.

The algebraic specification technique exhibits a pleasing structure in this case, as it

w
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does in many other such examples. One of its deficiencies is the purely mathematical nature
of the functions which are specified. In the mathematical sense, functions do not cause state
changes. In particular, there is no way to express that the deq operation should remove a
queue element and return that element as its value. This problem is inherent in the formal
basis. It has been proposed [Guttag 77] that the mechanism be extended with the
definition of composite functions, such as

deqgfirst(x,q) = x«first(q); g-deqlq)
although this appears to be somewhat ad hoc.

A second problem with the technique is reflected by the non-existence of axioms
which define enqg explicitly, and can be seen in the specification of a bounded queue:

length: queue = integer

length{newq) = 0

length(eng2(q,k)) = 1+length(q)

deq(newq) = error

degleng2(g,k)) = if empty(q) then k else enq2(deq(q),k)
engl(qg,k) = if length(g) 2 m then error else enq2(q,k)

Here we are forced to invent an auxiliary operator, eng2, in order to allow the
detection of “error” upon insertion of a new element in a full queue. In addition to the lack
of intuitive interpretations for these new operators, a programmer may be mislead into
believing them to be necessary in the implementation. The reader should convince himself
that 1f such an operation is not used, then "error” can only be detected at the point a "more
than full" queue is used for examining or dequeueing.

These problems detract somewhat from the pleasing mathematical elegance of the
technmique, but they are not really sufficient evidence upon which to base our evaiuation.
There are two other problems that seem more serious from our point of view. The first
deais with the issue of specifying the behavior of objects which are used by concurrent
processes. The algebraic technique provides no help for us in this problem simply because
the purely functional nature of the specifications admits no notion of the interference and
non-determinacy introduced by concurrency. The other problem is associated with the
verification of particular implementations for algebraic specifications. The basic idea in such
a verificalion is to examine each axiom in turn, and prove that the left and right sides
compute the same function when the programs are substituted for the abstract operators.
For example, if an axiom for type "boolean" were

(1) imp(a,b) = or(not(a),b)

w . a - - '—:-- — ™ .. SO
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and the programs were:

(2) if G

or (3) if a=0then | else b fi
which is imp(a,b), and axiom (1) would be verified.

The problem with this strategy is that it relies heavily on program transformation such
as that between (2) and (3) above. For most real-life examples, the substituted programs do
not transform into one ancther easily, as the reader would discover in attempting to verify
an Algol-like implementation of type "queue”. Additionally, each operator occurs in several
places in the axioms, and therefore its implementation program must be ccmbined with other
programs many times, which gives one the feeling that the same program must be verified
over and over again (in actual fact, smaller and different aspects of the programs are really
being verified at each stage, but that does not make it proportionally easier).

Finally, users of the algebraic specification technique admit to the fact that
constructing such axioms for non-trivial types is difficult, although they claim that experience
does help. There is some question in our mind as to why the difficulty should exist. We feel
that most of the problem is due to the fact that the way we visualize structures is
significantly different from the algebraic approach, and we would therefore prefer a
mechanism with which it is easier to translate our thoughts into mathematics.

2.2.2 State Machine Model

The state machine model for specification is due to Parnas [Parnas 72a)], and was
adopted by the group at SRI concerned with the design of a provably secure operating
system [Neumann 74]. 1t is based on the notion that an object is controlled by both
passive (information gathering) and active (stale transforming) functions. The passive
functions, called V-functions (V for value), have no side effects whatsoever. They simply
return information about the current state of an object. The active functions, called O-
functions (O for operation), change the state by aitering the values of V-functions. The only
relevant program state is in fact contained in the values of all the V-functions. In the case of
the bounded queue, such specifications would be:
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k:t, jlinteger

V-function: ke furst
purpose: returns first queue element
initially: undefined
exceptions: length=0

V-function: l-length
purpose: returns length of queue
initially: O
exceptions: none

hidden V-function: keel(})
purpose: returns j'th queue element
initially: undefined
exceptions: <0 v jzlength

O-function: enqg(k)
purpose: inserts k as last queue element
exceptions: lengthzm
effects:
1) length="length’+1
2) if "length’=0 then first=k
3) el(length)=k

O-function: deq
purpose: removes first queue element
exceptions: length<0
effects:
1) length="length’-1
2) first="el’(1)
3) Vjplgjclength: el(j)="el’(j+1)

V-function names in single quotes refer tc the previous value.

A problem with this specification technique arises from the fact that O-functions are
described purely in terms of resulting changes to V-functions. This introduces a “"delay”
effect, in that the deq function above has no way to define the resulting value of first, purely
in terms of ’first® and 'length’. This forces the introduction of the hidden V-function, "el",
which is not callable from ouiside the queue module (c.f. the "eng2" operation of the
algebraic specifications, with all the same criticisms).

S8 — B e T e — —.
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In order to verify an implementation for an abstract state model specification, it is
necessary to define "mapping V-functions” which map the abstract state onto the program
state. For example, we might have

map(length): ( (a program variable)
map(first): head? (dereference the pointer to the head element)
map(el())): f(head,;) where f(x,y)=if y=0 then xT else f(xtT.next,y-1)

for a linked list implementation of the queue. Then the verification of a particular function F
with exceptions ¢ and effect ¥, consists of proving

map(®) {program F} map(¥)

The notation is that of Hoare [Hoare 69] and is read "if map(®) is true and program F is
invoked, then map(¥) will be true when it terminates.”

This kind of specification has a more manageable verification method, since the proof
of expressions like that above s well undersiood [Hoare 69, Fleyd 67) We still find
that the lack of an explicit representaticn for the type of object in questior is a problem, as
it i1s with algebraic specifications, forcing the designer to invent "nidden" operators whose
only purpose is to take its place.

2.2.3 Predicate Transformat'ions

Both of the above specification techniques are representation-independent. That is,
the specifications make no reference to particular data structures, thus leaving that decision
to the implementor. We have seen that in many cases the purely functional approach forces
the introduction of "hidden" operators, and we asserted that these hidden operators are
merely a way around making use of actual structures. This is particularly evident from the
abstract state machine model example, where the hidden V-function “el" strongly suggzests
the use of an array. Of course, the implementor is by no means forced to use an array -
that just happens to be a convenient "abstract representation.”

We feel comfortable with the use of abstract representations in the specification of
abstract data types, because of our confidence in the combined data/control nature of the
data type mechanism itself. Since no purely data-oriented nor control-oriented mechanism is
sufficient, there is no reason to believe that either should be sufficient as a specification
technique.

If the specification of an abstract data type includes a mathematical representation,
then the specification of the operators can be given in terms of their effect on that
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representation, rather than in terms of their effect on each other. That effect can be stated
in terms of predicate transformation in the same way that the effect of primitive
programming language features is described. The proof procedure given here is largely
based on the work of Hoare [Hoare 72b] for the verification of Simula classes, and the
subsequent development by the Alphard group at CMU [Wulf 76]. We shall, however, use
weakest pre-condition semantics [Cijkstra 76] for our specifications and verification instead
of the weak correctness! method of Hoare [Hoare 63]. Appendix A contains the necessary
definitions. The reader who is not entirely familiar with this approach should read the
Appendix before continuing.

Every data type has both an abstract (mathematical) and a concrete (programming
language) representation or structure. Additionally, each operator has both an abstract and
concrete implementation. The task of verifying the correctness of an implementation consists
of showing that it is a valid model for the specifications. To accomplish this, it is necessary
to define a mapping, o7, from the concrete representation to the abstract one.

Axioms for operaticns take the form
P(X) { F(X) } QX)

which is interpreted as "If P(X) holds and F(X) is executed, Q(X) will hold whenever F(X)
terminates." Then, to verify this axiom for the abstract object X and program F, against the
concrete object x and program f, we must prove

P(ed (x)) = wp(f(x), Qled (x))

which, by the nature of wp, guarantees that the operation will terminate. To carry out this
proof, it is necessary that the function <7 be well-defined both before and after the
execution of each concrete operation - otherwise the verification is meaningless. If we
characterize the domain of ¥ as the set of concrete objects which satisfy J, i.e.

domain(e#) = {c | J(c)}

then if we can show the invariance of J across each operator, we can assert that <& is well-
defined. The method by which this invariance is proven is presented in [Wegbreit 76]
under the name of Generator Induction, and was indicated informally in [Hoare 72b] Let the
operators of type t be o;, i€l..n, and let the set of objects of type t be T. Furthermore, let P

1 Weak correctness is input-output correctness without termination Sfrong correctness is termination only Fartial
correciness 1s equivalent to weak correctness Tofal correciness includes both weak and strong correctness.
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be (¥x¢T) J(x). Tnen if P is preserved by each o;, J is invariant for t. Note that this
formulation allows for the creation of new objects by any operator, as long as they are
initialized to satisfy J. It is assumed that this is the only way to create new objects.

2.2.4 The Character of Abstract Predicates

We indicated in section 2.1.3 that new data types are built up out of existing ones.
This is done by applying structuring mechanisms to those types. These structuring
mechanisms consist primarily of arrays, records, and references [Flon 74). Since we are
to define mathematical representations for the abstract types we specify, these are only
naturally created by applying mathematical structuring mechanisms to other abstract types.
Because we have not restricted ourselves to any particular syntactic form, we are free, in
principle, to use any mathematical notions which we find appropriate. This somewhat
disconcerting thought - disconcerting because we might all be required to be mathematicians
and programmers in order to read or construct specifications - is fortunately not so terrible
after all. It appears that a small number of concepts suffices for most purposes. These
include the notions of set, sequence, vector, and cartesian product. Taking the axioms of set
theory as given, we can define the other concepts axiomatically as is done in [Hoare 72a]
A series of definitions is given in Appendix B, and should be scanned before continuing
further.

As an example, consider the bounded queue discussed previously:
Abstract representation: sequence(t)
Let S:sequence(t),
m:integer, = <the maximum queue length>
¥kt
q:queue
Operator axioms:
length(S)<m A g=S { enq(qg,k) } g=S~k
g=k~S { x<dealq) } x=k A g=S

q=k~S { x«first{q) } x=k A q=k~S

We give an implementation for these specifications as:
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type queue(t:type, minteger) =

var V:array [0.m-1] of t,
head,tail:integer;

op createl(q:queue)=
if m<O then error
else
head«<0; tail«0

-

Y

op englq:queue,k:t)=
if q.tail-g.head2m then error
else

q.V[a.tail mod m]«k;
q.talleg.tail+1

-

&

op deql{qg:queue):t =
if q.tailcghead then error
se

Ll

|

g.head«q.head+1;
g.V[{q.head-1) mod m]
fi;

op first(q:aueue):t = if q.tail<q.head then error else q.V[q.head mod m] fi

endtype

We define «#(q) = seq(q.V,a.head,a.tail-1), where
seq(V,i,j) = V(i mod m]~V[(i+1) mod m]~..V[j mod m), if i<j
=X if i>).
We will drop the prefix "q." in what follows. Note that
length(es”(q)) = length(seq(V,head,tail-1))

= (tail-1 mod m) - (head mod m) + 1
= tail-head
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Additionally, we require

J = O<tail-head<sm A m>0 A tal20 A headz0

The fact that J is invariant can be derived as follows:

(1)

(2)

(3)

J = wp(eng(q,k), J)
J = wp(eng(qg,k), O<tail-head<m A m>0 A tail20 A head=0)
J = tail-head<m = O<taii-head+1<m A m>0 A tail2-1 A head>0

frue

J = wp(x«deq(q), J)

J = wp(x<deglqg), Ostail-head<m A m>0 A tail20 A head>0)
J = tail>head = 1<tail-head<m+1 A m>0 A taii20 A headx-1

true
true = wp(create(q), J)
wp(create(q), Ostail-head<m A m>0 A tail20 A head>0)

m>0 A 0<0<m A m>0 A 020 A 020

true

It remains to verify the operator axioms. For enqg, we must prove

length(S)<m A 7 (q)=S = wp(enqglq,k), e (gq)=S~k)

The post-condition expands to

S~k = seq(v,head,tail-1)

Then,

wp(enqg(q,k), S~k=seq(V,head,tail-1)) =
tail-head<m A S~k=seg(<V,tail mod m,k>head,tail) =
tail-head<m A S~k=seq(V,headtail-1)~k =
length(S)<m A S=c#(q)

.l
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Similarly, for degq we must prove
A (qQ)=k~S = wplx~deq(q), «#(q)=S N x=Kk)
The post-condition expands to
x=Kk A S=seq(V,head,tail-1)
and then
wplxedeg(q), x=k A S=seq(V,head,tail-1)) =
tail>head A V[head mod m]=k A S=seq(V,head+1,tail-1) =
tail-head>0 A k~S=seq(V,head,tail-1) =
length(g)>0 A ¥ (g)=k~S =
e (q)=k~S
For first we must prove
e (q)=k~S =2 wplx=first(g), e7(q)=k~S A x=Kk)
The post-condition expands to
x=k A k~S=seq(V,head,taii-1)
and then
wp(xefirst(q), x=k A k~S=seq(V,head,tail-1)) =

tail>head A V[head mod m]=k A k~S=seq(V,head tail-1) =
7 (q)=k~S

2.3. On the Correciness of Formal Specifications

Now that we have seen how we can specify a module (data type) and verify a given
implementation, we come to the question of what we can say about the correctness of the
specifications themselves.

The process of formal specification involves both a decision as to the abstract
representation of an object and decisions as to the ways in which that representation may
be perturbed (by the operations of the type). These perturbations are usually subject to
constraints which are not fully described by the choice of representation. For example, a
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sequence of elements of type t may be constrained so tnat the ordering of its elements
satisfies some property Q, ie.

type seq2 =

abstract representation: sequence(t) such that (¥YS¢seqg2) Q(S)

This constraint on the abstract representation is highly analogous to the constraint imposed
on a concrete representation by the invariant which describes the domain of <7, and it has
been called the abstract invariant of a data type [Wulf 76]. What is missing from that
treatment is a discussion of the relationship between the abstract invariant and the abstract
specifications. While there is no way to guarantee that the specificaticns are “correct” with
respect to the highly abstract mode! possessed by the human wha constructed them,
nevertheless we can go a long way by establishing that the operations maintain the
consistency of the abstract representation. The problem then is, given an abstract invariant
for type t, J

a» @nd a set of formal specifications of the form
P, {opr} Q
to establish that each such specification satisfies

ja /\PJ {ODJ} ja

Actually, we must be careful in our treatment of free variables in the various predicates. In
particular, it is clear that the assertion

v=vg
is not invariant across the cperation specified by
v=vg-1 {op} v=vg
and yet the conjunction (v=vg) A (v=vg-1) is false, and
false {op} Q

is always true. We solve this problem by restricting the free variables of J,. Let x be the
list of variables free in P, Q which may have different values in Q than they have in P. These
are the parameters of op. J, must contain no free variables which are not contained in x.
The task then is to derive

Ja AP {op(x)} J,
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P {op(x)} Q
Using the Adaptation and Consequence rules of [Hoare 71b], we can specify the conditions

which will allow this inference. Specifically, let k be the list of variables free in P, Q but not
in x. Then from the rule of Adaptation:

F P {op(x)} Q

and the rule of Consequence:
F P {op(x)} Q, F R=P
" rRpsee
we obtain the rule of Invariance:
FP{op(x)}Q FJy AP =3k(PA Yx(Q=J,))
'+ § IR R Bl
As a brief example, consider the specification of a simple type for positive integers:

type posint =

abstract representation = integer such that (Vz¢posint)z>0

Operations

Let g, r, s: posint.
1) r=a A s=b {plus(q,r,s)} r=a A s=b A q=a+b
2) r=a A s=b A a>b {minus(q,r,s)} r=a A s=b A q=a-b
endtype

Here J, is the predicate (Yz¢posint)z>0. To verify that the specifications leave J, invariant,
we must prove
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(Vz¢posint)z>0 A r=a A s=b {plus(q,r,s)} (Vz¢posint)z>0
and
(Vz¢posint)z>0 A r=a A s=b A a>b {minus(q,r,s)} (Yz¢posint)z>0
From the rule of Invariance, we must therefore show
(Vz¢posint)z>0 A r=a A s=b
= (3Ja,b)[r=a A s=b A
(Vq,r,s€posint){r=a A s=b A g=a+b = (Vz¢posint)z>0]]
and
(Vz¢posint)z>0 A r=a A s=b A a>b
= (3a,b)[r=a A s=b A a>b A

(Yq,r,s¢posint)(r=a A s=b A g=a-b = (Yz(posint)z>0]]

Both implications follow trivially.
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3. Application

3.1. Introduction

The methodology of Chapter 2 is applicable to any large, properly decomposed
program. As we discussed in Chapter 1, we are primarily interested in the verification of
operating systems. In this chapter we shall present the design, specification, implementation,
and verification of a low-level operating system module, the process dispatcher. A great
deal of emphasis is placed upon verification of the design (specifications) before verification
of the implementation. Before we attempt this task however, we must first consider some of
the more global aspects of applying the methodology to operating systems. In the next few
sections we examine the effect of structure and decomposition on the verifiability of
operating systems. We also consider the important interaction between the language in
which an operating system is written and the system itself.

3.2. On the Structure of An Operating System

The study of operating systems design was significantly influenced by three research
efforts - the T.HE. system of Dijkstra [Dijkstra 68}, the RC4000 system of Brinch Hansen
[Brinch Hansen 70), and the Muitics system developed at iIT's project MAC
[Organick 72]. The reason these systems have been so influential is the significant
contribulion each has made with regard to the structure of operating systems. The primary
reason for the complexity of most commercial systems is not merely their huge size, but the
fact that the complexity of a large-scale system is increased many times by the iack of a
coherent, well-mecdularized structure. Since it is our goal to reduce the complexity of
verifying operating systems, a good system structure is crucial.

The T.HE. system (and later the Venus system [Liskov 72]) divided the various
aspects of an operating system into several layers (or levels), which were arranged in a
hierarchical manner. Each layer constituted a modification of the next lower one, and in this
way the hardware was successively molded into a machine which was much more convenient
to use. Each of the layers (above the definition of processes) was composed of a number of
processes. Each process could ask a lower-level (but never a higher-level) process to do
some work for it.

The RC4000 system introduced the kernel or nucleus approach to system structuring.
This basic approach has since been used in several diverse systems, including the HYDRA
multiprocessing system [Wulf 74]. The kernel of an operating system consists of the
definition and management of primitive system features, including processes, memory
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management, and low-level 1/0. This approach is intended to allow for the design of various
outer shells, ali using the same kernel, thus permitting the tailoring of systems for particular
applications while maintaining a common basis. The kernel is typically the most protected
part of the system, and the apprcach has been used to restrict the scope of verification of
protection mechanisms [Schroeder 75]. The RC4000 system was designed for use with
process control computers having diverse applications.

The Multics system introduced the idea of a highly modular and distributed system,
with a protection siructure that allows the dynamic replacement of system modules on a per-
user basis. The distributed, non-hierarchical nature of the Multics system negatively affects
its verifiability. In a non-hierarchical system, it becomes difficult to maintain the principle of
maximal encapsulation, since each system module has the potential to call or be called by any
other, introducing the possibility of indirect recursion.

Kernei systems are not fundamentally different from layered systems; it is simply that
the kernel boundary has special properties. A layered structure has the advantage of
restricting the scope of verification by eliminating cycles and recursicn, so we shall want our
operating system to be so constructed.

3.3. On Hierarchy

In ([Parnas 74], Parnas points out that there are many possible hierarchical
structures, and that any particular one is not defined until the parts (entities to be ordered)
and the relation (that governs the hierarchy) are specified. The T.HE. system was 2
hierarchy of abstract machines which consisted of processes, and the ordering relation was
“"gives work to." The Multics system is organized into modules, and there exists an ordering
relation which is "more privileged than", although the hierarchy is not enforced on inter-
module calls. The scheme we will use is most similar to that of the Family of Operating
Systems (FAMOS) design project at CMU [Habermann 76]. The FAMOS system is organized
in a layered manner, but the parts among which the hierarchy is enforced are subroutines,
not modules nor processes. [n that system, a module is allowed to be split among several
levels, same of its functions residing at each level. The FAMOS design strategy may be more
general than is necessary, and we hope we will not find it necessary to have modules cross
level boundaries. This is chiefly because our modules (absiract data types) are small. The
sphitting of modules complicates the verification of invariants, since it becomes possible to
transfer from one level of a module to a lower one via an arbitrary path, without first having
placed the data structure in a consistent state.

Wl
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3.4. On a Decomposition into Levels

Having decided upon the structuring technique, the decisions as to which functions
belong at which levels becomes most important. A goal of the FAMOS system is that the
several special purpose systems which are created for a particular machine have as much in
common as possible. This is accomplished by designing the lower system levels so as to
postpone decisions which are not sufficiently common to system family members. This leads
to a rather pleasing logical structure. We present a hypothetical structure here which differs
from that of the common levels of the FAMOS system primarily in the ordering of processes
and Mp managementz. It is:

level = level function
user interface

file system

user peripherals

swapping

Mg 1/0

Mg management

Mp management
synchronization

processes and P, management
hardware

O =N WDH o N 00 W

In the structure as shown, the criterion for placing one level above another is simply
that the lewer level has no need for the facilities of the higher one. Level 1 is responsible
for the maintenance of a fixed number of processes and for the multiplexing of ready
processes among the hardware processors. Above this level, the actual number of
processors is unknown. Level 2 will define the synchronization mechanism to be used by
processes (e.g. semaphores).

The next level, Mp management, is responsible for the allocation and deallocation of

primary memory. This level is placed above that of synchronization because it may be that a

? The PMS notation of [Bell 71] Mp (primary memory), M. (secondary memory), Pc (central procecsor).




25

request for memory allocation cannot be satisfied at a particular time, and the requesting
process must therefore be delayed until some allocated storage is freed.

A small digression is in order at this point. The FAMOS system assigns the
responsibility for Mp management to a level below that of the definition of processes - in
fact to the lowest software level. This was done because the lowest level, the one which
allocates memory, also introduces the concept of "protected addressing environment”, and it
was felt that as much of the system as possible (i.e. everything but the lowest level) should
be so protected. The memory overflow probiem (i.e. running out of memory) is solved by
using the general mechanism of the software trap, which is intended to model the behavior of
the hardware trap facility. Using this mechanism, a level which encounters a condition which
it is not prepared to handie can invoke a particular trap, allowing a higher, "smarter” level to
fix the problem. It is claimed that an upward transfer of control, such as a trap, is not a
violation of the hierarchy if there is no dependence, on the part of the trap initiator, on the
successful result of that trap. While this appears to be true in principle, the fact is that the
trap usually occurs in an "intermediate” state, requiring that control eventually return to the
point at which the trap occurred in order to continue the original task. We (the author) feel
that such dependent traps are to be avoided. Since we are not using the addressing
environment scheme in any case, there is no reason to place memory management below
processes and synchronization.

Returning to the explanation of our hypothetical system structure, level 4 is assigned
the task of allocation and deallocation of secondary storage, e.g. disk, from tables kept in Mp.
Level 5 is then in charge of transferring data between primary and secondary memory. The
swapping system, at level 6, uses the facilities of levels 4 and 5 to multipiex the allocated
processes in primary memory (essentially scheduling them in a much coarser fashion that that
of level 1). Above that, level 7 will define access to the ather peripherals in the system (e.g.
line printer, terminals, magnetic tape, and card reader). Level 8 provides a file system for
storing and retrieving temporary or permanent data from the peripherals. The user interface
at level 9 then interacts with terminals to drive the rest of the operating system.

3.5. System Structure and Implementation Language

We sketched, in Chapter 2, a programming language that is strongly typed - i.e. every
variable has a type, the type determines the legal operations which may be applied to that
variable, and there are no implicit coercions between types. These attributes will greatly
enhance the verifiability of programs. Unfortunately, we cannot define and implement that
language, and then use that fixed language throughout system implementation, for the simple
reason that the semantics of many language features are dependent upcon the correct
operation of the system itself. For example, it would not be proper to use a language with
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dynamic storage allocation facilities in order to impiement any level below that of M,
management, and it would not be proper to use any built-in synchronization constructs at or
below the level at which synchronization is defined.

We therefore adopt the notion that the implementation language is a changing entity.
Each time a new level is implemented, that level affects the language that is to be used to
implement the next level. The easiest and most common change that can occur is the simple
introduction of new data types. Occasionally, the syntax and semantics of the language will

change.

The base language, i.e. the one which we will use to implement processes, will be
strong!y typed, but contain no dynamic allocation facilities, no recursion, no process creation,
and no synchronization constructs. The only data types in existence at this point are the
primitive ones - integer, booleanr, and real. When processes are implemented, we will add to
the language the construct

e st

cobegin $y// So// . . .S, coend

which defines n processes, with process i executing statement S;. The construct will be
implemented by choosing n of the processes made available by level 1 and assigning them to
the specified tasks.

Whatever synchronization mechanism is introduced by level 2, that mechanism will be
available for the implementation of level 3. One possibility might be the conditional critical
region [Brinch Hansen 73], another the monitor concept [Hoare 74], and a third might be
path expressions [Flon 76]. Each will change the implementation language in its own way.

When the Mp management level is implemented, we will extend the language to offer
dynamic storage allocation. Two operators, new and free are introduced [Flon 75]. These
will be used to allocate and release an instance of a given data type, but only from inside the
type definition. Creation of new objects from outside the type definition must be done via
the create operation of that type, which can invoke new and free. This will allow us to easily
verify proper initialization of all objects.

We imagine that level 4 (M management) will provide the language with a new data
type, Msblock(size), to correspond to a block of secondary memory. Level 5 (Mg 1/0) will
provide operations to transfer Msblock’s between M, and Mp. Level 7, the file system,
introduces the data type file, with its operations open, close, read, write, etc. Further
extension of the language by the other levels is minimal.

We also emphasize that it is possible (necessary, in fact) to remove features and data
types from the language as they become too primitive. This will enable us to reduce the
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scope of verifications. For example, the type Msblock will not be useful above the file
system, and it would be dangerous to leave it around.

3.6. Design of the Process Level

Before presenting formal specifications for the process level of our system, let us
consider the criteria we would like those specifications to satisfy. First, the process level is
intended to hide from higher levels the actual number of hardware processors. This is
accomplished by defining a process to represent the state of a particular computation. That
is, 1t consists of a program, including global data and constants, and local data which, ameng
other things, contain the necessary information for restarting that computation from the point
at which it was last preempted. It is then possible to multiplex the processes among the real
processors, switching among the different processes from time to time in order to give the
appearance of continuous service to higher levels. A reasonable goal is that the processor
multiplexing be done in a fair manner (we shall be more precise about the meaning of fair
later on).

Since processes actually in execution have no useful task to perform from time to time,
as when they arc waiting for information from another source, we would like to separate the
set of existing processes into those which can execute and those which are waiting. In fact,
we will define three states for a process - waiting, ready, and running. A waiting process is
not considered a candidate for assignment to a processor - the set of ready processes is the
one from which such candidates are chosen. A process in actual execution on a processor is
said to be running. The three states are mutually exclusive, and as our second gocal we
would like to guarantee that every process is in one of the three states, with corresponding
implications, at ail times. As an example of such implications, non-running processes must
have their execution state saved. We will therefore restrict the transition to the wacting
state to be made only by the operation unready, and that to the ready state only by the
operation ready. In order that we may guarantee a degree of fairness in the scheduling, we
shall not aliow higher levels to choose which processcs to run next (else the fairness proof
could not be localized to the process level), although we will allow them to determine the
scheduling points. For this we define the operation preempt. We defer the concept of "time-
slice” to a higher level in order to avoid the quite separable problems of managing a
hardware clock. We conly require of preempt that it be called ‘pericdically. Determination of
the particular period, or even if there should be (just) one, is something to be decided by
subsequent performance evaluation.

Since we desire a somewhat realistic system, we will incorporate the notion of process
priority in our design. With each process we associate a priority. A process will not be run
when there are ready processes of higher priority. The priority of a given process is
controlled by higher levels, but it must remain fixed while that process is ready.
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3.7. Formal Specification of the Goals

In this section we present a set of specifications which satisfy the above goals. We
strongly suggest that the reader be familiar with the notation and definitions of Appendix B
before proceeding.

Let the abstract representation of a process be the record
(state:(running, watting, ready), pcs:Pestate, prty:integer, lcaded:boolean)

where Pcstate is a machine dependent type whose representation is suitable for saving the
shared execution state (e.g. program counter, relocation registers, general registers, etc.),
and which provides the operations unload and load to save and restore that state.

Henceforth we will assume that there is only one hardware processor availabie, so that
load and unload refer to that processor. Although we could have assumed a larger number
of real processors, the resulting complexity would serve no pedzgogic purpose. We also
assume that our processor has two protection states, and that the system (at least this level)
executes in the privileged one while processes do not. Specifically, load and unrload have
effect only upon the "user" environment.

Let the variable current refer to the currently running process (i.e. current is a
references to type process). Then we desire that the operations at this level (ready,
unready, and preempt) satisfy the invariant

jl(current) = (Yp¢process) [(p.state=ready = p.prty < currentt.prty)
A (p.state=running = (p.loaded A current=1p)]
A currentT.state=running

In order to satisfy this invariant, the decision as tc which process to run next must be
made by choosing a ready process of highest priority. In addition, in order to provide the
fairness we discussed earlier, we will choose from the set of such candidates the one which
has been ready the longest. Since the specification technique has no explicit notion of time,
we must group the ready processes in an abstract data structure which makes that choice
convenient. We choose a vector of sequences of processes for this purpose, with each
element of the vector representing the processes at a given priority, and with the head of
each sequence being the next process to run at that priority.

3 We use the PASCAL notfation rT means r dereferenced, T{ means a referance to the object t
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Let R[l.nprty] be the "ready-list" vector, with R[k] having type sequence of process.
Then ready, unready, and preempt must also satisfy the invariant

J2(R) = (Vk¢1.nprty)
[(Vptprocess) (has(R(k],p) = (p.prty=k A p.state=ready))
A (#{plhas(R[k],p)} = length(R[k])]

so that each sequence contains all ready processes of a given priority, and that no process
appears more than once.

We can now attempt to properly specify the ready, unready, and preempt operations.
1) ready(p): Readying a process of lower priority than the current one.
prea: p.state=waiting A currentT.prty2p.prty A R{p.prty]=S

post: p=<p’,state,ready> A current=current’ A R[p.prty]=S~p

2) ready(p): Readying a process of higher priority than the current one.
pre: p.state=waiting A current=Tc A c.prty<p.prty A Rlc.prty]=S
post: current=Tp A p=<<p’state,running>loaded,true>

A c=<<c’,state,ready>loaded,false> A R[c.prty]=S~c

3) unready(p): Unreadying a process other than the current one.

pre: p.state=ready A R[p.priy]=S~p~V

post: p=<p’,state,waiting> A R[p.prty]=S~V A current=current’

4 In the form discussed for specification in Chapler 2, this would read pre {ready(p)} post

. TR T - : —
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4) unready(p): Unreadying the current process,
pre: current=Tp A k=(>}}R[j]J#X\) A R[k]=c~S

post: p=<<p’,state,waiting>loaded,false> A current=Tc

A c=<<¢’state,running>loadedtrue> A R[c.prty]=S

5) preempt(): Pre-empting with no ready process of equal priority
to the current one.

pre: (>]XR[j]J#X) < currentl.prty

post: current=current’

6) preempt(): Pre-empting while a process of equal priority to the
current one is ready.

pre: current=Tc A p.prty=c.prty A R{p.prty]=p~S

post: current=Tp A p=<< ate,running>locaded,true>

57

‘p’ls‘
A c=<<c’;state,ready>,loaded,false> A R(p.prty]=S~c

Note that each of the above specified process operations happens to have two axioms
associated with it. The two axioms are simply a convenient form of expressing the fact that
there are two basic choices as to the outcome of the operation, and strongly suggest an
outer-level control structure of the form

if Py then S elsif P, then S, else error fi

~

where Py {S;] Q and P5 {Sp} Q) correspond to the two axioms.

3.8. Verification of the Goals

o — - —
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38.1 Verification of the Consistency Invariants
Before even considering an implementation for the specifications of type process, we
must verify that these specifications satisfy our goals. In particular, we shall prove that both

Jy and J, are invariant across each axiom. The method used to prove this invariance is
given in section 2.3. That is, to show J is invariant over op(x) when

P {op(x)} Q
is known, we must prove
J AP = 3k(P A Vx(Q=))

where x is the parameter list, and k is the list of variables free in P,Q but not in x. In the
case where k is empty, we can simplify this to

J AP =Vx(Q=))
The proof follows:

1) reaay(p): We must prcve

J(current) A J5(R) A p.state=waiting A currentT.prty2p.prty A R[p.prty]=S

= (Vg¢process) (YT¢l..nprty of sequence of process)
[g=<p,state,ready> A current=current’ A T[q.prty]=S~q

= J(current) A Jo(T)]

In this case, as in all of those that follow, the truth of the above expression can be
ascertained by straightforward simplification, which we omit.




2) ready(p): We must prove

.

= (Vq,r,cur¢process) (¥YT¢l.nprty of sequence of process)
[(cur=Tqg A g=<<p,state,running>loaded,true>
A r=<<cstate,ready> loaded,false> A Tr.prty]=S~r)

= Jy(cur) A J2(M)]
3) unready(p): We must prove

1.(current) A 45(R) A p.state=ready A R[p.prty]=S~p~V

e c

> (Yqiprocess) (YT¢1.nprty of sequence of process)

[q=<p,state,waiting> A T{q.prty]=S~V A current=current’

= Jlcurrent) A Jo(T )]

unready(p): We must prove

Jilcurrent) A Jo(R) A current=Tp A k=(>jXR[j]#X) A R[k]=c~S
= (Vqg,r,cur¢process) (YTel..nprty of sequence of process)
[(q=<<p,state,waiting>lcaded,faise> A cur=Tr

A r=<<c,state,running>,lcaded,true> A Tr.prty]=S)

= Jlcur) A J2(T)]

5) preempt(): We must prove

«

J{(current) A Jo(R) A (3IXR[j]#N) < currentT.prty
= (current=current’

= Jlcurrent) A J(R))

71(current) A Jo(R) A p.state=waiting A current=Tc A c.prty<p.prty A R[c;prty]—-s
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6) preempt(): We must prove

J(current) A Jo5(R) A current=Tc A p.prty=c.prty A R[p.prty]=p~S

= (Vq,r,curcprocess) (YT¢l.nprty of sequence of process)
((cur=Tq A g=<<p,state,running>,loaded,true>
A r=<<c,state,ready>,loaded,false> A T[q.prty]=S~r)

= J(cur) A jz(T)]

This completes the proof that both J; and f, are invariant across the operations of the
process module.

3.8.2 Verification of the Fairness Property

We will now attempt to prove that any implementation of the specifications for type
process satisfies the fair service goal. In particular, we shall prove that the ready processes
of highest priority are executed in Round Robin fashien. Although there may be many
alternative definitions which may have their own merits, this one is reasonable both from the
context of system behavior we possess thus far, and for the pedagogic purpose of
illustrating the verification technique. Karp and Luckham [Karp 76] have verified a fairness
property for a particular implementation of a process dispatcher. The proof we shall
present, dealing with the specifications only, applies to any arbitrary implementation.

The proof takes the form of induction on the history of calis upon the operations
ready, unready, and preempt. We shall require the addition of an auxiliary variable to the
specifications, for the purpose of recording the successive values of the pointer current.
This variable is denoted H, and will have type sequence of process. It is initially equal to the

14/

null sequence. Whenever a specification of the form
current=Tp A p#c {op] current=Tc

€ x ted «enever current is changed across op), we will replace it by

current=1p A p#c A H=S {op} current=Tc A H=S~c

.4 o e proven can now be cast as:
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Let a and b be arbitrary, distinct ready processes of equal priority, and let there be
No non-waiting processes of higher priority. Then, for any sequence of calls on ready,
unready, and preempt which maintains this state, the resulting history of dispatching, H, when
reduced by deletion to a sequence of just a’s and b’s, will be of the form (ab)*{avi).

Formailly, let p(S) reduce S to only a’s and b’s, i.e.

L]

pla)
p(b)
p(c) if c#a and c#b
p(S~x) = p(S)~p(x)

]

a
b
A

i

Then without loss of generality we wish to prove the relation
Jtair(RH) = p(H~R[a.prty]) ¢ (ab)x(avA)
invariant over any history which maintains the state
a.prty=b.prty A astate#waiting A b.state#waiting

A currentT.priy<a.prty A aprty=Ck)R[k]#\)

Proof:

1) ready(p): We must prove

Jeair(RH) A J{(current) A J2(R)
A p.state=waiting A currentl.prtyzp.prty A R[p.prty]=S

= (Vgeprocess) (VTel.nprty of sequence of process)
[g=<p,state,ready> A current=current’ A T[q.prty]=S~gq A H=H’

= J(current) A Jo(T) A p(H~T[a.priy]) € (ab)x(avA)]
We can assume p#a and p#b (because p.state=waiting).
Furthermore p.priy<aprty, else afterwards there will be a higher priority non-waiting

process,

Then p(H~T(a.prty]) = p(H~R{aprty])

o ‘)
1
b




-

2) ready(p):

Since p.prty>currentT.prty, the conditions of the theorem are violated, and
we need not consider this case.

3) unready(n): We must prove

jfair(RvH) N Jl(cu”ent) N Jz(R) A p.state=ready A R[p,prty]=s~p~v

= (Vg¢process) (YVT¢l.nprty of sequence of process)
[g=<p,state,waiting> A T[q.prty]=S~V A current=current’ A H=H’

= J(current) A Jo(T) A p(H~T[a.prty]) ¢ (ab)*(avi)]

We can assume that p#a and p#b, so p(H~T[a.priy]) = p{H~R[a.prty]).
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4) unready(p): We must prove
Jiair(RH) A Jilcurrent) A Jo(R) A current=Tp A k=(>j)}(R[j]#A) A R[k]=c~S A H=V
= (Vq,r,curé¢process)

(VTel.nprty of sequence of process) (YW¢sequence of process)

[q=<<p,state,waiting>loaded,false> A cur=Tr
A r=<<cstate,running>loaded,true> A T[r.prty]=S A W=V~r

= Jlcur) A Jo(T) A p(W~T[aprty]) € (ab)x(avr)]

We assume p#a A p#b.

i) Suppose c=a. Then p(W)=p(V~a)=p(V)~a and p(R[a.prty])=a~p(S)=a~p(T[a.prty]).
So p(W~T[a.prty])=p(V)~p(R[a.prty])=p(H~R[a.prty]).

i) If c=b, the symmetric argument holds.

iii) If c#a A c#b, then p(W~T[a.prty]D=p(W)~p(T{a.prty])
=p(V)~p(Rla.prty )=p(H~R[a.prty]).

S

W
(6]
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5) preempt(): This is trivial.

6) preempt(): We must prove

Jsair(RH) A J(current) A J5(R)
A current=Tc A p.prty=c.prty A R(p.prty]=p~S A H=V

= (Vg,r,cur¢process) (YT<1l..nprty of sequence of process)
(VW¢e¢sequence of process)
[cur=Tq A g=<<p,state,running>,loaded,true>
A r=<<c,state,ready>loaded,false> A T[q.prty]=S~r A W=V~q

= Ji(cur) A Jo(T) A p(W~T[a.prty]) € (ab)x(avir)]

i) Suppose p=a. Then p(H){(ab)x and p(S)=b cr p(S)=A\.
So p(W~T[a.prty])=p(H)~a~p(S)~p(r).
If c=b then p(S)=X\ and p(W~T[a.prty])=p{H)~a~b.
If c#b then p(S)=b and g(W~T[a.prty])=p(H)~a~b.

ii) The symmetric argument holds for p=b.

i) Assume p#a A p#b. Then p(W)=p(H).
If c=a then p(S)=b and p(H)¢(ab)xa, so p(W~T[a.prty]) € (ab)*aba.
If c=b ther p(S)=a and p(H)(ab)*, so p(W~T[a.prty]) ¢ (ab)*ab.

So J¢ar is indeed invariant for any implementation of the given specifications. Thus,
we have succeeded n verifying something which, though conceptually relatively simple, has
not been rigorously proven in the past.
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3.9. Implementation of the Process Level

The specifications for type process given in the previous section rely on the
manipulation of the abstract data structure, R, which we called the ready-list (even though it
isn’t a list). Therefore, the programs for type process which implement those specifications
must either implement a concrete ready-list modelled after R, or else rely upon a separate

implementation of such a structure. For the moment we will assume the latter course.

Based upon the manipulation of R in the specifications, we postulate a new type,
multig, of which the ready-list is an instance. Its specifications are:

Abstract Structure:
multig{titype,nliinteger) = vector 1.nl of sequence of t
Operations:
1) append(M:multig,n:1..nlx:t): Appends x to M[{n].
wp(append(M,n,x), M[n]=S~k A x=k) =

M[n]=S A x=k A (¥Yjcl.nl)-has(M[j],k)

2) delete(M:multig,n:1..nlx:t): Deletes x from M[n].
wp(delete(M,x), M[n]=V) =

V=S~T A M[n]=S~x~T

3) j<highest(M:multiq): Returns the highest index in M of a non~-null element.
wp(jehighest(M), j=(>n)(M[n];‘>\).) = 2

(3n)XM[n]#X\)




oremoveNMeomultign:lonl): Returns the first element of M[n] after removing it.

wpl(ge-remove(Mnn), M(n]=S A q=k) =

M[n]=k~S
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suming these specifications, we can give the following straightforward implementation of

type process:

type process =

var pin:l..nproc;

own pvec: array (l.nproc]of

record
state: (running,waiting,ready),
pcs: Pcstate,
loaded: bociean,
prty: L.nprty
end,

R: multiq(l..nproc,nprty),
cur: l..nproc;

macro proc[p] = pvec[p.pin],
cproc = pvec[cur];

op ready(p:process) =
if proc[plstate#waiting then error
elsif cproc.prty>proc[plprty then

o
n
o

proc[plstate«<ready;
append(R,proc[pl.prty,p.pin)

unload(cproc.pcs); cproc.loaded«false;
cproc.state«~ready;
append(R,cproc.prty,cur)

curep.pin;

cproc.stateerunning;

load(cproc.pcs); cproc.loaded«true

e e rema— i




op unready(p:process) =
if proc(plstate=waiting then error
elsif proc[p]state=ready {len
proc[plstatecwaiting;
delete(R,proc{plprty p.pin)

else
unload(cproc.pcs); cproc.loaded«false;
cproc.state~waiting;
cur«remove(Rhighest(R));
cproc.state~running;
load(cproc.pcs); cproc.loaded«true

fi;

op preempt =
if highest(R)zcproc.prty then
begin

var p:l.nproc;

peremove(R,cproc.priy);
unload(cproc.pcs); cproc.loaded«false;
cproc.state«ready;
append(R,cproc.prty,cur);

curep;

cproc.state«running;

load(cproc.pcs); cproc.loaded«true
end

3.10. Verification of Type Process
The verification of the implementation just presented follows. We define
e (cur) = current
o (cproc) = current?

e (p:l.nproc) = p:Tprocess
o (procfp]) = p:process

e m———— - — — R S
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maintaining the abstractions of Pcstate, (running,ready,waiting), and R. For this case, the
well-definedness of o is guaranteed by static type checking. That is, the fact that the
program compiles guarantees that it will always be in a state which is in the domain of 4.
We now give the proof of each axiom of the specifications in turn:

1) ready(p): We must prove
proc{plstate=waiting A cproc.prty2proc(plprty A R[proc[plprty]=S

= wplready(p), proc[p]=<proc’[p)state,ready> A cur=cur’ A R{proc[pl.prty]=S~p)
Computing the weakest-pre-condition, we obtain:

op ready(p:process) =
{ proc{p] state=waiting A cproc priyzproc(p]prty = curecur’ A R{proc(p]prty}=S
A (Vs€) nprty)-has(R{/],p) }
if proc[plstate#waiting then error
elsif cproc.prty>proc[plprty then
{ cur=cur’ A R{proc(p]prty}=S A (Vjcl. nprty)-has(R(/],p) }
proc(plstate«~ready;
{ proc{pl=<proc(p],stateready> A cur=cur’ A R{proc{p]prty]=S
A (/e nprty)-has(R[/],p) }
append(R,proc[plprty,p.pin)
S& < . .

B

-

i
{ proc{pl=<proc’{p],stateready> A cur=cur’ A R{proc{p]prty}=S~p }

The weakest pre-condition is implied by the given pre-condition and the invariant J(R).




2) ready(p): We must prove
proc[p]state=waiting A cur=c A proc[c]prty<proc(plprty A R{proc[c]prty]=S

= wplready(p), cur=p A proc[p]=<<proc’[p]lstate,running>loaded,true>
A proc[c]=<<proc’[c]state,ready>loaded,false> A R[proc[c]prty]=S~c)

Computing the weakest-pre-condition, we obtain:

op ready(p:process) =

{ proc(p] state=waiting A cprocpriy<proc(p)prly A cur=c = R{proc|c] priy)eS A (Yjel nprty)-has(R[/],¢) }
if proc[plstate#waiting

if cproc.prty2proc[plprty then ...

e

then error

el
|

<
S
S

'

{ cursc = R{proc[c]prty]=S A (Vj€l nprty)-has(R(/].c) }
unioad(cproc.pcs); cproc.lcaded«faise; cproc.state~ready;
{ cur=c = proc{c]e<<proc’[c)stateready> loaded false> A R{proc(c]orty]-S
A (Y€1 nprty)-has(R{/],c) }
append(R,cproc.prty,cur); curep.pin;
{ cur=p A proclcl=<<proc’[c)state,ready> loaded.false> A R{proc(c)prty}=S~c}
cproc.stateerunning; load(cproc.pcs); cproc.loaded«true;
fi;
{ curep A proc(p]=<<proc’{p].state,running>,loaded,true>
A proclc)=<<proc’{c)stateready> loaded,false> A Rlprocc]prty}=S~c }

The weakest pre-condition is implied by the given pre-condition and J>(R).

oo - — — . y e ——— — : -
o - -
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3) unready(p): We must prove
proc[p)state=ready A R[proc[plprty]=S~p~V

= wplunready(p), proc[p]=<proc’[p]state,waiting>
A R(proc[plprty]=S~V A cur=cur’)

Computing the weakest-pre-condition, we obtain:

op unready(p:process) =
{ proc{p] state-ready = cur=cur’ A R{proc{p]prty]«S~p~V }
if proc[plstate=waiting then error
elsif proc[p)state=ready then
{ cur=cur’ A R{proc{p)prtyl=S~p~V }
proc[plstate«waiting;
{ proc{pl=<proc’[p),statewaiting> A cur=cur’ A Rlprocp] prty]=S~p~V }
delete(R,proc[plprty,p.pin)

D
(%
o

Lf.‘-]

{ proc{p]=<proc’[p) state,waiting> A R{proc{p] prty)]=S~V A cur=cur }

The implication of the weakest pre-condition is clear.
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4) unready(p): We must prove

cur=p A k=(>jXR[j]J#X\) A R[k]=c~5S

>,loaded,false> A cur=c
1
4

= wplunready(p), proc[pl=<<proc’[p)state,waiting
A proc[c]=<<proc’[c],state,running>loaded,true> ~

Computing the weakest-pre-condition, we obtain:

op unready(p:process)
{ proc{p] statepwaiting A proc{p] statefready A cur=p = proc{c) priy=(>/)(R(/]#>*) A R{proc{c)prtyl=c~S }
if proc[pl.state=waiting then error
elsif proc[plstate=ready then ...
else
{ curep = proclc] prty=(>/)(R[/]F>) A R{procc) prtyl=c~S }
unload(cproc.pcs); cproc.loaded«false; cproc.statee—waiting;
{ proc[pl=<<proc|p) statewaiting> lcaded,faise>
A procic] priy=(>)R(s]#) A Rlprocic] priyl=c~S }

cureremove(R,highest(R));
{ proc{p)=<<proc’[p),state,waiting> loaded,fa'se> A cur=c A R{procic]prty)=S }

ad

cproc.stateerunning; load(cproc.pcs); cproc.loaded«true;

fi;
{ proc{ple<<proc’[p) statewaiting> icaded,false> A cursc
A proc{cle=<<proc(c]stale runnings lcaced,true> A R{proc{c]prty]=S }

The implication of the weakest pre-condition is clear.

5) preempt(): We must prove

(>))XR[j]#X)<cproc.prty = wp(preempt(), cur=cur’)

This proof is trivial.
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6) preempt():

We must prove

cur=c A proc[plprty=proc[clprty A R[proc[plprty]=p~S

= wp(preempt(), cur=p A proc[pl=<<proc’[p]state,running>loaded,true>
A proc[c]=<<proc’[c]state,ready>loaded,false> A R[proc[plprty]=S~c)

Computing the weakest-pre-condition, we obtain:

op preempt =
{ (>)(R[J)#X)2cproc priy A cursc A cprocpriy=proc(p)prty =

Rlproc(p] priyl=p~S A (¥/C1 nprty)-has(R{/].c) }

if highest(R)2cproc.prty then

i;

begin

var p:l.nproc;

{ cur=c A cprocpriy=proc(plprty = Riproc{p]priyl=p~S A (¥s€l nprty)-has(R[/],c) }

p<remove(R,cproc.prty);

{ cur=c = Rlproc[p]prty]sS A (Vj€) nprty)-has(R[j]c) }

unload(cproc.pcs); cproc.loaded«<false; cproc.stateeready;

{ cur=c = proc[cl=<<proc’|c)staterready> loaded,false> A Rlproc[p] prty]=S
A (Y€l nprty)-has(R{/]c) }

append(R,cproc.prty,cur);

{ proc{c]=<<proc[c) stateready> loaded false> A Rlproc[p]prty)=S~c }

cur«p; cproc.state«running;

load(cproc.pcs); cproc.loaded«true

end

{ curep A proc(pl=<<proc’{pl staterunning> loaded, true>
A proc{c]=<<proc’(c) stateready> loaded,false> A R{proc(p]prty]=S~c }

The weakest pre-condition is implied by the given pre-condition and J2(R).

3.11. Implementation of Type Multiq

In the implementation and verification of type process, we relied upcn the existence of

another type, multig, with which we implemented the ready-list. Now we come to the

implementation of type multiq, and subsequently its verification. Refer to the specifications

given in section 3.9.
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The specifications clearly allow a completely separate implementation of type multiq,
and a reasonable approach would be to construct such a type by using a vector of list

7/
pointers as the representation, i.e.

type multig(t:type,nkinteger) =

var H:array (1.nl] of el;

endtype
where type el is (value:t, succ:l.nl).

While we could construct such an implementation without too much difficulty, it would
be rather inefficient. Each process on the ready-list would require two pointers (one to the
process and one to the next list slement). Furthermore, each insertion or deletion would
require storage allocation or de-allocation of the list elements.

If we had been constructing our system in a not-so-careful manner and without
verification in mind, we would probably have implemented the ready-list as a "thread"
through the processes themselves - ie. we would extend the representation of a process to
contain a pointer to other processes. With a little reflection we find, in fact, that we can still
do just thal. We re-declare the structure of type process to be:

var pin:l.nprog;
own pvec: array [l.nproc] of
record
state: (running,ready,waiting),
pcs: Pestate,
loaded: boulean,
prty: l.nprty,
next: l.nproc,
prev: l.nproc
end,
R: array [l.nprty] of O.nproc,
cur: l.nproc;

ndtype

1
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Then we can see that the previous verification of type process is unaffected (because we
deleted nothing and changed only the concrete type of R). Now we can implement the
operations of type multiq as local procedures of type process, obtaining both a reasonable
verification task for type multiq, and an efficient implementation thereof. Qur implementation
follows:

proc appendR(l:1..nprty,k:1.nproc) =
if R{1]=0 then R(l]<k
else
swap(proc[k].succ, proc[proc[R[l]].pred].succ);
swap(proc{k].pred, proc[R[l]]pred)

fi;

proc removeR(l:1..nprty):l..nproc =
begin
var k: l.nproc;
kR[]
if k=0 then error else deleteR(l,k) fi;
K

4]

ng;

|

proc deleteR(l:1..nprty,k:1l..nproc) =
if R[IJ=k then
if proc[klsucc=proc[k].pred
then R{1]}-0
else R[l]}«proc[k]suzc

fi
else
swap(procl[kl.suce, proc[pruc[k]pred)succ)
swap(proc(k].pred, proc[proc(k]succ)pred)
fi;

proc highestR:1.nprty =
begin
var k:l.nprty;
kenprty;
while R[k]=0 do kek~1 od;
3
end;
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3.12. Verification of Type Multig

The concrete invariant J of the given multiq implementation must fully capture the

notion of a doubly likened circular list. The following is a concise definition of the concept:

J = (¥Yjel.nproc)j=proc(proc(j}succlpred A j=proc{proc[j]pred]succ)
That is, every process has the property that cne step forwards (succ) followed by one step
backwards (pred), or vice versa, will get you back to where you started frcm. Note that this
must also be true of those processes which are not on a list (they must be self-referencing),
and that is precisely what makes the link swapping implementation work.

Proving the above predicate invariant is a matter of applying the rules for array
assignment and access® with appropriate simplification. We tlustrate the method by showing
J invariant across the appendR procedure.

Assume the concrete pre-condition to append R is

W = proc[k]succ=k A proc[klpred=k n (Yj¢l.nprty XR[}]#k)
That is, k is not a member of any list yet (because the only way to reach a self-referencing
element is directly through the list headers in R, and this is guaranteed impossible). Compare
this pre-condition with the abstract weakest pre-condition specified in section 3.9.
We must show

W A J = wpl(appendR(l,k), J)

Clearly, if R[1]=0 initially then R[I]=k will satisfy the invariant. The interesting case then is
R[1]>0. Assume swap to have the definition

- pIY
wp(swap(x,y), P) plx,y
(simultaneous exchange of the variables x and y). Then

wp(swap(A[X].A[Y]). A=AO) o A=<<AO) [X], AO[Y]>| [YJr AO[X]>

5 See Appendix B
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Thus if R[1]>0, wp(appendR(l,k), J A proc=P) =

proc=

[P[R{1]].pred].succ, P[kl.succ>

We want to show

Now proc[j]succ=
if j=P[R[I]}pred then P[k].succ
elsif j=k then P[P[R{l]]predlsucc
else P[j]succ

Thus proc[proc{jlsucclpred =
if proc[jlsucc=R[l] then P[k].pred
else P[proc[j]l.succ]lpred

There are three possibilities for j:

1) Suppose j=P[R[I]].pred.

Then proc[jlsucc=P[k].succ
and

49
< < < <P, [k]pred, P[R[!]].pred>,
(R[1]).pred, P[k].pred>,
[k)succ, P[P[R[I])}pred])succ>,
j=proc[proc[jlsucc]pred A j=proc[proc[j]l.pred].succ
elsif proc[jlsucc=k then P[R[I]].pred
proc[proc[jlsucclpred =
if P(k].succ=R[I] then P[k].pred
elsif P[k]succ=k then P[R[l]].pred
else P[P[k]lsucc]pred
From the pre-condition W, we know P[k].succ=k and R[l]#k, so
proc{proc[jlsucclpred = P[R[l]]pred = j
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2) Suppose j=k A j#P[R[I]].pred.

Then proc[jlsucc = P[P[R[I]]}.pred].succ
and
proc[proc[jlsucclpred =
if P[P[R[1]).pred).succ = R[I] then P{k].pred
elsif P[P[R[I]}.pred].succ = k then P[R[I]].pred
else P[P[P[R[!]}.pred].succ]l.pred

From J, we know that P[P[R[!]].pred]succ = R[l], so

proc[proc[jlsucclpred = P[k]pred = k = j

3) Suppose j#£k A j#P[R[|]]pred.

Then proc[jlsucc = P[jlsucc
and
proc[proc(jlsucc].pred =
if P[jlsucc=R[] then P[k].pred
elsif P[j).succ=k then P[R[I]].pred
else P[P(j].succ].pred

If P[j]succ=R[l] then P[P[j).succlpred = j = P[R[l]].pred
which contradicts the hypotheses,
Furthermore, if P[jlsucc=k then P[P[jlsucclpred = j = P[k].pred=k
which also contradicts the hypotheses. So
proc[proc[jlsucc]l.pred = P[P[jlsucclpred = j
Similarly, we can establish

j=proc[proc[jlpred]succ

and we omit that proof. Using the same ideas we can show J to be invariant across all of
the operations, and we omit those proofs also as not useful to the presentation.

Since J is invariant, the mapping from the concrete to the abstract, for which we shall
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e (R,proc) = R, (the abstract object R used in the specifications)

R,(i] = if R(j]=0 then X else seq(proc, R(j], R(j]

seq(proc, x, y) = if proc[x]succ=y then proc[x]

is well-defined.

(where ¢.succ”

else proc[x]~seq(proc, proc[x]succ, y)
To be rigorous we should have to prove that the invariant guarantees
(3n) proc[R[I]}.succ™ = R[I]

means q.succ.succ. . .succ n times) but we will take that as obvious. Under the

above mapping, the pre-condition W becomes

o (W) = (Yjel.nprty)-has(R,[j]k)

Thus, for appendR, it only remains to show

wp(appendR(l,k), R [1]=S~k) = R [l]=S

From the definition of seq, we can deduce that

Furthermore,

and

R,[1]=S~k = proc[k]succ=first(S) A proc[last(S)]succ=k

first(R,(j]) = ¥ (proc{R(j]])

iast(R,[j]) = e#(proc[proc{R(j]]pred))

(assuming the interesting case when R[j]>0). Thus we must compute

wpl(appendR(l,k),

proc[klsucc=R([l] A proc[procy[R[j]]pred]succ=k)

where procg refers to the state of proc at entry. This works out to

procgklsucc=k A procg[procg(R{!]]pred]succ=R(l]

which, in light of the invariant, will map via ¢ to




52

R]1=5

While this proof has not been as rigorous as it might have been, it is convincing, and
there is little to be gained from formally proving all of our assumptions (such as the obvious
relationship between the first and last operators and o#. The proofs of removeR, deleteR,
and highestR are straightforwardly similar and are not included.
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4. Verifying General Parallel Programs

4.1. Introduction

The verification formalism for sequential programs is relatively well-understood, and
indeed most of the proof rules for programs used in Chapter 2 are not new. In dealing with
operating systems however, we are frequently faced with the problem of verifying parallel
programs. A totally satisfactory formalism for this task has not yet appeared.

In this chapter we will explore two approaches to parallel program verification for a
rather general syntactic class of programs. The first (section 4.2) uses Dijkstra’s
weakest pre-condition semantics [Dijkstra 76] to statically consider all of the possible
execution paths of a system of parallel processes. The second (section 4.3) extends
Owicki’s methodology [Owicki 75] to handle arbitrary programs, without relying on a high-
level synchronization mechanism. A methodology is given for proving loop termination in
parallel programs.

4.2. Combinatoric Weakest Pre-Condition Semantics

4.2.1 Primitive Actions

It is a well-known fact that because a single high-level language statement is generally
compiled into a sequence of machine instructions, it may be that a process is interrupted at a
"mathematically inconvenient” place. This is reflected in the following classical example6:

{x=0} ADD2: cobegin xex+1 [/ xex+1 cocend {x=1 v x=2}

In spite of the fact that both processes appear to increment the variable x, if the
incrementation is not indivisible the final value of x will be nondeterministic.

The difficulty in proving the correctness of such programs lies primarily in the fact
that the primitive decomposition of "xex+1" is not lexically explicit. In order to be able to
prove such programs, it is necessary that the semantics of higher-level language statements

6 As discussed in section 35, the cobegmin coend block defines the individual pregrame to be executled by each
process
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include enough information to aliow determination of the possible pre-emption points. For’

the case of simple incrementation, the definition

wp(xex+a, R) = R':+a

which suffices for the sequential case must be replaced by the definition
wplxex+a, R) = wplxgex; xgexg+a; xexg, R)
where xq is a unique temporary.

The fact that such definitions amount to explicitly specifying the way in which a given
statement must be compiled is somewhat unfortunate since it removes much of the option of
compiler writers. On the other hand, the program ADD2 can have entirely different behavior
on the PDP-11 (where memory incrementation is a single instruction) than on the IBM 360-
370 series (where the only way to increment memory is by loading, incrementing, and storing
a register) if primitive semantics are not specified. If a concurrent programming language is
to be supported on different machines and yet produce similar results for any given program,
its semantic definition must be as precise as we have indicated.

422 Basic Semantics
In order to build up gradually to the general case, let us consider the semantics of
parallel programs which consist of lexically explicit primitive actions and which consist only

of sequences of assignment and when staiements7. Then the semantics of such programs
(for the two process case, with the obvious generalization) are expressed by

wp(cobegin S;1; Sypi...Sin // S215 Sppi - - .Sop, coend, R) =
Wp({<811,' 512,‘ . 'Sln>' <521.' 522.‘ . .S2n>}, R)

where

4 The statement when B do S od means "wait for B to become true, then execute S" The evaluation of B and the
execution of S comprise one indivisible action.




1) wp({}, R) =R

2) wp({<>, <§>}, R) = wp({<§>, <>}, R) = wp({<S>}, R)
3) wp({<S>}, R) = wp(S, R)

Q) wp({<S g Sypiv. > <Spp Sppi - >LR) =

wp(choose 1 from {<S“; Syaie 2 <SSy Sz .. 2L R A
wp(choose 2 from {<S“; Sg2i .2 <8745 5225 .. 2L R)

5) wp(choose j from {<§;,; Syoi...> <Spp5 Sppi -+ >L R) =
if j=1 then wp(Sy ;i {<S i ...> <S55 Sppi . >h R)
else if j=2 then <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>