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Abstract: A program annotated with inductive assertions is said to be verification decidable
if all of the verification conditions generated from the program and assertions are formulas
in a decidable theory. We define a theory, which we call Presburger array theory,
containing two logical sorts: integer and array-of-integer. Addition, subtraction, and
comparisons are permitted for integers. We allow array contents and assign functions, and,
since the elements of the arrays are integers, array accesses may be nested. The first
result is that the validity of unquantified formulas in Presburger array theory is decidable,
yet quantified formulas in general are undecidable. We also show that, with certain
restrictions, we can add a new predicate Perm(M,N) -- meaning array M is a permutation of
array N -- to the assertion language and still have a solvable decision problem for
verification conditions generated from unquantified assertions. The significance of this
result is that almost all known sorting programs, when annotated with inductive assertions
for proving that the output is a permutation of the input, are verification decidable.
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1. Introduction

The theory of program schemata gains power by dealing with classes of programs
instead of individual programs. Once we establish some result about a program schema we
can apply that result to any program which is an instance of the schema. Unfortunately, for
those of us interested in verification, the theory of program schemata has not provided
many positive results, and is still unsuccessful in providing tools for proving program
correctness.

One reason for this might be that schemata do not divide the class of all programs into
the kind of subclasses useful for verification. A correctness proof for one instance of a
schema is of almost no use when trying to find a proof of correctness for another instance,
simply because the two programs may be working with entirely different data types,
functions and predicates. The fact that two programs share the same control structure has
almost no verification significance.

We suggest that programs be classified according to the kinds of verification conditions
they generate. Since the verification conditions depend on both the program and the
inductive assertions, we classify not programs per se, but annotated programs, complete
with pre- and post-condition and loop invariant assertions. For example, if a program uses
only type integer with +, -, = and < and if all of its inductive assertions use only +, -, =, and
< as well, then all of the verification conditions will be well-formed formulas of Presburger
arithmetic. Since the theory of Presburger arithmetic is well-known to be decidable, the
weak correctness problem for the entire class of "Presburger arithmetic programs” is
decidable.

The advantage of this classification is that most of the variants of programs which
implement the same or the similar algorithms can be in one class. The assertions of the
programs which implement the similar algorithm are very similar. Thus, one can use the
same proof procedure for all the programs which implement the similar algorithms.

Unfortunately not much work has been done exploring the decision problems for weak
correctness of classes of programs defined this way. When all of the verification conditions
for a class of (annotated) programs fall in a decidable theory, we say that the class is
verificalion decidable. What we will explore here is the verification decidability of certain
classes of programs which use arrays. We investigate the theory of arrays of integers with
operations restricted to addition and subtraction and call this Presburger array theory. The
first result of this paper is in section 3: the validity problem for unquantified well-formed
formulas of Presburger array theory is decidable. We conclude from this that the weak
correctness problem for programs using integers and arrays of integers and having
unquantified assertions is decidable. We also show that since we can encode multiplication
by using addition and one dimensional arrays, the theory is undecidable for quantified
formulas in general.

There are probably not many interesting array programs whose inductive assertions
are expressible in such a weak assertion language . What we would like is an assertion
language powerful enough to express interesting assertions about an interesting class of
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programs, such as sorting programs, but for which the decision problem for the verification
conditions generated is solvable.

One way to extend the assertion language is to add new (interpreted) predicate
symbols. In section 4 we consider the addition, in a limited way, of a predicate Perm(M,N),
meaning array M is a permutation of array N. The perm predicate can be defined by a
second-order formula as follows:

Perm(MN) = (3N[(Yx,yX(f(x)=f(y) > x=y) A (V2)XM[2]=N[f(2)])].

We show in section 4 that the weak correctness problem for annotated programs using the
Perm predicate in assertions (subject to limitations) is decidable. This result is valuable
because for almost every known one-array sort program it is the case that the inductive
asserlions necessary to prove that the output is a permutation of the input can be written
easily in the assertion language we permit. Thus, the problem of verifying whether or not a
candidate sorting program satisfies the permutation condition is decidable.

2. Notations and Definitions

Presburger arithmetic is the first order theory of integers with addition and no
multiplication. The particular characterization we choose has

constants : 0,1
functions symbols : +,-
predicate symbols : =<,

This theory is known to be decidable [Hilbert].

Presburger array theory, which we denote by Lpas is a two-sorted theory with sort
integer and sort array of integer. We use Dj to denote the domain of integers and Dp to
denote the domain of array of integers. The language consists of,

constants : constants of Presburger theory;
function symbols : +,-
<s,2$>: D5 X D; X D] » Dy, (array assign)
#[2] : Dp X D; » Dy. (array access)
We used * to denote the location of the arguments
for the two functions involving arrays.
predicate symbols: =<,

Terms of sort integer is defined as follows.
1) The constants and the variables of sort integer are
terms of sort integer.
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2) 1f a; and ap are terms of sort integer,
SO are a;+a» and aj-as.
3) If Ais aterm of sort array and i is a term of
sort integer, then A[i] is a term of sort integer.
4) These are all the terms of sort integer.
Terms of sort array are defined as follows.
1) Variables of sort array are terms of sort array.
2) If Ais a term of sort array, and i and e are terms of
sort integer, then <Ai,e> is a term of sort array.
3) These are all the terms of sort array.
Atomic formulas are defined as follows.
1) If a; and a5 are terms of sort integer then
(aj=ap) and (aj<ay) are atomic formulas.
2) These are all the atomic formulas.
Well-formed formulas are defined as follows.
1) Atomic formulas are well-formed formulas.
2) If A and B are well-formed formulas and x is a
variable, then (- A), (A v B), (A A B), (A o B),
(A = B), (3x.A), and (Vx.A) are all well-formed
formulas.
3) These are all the well-formed formulas.

McCarthy [McCarthy] has introduced the notion of states and described the semantics
of Algol-like programs. He defined two functions, assign and contents, to change states and
obtain values of program variables in the state. He defined these functions by two axioms:

Al. contents(assign(S,x,e),x) = e
A2. contents(assign(S,x,e),y) = contents(S,y)

where x and y are distinct variables.

Kaplan [Kaplan] has shown that these axioms are complete if the only well-formed formulas
permitted are equality between terms and if no function symbols are interpreted except
assign and contents.

King [King] has used McCarthy’s idea to describe effects of assignments on arrays. In
his formalism assign(M,i,e) changes the value of the i-th element of array M to e, and
contents(M,i) obtains the value of the i-th element of array M. The axioms corresponding to
McCarthy’s axioms are:

Ax1. i=) > contents(assign(M,i,e),j) = e
Ax2. i#) > contents(assign(M,i,e),j) = contents(M,j).

In this paper we will use more popular notations <M,i,e> and M[i] instead of assign and
contents respectively.
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Besides the axioms Axl and Ax2, we use two other axioms equating the meaning of

arrays to functions.

Ax1
Ax2

Ax3.
AxA4.

. Vx,y,e,Mx=y > <M,x,e>[y]=e).

. ¥Yx,y,e,M(.x#y > <M,x,e>[y]=M[y].
Vx,y,a,b.3M. (M[x]=y A (x#y > M[y]=b)).
Vx,M,N. (M[x]=N[x] > M=N).

We will denote the above set of axioms by A. In addition we wiil use the axioms of

Presburger arithmetic augmented with equality substitution axioms for any wffs of
Presburger array theory. We denote this set by P.

cision Procedure for

Presburger Array Theory

In this section we present an algorithm for deciding the truth or taisity of unquantitied

formulas of Presburger array theory, Lpa-

The algorithm is as follows.

Step 1

From the definition of well-formed formulas there is at least one occurrence of a term
of the form <M,x,e>(y] if there is at least one occurrence of the array assignment
function <Mx,e>. We eliminate this occurrence of the array assignment by the
following procedure. Let us denote the formula by R(<Mx,e>[y]), where <Mx,e>[y]
indicates the occurrence in question. We transform this formula to

[ x=y > R(e) ] A [ x#y @ RIM[y]) ].
Note that this is still a formula of Lps. It has one fewer occurrences of the assignment

function than the original formula. We repeat step 1 until there are no more
occurrences of the assignment function.

Step 2 and Step 3 are repeated for each different array.

Step 2
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If the formula is of the form RM[xg])) where xg does not contain any occurrence of
contents function, we create a new variable ag and replace the formula by
M(xgl=ag = R(ag). If there are still occurrences of the contents function in R(ag) then
we apply this transformation again to R(ao) and iterate. Finally we get a formula of
the form

Mixgl=ag > (Mlx|]=a; > (.(M[x,]=a,, > R(ag,..,ap))..))

where R(ao,...,an) does not contain any occurrence of the contents function. This
formula is equivalent to

(M[x’o]=a0 AL A M[xn]=an) =] R(ao,...,an).
Step 3

There are no nested occurrences of the contents function in the formula obtained after
step 2. We convert the antecedent part Mlxgl=ag A .. A M[xn]=a,) to the formula
Q(n) defined below.

Q(0) = True.

QUeD) = Q) A [y =xj g > a1=aj,1) A A (xjmxjy) 2 aj=a;, ] (j20)
Thus, we obtain

Q(n) 3 Riag,...a,).

Since there is no assignment or contents function and this formula is a formula of
Presburger arithmetic we can decide the validity.

end of procedure.

It is obvious that this procedure terminates. In each iteration of step 1 we eliminate
one occurrence of <M,x,e> and in each iteration of step 2 we eliminate one occurrence of
M(x] . Step 3 terminates because the definition of Q(n) is primitive recursive. What we will
prove is that the procedure transforms the formula to an "equivalent” formula.

Theorem

This decision procedure transforms a formula R to an "equivalent" formula R’ in the
sense that P, A|[-Riff P, A |- R"
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1. Transformation by step 1) is correct:

The following is an obvious consequence of Ax1, Ax2, and equality substitution.
P, A |- R(Mx,e>[y]) = (x=y 2 R(e)) A (x#y > RIM[y]).

2. Transformation by step 2) is correct:

We prove that for any formula R
P, A |- RIM[x]) = (Va.a=M[x] 2 R(a)).
by the following chain of reasoning,
(Ya.a=M[x] o R(a)) = (Va.a=M[x] 2 R(M[x])) = (3a.a=M[x]) > R(M[x]) = R(M[x]).

3. Transformation by step 3) is correct.

We will prove
P, A |- Mlxgl=ag A .. A M[x,]=a,) > R(ag,.,a,) iff P, A |-Qn)> R{ag-.ap)-
Since there is no free occurrence of M in R(ag,..ap),
P, A |- (Mlxgl=ag A .. A Mlx,]=a,,) > R(ag,...a,,)
iff
P, A |- GMM[xgl=ag A .. A M[x,]=a,)) @ R(ag,...,ap).
We now reduce the probiem to showing
P, A |- GMM[xgl=ag A .. A M[x,]=a,) iff P, A |- Qn),
which we prove by induction on n.

1) If n=0 the left hand side is
3M.M[XO]=30.
From Ax3 P , A |- 3MM(xgl=ag. Since P, A |- Q(0), the proposition is true for n=0.

2) Assume the proposition is true for n=j,
that is P, A |- 3M(M[xgl=ag A .. A Mlxj]=a;) iff P,A |- Qij.

To prove the proposition in the forward direction for n=j+1
we assume (SM.(M[xg]=ag A ... A Mx;,]=a;,1), which is equivalent to
3M.[(M[X0]=ao N ves PN M[x’]=a‘) A M["j*ll’aj#l]‘
For a new array constant Mg
(MO[X()]-BO N o AN Mo[x,]-al) A Moer+l]-a"+1,
= is true from the assumption.
Using the inductive hypothesis we can deduce
Q()).
Also by equality substitulion
X, =X +1 - Mo[)(ilﬂMo[X"’ll.
By equality substitution
Xi=Xj4] 2 aj=aj,| for any i (1<igj).
Thus, A [x=x.,{>a=a ]
T G s S
So we can deduce Q(j+1).

R R e AT

O —————————— -




Verification Decidability Page 7

Conversely, to prove the proposition for n=j+1 in the reverse direction,
assume Q(j+1) that is Q(j) A ( A [x‘=x-‘1 > a=a,]) s true.
1<ig) J }

By inductive hypothesis 3M. A M(x,]=a, is true.
1<ig

That is, for a new constant Mo, A (MO[""}:"’:)'
1<ig)
By Ax3, for new constants Ml SRS A
Ml[‘xj+1]=aj+l A (xl#xj*l 2 M1[X1]=al).

Mj[xj*l]’aj'*l A (xj#xhl > MJ[xJ]saj).

If X=X+ then aj=aj, and thus MO["1]=M1["1+1] or
M0{X1]=M1[X1] Using Ax4 MO=M1 or Mo[Xl+1]=ai+l.
Repeating the above step for i=1 to j, l<Ai<1()<i=xj 2 MO["j+1]=aj+1)'

On the other hand if X1 #Xje) A A X EX L) then Mo=M) A .. A Mg=M;
or xl""j*l N o N xj#xj‘*l 2 Mo[x1*1]=a“+l.

ThUS, Mo[x,,,l]-aj‘l.
So 3M. A (Mx;]=a).

1<igj+1

QED

We have shown that unquantified Presburger array formulas are decidable. However,
we cannot in general decide the validity of quantified Presburger array formulas. The
reason is that we can encode square funclion by an array as follows:

M[0]=0 A Vi.i20 o> M[i+1]=M[i]+i+i+].

Then the multiplication can be performed as M[a+b]-M[a]-M[b]. With multiplication
along with addition we can encode any recursive functions, and the validity problem in this
theory becomes unsolvable.

The implication of the verification decidability results is that if the only function
syrbols the program uses on integer sort expressions are addition and subtraction, and the
assertions are written by Presburger array language, then the correctness is decidable.

This is not itself a very strong resuit. To be able to decide correctness of more
interesting programs like sorting programs we have to find finer subclasses of Presburger
array theory than is possible by classifying according to prenex normal form quantifier
prefixes.

One way is to follow what the people have been doing in practice [Suzuki]. We
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introduce new predicate symbols to denote certain well-formed formulas and obtain the
decision procedure for the limited formulas. The next section deals with such an example.

4. Decision Procedure for Permutation

In this section we consider the problem of deciding whether or not a designated array
in some program has a final value which is a permutation of its initial value. Thus, we want
a procedure which can prove (or disprove) results of the fallowing form:

P A Perm(MMg) { program(M) } Perm(M,M) .

The variable M is assumed to be the array in question, and Mg is its initial value. The
atomic formula Perm(M,MO) means that the array M is a permutation of the array MO. The
symbol P stands for other preconditions which do not use the Perm predicate.

More precisely, we consider the class of all programs which use the data sorts integer
and array-of-integer. For the integers we allow operations + and -, and predicates = and <.
Multiplication and division are excluded, as before, so we can work in the decidable theory
of Presburger arithmetic. For our purpases it will be sufficient to consider arrays which
are infinite in both directions. The complications which are introduced by arrays with upper
and lower bounds are unnecessary for the simple sorting programs which are our targets.
The array contents and assign functions are, of course, permitted for arrays, but the array
equality predicate is not.

We require inductive assertions to be of the form
P A Perm(MMg)

where either conjunct may be absent. M may be any array expression, but My must be a
simple variable which does not appear anywhere in the program (though it may appear in
the Perm conjunct of other assertions.) P may be any unquantified Presburger array
formula over the sorts integer and array-of-integer, but it may not contain any occurrence
of the Perm predicate. We call this assertion language Lpa with Perm.

For programs and inductive assertions of the kind we have described the verification
conditions all have the form

(1) P1 A Perm(MMg) > P> A Perm(MMg)
where Pl and P, are Presburger array formulas, M is an array expression, and Mg s an

array variable which does not appear in M, Pl' or P2. Most of the remainder of this section
is devoted to a decision procedure for formulas of the form (1). Throughout this algorithm
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we rely heavily on the result of the previous section that unquantified formulas in the
language of Presburger array theory, Lpa: are decidable.

Before we give the decision procedure, however, we should note that the theory we
arc developing is applicatzle 1o almost all known one-array sorting programs. In each case
they confine themselves to the Presburger arithmetic subtheory of the integers.
Furthermore, they satisfy the assertion language restrictions we made since loop invariants
sufficiently strong to prove the permutation-preserving property of the program can be
written very naturally in the assertion language Lpy with Perm. In fact, they usually can be
written as single Perm atomic formula without the need for the optional Presburger array
formula conjunct that we aliow. In that sense the result we present is stronger than
needed for our target sort programs.

We now proceed with the decision procedure for formulas of the form (1).

Step 1:

Formula (1) can be broken into two smaller formulas, namely

(2) Pl A Perm(M,MO) > P2

and

(3) Pl A F’erm(M,MO) = Perm(N,Mo) 3

Clearly formula (1) is TRUE if and only if formulas (2) and (3) are both TRUE.

We can dispose of (2) easily by noting that since Mo does not occur in Py or Py, the
Porm(M,Mq) conjunct of the hypothesis is irrelevant and can be eliminated. Formula (2) is
true if and only if

(a) P, 2P,

is true. Since (4) is in Lpp, its truth is decidable. The proof that (2) is equivalent to (4) is
quite short.

Py A Perm(M,Mo) > Py | Assumption
YMo.(P; A Perm(MMg) o P2) | V-gen
P A 3Mg.(Perm(MMg)) > P2 | Mg does not occur free in Py or Py
Py 2P3 | 3M0.(Perm(M,M0))§TRUE
Each step in the above transformation is reversible, so (2) is true if and only if (4) is true.

If (4) is false we terminate the decision procedure negatively. If not, we continue to
try to prove formula (3).
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Step 2:

Because Perm is an equivalence relation, formula (3) is equivalent to
(5) P A Perm(M,Mo) > Perm(M,N)

Once again, because Mo does not occur free in Pl' M, or N, we can demonstrate, by a
proof nearly ideniical to the one in step 1, that the second conjunct of (5) is irrelevant and
(5) is true if and only if
(6) P > Perm(M,N)
is true.

In (6) both M and N are terms of array sort, i.e.
M = <...<VM,i,e>...> and
N = <...<VN,j,f>...> :

Thus, both M and N represent infinite arrays to which at most finite number of changes
(assign operations) have been made. Since Pl is unquantified, it can oniy constrain the
values of a finite number of the elements of M and N. Consequently, the only way that (6)
can be true for all assignments of the variables -- in particular for all assignments of VM
and Vp -- 1s for V), and Vp to be the same variable.

Thus, if V), is not the same variable as Vjp, terminate negatively.

Explanation about Step 3:

We now come to the heart of the decision procedure. By step 2 we can rewrite (6) as
(7) P 2 Perm(<..<V,i,e>..><.<V,jf>.>)

Formula (7) says that array V, after a certain finite sequence of assign operations, is a
permutation of the same (infinite) array V after a different finite sequence of assign
operations. Each assign operation can be viewed as the removal of one element from the
array V and the insertion of another. We come, then, to the fundamental idea of our
decision procedure: if we let Iy, be the muitiset of elements inserted into the first array by
assignments, and Dy, be the multiset of elements deleted { am it by assignments, and if we
let Iy and Dy be defined similarly for the second term, the (7) holds if and only if

(8) lM*DN‘lN*DM
is TRUE as a multiset equation with the assumption Py. (The + stands for multiset union.)

More precisely, since IM, IN. Dy and ON are multisets of terms, we must show that (8) is
true for all assignments of the variables for which P is TRUE, i.e.
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4 @) Py ley * By ok Dy

At this point we are in a position to conclude that formulas of the form of (1) are decidable.
We have reduced it to the problem of deciding the truth of formulas of the form (9). Since
in (9) the multisets in the consequence are finite and explicitely listed, we can express the

equation as a finite set of disjuncts of conjuncts. For example, the following formula in the
form of (9)

P > {ab,c} = {d,e,f}
can be expressed less tersely as

P > (a=d A b=e A ¢c=f) v
(a=e A b=d A c=f) v

(a=f A b=e A c=d)

with six disjuncts. In general, there will be n! disjuncts if the multisets contain n
expressions each. The resulting formula is in Lpas» @and therefore decidable. But using the
decision procedure for Lpp directly in this way would be intolerably slow in most cases, and
'} therefore we propose a more practical .continuation of the decision procedure in step 3.

Step 3:
We begin by computing Iy, Iny Dy 2nd Dy using the following
symbolic algorithm.
begin
multiset of integer expression : I I O Ons

array expression : M, N, MM, NN, X;
integer expression : i,e;

M« IN“DOM<DOn«{h

MM« M; NN « N;

o do

MM ~ <X,i,e> = Dy « Dy + {X[i]} Iy « Im+ {eli MM « X Il
NN ~ <X,i,e> = DN e DN + {(X[1]h IN - IN + {e}; NN « X

od
end

The first four lines of the algorithm are declarations indicating the types of
expressions the variables may take as values. The do -- od construct is Dijkstra’s
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nondeterministic repetitive guarded command construct [Dijkstra]. The ~ sign is a pattern
match operator which can be read "is of the form™ It returns true or false according to
whether or not the match succeeds, and has the side-effect of binding the variables in the
right-hand argument whenever the match succeeds.

Having computed I\, I, D)4 and Dy, we need to prove (9). We can do this if we have
an algorithm for proving §

(10) P25, =5,

where P is a Presburger array formula and S| and S, are multisets of integer expressions.
We propose to find pairs of elements e ¢ Sl and es ¢ 52 such that

P:e1=e2.

Whenever we find such a pair of equal expressions we remove them from the muitisets
and continue with the smaller multisets, attempting to show

stl '{el}=52-{62}.
The following iteration will remove pairs of equal elements from S and Sy:

do
X€S) Ay €Sy A[Pox=y] » S «S; -{x}; Sp «Sp - {y}
od

Once again we have used Dijkstra’s iterative guarded command constrtct. The guard is
intended to be a rather elaborate pattern match operation which means "find x ¢ S) and y ¢
S, such that P > x=y’ is true”. If the pattern match succeeds, the variables x and y are
bound to the matching elements, the action to the right of the arrow is executed, and the
iterziion continues. If the pattern match fails, the iteration terminates.

It might seem that writing the ioop the way we did makes the algorithm obscure. We
could as well have written the following doubly nested loop.

for all x ¢ Sl do
for all y ¢ 52 do

if (P> x=y]
then
(S « S; - {x};

Sz + Sp - {y}

However, we felt that the explicit double loop structure precludes opportunities for
optimization which could be important in an actual implementation.

If this iteration succeeds in reducing S; and Sz to empty, then formula (10), and hence
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formula (1), are TRUE, and the decision procedure terminates. However, if Sl and 52 are
not reduced to empty, it is not necessarily the case that (10) is FALSE, as we explain in the
next step.

Step 4:

Once all such pairs of elements which are equal as a consequence of P have been
removed, the remaining multisets still may or may not be equal. It may happen that under
one assignment of values to the program variables the multiset elements are pairwise equal
according to one correspondence, and under another assignment the elements are pairwise
equal under a different correspondence. There might be no two elements which are

pairable under all assignments. Probably the simplest example of this phenomenon is the
following:

TRUE > {(V[iJ<V,i,1>[j]} = {V[i}<V,ip1>0i]} -

In any assignment in which i=j holds, the multisets are equal because their first
elements are equal and their second elements are equal. And in any assignment in which i#]
holds, the muiltisets are also equal, but the elements are paired according to the other
correspondence. Thus, the multisets are equal under all assignments, but there is no pair of
elements which are equal under all assignments.

In order to decide the truth of
(11) P>S; =5,
we rewrite the formula as
(12) Po{mlisk}={n]isk]}

Formula (12) is equivalent to

(13) PA (ml'”lV’“l'“zv""’ml’"k"("‘l"”l"ml""z"---"ml""k )
OS{mlisk}={n]isk}.

Formula (13) can be broken up into smaller formulas such that (13) is true if and
only if all of the following k+1 formulas are true.

(14) PAml-nlD{milisk}-{nilisk}
PAml-nkD{m|llsk}-{n||tsk}
PA(midng Ampdnp AAmpgn)a{mlisk}={n]isk}

Each of the formulas of (14) can in turn be further simplified as
follows:

(15) PAm=n;o>{m|2sisk}={n]iskAnifl]}
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PAmM=n 2 {m|2sisk}={n|isknirsk]
(15%) P A (mp#ng A mi#ny A ... A mp#n,) D FALSE
We abbreviate (15%) as
(162) P> (m; €5Syp)

In (15) all of the multisets are smaller by one than those in (11). This fact forms the
basis of a recursive procedure for proving (or disproving) formula (11). We define a
recursive procedure TESTEQUAL(F’.SI,SZ) which returns TRUE or FALSE according to the
truth of (12). The multisets S) and S must have the same number of expressions in them.
TESTEQUAL works in four steps.

(1) If Sy =S,={}, the procedure returns TRUE immediately.

(i) As an optimization the procedure then checks that P is satisfiable. If P is unsatisfiable,
TESTEQUAL returns TRUE immediately.

(i) Choose an element my from Sl and break (11) into the first k-cases of (15). Call

TESTEQUAL recursively to test them. The recursive calls must all return true, or
TESTEQUAL returns false.

(iv) Test (16%) and return its truth value.
Here is the body of the procedure in an Algol-like syntax.

Boolean procedure TESTEQUAL(P.SI,SZ);
begin
formula: P,R;
multiset of integer expressions: §,S5;
integer expressions: x,y;

Comment: S; and S, must have equal cardinality;
if IS1#IS2| then abort;

Comment: Null multisets are always equal;
if S;={} then return TRUE;

Comment: Check that P is satisfiable;
if [-P] then return TRUE;

Comment: Check all cases of (15) except (15%);
x « choice(S )
for all y ¢ S, do
if not TESTEQUAL(P A x=y , 81 = {x}, Sz - {yl) then return FALSE;
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Comment: Return the result of (16%);
return [P 2 (x € S5)]
end.

Again we use [P]-notation as a Boolean expression meaning "P is true”. Of course we
only use this notation when P is a formula in a theory known to be decidable. The choice
function merely returns some (random) element of its multiset argument. We have been
rather loose with some of the syntax in this program, but we trust that the reader will be
able to supply the missing interpretations from the discussion above.

A few additional remarks should be made about the decision procedure we have
described above. OQur experience indicates that for the kinds of programs people actuaily
write, step 4 of our decision procedure is unnecessary; if the verification condition is in fact
a th=orem, this is established by step 3. Therefore, if this decision procedure is embedded
in a real verifier, it might be wise to issue a warning message to the user before (or instead
of) proceeding to step 4, since the worst case complexity of the TESTEQUAL is at least n! in
the size of the multiset arguments.

We have only treated the case that the values of the array elements are integer.
However, the procedure can be adapted for arrays of reais if the allowed operations on
reais are within Tarskian arithmetic [Tarski]. As a matter of fact, the decision procedure
can be adapted for any data type in which the equality among terms is decidable.

We observe the procedure for reals. The formula we are going to deal with has the
form

P A Perm(A,A0) > Perm(B,A0)

where A and B are terms of sort array of reals and P is an unquantified well-formed
formula of the two-sorted theory of integers and reals. The restriction here is that we do
not allow any mixed sort terms or atomic formulas, so that you cannot equate or add terms
of integer and real. Because of this restriction one cannot use a real term to be the index
info an array.

The procedure described in this section can be carried out without modification, except
where we have to test the truth of particular unquantified formulas. In such cases we can
apply the procedure of the previous section to eliminate arrays. Then we can transform
the formula to conjunctive normal form. All of the conjuncts have to be valid. Each
conjunct consists of disjunction of atomic formulas and we can split these atomic formulas
into two classes, one for integer and the other for real. The validity of both disjunctions
are independent, and we can use the separate decision procedures for integer and real.
Thus, we can decide the permutation property of arrays of real with the same basic
algorithm.
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Example

The following is an insertion sort program. We can show that the final array is the
permutation of the initial array by the decision procedures given in this paper.

The annotated program is

assert Perm(A,Ao);
J=2;
invariant Perm(A,Ao)
while J<N do
begin
KEY«A[J];
l<J-1;
up: assert Perm(<A,l#l,KEY>,AO);
if A[1J<KEY then goto exit;
All+1])<A[l);
l<I-1;
if 121 then goto up;
exit: A[l+1]<KEY;
JeJ+]
end;
assert Perm(AAp);

Since this program conforms to the restrictions of the Presburger array programs with
Perm(A,Aqg) assertions, its correctness is decidable.

The verification conditions are
1) F’erm(A,Ao) > Perm(AAq)
2) Perm(A,Ag) A JsN o Perm(<A,J,A[J]>,Aq)

«‘ 3) Perm(A,Ao) A~ JsN > Perm(A,Ao)

i

A 4) A[1J<KEY A Perm(<A,l¢1,KEY>,A0) > Perm(<A,I+1,KEY>,A0)
! 5) 1<1-1 A ~A[lJ<KEY A Perm(<A,l+1,KEY>,Aq) 2 Perm(<<A,l+1,A[1]>,,KEY>,Aq)
¥ 6) A[1J<KEY A Perm(<A,l+1,KEY>Aq) 2 Perm(<A,l+1,KEY>Aq)

7) ~1sl-1 A -A[IJSKEY A Perm(<A,l+1 KEY>Aq) > Perm(<<A,I+1,A[1]>,,KEY>,Ag).

The non-trivial verification conditions are 5) and 7), which are very similar. Let us
examine 5).

VC 5: Isl-1 A -A[IJSKEY A Perm(<A,l+1,KEY>Aqg) 3 Perm(<<A,l+1,A[1]>LKEY>Aq)

. — v ——
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Step 1 Transform to
1s1-1 A ~A[1]JsKEY > Perm(<A,l+1,KEY><<Al+1,A[1]> 1, KEY>)

Step 2 The base array variables of the two array terms are the same; proceed.

N

tep 3
Iy = {KEY}
Dy = {A[I+1]}
In = {AlI] , KEY}
Dy = {A[I+1], <AI+LA[IP[1]}.

Transform to P o [ ,+Dp=Ip+Dy form, ie.
1<I-1 A -A[IJsKEY o {KEY , A[I+1], <AI+1,A[I]>[1]}={A[I], KEY , A[I+1]}.

By inspection we can see that the two muitisets wouid be reduced to empty by Step 3,
because

1<1-1 A ~A[1]<KEY > KEY=KEY
1<1-1 A -~A[1J<KEY > A[I+1]=A[I+1]
1<1-1 A -A[IJ<KEY > <A,I+1,A[I]([1]=A[1]

Step 4 Unnecessary, because step 3 reduced the multisets to null.

5. Conclusion

Uniike the decidability results for program schemata, verification decidability is not
influenced by the control structure of programs. That is, the decidability results are not
sensitive to individual programming style or to variations in algorithms for the same task.

Our permutation decidability results can be applied to almost all of the sorting
programs people usually write. We therefore feel that the methods developed in this paper
shows the value of having domain specific, specially interpreted predicates such as Perm in
the assertion language. Had we not used the Perm predicate as we did, we might have had
to write a second-order formula to express the same thing, such as the following:

Perm(M,N) = (3F)(VxXYy)[ F(x) = F(y) 2 x =y A M[x] = N[F(x)] ]

It seems very unlikely that verification conditions allowing this kind of quantification over
functions will be decidable.

The next target of our research will be the orderedness properties of Presburger
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arrays. Eventually we hope to find a single assertion language in which the inductive
assertions for both the orderedness and permutation properties of ordinary sort programs
can be expressed, and for which we can find an algorithm to decide the resulting
verification conditions.

There are various other directions that future research in this area might take. For
each algorithm domain we should try to establish assertion vocabularies for which the
resulting verification conditions are decidable. When decision procedures are discovered,
they should be formulated in such a way that they can provide useful debugging infornmiation
wihen a proof fails. And, of course, a long range goal is to build a verifier which can
recognize programs of the decidable domains, and verify them without human aid.
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