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SOLUTION OF THE PERTURBED HARMONIC
OSCILLATOR BY COMPUTER

I. INTRODUCTION

Many problems in applied mathematics reduce to a non-

linear oscillator. En fact, in ce les tial mechanics many

times transformations are sought which will reduce a prob-

lem to a nonlinear oscillator . Some examp les are :

1. The central force problem after the transformation

2r (1/u) , dt = r dT where r is the radius and t is

time ;

2. Motion in the neighborhood of a stable equilibrium

point and

3. The Vinti problem l , motion about an oblate

spheroid, which can be reduced to two uncoupled perturbed

harmonic oscillators and a quadrature . The purpose of this

report is the development of an analytic series solution of

the perturbed harmonic oscillator

X + X + c~f(X;~~) 0 (1)

where f(X) is a polynomial in X and ‘ is a small para-

meter.

Not.: Manuscript subm itted April 2~ , 1977



Low order solutions can be obtained “by hand” but the

amoun t of algebraic manipulat ion required to obtain a high

order solution make s carry ing the solutions to higher order

prohibitive . This repor t describes a computer program

that develops an analytic serie s solution to the perturbed

harmonic os cilla tor , Eq. (1), to the desired order in

Lindstedt’s method 2~ is used to develop the solution

and algebraic man ipulation routines 3 are employed to

carry out the algebraic manipulation.

It .  TECHNICAL DISCUSSION

A. Motion Near an Equilibrium Point

As an example of a problem which reduces to a

perturbed harmonic oscillator , consider the problem

y = F(y) , F(y
0
) — 0 , < 0 (2)

y—y0

Thus y — y is a stable equilibrium point. To analyze the

motion in the neighborhood of the equilibrium point, expand

F(y) in a Tay lor serie s about y
0, 

i.e,

F(y) - F(y
0
) + F ’(y

0) (y-y0) + ~F”(y
0)(y-y )

2+ • . .  (3)

and let

X - (y-y )/L (4)

where L is a representative scale length so that X = 
0(1)2



at the maximum value of X. With

= l/L
(5)

= - F ’(y 0 )

Equation (2) reduces to

+ 
2~ - .-:f(X;e) (6)

where f(X;€) is polynomial in X. A further time transform-

ation of s = ~t transforms the problem to one with a

frequency of unity .

An exac t solution of Eq. (1) can be obtained in terms

of elliptic functions but sometimes elliptic function solu-

tions are not par ticularly desirable and the reduction of

the problem to obtain the elliptic function solution can be

quite difficult. There are several methods for obtaining a

series solution in power of e but the best methods for

this problem are Lindstedt ’s method ~2 and Lie Series 1 4 .

Lie Series involves the use of Haxniltonian mechanics

and is easily automated on the computer. For studying

proper ties of the solution, it is probably the best method ,

but to obtain solutions in terms of specific initial condi-

tions , Lindstedt’s method is the easiest to implement.

B. Lindstedt ’s Method

Consider the problem

:3



X = - e f(X; .~), X(0) = A , X(O) = B (7)

To develop a series solution let

X ~~ = X + + + . . .  (8)
n=o

Since the frequency is amplitude dependent in nonlinear

oscillator problems , introduce a new time scale i via

= ~ut = (1 + + ~2 + . . .)t (9)

where the £ are undetermined at this point . Substi tuting

Eqs. (8) and (9) into Eq. (7) and equating like powers of

gives

x ’• ’  + x = 0
o 0

+ X1 
= -2’.u1X ’’ -f(X ;0) (10)

N + X g~(~1,~ 2 Un_l~ 
X
0~ 

X1,..., X 1)

The initial conditions are satisfied by the zero th order ,

i.e.

X (0) = A , X (0) = 0 , n = 1, 2, ...o n (11)
X ’(O)=B

x~(O) + F
1

X (0 ) = 0
(12)

X ’(O) + u1X
’ 
1

(0) + ... + .t 1X
’(O) 0

4 
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Eqs. (12) are a result of setting the zeroth order of

= equa l to B and the higher orders in -~ equal

to zero .

The solution of X is
0

X = Acosi + Bsin- (13)

Substitution of Eq . (13) into the X
1 

equation results in

resonance of the X1 equation because the homogeneous por tion

of Eqs. (10) are identical .  Since a uniformly valid solu-

tion is sought , no resonant or secular terms can be present

in X , n = 1, 2 There fore , 
~l is chosen to make the

coeff ic ient  of the resonant term in zero. The rest  of

the t- terms are evaluated in like manner.

C. Example

As an example , consider a restricted form of the

Duffing equation, i.e., the hard spring problem

+ x + = 0, X(O) = A , X(O) = 0 (14)

App lication of Eqs. (8), (9) and (12) yields

C o
— x ’’ + x  = 0 ,

(15)
X (O) = A , X (0) = 0

— X ’’ + X  — - 2  X ’’ - X1 1 l o  o
(16)5



x1(O) = X (O) = 0

— 

X~~
’ + = _ (2

~ 2 
+ ~~) X ’’ - 2w 1X~~’- 3X2 X1

(17)
x2(O) = X~ (0) = 0

The solution to the zeroth order equation is

X = AcosT (18)

Sub stitution into Eq. (16) gives

X~
’ + = A(2~ 1 - 

~~~ A
2)cos~ - cos3~

The cos- term results in resonant or secular terms in X
1

which canno t be present if a uniformly valid solution is to

be ob tained. To suppress this secular term set

(19)

The corresponding solution of X1 which satisfies the

initial condi tion is

3
X1 

= (cos3i - cos ) (20)

The solution of Eq. (14) is

X Acos-~ + ~~ €A 3 (cos3’- - c o s T )  + 0(C2) (21)

y = [1 + ~A
2 

+ 0(~ 2) t 

(22)6



III. COMPUTER IMPLEMENTAT ION

The computer program LNDSTD has been written to carry

out the Lindstedt procedure . The program currently runs on

the NRL DEC-System 10 computer and is available on request

from Code 7904. Inputs to the program and other considera-

tions are given below. Examp les are given at the end.

A. Algebraic Expressions Wri t ten  as Poisson Series

Before specify ing the inputs to LNDSTD , it is

necessary to describe the way in which algebraic expressions

are coded in the algebraic routines used. LNDSTD uses the

routines of R, Dasenbrock which are described in detail in

ref . (3). In order to use these routines , an algebraic

expression must be written as a Poisson series in which

each term is of the form :

v~i1 . (si ~i) [
~ 

a i~~~~~~

i] 
(23)

i=l j i=l

where :

N and D are decimal integers up to 11 digits;

V
i 

are pol ynomial var iables;

ej are the corresponding integer powers;

are trigonometric variables;

are integer coefficients.

7



Each term is coded using six computer words . The first two

words contain N and D respective ly entered as decimal

integers. The exponents e1 
- e

12 
corresponding to variables

v
1 

- v12 are packed inte words three and four as two octal

integers. (Note that an octal integer is ind~~ated both

here and on the DEC System 10 by using double quotation

marks preceding the number). The fifth word is +1 if the

cosine function is intended and -l if the sine function is

intended . The coefficients are packed into the

sixth word as an octal integer. The way in which a term is

coded into these six words is best explained by the follow-

ing example:

Code the express ion ~ v~ v4
2 v~ v~~ cos (

~~ +
into six computer words . The expression makes up a Poi~’son

series of one term and may be written as

3 3 0 0 -2 9 0 0 11 0 0 0 0
~ V

1 
V

2 
V

3 
v
4 V

5 
V

6 
v
7 
V
8 

V
9 
V10 V11 V12

~ COS L - l  + 0~ 2 + 0~3 
± OS4 + +

Word 1 is set equal to 3.

Word 2 is set equal to 4.

Each two octal digits of words 3, 4 and 6 are set equal to

the octal value of the correspondong exponen ts or coef f i -

cien ts biased by the amount “40 for variables v2 -

8



V
1 

- v12, 2 
- 

~6 
and by the amount “20 for variables v1,

V 7 , S
~~

.

Word 5 is set equa l to +1.

The result is:

Word Word Word Word Word Word
1 2 3 4 5 6

N D e1e2e3
e4e5e6 e

7
e8e9e~~11e12 ~~~ a 1a

2a
3
a4

a
5
a

6

3 4 “234040365140 “205340404040 1 “214040404045

In what follows , any reference to a variable v . or S. is an
1 1

implicit reference to the position of the corresponding e.

or a. within word 3 , 4 or 6,1

B. Inputs to LNDSTD

1. The first step in running LNDSTD is to specify

whether input will be from the terminal or from disk and

whether output will be to the terminal or to disk. En

both cases , the response ‘T’ indicates the terminal , and

any other response indicates disk . If disk is chosen in

either case , a file name will be requested. Note that the

extension .DAT is assumed for the file unless some other

extension is specified or the file name is ended with a

period .

The input file should be prepared following the

formats of steps 2-7 below . All line sequence numbers 
must9



I

be removed from the file.

2. The next input record specifies the desired

order in of the solution . The order may not exceed 4.

3. The next input record specifies the number of

terms in f(x;-:), (NTERN),

4. The next 10 input records specify names for ~~~,

x, initial value of x, ini tial value of *, - , and 5 other

variables available to the user for defining f(x;~~).

Carriage returns may be entered for variables which will

not be used . Names may be up to four characters long .

5. The next NTERN records define f(x;~~). Note

that the f(x;-:) used must correspond to the differential

equation written in the form

~ + x + f(x;—:) = 0 (24)

Each term is entered as one record . The function f(x;— :)

must be a polynomial in x and may not contain any trigo-

nometric variables , i.e ., each term is of the form

r l 2  1
[TJ v~1j . (25)
1=1

Thus , each term is composed of a numerator , a denominator ,

and two octal words corresponding to variables 1 to 12. If

appears in a term , var iab le v1 must be used for it.

Variables v
2 

- v6 mus t no t be used ; i .e., they should be

10



entered as 
“40’s. V ariable v 12 

must be used 
for x.

other varia 
es should be entered as v7 

- 
The format

for each 
term is (2110 , 3x , 012, 3x , 012).

6. The next 
record specifie

s the form 
of the

zero order 
soluti0n. In genet~~~ 

the form iS

cOS ~ 
+ *i 

sI~

where x~ 
and *~ 

are the 
initial values 

of x and ~

resPecti 1
~~ 

Enter ‘C ’ if onlY the cosine 
sO1ut~

0fl is

deSit~~ ~~~ 
= 0); IS ’ if onlY the 

sine solu
tion js desired

(x
1 

= 0); or ‘SC ’ ~f a 
5jne and ~

osifle soluti
on jS desired

o and *~ 
0).

~~~• 
The last 

input record 
speC~~~~

5 ~~~~~~~ 
avai~~

able to the 
user. SiX optt0fl5 

are avaU~~~~ ’ 
and are inpu

t

~~ 
the format (61)

. Enter the 
value 1 if the option is

de sired and zero othe~~ iS~~ 
A ~~~ riage return j 5 equiva-

lent to ~
hO0S~~~~ 

no options
. The ~~~~~~~ 

available are:

1) SkIP the check 
at the end: 

if this 
option

IS not 
chosen , the 

progr~~ 
wil1 5Ubs

tjtute the

final solu
tbofl intO 

the differen
tial equation

as a check. 
if the 

solution is 
‘arge , the

final check 
may LnvOl~~ 

a very long execu
tion

time and may ~
ossi~~Y 

requt~~ 
more

than is 
available .

it



4

2) Do not type final x.

3) Do not type final * .

4) Do not type final

5) Do not type intermediate results.

6) Decide at each step whether to type inter-

mediate results. [f this option is chosen ,

LNDSTD will type out at each output step the

number of terms in the expression corresponding

to that step and will then type “PRINT(Y/N)?”

The user should type “Y” to have the expres-

sion typed out. Any other response will

suppress typing , and processing will continue.

If the f i r s t  number typed is other than a 0 or a 1, this

list of option descriptions will be typed.

C. Output from LNDSTD

LNDSTD first types out the information input by

the user so that it may be ver i f ied. (The user is asked

whether or not to proceed . A negative response causes

LNDSTD to start over from the beginning.) If none of

options 2-6 were taken , the program proceeds to type all

intermediate and final resul t s .  Intermediate resul ts  con-

sis t of the solutions at each order i of r . and x ..
1 1

Final results consist of the solutions of x, *, and ~ to

12



the order in ~ specified in step 2 of the input. If any

of the options 2-6 are chose , output of results to the

terminal is changed ac cordingly. If option I was not

chosen , LNDSTD will carry out a check on the solution by

evaluat ing the expression ~ + x + ~f(x). If the check is

successful , the series corresponding to this expression

will have no terms in it, i.e., the result is zero.

Regardless of which options are chosen, the final

solution of x , k, and 
~(=~) are output to disk files named

FORZI.DAT , F0R22.DAT , and FOR23.DAT. This output is in

coded form , i.e., for each term in the Poisson series

corresponding to the solution, one line containing six

words as described earlier is written to the file. (Pre-

ceding the six words in each line is a number which is of

significanc e only to the algebraic routine.) The variables

appearing in the series and their names are shown at the

beginning of each f i le,  Aside from this l ist  of variables

and names , the fi le carries no other informat ion which

identifies the series. It is the responsibil i ty of the

user to supp ly this identification and to rename the files.

The contents of these files may be transformed into a more

readable form using the utility program TYPSER , which is

illus trated in an example below.

13



D. Warriirigsand Special Considerations

1. While LNDSTD does not limit the number of terns

in f(x), the maximum degree in x of f(x) is 32/i where i

is the desired order . Practical considerations further

restrict the length and degree of f(x). For examp le , a

sine solution corresponding to f(x) = x-2x3 is 35 terms

long to 4th order in and required about one minute of

CPU time, A sine and cosine solution corresponding to f(x)

f (x ) = ax + 3x2 
+ bx 3 , where a and b are constants , is

about 700 terms long to 4th order and requires ten minutes

of CPU time, In the latter case , not only is the execution

time long, but the storage requirements approach the limits

of the DEC Sys tem 10 computer , It is strongly recommended

that the solution for any f(x) be first rtin only to 1st

or 2nd order to get some idea of the size of the solution .

For the second case above , a 2nd order solution is less

than 100 terms long.

2. The problem most likely to be encountered by

the user is that of insufficient core storage for the job.

If this oc curs , LNDSTD will type out a message stating that

available s torage has been exceeded , and execution will

terminate . At this point , disk files FOR2I.DAT , F0R22 .DAT ,

and F0R23.DAT will contain the solution to the highest

14



order which was complete when execution terminated . In

order to ge t a solution t o higher order than this , the

dimensions in LNDSTD must be increased and the job reloaded.

3. If the 0th order solution of x is chosen to

be of the form x
1 
cos S then the initial value of * is

zero and does not appear in the solution. In this case ,

variable 6 is available to the user , thus increas ing the

number of free variables to 6, i.e., variables 6-11. In

any case , the name used for variable 6 will 1e that

entered for initial * at Step 3.

4. En the present version of LNDSTD, all numeric

constants must be approximated by a rational fraction N/D.

Thus the largest constant possible is ± 34359738367 and

the smallest possible is ± 1/34359738367. If during the

procedure a number exceeds these bounds , execution will

terminate and the message “LOSING ACCURACY IN REFACT” will

be typed.

5. LNDSTD does not check to insure that the

exponents e~ and trigonometric coefficients a~ do not exceed

their bounds (-32 to +31 or -16 to +15). It is the respon-

sibility of the user to insure that this does not occur.

If it does occur , the result is that the exponent or co-

efficient overflows into the position of an adjacent

15



variable , and the end result will be incorrect. It will be

evident in the f ina l  check if this has occurred . If the

che ck is suppressed by choosing option 1, then the fact

than an error has occurred will be evident only by the

appearance of undesired variables or in the drastic effects

on the variable which overflowed .

E. Example Runs

Use of Programs LNDSTD and TYPSER are illustrated

in the three examples below. The first example solves the

equation ~ + u + €(au + 3u
2 + bu3) = 0 to 1st order in € .

In the second example , the disk file EXAMPL is created for

input to LNDSTD to solve the differential equation

+ r + ~~~~ 
- 2n3) = 0. In this case , no options are

chosen and output is to disk file EXAMPL.LP, which is later

queued to the l ine pr inter . (Note that in both examples ,

unused variables are given the name, “????“. S ince the

appear ance of these variables in any of the resul ts indi-

cates an error , this will serve to flag such an occurrence.)

Example 3 illustrates the use of TYPSER. The program

is self-prompting and needs little exp lana t ion , If vari-

able names appear at the beginning of the input file ,

TYP SER will use them. If the user wishes to use different

names, all lines con taining alphabe tic characters mus t be

16



removed from the input file . TYPSER will then ask for new

names and corres ponding variab le numbers , fir st for the

polynomial variables , and then for the trigonometric vari-

ables. A carriage return indicates tha t no more names are

to be entered. TYPSER will also truncate a series to any

order in any pol ynomial var iable and will reverse the prin t

order if des ired , (Series are normally printed in order

of decreasing powers of variable 1). The series printed

in examp le 3 are taken from examp les I and 2. The variable

names in the last series are changed as illustrated,

17



Example 1:

.RUN DS~O:LNDSTD[363,lØ56]

LNDSTD:VERSION6 REVISED 2/16/77

START OF EXECUTION

l.IS DATA TO BE ENTERED FROM A TERMINAL(T) OR FROM DISK(D)? T
IS PRINTED OUTPUT TO BE TO TERNINAL(T) OR TO DISK(D)? T

2.ENTER MAXIMUM ORD ER IN E OF FINAL SOLUTION: 1

3.ENTER NUMBER OF TERMS IN F(X): 3

4. ENT ER DESIRED NAMES FOR VARIABLES AND PARAMETERS :
E— EPS
x- U

INITIAL X— UI
IN1TL\L XDOT- UDI

TALJ - TAU
PARAM1— ????
PARAM2- A
PARAM3— B
PARAN4’????
PARAN 5— ??? ?

5.ENT ER F(X) ONE TERN AT A TIME. THE ELEMENT S OF EACH TERN ARE
INUN , IDNOM , IEXP 1, IEXP 2 AND THE FORMAT IS (2110 ,2(3X012)):

N NNNNNNNDDDDDDDDDD 000000000000 000000000000
1 1 204040404040 204140404041
3 1 204040404040 204040404042
1 1 2Ø4Ø4Ø4O4Ø4O 204041404043

6.SINE, COSINE, OR SINE & COSINE SOLUTION(S,C, OR SC)? SC

7 .ENT ER OPTIONS (TYP E “2” FOR LIST); FORMAT(6l): 2
OPT1—l MEANS SKIP CHECK AT END
OPT2’.l MEANS DO NOT PRINT FINAL X
OPT3-l MEAN S DO NOT PRINT FINAL XDOT
OPT4-l MEAN S DO NOT PRINT F INAL TAUDOT
OPT5—l MEANS DO NOT PRINT INTERMEDIATE RESULTS
OPT6— 1 MEAN S DECIDE PRINTING ON INDIVIDUAL BASIS

ENTER OPTIONS: 0 0 0 0 0 1

18



THE P ERTUR BING FUNC TI ON IS:

F(X) a
+A*TJ
+B*U** 3
+3*iJ**2

THE SOLUTION WILL BE A SINE & COSINE SOLUTION TO ORDER 1 IN EPS.

THE OPTIONS CHOSEN ARE:

OPT6: DECIDE PR INT ING ON IND IVIDUAL BASIS

PROCEED (Y/N )?

SOLUTIONS FOR U , UDOT AND TAIJDOT WILL BE OUTPUT IN PACKED
FORMAT TO FILES NAMED F0R21.DAT, FOR22.DAT, AND FOR23.DAT.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ZEROTH ORDER ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1~~~~ ***~~~

U 0 — (  2 TERNS)
PRINT(Y/N)?Y

+iJI*COS(TATJ)
+UDI*SIN (TAU)

************************** FIRST ORDER ***************************

OMEGAI a ( 3 TERMS)
PR INT (Y/N) ?Y

+3/8*UD I**2*B
+l/2*A
+3/8*B*UI**2

Ui • ( 17 TERMS)
PRINT (YIN) ?N

************************** FINAL RESUL T **************************
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U —  ( 19 TERNS)
PRINT (Y/N)?Y
_ 3/32*EPS*IJDI**2*B*UI*COS(3TAU)
+1/ 32*EPS*B*1JI**3*COS(3TAU)
_l/32*EPS*UDI**3*B*SIN(3TAU)
+3/ 32*EPS*UDI*B*UI**2*SIN(3TAtJ)
_l/2*EPS*UDI**2*COS(2TAU)
+l/2*EPS*UI**2*COS(2TAU)
+EPS*UD I*UI*SIN(2TAU)
÷3/32*EPS*UDI**2*B*UI*COS(TAU)
+2 *EPS*UDI**2*COS (TAU)
—1/ 32*EPS*B*UI**3*COS(TAU)
+EPS*UI**2*COS (TAU)

(TAIJ )
—9/ 32*EPS*UDI**3*B*SIN(TAU)
_l/2*EPS*UDI*A*SIN(TAu)
_21/32*EPS*UDI*B*UI**2*SIN (TAU)
_2*EPS*UDI*UI*SIN(TAU)
+UDI*SIN(T~C)
_3/2*EPS*UDI**2
_3/2*EPS*UI**2

UDOT ( 17 TERMS
PRINT (Y/N) ?N

TAU DOT - ( 4 TERMS)
PRINT (Y/N)?Y
+3/8*EPS*UDI**2*B
+i /2*EPS*A
+3/8*EPS*B*UI**2
+1

CHECK

D2(X)/DT2 + X + E*F (X;E ) = ( 0 TERMS )
STOP

END OF EXECUTION
CPU TIME: 17.06 ELAPSED T INE: 5:16.10
EXIT

.RENAME U—FOR21 .DAT, IJDOT=F0R22 .DAT, TAUDOT~FOR23 .DATFiles renamed :
FOR21 .DAT
FOR22 .DAT
F0R23 .DAT

20



Example 2:

.SOS EXAMPL
Input: EXANPL
00100 4
00200 2
00300 EPS
00400 4H
00500 ? ? ??
00600 HDI
00700 TAtJ
00800 ????
00900 ? ? ? ?
01000 ? ? ? ?
01100 ????
01200 ????
01300 1 1 2040404 04040 204040404041
01400 —2 1 204040404040 204040404043
01500 S
01600 0$
*ES

[DSKD : EXAI.IPL)

.RUN DSKD:LNDSTD[363.1O56]

LNDSTD:VE RSION 6 REVISED 2/16/77

START OF EXE CUTION

1.IS DATA TO BE ENTERED FROM A TERMINAL (T) OR FRO M D I S K ( D ) ?  D
IS PR INTED OUTPUT TO BE TO TERNINAL (T) OR TO DISK(D)? D
ENTER INPUT FILE NAME: EXAMPL .
ENTER OUTPUT FILE NAME: EXAMPL.LP
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THE PERTL’RBING FUNCTION IS:

F(X)=
_2*H**3
+H

THE SOLUTION WILL BE A SINE SOLUTION TO ORDER 4 IN EPS .

NO OPTIONS WERE CHOSEN.

PROCEED (Y/ N)? Y

SOLUTIONS FOR H, HDOT AND TAUDOT WILL BE OUTPUT IN PACKED
FORMAT TO FILES NAMED FOR21.DAT , F0R22.DAT , AND F0R23.DAT .

************************************************************************
************************* ZEROTH ORDER ***************************
*************************** ~‘~********************************************

H O = (  1 TERMS )

************************************************************************
FIRST ORDER ,~**************************

************************************************************************

OMEGA1 — ( 2 TERMS)

Hi - 3 TERMS)

************************* SECOND ORDER ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

OMEGA 2 • ( 3 TERMS)

H2 ( 6 TERMS)—
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* * * * * * * * * * * * * * * ~ * * ,‘~ * * * * * * * * * * * * * * * * * * * * ** * * * * * * ** * ** * * * * * * * * * * ** * * * * * * * *
THIRD ORDER ***************************

OMEGA3 ( 4 TERMS)

H3 = ( 10 TERMS)

************************ FOURTH ORDER ****************************

OMEGA4 — ( 5 TERMS)

H4 — ( 15 TERMS)

FINAL RESUL T **********************~~~~~~*~~~~*

H = ( 35 TERMS )

HDOT = ( 31 TERMS)

LW DOT = ( 15 TERMS)

***************************** CHECK **************************~~***

D 2 ( X ) / D T 2  + X + E * F ( X ; E )  — ( 0 TERMS)

** ZERO **

STOP
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I

END ~)F EXECUTION
CPU TIME : 1 : 9 . 2 2  ELAPSED TIME : 4 : 5 9 . 0 0
EXIT

.RENAM E H=FOR2 1.DAT , HDOT=F0R22.DAT , TAUHDT =F0R23.DAT
Files renamed:
FOR2 1 .DAT
F0R22. DAT
F0R23.DAT

.PRINT EXAMPL .LP
Total of 11 blocks in 1 file in LPT request

Example 3

.SOS V—U
Edit: U
* FEND $
00800 END
*pO :800
00100 THE VARIABLES USED ARE:
00200 POLYNOMIAL VARIABLE 1 EPS
00300 POLYNOMIAL VAR IABLE 6 - TJDI
00400 POLYNOMIAL VARIABLE 8 • A
00500 POLYNOMIAL VARIABLE 9 B
00600 POLYNOMIAL VARIABLE 12 = UI
00700 TRIG. VARIABLE 6 — TAU
00800 END
*DO: 800
8 Lines (00100/1:00800) deleted
*ES
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~~KD:V~

.RUN DSKD:TYPSER [~~h3 ,1~~56]

START OF EXEC U TION

ENTER INPUT F I L E  NAME : UDOT.
ENTER OUTPUT FILE NAME: UDOT .TT?
ENT ER SERIES NAME: U TO 1ST ORDER
TRUNCATION? (Y/N): N
REVERSE PRINT O R D E R ’ ( Y / N ) :  Y
CONTINUE OR QUIT?(C/Q) C
ENTER INPUT FILE NAME: H.
ENTER OUTPUT FILE NAME: H2.TTY
ENTER SERIES NAME: H TO 2ND ORDER
TRUNCATION? (YIN): Y
VAR IABLE NUMBER AND ORDER: 1 2
REVERSE PR INT ORDER7 ( Y / N ) :  N
CONTINUE OR QUIT?(C/Q) C
ENTER INPUT FIL E NAME: V.
ENTER OUTPUT FILE NAME: V.TTY
ENTER SERIES NAME: V TO 1ST ORDER
INPUT VARIABLE NAMES:
POLYNOMIAL VARIABLE: 1 EPSV
POLYNOMIAL VARIABLE: 6 VDI
POLYNOMIAL VARIABLE: 8 ALFA
POLYNOMIAL VARIABLE: 9 BETA
POLYNOMIAL VARIABLE: 12 VI
POLYNOMIAL VARIABLE:
TRIG. VARIABLE: 6 TAUV
TRIG . VARIABLE:
TRUNCATION? ( Y I N ) :  N
REVERSE PRINT ORDER?(Y/N): N
CONTINUE OR QUIT? (C /Q) Q
STOP

END OF EXECUTION
CPU TIME: 13.73 ELAPSED TINE: 11:24.23
EXIT

.TYPE UDOT.TTY, H2.TTY, V.TTY
SERIES NAME : U TO 1ST ORDER
SERIES LENGTH: 17
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* S IN (F)
_EPS*UI**2*SIN(F)
—11/ 32*EPS*B*UI **3*SIN(F)
_ 1/2*EPS*A*UI*SIN(F)
_2*EPS*UDI **2*SIN(F)
_ 15/32*EPS*UDI **2*B*UI *SIN(F)
+IJDI *CO5 (F)
_2*EPS*UDI*UI*COS(F)
—9/ 32*EPS*UDI*B*IJI**2*COS (F)
+3/ 32*EPS*UDI**3*B*COS(F)
_EPS*UI**2*SIN(2F)
+EPS*IJDI**2*SIN(2F)
+2*EPS*TJDI*UI*COS (2F)
_ 3/32*EPS*B*UI**3*SIN(3F)
4-9/ 32*EPS*UDI**2*B*UI*SIN(3F)
+9/32*EP5*UDI*B*UI**2*COS(3F)
—3 1 32*EPS*UDI**3*B*COS(3F)

SERIES NAME: 1i TO 2ND ORDER
SERIES LEN GTH: 10

+1/256*Ep5**2*HDI**5*SIN(5F)
+3/16*EPS**2*HD I**5*SIN(3F)
—5/ 32*EPS**2*HDI**3*SIN (3F)
+1/16*EPS*HDI**3*SIN(3F)
+27 1/256* EPS**2*HDI**5*SIN(F)
_45/32*EPS**2*HDI**3*SIN(F)
+3/8*EPS**2*}fDI*SIN(F)
+9/16*EPS*HDI**3*SIN(F)
_ 1/2*EP S*HDI*SIN(F)
+HDI*$IN(F)

SERIES NAME: V TO 1ST ORDER
SER IES LENGTH: 19

-3/ 32*EPSV*VDI**2*BETA*VI*COS(3TAUV)
+1/32*EPSV*BETA*VI**3*COS(3TAUV)
—1 / 32*EPSV*VDI**3*BETA*SIN(3TAUV )
+3/32*EPSV*VDI*BETA*VI**2*SIN(3TAUV )
.~1/2*EPSV*VDI**2*COS (2TAUV )
+1/2*EPSV*VI**2*COS (2TAU’V)
+EPSV*VDI*VI*SIN(2TAUV)
+3/ 32*EPSV*VDI**2*BETA*VI*COS (TAUV )
+2*EPSV*VDI**2*COS (TAUV)
_1/32*EPSV*BETA*VI**3*COS(TAUV)
+EPSV*VI**2*COS (TAUV )
+VI*COS (TAUV )
—9/ 32*EPSV*VDI** 3*SETA*SIN(TAUV)
_ 1/2*EPSV*VDI*ALFA*SIN (TAUV )
—21/ 32*EPSV*VDI*BETA*VI**2*SIN(TAUV)

~2*EPSV*VDI*VI*SIN (TAUV)
+VDI*SIN(TAiJV)
_3/2*EPSV*VDI**2
_3/2*EPSV*VI**2

26



REFERENCES

1. Aifr iend , K.T., Deprit , A. ,  Dasenbrock , R., and

Pickard , H.M., “The Extended Phase Space Formulation

of the V iriti Problem ,” Paper No. 76-827 , presented at

the 1976 A IAA / AAS As trodynamic s Con ference , San Diego ,

Calif., August 1976.

2. Nayfeh , A.H., Perturbation Methods, John Wiley, 1972.

3. Dasenbrock , R., Algebraic Manipulation by Computer,

NRL Repor t 7564 , Naval Research Laboratory , June 1973.

4. Deprit, A.A~., “Canonical Transf ormations Depending on

a Small Parameter ,” Celestial Mechanics J., Vol. 1,

No. 1, 1969 , pp 12—30.

27



j iti~~ —.

T

k

• 
‘
U

-

1~



_ 1

_L_.

IT
i~giUi-


