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L. INTRCDUCT ICN

The continuing reed for improved detection performance by surfaoco ship sonars
has led to the proposed developrent of large, high-powered Conforwal/Flanar Array
sonar systems. Therse systems enhance detection through increased surveillance
coveraga, higher resolution capability and higher transmitted pouer 1ovc¥i}

Much of the potential enhancement of detection is due to tho increased
volune of data inherent to the system. Thus parallel to the physical developuent
of an array, means must be devised to process and extract targot information
from ery‘izrgé'Vblhmés of data.

Vé;x>distinct aspeets of data processing are evident. First, rcduction of
data volume within a single sonar ping interval and second, the intraping processing
of d=xta collectecd over soveral ping intervals. The nultiping processing may be
considered as the digital automation of the detection functlion norwally carried
out by a sonar operator. It involves a simplo track and implies a degree of
classification but is to be distinguishcd from the accurate track and detailed
classifi~ation functions.

The current report is the third in a series on multi-ping processing. The
first (1) considered an /N processor; one which required M geomatrically correlated
single ping threshold crossings within a span of N ping intervals. The performance
of this processor was below expectations and was adjudged inadequate due to the
poor usc of available amplitude information. In the second report (2), a form-
wlation of an oplimum multi-ping detector is undertaken which closely follous
well developed radar design techniques for the processirz of pulse trains. The
formulation takes into account the stationarity differcaces betwoen the sonar
problem and the ideal radar problem.

The intent of the current report was to extend the work of the second to
includo a quantitative porformance evaluation using current best estimated of
the statistical distribution of sonar signals. Signal models and their associated
perforiance equations were developed but the effort was terwinated prior to
programming of the equations on a digitzl computer. This report records the work

accorplishod and serves as a possible starting point for future investigations.

o « i




II. THE OFTIMUIf PROCESSOR
A detailed derivation of the form of the theorotical optimum data processor

for a somar system was derived in (2). Portions of that work arc repcated hore

hypotheses given N samples from 4 universe with an assumed distribution but
unknown parameters.

- Let D be tho total number of discrete locations urder surveillance. Lot A
be the number of locations accessible te the iarget betwoon successive ping
intervals. Then the number of possible Largét paths after two intervals is D\.
Following the Nth ping, there are D\N"j possible paths which the target may have
traveled through the curveillance area. The data processor is to decide between

the altcrnate hypotheses:

H(1) : target is presont with path 1

H(DANhl) ¢ target is present with path DAN"l

H(DA"1+1): target is absent.

The data frow ping k may be summarized in vector form as

2, = (RyyeeeiRy) k=1, 2 .cc. N

where Rki is the single ping output corresponding to the ith location on ping k.

= It is desired to process the data from successive pings in a way which
maximizes the probability of detection for a spccified average number of false
alarns. It is well known that the data processor which accomplishes this objective

must compule the set of a posteriori probability density functions

L(ZM.3) = 2y woee 2| HOD) tiCm1, L T e

and compare these with a throshold C which is inversely weighted by the probability
that H(j) is true. That is, if

L(Z,N,3) > C (1)

P, {n( 3 )}

i .
% {

i
B T —
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accopt H(j), otherwise H(j) is rejccted. The single ping processor outpuls
corresponding to different locations and/or different pings are assumed to be

independent allowing the representation

N D .
Mz = g T (R | BGY) (2)

k=1 i=1

The single ping processor consists of a bank of D matched filter/envelcope
dotector combinations, one for each location in the surveillance arca. With
target absent, the output is assumed to have & Rayleigh distribution given in

the usval form as

p(R) = _R_ exp R0 (3)

SR
q/o ZIV'O‘—

vhere
R = amplitude of the voltage envelopo
Wo
assuncd to have a Rice distribution (non-scintillating target model) and is given
by

i

mean square value of noise voltage With target present, the output is

P(R) = R exp [- R2+P2] I (R waw W)
E . . 2
A V. Yo
vhere
P = amplitude of the sine wave signal
Io = modified Bessel function of the first kind

The optimum processor must compute the expression given by equation 2 where
ki I H(j)) is Rice distributed if the indices k and i correspond to the true
targot location under hypotnesis H(g) and is Rayleigh distributed otherwise.
Substituting equations 3 and & into 2 yields for the first DAN'l

N D 2
iy e [ Rt ] Jalid) g [ .".&s.(xj.u_aﬁ] ( j’)c_a.(.ﬁ") (5)
k1) =1 Yo 2 od( Vo 2y 21/,

hypothescs

14 a(kj)




lie

whero a(k,j) is the truec location of the target on ping k under hypothesis j.

Tho test funclion way be rewriften more simply as

2.8 [p 2 , k
L(R,N,j) = exp |- H!7 } m T fgi exp [— fyi } I {fygjkj)_ﬁ ! (6)
Ao | w1 Lm A 2y, 3 5 j

Those factors of L(R,N.j) vhich are thie sano for ezch hypothesis nced not be
computed since they will have no effect on the relative magnitudo of L(R,N,i).
Similarly, the constant factor exp [» NPZ/ZE:Q] may be included in the comparison
circuitry. Thus the test reduces to:

Accept H(j) if

N
1,”; % ( Beatus) F ) > -l (7)
¢ Vs

If the test function does not excced the threshold for any possiblo path, thea
the targel is declared absent.

Now that the oplimal test function has been obtained, any monotonic function
of it may be used just as well. It is convenient to consider the lozarithu of
L(R,N,j) which yields the form

In L(R,N,j) + 1n P {{(j% > 1n C : (8)

Jf we assume all paths equally likely, thon the path probability contributes
equally to all tests and may bo ignored. The final decision eriteria becounes:
Accept H(j) if

N

1'?;1 In I (_ri@.(k”rj > InC , | 9)
Vo

Thus tho optimum processor takes the sum of N variates where each variate has
been processed by the function indicated in equation 9. For swall signal to

noise ratio, the following expansions may be applied

= + 4 2
_Io(x) 14¢3

(10)
2

N

In(1+4x°)=1X
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Insorting these expansions in the test yields the result

> constant

—

- }ﬁrzz .
16y 2 L, kel

that is, theo optimal processor can be replaced by a square law detector with a

linear integrator for small signals.

(11)

>

e 4
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III  PegrORVANCE EVALUATICN - STEADY SIGNALS

Tho optimun processor has been shown to consist of the linear integration
of some funclion of the envelope of the single ping processor output. It is
convenient to take the output as that of a square law detector and normalize with

respoct to the mean squaro noise voltage toward this end, let

2

Sy B
Zq/O

x:l P?' =

Vo

=zl

The quantity x may be identified with the signal-to-noise power ratio comionly
uscd in detection analyses. In terms of the new variables, the single ping
output distribution of interost are: ‘
For noise alone _

f,(y) = exp [ y) y>0 | (13)

For signal plus noise -- steady signal

fl(y) = exp {-y-x] I (ZWJ;;- ) y>0 (14)

For a singlo ping,‘tho probability of false zlarm ard dotection aro cqual to the
probability of exceeding a presot threshold with the target absent and present

respectively. In equation form, the probabilities are:

5 o
P, :j fo(y) dy
c
o (15)
P =f £,() dy
c

For the sum of N variables, let

=&
& ¥ (16)
1=1




-

The distribution functions of Fguation 15 are replaced by the distribution function
for Y. This is most easily obtained through theo use of characteristic functions
wherein the characteristic function of tho sun of I varlates iz oqual to the
product of their individual characteristic functions.

3 o . . . . . .
For signal plus noise, the characteristic function of Iguation 1l is given by

o°
- C,(p) = jvew[-r«-y] I (2\/»y ) exp ['py] dy (17)

The integral may be obtained from pair 655.1 of Campbell and I“o:;ter{ 3]. The
integrals of this reference use eoxp {.-py}for the first integration and exp [py}
for the inverse transform. This same praclice is uscd hore to allow direct use

of the tables of reference 3. Inserting the -p in Equation 17 yields the function
Cl(p) = 1 exp [-x.' exp [x/(pt1 )] (18)
+1 J L :
P
The characteristic function for the sum of N variates is then

: N
) = [e )] (19)

= 1. exp [..Nx] exp [Ny/(p'i)]
(pr)"

From pair 650.0 [3] » the density distribution is seen to be

N-3
{ (Y) = _L 2 exp [—Y—- I};] I (2 Y NX&) (20)
e Nx =
Tho probability of detection is given by
o“
PD(N) = f fN (Y) ay (21)
c

This integral is not soluable in terms of well known functions. It is a gecial
caso of the incomplete Toronto function [U_] which is deflined as
n-ntl -r2 . m-n —t2
TB(m,n,r) = 2r e j t e & (2rt) dt (22)

o




, 8-

In terms of this funcltion, the deleclion probability is

Py(N) =1 - T (28-1, K-1, Vix ) (23)
¢
Curves of the incomplote Toronto flnetion are available in reference 4 and
numerical means of evaluating the funclion are available in the HMED prograwmming
library. For noise alone, an identical procedure may be carried out with the
resultant equations:
Ropeating Fjuation 13

fo(y) =  exp [-y}

From Reference 3 pair L31 or dircet integration
S lpl = ) (21)
1 El

Then

From Reference 3 pair 431

.
_1§:E,EXQ_mL:iL

fo(Y) = (N-1)1 (26)
The probability of false alarm
ol
P,(N) = jf(’f) dy = 1-1(0 .N-l) (27)
pe e .
c YN
where I (.) is Pesrsons form of the incomplete Gamma Function designed
by the expression
U,’p*i
I(u,p) = exp [-v] vooav (28)

p!
o

The probébility of false alarm as given by Fquation 27 pertains to a particular
possible target path. Tho number of such paths was defined in Section II as DAN'l.
For large A, the processor test functions, L(R,N,j), are approxiiately independent

of each other and tho probability that n of those result in a false alarm is




e ——

o

e
P .
f DAh } n r 1 D.\} 1—!)
PX‘ X I‘n(u) = n} = [}A(n)J [1 - IA(L)J (/.y)
B : n
The average nuuber of false alarms is
] DAN—I » -
FA(N) = }4 n ;r \}'A(,‘l) = nj (30)
n’:1 .

The equation for FA(N) 1is scen to be equivalent to the expression for the

mean of a binomial distribution which has the closed form result
e N1 g
FAQY) = DA PA(”) (31)

With this definition of average number of false alarms, we nole that

N-1 A
DA appears as a simple multiplier. If we construct a plot of }b e O
alternatively signal-to-noise ratio required for some fixed value of }b -
N-

-

versus FA(), wo need only plot against PA with DA as a scale factlor.
Equations 23 and 27 were evaluated by oxcercising existing in-hovse sub.
routines for tho indicated functions for seleccted threzhold values C and S/
ratio x. Curves of }b vorsus PA for fixed values of N and x, plotted for
cormon values of C, are given in Figures 1 thru 6. A cross plot of ihis data
is given in I'igure 7 which shows the S/N ratio in db required to achievo a
detectiocn probability of 0.9 as a function of nuwber of pings processed and

robability of false alarm.
p y
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IV COMPARISON OF OFTIMUM AND M/N PROCESSOR--NCI-SCINTILLATIIG TAKGETS
4 | A dotailed treatment of an M/N processor is given in Refersnce 1. This
procecssor operates under a target detection critoria in which M geomctrically
correlated single ping threshold erossings are required within a span of N
ping intervals. A simpler treatmont of that problem is given here to allow
comparison of the M/N processor with the optimum processor.
Tho cumulative multi-ping probability of detection and false alarm are

related to the single ping values by the equations:

X N K -k
P) = ( ) Py(1)¢ [ 1- Py(1)] (32)
. =i k
k.| ‘N) 4 N-k
J = - !
P, (1) = Lﬂ k| B (1 PA(I)) (33)
As in the optimum processor, the average number of falsc alarms is given
by
i R |\ PSS |
FA(R) =DA P,(N) : (34)

In the comparison which follows, N is fixed at five ping intervals and
the value of D and A apply equally well to both optimum and M/N processors.
Thus, a full comparison of tho two types of processors may be accomplished
without considering the explicite values of D and A.

The single ping probability of detection and false alarm are related to each

other by their common threshold. From Ejquation 15A, wo write

PA(I) = f exp [—] = exp [-c] . (35)

c
thus the threshold may be written directly in terms of false probability as

g u. ] 1 (36)
bl

Applying this threshold to Equation 15-B ylelds for probability of detection:

©

( Pil) = .[fﬁ oxp [ —y—x] I (2\Vxy)  ay (37)
ln




This integral has no closed form and is generally expressed as Marcums Q
function [ 7]

P (1) = Q(\@ e T l/PA(l)) (38)
where Q is defined by
Lo V2 + [){ 2 D
Wper A) = J[ exp [— 2 J I (£ v) dv

The computational procedure for the couparison inclvded hore is as follows:

1) Scl N equal to 5 and PD(S) equal to 0.9.

2)" Using Fquation 32 find PD(J) for M equal to 1 through 5.

3) For cach M, uvse Fjuation 38 to find the S/I ratio required for selected
values of }k(i)

4) Using Eguation 33 find the ?A(5)'s which correspond to the RA(l) of
step U,

5) Plot the S/N required versus PA(S) for each M

The results of theseo calculations together with the optimum processor for

N equal to five are given in Figure 8. In general, the optinmum shows about a

two db advantage over the N/N processor.
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v SCINTILLATIIG TAKGET MCDELS

The analysis to this point utilizes a fixed S/N ratio at the input to the
recoiver. That this 1is not the case is well krown and suitable modifications
must be included in the analysis before il can be considered reclistie,

The most accepted modol rop;ouentatlvo of variation in signal-to-noise
is tho log-normal distribution. This model hzs becn exlensively used in
signal ping analyses and does have justificalion from both theoretical and
experimnontal standpoints. :

Accepting the log--normal distribulion as the best targel scintillation

model allows writting the distribation in the form:

’

712
- Cow
ga)s L. ewm [4-6:-5;2- | (39)
Vaiiaz e
whore Z = S/ power ratio in db
Z = uomof 2

Z = standard deviation of 2
The general fornulation of performance analysis requires expressing the
distribution in terms of S/N power ratio in volts. The change of variazble required
is: A

Z=10log x = 10 log ¢ 1n x : (%0)

Completing tho formal change of variable ylelds

flx) s ot | wxp [é (lgz__.._- - ) 5 J (41)
VZIrJX X G‘x 3
where
= _2 Gxe 5 -
10 log e 10 log ©

Attempts at forcing the distribution of Ejuation 41 into the analysis of
Section IIT proved hopeless. The principle difficulty was the appearance of
(lnx)2 terms which cannot be conveniently represented in series form.

To circunvent the difficulty, a distribution was assumed which had character-
istics similar to the log normal and the analysis completed using the assumed

distlribution.




2=

A family of scintillating target medels is presented by Swerling [5']
with the genoral equation.

o Py e (O o exp [» K. (42)
iy =
b
The equation is a Chi square distribution with 2K dogroes of frecdowm where x
and x have tho samo interpretation as in Equation 41,
The best value of K proved to be 3/2 =« a €01 square distribution with
3 degrees of frecdom. For this value of K, the eguation for S/i distribulion

becouss -

e 3/2 1 e
vi(x,x) = ot 1 (___3«__ x? exp [—- l{J (43)
Vi (2% ) 2%

A comparitive plot of Equations 41 and 43 are shown in Tigure 9. The use

of Eguation b3 as tho S/N distribution appear: reasonable particularly in view

of the uncerlainties inherent to Equation Ii1,
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V1  PERFORMANCE EVALUATION - SCINTILIATING TAKGET
The signal plus noise distribution for fixed signul-to-noise ratio was

given by Fjuation 14 as

f(yl x) = exp [nyrx] Io (2 v xy )

The assumcd distribution for signal-to-ncise variability was given by Equation

P an ey
i R S S W x*  exp [— ﬂiz-]
Vit | 2% 2%
Given these distributions, the unconditional probability of y in general
fora is given by’

f(y)’= J[ f(yl x) w(x) dx (u4)

X

For our probleun, tho resultant equation is

4 —
f(y) = b expl-y) J[ x*  exp (-ax) Io (2 \f;y ) dy (45)
o

whore

(o
]
!
%! }o

.-'5.
‘27()

R ol T
2%

The Bessel funclion may be written in series form as

o0
o = k
I Ve ) = ) L), (16)
- (k!) .
which allows rewritting the integral of Equation LS as
0 (2] g
"> k kt; "
>.4 "(‘Yl; [x exp L»ax] dx (47)
k=o (k)" o
To evaluate the integ:al of Equation 47, we note the Gamma Function is defincd
by -4
‘[' 21 5g’t dt = ['@) (48)
0




e

’\]: 3

Making an appropriate change of variable, the integral of Equation 47 way be

written in the closcd form

1 kt3/2 :
i [k + 3/2)
The unconditional distribution of y thus becoues
(\“ k [.
. k_+ 3/2)
£f(y) = b exp (-y) S. ’ﬁy ; “Q“Tﬁf e (49)
e BIE T k3R

Ejuation 49 pertains to the distribution of a single pulse. The distribution
for the sun of N pulses is obtained in a mamner analogous to thal used in
Seclion ITI,

To simplify notation 1let

b b g \
AT ko a

Equation 49 may now be written as
(\:‘ A
k ki 5
f(y) = >.4 = ¥ e [-—y] (51)
k::o ¢
From Campbcll and Forster, pair 431, the characteristic function for one pulse
is

Cl(p) (52)

"
N
L J
—~ L
Lo}
=
—
A
-
-
&

For the sum of I pulses, we write

PR o’ Pead

\'" Rty ——y A
o) = ) Y oseney s UM e o (53)
- S - ] + +
b0 T me g g e Byt N

N

Using pair 431 as an inverse transform yiolds the distribution of the sum as

; k,tk, ..ok, N1
izl =4 i Ao Repy s Bym 1 2N
(= S 5 date st e [+]+ (54)
po < =t Ritks vae K BN =2
k1~o kz—o kN~o 3 (kD N




Tho probability of detection is obtaincd by integrating Equation
the threshold C to infinity.

el

Taking the

f ,_OXP[-;Y] vt dy
r!
c
vhere
= + + AN
r ki k2 P kN N 1

terns only we have

54 from

This integral has the same form as Pecarson Incomplete Gamma Function which

is defined by Egquation 23,

The final resull is

Symwbolically the

integral

> (N = y
Py (K) > >
k1=o k2=o kN
where
= : + + -

r k1 + k2 “lole kN N -1

I(+ ) = Pearson Incomplete Gamms Function

Ao Mk, + 3/2)

bl

o
i

(27(
‘1*..2_
2x

o
"

k + 3/2

is represen

y?... ldl) [1- I

C

Vrt1

1 1 r
Led by

: x)] (56)

The false alarm computation is identical to that given in Section Iil,

A comparison of optimum and M/N processors

to that of Section IV.

noise distribution function gilven by Fquation 51.

Making this change, Egquation 37 of Sectioa IV becomes
R

Pp(1) = Jr

in(7.(1)

P

S RO 4

—

€xp [-y] dy

may be made in a manner analogous

The only change reguired is a change in the signal to
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The integral is

with the final
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again rccognizable as Pearsons Ihoo:fl,'.'] ato Gawms Funetion

result,

[

} Lh Ak 5

k=o "

1
In T‘A (1)
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VII K TECT OF THRESHOLDING
Use of an optimum processor implies the procossing of enormouvs amounts of
ala. is apparen at a practic: rocessor must contain data roducing
dat It i ) t that a practical proc r must 1 dat Jucing
techniques to allow computational® feasibility. Ono such technique is thresholding
the single ping output prior to multi-ping processing, The multi-ping processor
o o o ~ o kJ
en concerns itself only with outputs which exceed a preset voltagza level.
th itself onl ith outputs which 1 ! t voltagza level
16 overall process becomes a double reshol evice and performance is
Tt 11 pr becomes a double threshold dey 1 perf ! is a
function of the setting of the two thresholds.
'he effect of single ping thresholding on the detector output is pictoriallj
The effect of single ping thresholding the det tpnt ictoriall

shown below

£<é)

That is, thresholding places an impulse at y equal to zoro)oqual to the
probability that y is less than Cl.

The distribution function may be written as

)= B {v<e} SO + 1) u ) (57)

vhere

S (y) = Dirac Delta Function

u(y—Cl) &

For noise alone, the distribution was previously shown to be given by

£f(y) = exp [-y]

‘ R e e
1

- —



28
4 : For a fixed valus of Cy» the value of Pr { y < C;% becomes a constant
| of the problem and is equal to
Cy
Al = j exp [ —y] dy (58)
‘ [

n

1 - exp [-Cl]

The threshold distribution function now becomzs
e = A SO+ ep [-y] uG-c) (59)

The distribution for the sum of N pulses is again derived using characteristic
functions. The Fourier transform of the delta function is unity. The transform

of the rcemaining term is obtained by direct integration as follows

_jf‘ exp [-y] u(y—Cl) exp [-py] dy
o

= j’ exp [-(1 + p) y] dy
c
= 1;; exp [- (1+p) Cl] . : (60)

The characteristic function for a single pulse may be written as

C,(p) = A, + 1 exp [~ (14p) c,] (61)
1 1 ?T;ST . K

The characteristic function for the sum of N pulses is the N-fold product of
Equation 61. Using the binomial theorem, the resultant may be written in finite

sories form as

pls N N-k
| G e e ety o

e T N
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Tho exponential in p is simply a displaconent -~ d.e. from Caupbell and
Forster, Pair 207

exp |- pgo] F= G (g- go)
The invnrto transform is again obtained from Campbell and Forster, pair 431

with the result.

- N N-k {ike, el
g(Y) = Z, (k) A __,(._k_:%,)_!___ exp [-—Y] (63)
k=0
y>kC1

The probability of false alarm is obtaincd from Equation 63 by integrating
from the wulti-ping threshold CN to infinity, For the terms containing Y, the

integral is
o°

j (1{.};ci)i':"1 exp[-Y] i (64)
6 = -3t

To perform the integration, first make tho change of variable

2=y « ke
vhich results in the expression
oo :
exp [-kCJ i exp k-Z] dz (65)
J (k-1)1 L
CN-I»:C1

The latter integral has.the form of Pearsons Incomplete Gamma Function defined
by Equation 28 yielding for the integration

exp [k [1-1 [SN*Cy, ki
p[ 1] [ Vi l]

Tho final expression for probability of false alarm is

=) ] a oxp [-k,) [1 a2 (._L__i . m” (66)
i : NP

C, 2 kC
vhere N 1
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Computation of the average number of false alarus is identical to the
carlier developrent in Section III and is given by Equation 31.
When a steady targot is present, the distribution of y is given by

f(y) = exp [-x_:;‘: 10 (2 \lr)(—} )

The probability that y is less than the single ping threshold value is easily

shown to be expressible in terms of Marcums Q functlion

P {r(y) <c1} =, = 1 -0z, Ve )

The thresholded distribution then has the form

ely) = A2 (f(y) + exp {—y—x} 10 \fE;; U(Y*Cl) (67)

Using the series expansion for I given by Equation L6 yields

e L)
so)=4, SG4F § . em e gy st D

0

A general devolopnent for computing the probability of detection for
the sum of N pulses given a single ping distribution in the form of Ejuation €8

is given in Appendix A, Direct application of that work yields the result.

D }d (m] 2 exp [-m 1 ] "
=0
o :_1_" xkl * e km
) v g o SR (69)
k.50 k =0 n
1 m
ky k, (kl—ll) PR (km-lm) < c e
c, [1-1(_33“_1.1»-1”
1;:‘.0 lm;’o (ki-] 1 )! oo (km-lﬂ))’ I
CN > mC1
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For a scintiliating target, the distribution as given by Fquation 51 is

-

f(y) = > E%k' ¥ exp [—y]
K

0

The probability that f(y) is less than the single ping threshold C

[ 1 is
: 1 exp |-y
= = g o v ne R
P; {? = C;} AZ z_ Ak J( k!
k=0
o
e c
>J Ak I ( -1 ’ k) (70)
k::o \/k,‘l

where I(*) is the Incomplete Gamma Function of Equation 28. The thresholded
function thus becomnes

o>

ey =h, SO+ )
k=0

)

¥ e [y] ul-c)) (71)

Applying tho general development of Appendix A tc Equation 71 yiclds

N N Nem ot o
ORI e [=] Y Y Ay A
w=0 k,=o k =o
1 n
k1 k (klall) e (km-lm) CN..mC1
U (k=20 oo (k1N Yr
=t = s [ n on :
11"0 lm’-O
CN > mC1
whore
r= 11 b T R O
n
o
he oo a I(_f_i_- .k)
4 = ki1
N ———— T — —
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APPINDIK A - THRESHOIDED MULTI-PIRG ProFORMANCE

For secveral assunied signal-plus-noisa distributicns, the expanded foram

of the distribution has the general equation

k
gly) =4, 5(¥) 4 ; A Y exp [~y] u (y-c) (A-1)
= -
whore ¥ = normalized output of a square law detector

S (y)= unit impulse at y = 0

u(y-c)= unit step at y = ¢

The probzbility of detecticn for the sum of N pulses from the above distribution
function is desired. This is obtained by the usual application of characteristic
functions. In wvhat follows, the characteristic function is taken as the Fourier
transform allowing use of Campbell and Forster Fourier Transform Tables.

The Fourier Transform of the impulse function is unity. The transform of
the sccond term of Fguation A-1 procedes as follows:

Considering the y terms within the summation, the transform in integral foram

is -

k
y exp[fy} u (y-c) exp [-py] dy (A-2)
The unit step at y = ¢ nay be eliminated by setting the lower limit at C
oo ; :
k .
_/ y  exp [-y] exp [-py} dy (A-3)
C

Since Fourier transforms are available with lower limit equal to zero, we
now make the change of variable
Z = y-c
dZ = dy
which ylelds the equivalent exprossion

(z +¢)% exp [-(z+c)] exp [-p(z40)] a2 (A=)
A L

The binomial term may now be written as a finite series with the result
o7

k

= k
j 2’6 (1) ot gt oxp [-Z] exp [-(I'p) C] exp [—pZ] dZ (#-5)
[+] =




Campball and Forster, pair 31, prosent the transforam

..... s /gf’ a3 g>0 (A-6)

-8

Taking the integral inside the svumation and applying pair 431 yields

2 oald

Tho Fourier transfora of Ejquation A-1 may now be written as

o k (x-1) [ (14p)0
C,(p) = A + > Y } L S5 L=(14p)C  (y oy
k=0 =0 Ged i fpth)

The Fourier transform for the sum of N pulses is the N.fold multiplication

of Fquation A-7. Syuwbolically treating the right hand side of Equation A-7 as

the suu of two teras, woe write

Cy (p) = [Cl kp)]N = (a**b)N

g :
, LT e
=0 = '

Inserting tho appropriate expressions for a and b ylelds

N oo f
N Nem
c (p) = A E: Ty }4 .
R D‘Zjb ( m) 1 k1=o km:o Akl Akm
K R : .
i >~ k! ... k1 oexp [_m(1+p)c] c(k1~11)+...(km-1m)
1.=0 1 =0
; i (kl-ll)l ...(km-lm)! (p+1)11 e dptm

(A-8)

The next step is to take the inverse transform. The only terms we need

consider are those containing p. These aro:

_252__[:Rﬂ21 0 11 + ....lm +m (A-9)
(pt1)"
r—— — e ——
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The exponential term represonts a displacemont, i.e.

-pYo
l c(p) € ! = g(X-Yo)

The denominator of Fquation A-9 has tho same form as the transforam pair given

in Equation A-6. The resultant transfora of Equation A-9 ic

3 ;
ngM»LTRTS D (Ynmc)r"1 exp[(wY—mc)] (A-10)

1
= i
(p+1)r (i 15
The integral of g(Y) from a wulti-ping threshold, Cy, to infinity yields
the probability of detection. To carry out the integration we may restrict
oursolves to those terms containing Y as given by Equation A-10. The desired

integral is e

j (Fone) e [ -Y..]'_ aY
(r-1)! A (A-11)
G | |

To carry out the integration, first make the change of variable

3
ex nec,
"[ J

Z=y-nume
dZz = dy

which yiolds tho equivalent integral

>

] gt e o] az .
: (et} % : (a-12)

CN- me

The latter integral may be identified with Poarson's Incomplete Gamma Function

which is defined as

u y pti
bl
tP oxp [-
I (u,p)= f - [p} By
P
o

In terws of this function, Equation A-12 becomos
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Tho final exprossion for probability of detection is
N _ o ¥

R)= ) (m) g P Y £

6i=0 k,=0

-
b
e

Ja

km

C(l»:1—~11 ¥ s (km—lm)

OXp [- mc] .

>" e kil k!

1,50 1 =0 (k-2 ... (km-lm)g
C .- mc
S & U6 RSN r-1

\r~
CN S me
=1, +

r=1,+.. 1m +
e — T —— — ks
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