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Defect Corrections via Neighbouring Problems

" I.General Theory.

by

Klaus Bdhmer

Summary: To solve a functional equation Fy = O numerically we
use two different methods: The first one,scetched already in
[31, combines Newton's method with a discretization of the
linear problem. Secondly, we introduce a neighbouring problem
(N.P.) Fu = d, Idf small, with known solution. We solve the
original problem and the N.P. with the "same discretization
method". The known error of the N.,P. is used as an estimation
for the unknown error of the original problem. Both methods are
used iteratively and their relations are discussed. The idea of
using N.P. goes back to ZADUNAISKY [15,16,17], again discussed
by STETTER [14]. They treated initial value problems of ordinary
differential equations where STETTER used our first method, too.
The method of N.P. was applied by FRANK, HERTLING, UEBERHUBER
[5,6,7] to initial and boundary value problems of ordinary
differential equations. In subsequent papers we will apply our
general theory to some special cases and will discuss relations
to collocation methods and to PEREYRA's deferred corrections
[10,11]. We find numerical methods which seem to be as

convenient and appropriate than those derived directly (see

1. Introduction -

With Stetters [13] notations,slightly modified,a discretization
method W({, applicable to the given problem dQ

(1.1) F(y) =0, T 2 P> ﬁ), D € E,E° Banach spaces,

. ¥ . e
is an infinite scquence {E;,Ey ,Ah,Ah°,¢h}

inf H = 0, such that

he:ﬁ,mcwub]cm+,ﬂ




A L, St A 1 § 0 At i A A e

2 Y ek

A i+ iy e S i Tned

i T

: E + By, Ah°: EC~ Eho,Ah,Aﬁ linear bounded,

] Ah '

Eh’nho Banach spaces, dim Eh = dim th < o

I' is continuously imbeded into a Banach space E and

lyllg for every fixed y € ES E

(t.3) 4 limfapyll

h+o
’ o

limlla,zll = Jz| for every fixed z € E .

o

+ (E, »E ), C C(E>E) and F € C, for h
¢h - Ch h B 4 = > an n for € .
: ! _ _ :
#ere |l+|| means anyone of the norms in E, E°, Ey > Eho.

Arplying 300 to problem (1.1) we find the discretization of (1.1)

as

$. =0 €, % B T E, BLEE forht H,

h h h h

€1.3)
°h(nh) = O

Wwe assume that (1.1) and (1.3) have unique solutions y € D

and n, € D (see [13] pp 12 ff.). Further we use the equivalent
notations

Xy = X9 + 0(hT), r € R, iff [[x; - x,]| = 0(n™) for h+0.

if there is a sequence of Ay : E= Eo, h € H such that

(1.4) ®, (B, 0) = Ag {F(u) + Ah(u)} for every u € E
Ah is called a "local error mapping". In many cases the local
error mapping Ah admits an asymptotic expansion up to the
order Vq? that is

8,%A (u) = A% | n Ya*1
h Ay u) = Ay { h f‘(u)+0(h )],O<v1<v2<...<v

154 q+1l

o
for u € Dq ¢ D, fl:Dq+E ,f1 independent of h.
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If ye Dq is the solution of (1.1) and if (1.3) is consistent
to (1.1) of ordenr vp then the "local discretization error"
poi= A OA (y) satisfies

(1.6) Ay = @ (A y)=A, ? hv‘f (y) + o<th+1>}

4 B T et el g o :
Very important for numerical applications is the question,
whether (1.6) carries over to the "global discretization
error"

(1.7) ¥y, &5 Wy o= Ahy, Nys Y solutions of (1.1), (1.3).
Gragg [8] has studied this question first for initial value
problems of ordinary differential equations. Stetter [12,13]
generalized Gragg's result to functional equations. In these
papers we always have M, B3 o N, = 21. Several difficult

special cases were treated directly (see for example Benson

[11).

2. Asymptotic expansion of the global discretization error

Here we generalize and modify Stetters [12,13] results a little
bit to prepare it for our later applications. We require that
the v, in (1.5) are such that

Ny := {vl,vz,...,vq,vq+1} . 0<\:1<v2<...<\>q<\)q+1 and

(2.1)

‘ “ w 1 % " . % . >
v;svs: € INx implies v; ¢+ vj € N« or v, % vJ v

J q+1

For this case we give (see Stettcr t13], P 25).

Definition 2.1: We call the asymptotic expansion (1. 5) of the

local error mapping (vq,v Y-smooth at u, tf the derivatives

(0)(u) - i 0 SO [-ﬂ———] =max{n € Z|n ¢ —3———} exist and if
P

for u,e, € Dq: v S Dol ? R e\" small enough, k=p(1)q, the
q

following relation is valzd
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b
3
E
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v o
? h kek) }
k=p

v -V
[ (31
\Y !
$nttrcar e b By £t
=1 g=1 '
A% v
= AgCu + 5 e ) & Gtn T4y
k=p
!

In many cases the conditions u,ey € B =

q
for (2.2). So we give

Eq,k’

Definition 2.2: Let Dq,k c

Dqg Dq,k €D, Dq < Eq’ and that
% v
A (u + % h ¥ e) and
h k
k=p
<
(2.3} g% g
~Lff°)(u) ( Z h ek)o,
k=p

with g* =

are defined for u € D e D

k=p(1)q, be such that |

Q*(q,pP,1,0) such that Vq“ =

D are too stringent |
Vg i

Vg™V

1=1(1)q, o:l(l)[—:r——q

P

vq-vl-(o-l)vp

Further let

qQ? €x gk
.
v v
A s ? b K &) = ? " 1{f1(u) <
k=p 1=1
(2.4) \ oty
QqQ 1
[~ :
e T LelPw o Fstal.
L o=1 4 k=p
satisfy
i v v Vv
ST e ] nx e ) = A+ ) hXed + on WY,
k=p k=
P




Then the D are called (asymptotically) admissible sets

q,k
(for W and jb .

The summation index q* in (2.4) is chosen such that e, with

v
k > g¥ only contributes to 0(h 4*1y, since further Vp € Vgx
iff LN vq-ovp, only those fEO)(u) contribute to Ah” with
v, < = .
1 § VqTOVy

Now the following Proposition is simply proved:

Proposition 2.3: Let the operators given in (2.3) be defined

and continuous for u € Dq, e, € Dq K with respect to the norms

b

in E Then (2.5) <is satisfied.

E )
qQ’ Tq,k

Since we are concerned only with asymptotic expansions,
v s
h q+1-terms are fairly uninteresting. So in addition to

ordinary Frechet-derivatives we introduce the following type:

h 18 called r-times (vq,v')-differentiable

at N, if there are bounded o-linear operators ¢h<0>(n):

" Definition 2:”: 6

20V e €D s, 1=p(1)q,and

o o)
(Bﬁ + E such that for v p? s "

(3 AV
U1 n e
‘l=p

q

small enough

. A ;
&y ( + B8y 1Z=ph e1—<bh(n)

(2.6) 9

q
* <0> vl g
=Y I ey, 1n Y e %00
gy 1=p

}.

m:.n{(1*-l~1)\)P,\)q+.1

The operator ¢h<0>(n) is called the O-th (Vq,vp)—darivative of

¢h at n .

Now the following Propositionis a simple consequence of the

last two definitions:
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Proposition 2.5: Let Ah be (vq,vp)—smooth in Bp(y)::{ue D| Ju-yll<p}

and let, with v_ 2 r*v_, F have r Lipschitz-continuous derivatives.
(o' o . . A . o

Thgn on = By, {F+Ah} is r-times (vq,vp)-dzfjerentzable in by Bp(y)

and with j such that vj<m1n{(r+1)vp,vq+1}—ovp we find

] v
(2.7) ¢h<°>(Ahu) = Ah°{r(°)(u) + 31 o ff°)(u)}, o=1(1)r.
Vs

For ¢ < v % [vq/vpl, with at most one =-sign, we always have
min{ (r+1)v_,v Y=au >v _; g0 5 2 p 2 1 end the | in (2.7)

P’ q+l P P
is well defined. .For o = r = [vq/vP] 1t may be that 3 < 1.
Then we define SO an (2 aT)

1s1

The proof of Proposition 2.5 is obvious with Definitiors 2.1
and 2.4 and (2.1).

To give the following Theorem we need some formal notations.
Let F be [Vq/VP]—times differentiable, let y be the solution
of (1.1) and let Ah be (vq,vp)—smooth. Then, with F(y)=0,

£,493=0, 1=1€1)p-1, ¥, €, €D ]

q
X v v v ;
(F + A (y + I n LR R TR W O
=D 1=p
(2.8) l tv_/v_} v <V -0V, q
Q@ p 1= q P v Vv o
v 10 Largag 2T i § b e )
o=1 . 1 =0 k:p

Now we introduce operators gj(.,...,.) by collecting equal
powers of h in
<
([v_/v_] V_=V =0
q 1. g Y v (o]
) E AN CON) el (yy) ¢ $ Ke )
0=2 ¥ 121 k=p

)y 8.

i = 0, j=P(1)P1‘1,

q Vj
(2.9) y= ] h gj(ep,...,e

(31
3p, 2 (3

with vp1 = 2vp, Voi) T V5 T Vpo therefore £(3j) < 33

L

Con e ey




in the first line of (2.9) e, gives contributions to powers
2 Vp V. So the biggest k appearing in gj(ep,...,ek) is

E

k=2(j) with v, = v Vo s For the special case y\it, 1=1{1)q, I
we have 2(j) = j - p. With the g5 defined in (2.9), we finally

have
V AY) V.
(F + A (y + § h 'e) + O(h Ay o ? h J{F'(y)e.+f.(y)
- &
1=p i=p
(2.10)
I
+ fF¥Cyde, + pole. yonsn®ypaitly ¥a = W # Wysean f
G s e e Sl U D L e T TGt |
= = {
L \),l +\)k=\)j {

Since we want to have

! o
3 no=4,(y+ § h'e ) + 0(h ¥y
1=p

and since

0L (Byw) = 8 2{F() + A, (u)

the proof of the following Theorem mainly consists in equating to
v

k zero all the coefficients of h 1, 1=p(1)q, and can be done exactly

in the same way like in Stetter [13]. (Due to IN, vp([vq/vp]+1)§v )

\
q+l”

Theorem 2.6: Let the original problem j@ with the exact solution y

and the discretization method Nl , applicable to é@ s satisfy
[ (a) WU s stable for j@ ;5 (see [131); W

(b) W <s consistent with &Q of order vp;

(¢) an asymptotic expansion (1.5) of the loecal error mapping

A, exists and y € D_;

h q

h 18 (vq,vp)—smooth at v

(e) F has [vq/vp] Lipschitz-continuous bounded derivatives

€2.11)%

(d) A

in Bp(y);

(£) (F'(y))_i exists and is bounded.




Sal s i

L e - M 5 2,

j = pll)q by (see (2.9), (2.10))

Define the e

j,
(2.12) F'(yde. = ={f.(y) + } Friw) e, + gale. sivsslyrsx)}
J ] 131,k2p 1 k e R - 2(3) 7
\)1+\)k=\)j

d oD
and let eJ as3

Then the global discretization error Wl 5 = 8,y admits a unique

asymptotic expansion

€2.13)  ny

For the rest of the paper we postulate (2.13).

For our later applications we need the structure and the arguments

of the g5 in (2.9) a little bit more completely:

Proposition 2.7: The g5 in (2.9) are operators acting multi-

linearly on the e s k=p(1)2(3), v. = v
(o) : ! P (o) § e 8
on the F (y), o—2(1)[vj/vp], and the f1 (y), 0=2(1)[—

v
. P
f )(y) contributes to gj e | 3 2} er for =200 L3
P
So

t Vopays and Zlnqasfy
1.

f

with vl(j) < vj—2vp < Vl(j)+1'

([vj/vp])
[ gj=gj(ep,...,e£(j);F 50 IR 3 (y); £5(y),

(2.14) - vi-vy vj_v1-

TS N CO T8 S €O TN X P (950 e s Y sy (90D

-

Here F(c)(y)resp. ffo)(y) has to be applied to those ey with
(2.15) v

k& vj-(c-l)vp EAPe Ve 1 W

5 = Wy " (0-1)vp.

ooy A T O
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Proof: We only give thevarguments for the ffgi. By (2.9) we

(9)
1

V.-V W
3 that is for o=2(1){ 3 ‘1. From 2 < 3 ]
P P

have contributions to h E gj by f (y)( h k ek)0 1 f

v *OV <V

p

we get 1(3). u]

3. Defect corrections via Newton's method

The results given here are slight modifications and extensions of

those given in [3]. We use an operator (see for example [9])

Eh = 5

(3.1) T s y §€ B, := {teR |t 3 0}

nv

Hy & X i 250
which essentially reproduces the asymptotic expansion of Ny, an (24189

It LN satisfies (2.413) then

: v Yo
1
(3.2) Tsnh =N Y + Igp h el(y) + 0(Ch q),
whe s -5 ¢ yo =
re vq S Vq $ Vg = va+1
Usually Ts are interpolation operators and often [-IE includes

derivatives, so one has q < q. We will have to compute the defect

F(yh) = F(Tbnh) and we need an asymptotic expansion

b \) V:C .
€3.3) Py ) = hlg (y) +# 0(h D)
h VEp 1




with the q from (3.2) (see (3.7)). Sometimes, for example in

spline interpolation, yh=T is not smooth enough to admit the

Gnh

full expansions in (3.2) resp. (3.3). In those cases we have to

cut down the asymptotic expansion (2.13) to

A%
qo vl qO‘{-1 .
n, -8y =4 \Z h ‘e, + O(h ) with go < q

3 ims i snloanli NS 2 NS o MR e b L ) S AIRE L A2

such that this expansion admits (3.2), (3.3).

As a consequence of the modified Newton method we find [2]

Theorem 3.1: Let 2 € D be an approximation for the solution y of
(1.1) such that F 25 at least K i [v /v ]-times differentiable with
unt formly szschztz continuous derivatzves in B (y ) and let

s (y )€ & CEs E°) be invertible with

B e N

i o ol

g =y )M < wy  wesup IE' (2)-Fr(y )l € q < 1
z zeBp(yo)
: IE= ¢y )" Ry Ol < pe (1-0)
i O O =
% Then the modified Newton method
; Pl Jeropy ) s = Bl 0 el 8,0
(3.4)
with Vv 1=V v £ = v 951 42 53
‘ Po p° Pz—i Po Py ¢

: defines a sequence Yy converging to y, %EQHYQ"YHE 2B, iy
1 further I"(y)-—1 exists and is bounded and

q Y v
[ Vo =Y+ Z h'e (y) + 0(h q+1)’ el,o(y) 3 el(y),
1 Ry = v, vA+1
: €3.5) y Py = F'(y) + 2p h Cl(y) + OCh 174), v + e Ve
i Cl(y) R o (B B )y Cl(y) independent of h,

then Yy admits an asymptotic expansion of the form

E ‘10"




L e b e iy

Y
+1
e\,l(y)+0(h Py for Py, £ 4

(3.6) i
+1
resp. y, =y + oth 47 for Py > q

Tf F“(yo) = F'(yo), the second part of (3.5) follows from the Taylor-
formula.
If y, and F“(yo) satisfy (3.5) then we have

ne~—00

AV] % e
L 31<y) Fath TF L
P

Py 3 = %y ) s :

£y el (2,5,

Proof: The convergence of the modified Newton method under the
restrictions on Y, and F“(yo) follows by usual conclusions (see [2]).

(3.6) is proved by induction. Let ¥o-1 be of the form (3.6) with Py

and e replaced by p and e . Then we have with Taylor's
1,8 £=1 Ut ( W)
formula and because of the Lipschitz-continuous F - We suppress
the argument y in the asymptotic expressions -
9 v v
’ i 1 g+l
Py, .47 = ELy 4 12 h T 0(h ))
“Py-1
q v v
o s 1 - P 1 q+l
ECY) & LBy 3 + F'(y) F (yo))1§p 1h e1,2_1+0(h )
2'_
K (&P g v : (K+1)v
e B 5 e )3+ o(n o,
jé? g 1=p W=
3 =il
Si &) 4 - : ) 1) =
Since (H'+1)vpz_1 2 (f\+1)vp K Vp * Vp 2 Vau1 and with F(y) 0
and (3.5) we find
D=1
L Y . qQ \Y Vv
> = [ (v 1 1Y q+1l
(3.7) Flygaq) = PEly ) IZ BT e gy Z h el’£+0(h )
Pp-1 1Ry
with e and @ independent of h. Now (3.4), (3.5) and (3.7)
1,81 1%
imply
- 11 =
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Again (3.5) implies

F“(yo)-1 = Fr(y)”

with C? independent of hyand a combination of the two last results
proves (3.6). The last statement again follows with the Taylor for-

mula. @]

Since, again, (3.4) is usually not solvable exactly, we have to
use a discretization method. The crucial question is, if this
discretization method reproduces the asymptotic expansion of the

Y- To guarantee that we need

s . -~

Definition 3.2: In (1.1) let Fu=F1u+d resp. Fu=Fiu+F2u with

FiuF, € (E,E®) and A independent of u. Let Wl , applied to 2? s gtve

o (Foutd) =0, (F)A u+h, Od with &, (F),0, (F)) € & (E,,E°) resp.

h
(3.8)

Qh(F1u+F2u)=¢h(F1)Ahu+®h(F2)Ahu

Thern we call WL a linear discretization method for 2@ and ¢h(F1)Ahu+Aid

=0 resp. ¢h(F1)Ahu+¢h(F2)Ahu=O linear discretizations of F1u+d=0 resp.

F1u+F2u=0.

TREO—
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Let

yl-l = Ténh,z_l s 2=1,2,... and

O ARy Iy g = My goq) = =8, Fly, o)

be a linear discretization of (3.4). Sometimes we use F“(yo)=F'(yo),
then often @h“ is the Frechet derivative of ¢, from (1.3), but that
is not true in every case. We want to prove a result for the nh’z

in (3.9) similar to that for the Vg in (3.6). Since we have to use
in (3.9) the T6 Nh,2-1 not only the lower index pz,but also the upper |
index q has to be changed for every step corresponding to TG’ and we

define (see (3.2) and (3.4))

(3.10) v < v %
QQ - qE_l Q£ q£+1

1
=5}
A
<
nA
<

Now the following Theorem is valid

Theorem 3.3: In addition to the conditions in Theorem 3.1 let

¢ *(A Yy )bu = Ahod_be a stable linear discretization for F“(yo)u:d.

Further let in (3.9) the My, g-1 and therefore the corresponding defect‘
b

F(yg—1)

Q-1 v va

i = 1 -1 s
4 Mh,o-1 = Ay + 1Zp h el,l_i(y)} + 0(h R T g
: “Pg-1
| 1
3 (3.11)
B/
;. & Pz'i \)‘ q.g vl'\, Vaz
: Fly, ) = Fy M 3 h ‘e (y}+ § htle (y)+0(h )
* st o " 8 1y 8=1 L ")
1 i 13p, TT T g,

. '\l + .
be such that (with e\’ﬁ_i,el’l,k"2_1’i,c1’2,g"z,itndependent of h)

- 13 =




{
1
1
i
i
i
i
;%

UCHST TGV I R S Y

TERE,

m b 5 e i L b

doonise DA S N AT RSN

e
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o, *(dyy )el’z g 28T F (yo)el,l 1 implies
s \,35
1 ,8=1 \)1 1.0-1
= b
T e LN iEp N B ,
o
(3.12) 4
with v_ + Vv = v ST Y > v¥ and
LT T R Y i S R YL
& %Ay IE = A implies € =A {e' PR
h Sp¥igle, = AgTe y tmpidde € s le L 4 § % By 0.4
1=p,
L =
vcb
s
ity _ _ £ By PRy
Then, for h small enough,nh 1} from (3.9) satisfies
b
S Yy
(3.13) L By Ly * Z h el’z(y)} + O(h ")for p, £ q,
1=p,
resp.
v «
& 9y
(3.14) nh,‘Q = Ahy + 0(h ) for Py > q-

Proof: In a totally analogous way to (3.7) we find from (3.2),

(3.10), (3.11) and

H . 1
Vg4 = Ténh’z_1 =9 % } h e\,k-l(y) + OCh ™)

that

Pl A v

Flyg_q) = F“(yo){ ) h 91,2-1(y)} £ ) .
=

(5.15)
Py

With the stability, (3.9) and (3.12) we conclude

™. % a,

Mh,2 M, e-1""0 {1
1"p2'_1 1=P

n
h el,n(y)+0(h

v Vo'
h 1 1 =~

el’g_l(y)+ }] h e\’z(y)} + OCh
L

.
3

Vv (—l::
e




or finally with (3.11) 3
qg’ v v o

1 q
Np,e = Aply + I hile ,(M}+0t %) forp, ¢q

l=p£ 1,8 L

resp. (3.14) if Py > 4 8]

o

To find (3.13) or (3.14) one has to know F(yl_l) exactly. In many
i applications that is not the case. This difficulty is overcome in

the following

Theorem 3.4: Define the Th, 2 by nﬁ,o = nh,o and
1 €3.16) Qh"(Ahyo)(nﬁ,R ’”ﬁ,z-i) = - w(nﬁ,g_l) s BEL1D ...,
4
3 where
1
"1 q V) b
| (3.17)  Y(n } = & CFCT. ) + §_1 hvlf (y)}+0(hq£-1)
3 h,9-1 h §'h,s-1 i 1,82-1 :
T

Further let the conditions of Theorem 3.3 be satisfied with ;

Nh,g-1°Sq,p-1 %50 7 (3.11),(3.12) replaced by n%,l—l’eﬁ,l-l

1 a.8.0. Then (3.13) vesp (3.14) are valid for nhxl instead of N
b

h,%"
Proof: The proposition follows by comparing (3.15) and (3.17). O
3 The question, how exactly nh,o = My 1in @h(nh) = 0 should be known,
may be treated exactly in the same way as it is done in [10] by

introducing the concept of approximate solutions.

4. Defect corrections via neighbouring problems

If the discretization (1.3) of the original problem (1.1) is good
and if h is small enough then y  := Ténh o {see (3.1), (3.2),; (3.90)
b

will be a good approximation for the solution y of (1.1) and the




A had oo

defect d, 3= F(yo) will be small. We assume that the neighbouring

problems (N.P.)

(4.1) F(u) = d , |4 < e, € R, MN.P. for (1.1)

and, by discretization of (4.1),

(4.2) ¢ () = Ahod, lal < ¢, € R, N.P. for (1.3)

are uniquely solvable. So ¥Ya is the unique solution of
(4.3) F(u) = Fly ), if |[FCy )| < ¢4

Though we know the exact solution ¥s of (4.3) we use the corres-

ponding discretization to compute gh - from
b
" e}
(h.y) éh(gh,o)"Ah F(yo)

If ||[F(y)|| is small enough the known error

(Y3

v. s

qQ
(4.5) = E 23

oh,0 . “h,o + O(h

€h,0 ~ BnYo >
see (3.2), (3.9), should be a good estimation for the unknown error

Mo - A,y of the original problem (1.1) and of its discretization

(1.3) and

(4.6) Phet = Byoe © (gh,o = bp¥o? © "h,o ~ (Eh,o 3 nh,o)

AY)
q
+ 0th 9

- 16 -

7 e ey e Y gy T e

RUUESRp———




should be a better approximation than .o and the defect F(yl)
]
with yq i® Ta"h,l’ should be smaller than F(y_). (“h,l in (4.6) is

usually different from n, 1 in (3.9).) So
b

) i o
S F(u) = F(yi) A ¢h(£h,1) o F(y1)

are closer to (1.1), (1.3) than (4.3), (4.4) and the known error

.
o

A%

q
- & + 0(h 1)

h,1 Wi ® Sno1 T Py

PR,
Y

should be a better estimation for the error ey ™ Ahy than (4.5)
b

and, corresponding to (4.6), we define

\)::

: : q,
Whea T Wnie s Bl o T By g T omy, 4340 )

This process may be used to generate the following iteration method

ot by it b

Qh(nh,o) e,

Yg=1 % *& h g1
4.7) T

o
by” Fly,_4) s T I

Thye °% Mo =~ Ep,p-1 = Mh -1’ J

-~

P Ty BT R R

Since we hope that the Ygo-1 will approach the exact solution y, the

ol

defect F(yz_i) will grow smaller and smaller, so ¢h(€h’£_1)=AhF(y£_1)

; will differ less and less from Qh(nh o) = o. Therefore a very good
; b

-

-17_
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As a consequence of (2.6) and (3.3) we will have %.-C. , =

4
»
4
3 -

vay to compute Eh,l-l from (4.7) is to use a modified Newton method

with starting value L = Mo

[ L o
ME: = 8, ) = -{¢h(ci_1) - Ah

Qh'(nh,o 1 i-1 F(yz_i)}a Q

(4.8) i=1,2,...3 & = nh,o, ¢h(co) = ¢(nh’o) =0,

o

L and hopefully 1lim g, = gh 0-1"
1 b

1+

.
-~

i B T ] el
gl(y) + O(h ) with appropriate 8goP;5q; € Q- Similarly

as in 3.,we may use in (4.8) instead of ®ﬁ(nh o) any ¢hx(nh0) with
b
V

vA
1 q+1l ]
" h ¢1(nh,o) + 0Ch ) .

13,00

b = ¢t
[ oy (nh;Q qh(”h,) +

1=p

(4.9) \

o - S . :
o e L (B B°) 4  a=plidg, vy + v = Vg

-

If we do so and compute orily the first step in (4.8) we find the

following simplified version of (4.7)
( " e’ * O

Ypea *= Tg Myop-g £21,2,...

(4.10) <
Y= 8™ Py, .}

ey o2 % 0-1 T Mhyo h Yo-1

L O Sl nh,o—(sh,l-l—nh,2~1):nh,£~1-(Eh,ﬁ-l—nh,o) .

..18_
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To be able to prove the following Theorems we need

Definition 4.1: Let W be (vq,vp)—smooth for &b . Further let, for

u € Bp(y),

o

n g

(4.11) éﬁ(Ahu)T = A

be such that the discretization of

(4.12) F'(u)v = d

by W

(4.13) ¢, (F'(u))T = 4,°%

satisfies

(4.14) 0, (F'(u)) = & (A u) + ? n ot ¢, (Apu) + o 1)

V=D
with ¢, € £ (Eh,Eho) independent of h resp.
Y +1
(4.15) on(F'(u)) = ¢f (A u) + OCh )

Then W is called a differentiable resp. a strongly differentiable

disceretization method for %Q .

If ,in addition to (4.9),we have

~

q \Y v~
(b.163 PGl £ Bar s T Bl B v ot TNy, P60 (e
1=p

then we have an analogous formula to (4.14) with ¢h(F‘(u)) and ¢ﬁ(Ahu)
replaced by ¢h(F”(u)) and @h”(Ahu). For most of our later applications
we have the situation given in

Definition 4.2: Let ¢ﬁ(Ahu)in (4.9) and F*(u) Zn (4.16) be such that,

for d and u smooth enough, the solutions T and v of

(4.17) o R (A WIT = Ahod and FH(wv = d

- 19 =




satisfy

» v +1
(4.18) v = A {v + £,(v) + O(h %233

1

1 ~30

P
Then (@h"(Ahu), F¥(u)) s called W -admissible ( W a

(vq,vp)-smooth diseretization method).

1 It is possible, to give sufficient conditions, depending on d,u
; and the @1 in (4.9) and the F1 in (4.16), for the Wl -admissibility
of (¢h“(u), F¥(u)). But since these conditions are very complicated
and do not save too much work in the special cases to be treated
later on, we do not formulate the corresponding theorem. In our

later applications we will often use

@ o LSk
3 ¢ﬁ(Ahu) = @ﬁ(Ahu) or ¢h"(Ahu) &R (Ahu).

3 If Wt is strongly differentiable for j@ , then (¢ﬂ(Ahu),F'(u))

is W -admissible.

i Theorem 4.3: In addition to the conditions of Theorem 2.4 and
i 1
3.1 let W be a linear discretization for gb 5 (¢h“(nh>o),F“(yo))

)

be 0 -admissible and 0={Eh,Eh ’¢hx(nh,o)}h€}{ be stable (see

[13] or [10]), that <s for this case
: vl < Cn¢hx(nh,o)7" for all vy € E and a fized c € IR

Further let (4.2) be the WY -discretization of (4.1) and let the

N.P.s (4.1), (1.1) resp.(4.2), (1.3) be uniquely solvable for

} la} < c, € R,. Finally let the implication (3.11), (3.12)

i be satisfied with &, *(Ay ) replaced by ¢h"(nh,o)'
i Then, for h small enough, the h.g from (4.10) satisfy
4 >

v

) ¥y q,
(4.19) ", © o,y + z h *e (y)+ 0 ) forp ¢ q
1 b

1,8
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resp.

va

Q
(4,20 .y g T Ay + O ) forpy >ap

Proof: For h small enough,Tgn, , and by induction,Tgny o _4 € Bp(y).
e ————— s b

Analogously to (3.7) and (3.15) we have

[ ) < Vpl“l . pi’,-i v‘—vpl"l ( )
Fly,_4) = h PRy ) {12 h e g-1 )
“Pp-1
(4.21) } |
v q V. -V VS
Py £ 7% TP q 1
€ i i et T R
- bl
1=p, 1
Since F"(yo)—1 exists, the problem
’
F"(yo)v = F(yl—l) i
p 3
is uniquely solvable and we find,by (4.21) and arguments similar
to 36, %
-
vpz—l P£—1 vl-vpz_l q2 vl-vpl-l <
v=h £ h R Y h e
7= b = k)
VPp-1 g
\):C
q
(4.22) j T
% v\ val
= Yoq7Y * 3o e: g(y) + 0(h )
1=Py i
-
Now (& ¥(n_ ),F¥(y )) is % -admissible, ¥{ is linear and
h h,o o
0= o ® ~ 4 i v = -
{Eh,Eh s ¢h (nh,o)} stable, so we find with T : gh,z—l ™0

from (4.10), (4.17), (4.18), (4,21), (4.22) that

Y i V_ -V
(4.23) sxap A1 8 i
*23)  &h,g-1"Th,0""" Al 1 2 €y, aag¥) *
Ll T
qz vl-vp vg
. AN S k=4 ot g} + O(h 2)
Ing b
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o

for p,
EN

and o finally

Mot = Mhyt-t ¥ Cniaet T The! T
(ho2u) q, N i
= 1 R
= Ay {y 4 2 h el,l(y)} + 0(h

1=p,

ns

q, and (4.20) for p, > qQ - s]

Instead of the original iteration method (4.7) we have studied in
Theoren 4.3 the method defined by (4,10).What did we lose by this
change?

Theorem 4.4: Under the conditions of Theorem 4.3 one finds, using

(4.7) 7instead of (4.10), again the relations (4.19) and (4.20).

In (4.19) only the e but not the Pg»q, are to be changed.

Ul
That means, from the viewpoint of asymptotiec expansions: The
relatively simple method (4.10) works as well as the relatively

complicated method (4.7).

yf: Since w s € = v i
Proc ince we, usually, cannot solve Qh(gh,l—l) Ah F(y2-1) in

(4.7) directly, we do it via (4.8). Let us substitute ¢h”(nh o)
b

"‘

for “ﬂ(”h O) in (4.8). In (4.8) we will perform only a few iterations.
3

So the following argument is valid: Comparing (4.8) and (4.10) we

find that §o. 7 nh,o implies £y = gh,z_l from (4.10). Now by (4.23)

’ Pz'l \)1 qg \)1 g L
LT e L T T T LR T
1FPg-1 1=Pp
v b
q
R T

- 22 -
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To compute £, from (4.10)we have to determine ¢h(cl) and we find

with En.g~1 = By & @h(“h,o) and the (vq,vp)—smoothncssof'mn
X Pt P ¥
) = & Ty Iy g7y )
(v _/v_1] v _¥
Tl (o) o 9
Pl e °h(vq,vp)(“h,o)(gh,z-1'”h,o) SR
This and the conditions in Definition 4.1 imply
- o Yqy
- {e, (6,3 - & "Fly, )} = & £} b gl,l(y)} + 0(h ™)

1=p,
So again using (4.8) and the #{ -admissibility of (¢hx(nh,o)’yx(y0))

we find

v =

q
&

9 v
(4.25) £, By == ] B
1 =p2

v

gl’z(y) + 0(h

n
where the gl’l(y) $ SR 1=p2(1)q£, unless the e (1)p£-1,

s
1,2-1° Y7Pgoq
are reproduced more exactly than we required and unless

additional conditions on the higher derivatives are imposed. If we

now define an improved ni 0 analogously to (4.7) and (4.10) by
3

v

gy o= - - = o -G - - = =2 s
Mh,e *% Mhye-1 = 27Mn,0) T Mhygen T BB -Cgmmy dEny 0 m(EgmR )

we find with (4.24), (4.25) and §.. ,(y) } e. ,(y)
1,9' = 1 ,2
" { qg’ vl v vq;
nh,l = Ah y + z h eg’z(y)} + OCh DI
1=p,

-23_.
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So nhxﬁhas the same asymptotic expansion like Ny and further
b 3

iterations via (4.8) would give the same result. o

Again, like in 3., it is not necessary to know F(y2—1) in (4,10}
exactly,but only approximatively: If we use in (4.10) an approximation

V¥ to F(yl—i) analogous to (3.17),we find

¢h(nh:o) = 8y =0 L nh,o 2

Y ar

) = w“(nh,g_l) with

G263 3 e 28 0y — My p
9 v o
P (nit Y = A C{F(T¥ Y o omt (y)}+0(n )
h,e-1 h 8™ -1 = gy,0-1"Y ey
=Py

)

We,n 1F Mh pag TSt o Oy

-

Theorem 4.5: Define n, *, by (4.26) and let the conditions of
3

Theorem 4.3 be satisfied with M =t 0o #n (3.11) wvesp. (3.12)
replaced by nhf%—l’ elfl—l' Then (4.19) resp. (4.20) are valid with

s

nh,l’ e"z replaced by nh:Q’ e1:£.

We now proceed to study the relations between the results in 3. and

4..(3.9) and (4.10)1look very alike and so the following Theorem is

not astonishing:




2o

Bokialam s s e bl

Theorem 4.6: Let Zﬁ be a linear discretization method and let

v
F¥(y,) in (3.9) satisfy (3.5) and ¢ (Fi(y)) = & ¥(ny ) + O(h q+1,

v
with the éh”(nh ) 7n (4.10) resp. (4.26) and let YA W=yY*(A, u)+0(h q+1)a
»O h h

i Vv
+ O(h q+1)

= Ay Flygy)

So,if (4.27) is already proved for &-1ywe have

(F*(y ))(n, , - ) = =A, F( ) + 0(n *1)
OplE o2 )Ny g = My g-1? = “0pF(yyy ’

- 25 =

If we write the results of (3.8) resp. (3.16) as n resp. ni and
h,% hyf
the results of (4.10) resp. (4.26) as 7 resp. n¥ ,, then
h,2 h,®
\)N
at g
nh,l SRy O0(h ) . L=03F 0 v
3
(4.27) 4
\):C
% ) e
L nh,l = nh,l + (h ) s 2-0,1,... .

Proof: With the denominations in Theorem 4.6 we have by (4.10)
resp. (4.26)

Mo ™ gy = “Bp s T Ty oF s

fh,2-1 ~ ®h,2-1*"h,0 © h,o

Mhat T Thapet T TVEh per T Ty e)

d therefore by (4.410) d (F*(y )) = & ( )+ O(th+1)
van ore by . an ¢h Mo = nh,o
= o)y g T Mhyg-g) T 0 (BRI -y )

4 -
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The results for ni g are obtained in the same way. 0
b

The idea of using N.P. goes back to ZADUNAISKY [13,14,15], again
discussed by STETTER [12]. They treated initial value problems of
ordinary differential equations where STETTER used our first method,
too. The method of N.P. was applied by FRANK, HERTLING, UEBERHUBER
[4,5,6] to initial and boundary value problems of ordinary diffe-
rential equations. In the next papers we will give corresponding
results for non-smooth starting values Lo and present some examples

of our general theory.
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