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ABSTRACT . .

~~~~~~

This paper first describes a modified version of the
parametric princip~il pivoting algorithm [4] for the class of

parametric linear complementarity problems with P—matrices.

The modified version of the narametric principal pivoting al-

gorithm is then used to develop a new and efficient algorithm

to solve the class of portfolio analysis problems with positive

definite (or equivalently, nonsingular) covariance matrices.

Extension of the new algorithm to handle explicit upper—bounds

is also established . The new algorithm and its extension are
then specialized to the “index models” introduced by Sharoe

1291, 1291 . In these specializations , the algorithms are par—

ticular]v effective , achieving dramatic savings in both storage

and computations.
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SOME NEW AND EFFICIENT ALGORITh MS
FOR I’ORTFOLlO ANALYSiS

Jong—Shi Pang

1. INTRODUCTION

In ]~952 , Markowitz [19] suggested formulating the general portfolio

analysis problem as a parametri.~ (convex) quadratic programming problem.

The quadrat ic  term in the object ive func t ion  corresponds to the predicted

variance of portfolio return which is used as a measure of risk; the lin-

ear term in the objective function corresponds to the expected value of

portfolio return; the parameter of- the problem which is assumed to be

nonnegative and appears in the linear term of the objective is a measure

of the re la t ive importance of reduced risk and increased return; finally,

the constraints consist of the nonnegativity of the proportions of an in—

vestor ’s fund to be invested in the securit ies and the sum of the prop or—

tions being equal to unity. Specifically, the general portfolio analysis

prob lem is

(1.1) min imize  
~~- V — OF

p
n

with  V Var (~ x . R . )
1= 1 ~~~

n
E = Exp (~ x . R . )

i=l

subject to x > 0

and eTx~~~~i 
4

where n is the number of securities;  0 is the nonnegative parameter;

x = (x 1,. .. I xn ) T 
~ R~ is the vector of proportions invested in the secur--

ities; R = (R
1
,. . - ,R ) T is the vector of returns on the securities

which are assumed to be stochastic; and e is the n-vector of l’ s
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Letting V be the covariance matrix of the security re turns , we can re-

write problem (1.1) in the following equivalent format,

(1.2) minimize ~~- x’1~Vx + ~r
Tx

subject to x > 0

and eTx = l

where r (r1) ~ R
n is the vector wi th r

~ 
= — E x p ( R . )  for every

i = l ,...,n .

The matrix V . being a covariance matrix , is symmetric and positive

semi -definite . Therefore , for every f ixed 0, problem (1.2) is a convex

quadratic program. Methods for solving (1.2) parametrically (i.e. obtain-

ing a solution for every value of 0) include , among others , Markowitz ’

critic-al line method [201 and Wolfe ’s simplex—like parametric algorithm

I3~~). Maxkowitz ’ m.•thod starts by finding a portfolio with maximum ex—

I ( ( t ~~J r et -u r n  ( i . e .  a so lu t ion  corresponding to 0 ) ,  then decreases the

v,dut - of 0 successively and proceeds in parametric manner. The algori thm

.‘; t t p :  ~~h . n  i t reach.’-s the minimum risk portfolio (i.e. when 0 = 0). Wolfe ’s

~‘ - t f . i f l . ( ’ t !  i t  4ilqorith~i’i operates in precisely the reverse order. It starts

by usinq t h e  unpar~ rne tar~ zed version of the algorithm to obtain an initial

solution cr)rr(-~ po1Idinq to 0 = 0 and then increases the value of 0 until

i t  rc ach~ - . Bot h methods (and a few others) require the storage of the

entire ma t rix V and an extensive amount of computational effort.

Recoqoizing tht~ informational and computational complexity of the

genera l  modc l , Sharpe [26]  introduced some simpl i f i ed models for portfol io

analysis. These are the “index models ” which assume that the security re-

turns are exprcssc.1 in terms of some market indices. Specifically, a

typical index model assumes that

(1.3) R. = (~~. + B 1~~I
1 

+ ... + 
~mi’m + c . i = 1,...
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where the ct ’ s and 6’ s are constant scalars, the I’s are appropriate

market ind ices wh ich are random variables with mean zero, and the c ’s are

random variables with mean zero. There are three assumptions to the model:

(1.4a) Cov(I~~ I.) = 0 for i 4 j

• 
(1.4b) Cov (c., c.) = 0 for i 4 j

(1.4c) Cov (c1, I .) = 0 for all i ,j -

Under these assumptions , as shown in [30 ] ,  the covarianco matrix V is

given by

m T(1.5) V = + ~ Var(I .)6.6.
j=l ~

where ~ is a nonnegative diagonal matrix whose i—th diagonal entry is

equal to Var(c1), and 6~ ~
6jl ’-

~~~’ 
6 ) T for j 1, .. . ,m . If in 1,

the model is called a single index model, and in general , it is called an

rn-index model. For practical purposes , it is reasonable to assume that in

is smaller than n

One of the simplifications resulting from the introduction of the

index models was the transformation of the quadratic term ~
Tv~ in the

objective function of (1.2) into one with a diagonal matrix (i.e. into a

sum of square terms). By (1.5), problem (1.2) can be cast in the form :

(1.6) minimize ~~. (~C)’l’ (~ 
0) (X ) + 0(r)T (

X
)

subject to x > 0

eTx = 1

y. = Var(I.) 8~ x j = 1,.. .,m

where y = (y1,. . ~ym
)T - By t reating the y ’s as separate variables and

the equalities
T

y .  = Var(I.) B~ x j = 1,... ,m

—3— 
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as addi tional constra ints, special purpose quadratic programming codes have

H been written [121, [341 to take full advantage of the fact that the objee—

tive now has a diagonal matrix.

Sharpe [3 1] and Stone [32 ] have proposed another approach to simpli fy

the general model. This involves first diagonalizing the covariance matrix

V by some numer ical procedure , e.g. the one described in Dantzig [7,

p. 491-492], then approximating the resulting diagonalized objective func-

tion by a piecew ise linear function , and finally, applying linear program-

ming to solve the approximated problem. With the index models, the first

step of diagonalizirig the covariance matrix V is not required because of

the formulation (1.6). Of course , the solution obtained by this linear

programming approach gives Only an approximated solution to the general

problem (1.2).

Due to some legal or personal constraints , it is common in practice

to impose explicit upper bounds on the proportions invested in the secur-

ities. An example of this was described in [291 concerning the mutual

fund portfolio anal ysis . To formulate the general portfolio analysis

problem with explicit upper bounds , le t a be a pos it ive vector , then the

problem is

(1.7) minimize ~~- x~ Vx + or
Tx

subject to a > x > 0

and eTx = l

Assuming a single index model and that the bounds are rather restric-

t ive , Sharpe [29] proposed a linear programming approximation to problem

(1.7). Although the solution procedure then becomes a very simple one,

(as a matter of fact , the approximated problem is almost trivial) it pro-

duces onl y an approximate solution to the original problem.

Recen tly , Jucker and de Faro 113], assum ing tha t the covariance

matrix V is diagonal , described a simple al gorithm for problem (1.2) for

fixed value of the parameter 0 m d  extended the algorithm to the problem

— 4—
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(1.7) with upper bounds. They also provided a graphical interpretation to

their algorithm. As a matter of fact, the problem they considered , name ly,

(1.2) with diagonal V and fixed 0 , is a special case of the single index

mode l corresponding to Var (1
1
) = 0 - More recently , Alexander [1] has re-

ported some computational experience with the use of Lemke’s algorithm [17]

to solve problem (1.2) in a somewhat different formulation . The largest

problem solved in the paper contains 90 securities and was solved in an

average of 190.3 seconds (CPU time) . Finally, Rosenberg and Rudd [24) has

reported some rather encouraging computational results with the use of a

new and general-purpose quadratic programmi ng algorithm in portfolio anal-

ysis. The algorithm is due to Von Hohenbalkc’n [33] and is not parametric.

It uses techniques in linear programming.

Despite the fact that there are many quadratic programming algorithms

that can be used to solve the prob)cms (1.2) and (1.7), few of them are

successful in solving problems with a large number of securities (say.

when n is in the order of hundreds or thousands). A major limitation in

the application of these algorithms to large-scale problems is the exces-

sive computational cost. This is very often caused by the lack of effici-

ency in the imp l ementation of the algorithms.

In this paper , we propose a fresh approach and develop some new al-

gorithms to solve the classes of portfolio problems ( 1 .2)  and ( 1 . 7 )  w i t h

positive definite covariance matrices V - We will also discuss efficient

implementation of these al gori thms, with special emphasis placed on their

implementation for large-scale problems. It should be pointed out tha t

since V is a covariance matrix , it is positive d e f i n i t e  if and only if

it is non sin gu lar . The essential too l used to develop the new a l go r i t hms

is a modi f ied  version of the  parametr ic  pr incipal pivoting a lgor i thm [4 ]

for the  class of pa ramet r i c  l inear  comp lementari ty problems wi th  P—mat r i ces .

We shall  e x p l a i n  the terminology and descr ibe  the modi f ied  a lgor i thm in  the

next Section .

The new a l g o r i t h m s  tha t  we shall propose for the general po rt fo l io

—5—
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analysis problem in Section 3 have two basic properties which are extremely
important and useful for the application of these algorithms to problems

with specially s t ructured covariance matrices . These properties are :

(1) the algori thms can take f u l l  advantage of the special structures; and

(2) they preserve the special structures throughout the solution process.

Of course , without either one of the properties, the other would not be so

useful. In order to provide an example of a specially structured covariance

matrix , consider the single index model (and in general , a mul tiple index

model also). We know from (1.5) that

V = ~ -f Var(11)61 6~
’

which is a diagonal matrix plus a rank one modification . This is special!

Matrices of this class (or even its generalization (1.5)) have certain nice

properties which can be used in the new algorithms to facilitate their urn-
plementat ion. Tm Section 4, we shall specialize the new algorithms to the

general index models where we drop assumption (l.4a). Our puroose there is

to exploit the special structures inherent in these index models and to

show how they can he used in the algorithms most effectively.

—6—
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2. PARMIETRIC PRINCIPAL PIVOTING

2.1. Background. This subsection is concerned with a brief review with

the background materials required f o the entire paper. For a given n-

vector q and n X n matrix N, the linear complementarity problem , do—

noted by (q,M) is that of finding an n—vector x satisfying

(2.1) q + Mx > 0, x > 0 and xr (q + Mx) = 0

Recent ly ,  there has been , an extensive amount of oaoers oublished on the

theory and appl icat ions  of the linear complementarity problem. We mention

three most recent survey papers on this subject, Cottle 13), Kancko [14]

and Lemke [ 1 8 ] .

It has been proved (see Samelson et al. [25]) that if N is a P—

matrix i.e. a real square matrix with positive orinci pal mi nors , then the

l inear complement ~.r ity  problem ( q , M ) has a unique solution for every vector

q .

The pdr~u 1~~tri c linear comp i e mc nt a r i t y  problem , denoted by { (q + )
~p , fl)

A c R} cons i st s of the f a m i l y  of l in ear  comp l c a r L t a r i ty  problems

(q + A p , N ) whe re A is a scalar , to ho varied over the whole real l ine ,

an d o is a g iven n-vector. For sonic introductory exposition to the par—

ametr ic  l i nea r  complem enta r i ty  probler , we r e f e r  to Cottd e [~
] and Kaneko

( 1 5] .

Throughout this entire sect- i on , we ns r i :~ir that  N is a P — m a t r i x ’

which  is not necessaril y symmetric , and that p is positive 2. It then

follo’-s that the lii oar comp i rimentarit y problem (q + ~p , M) has a u n i q u e

so lu t ion  ~~( A )  for every A . In f ac t  ~
‘ ( X )  is a c o n t i n u o u s  p iecewise  Li nea r

f u n c t i on  of A wit .h f i n i t e l y  m any break po in t s  (sec ( 4 3  e . g . )  . If ~-‘c let

( 2 . 2 )  = max (—q / p , )
1<i<n 1 1

1. See also the discussion in the las t  p ar a qr ap h  of t h i s  subacci ion .
2.  Of course , we can then assume fo r  simp l i c i t y  and w i thou t  loss  of gem —

er a l i tv , tha t  p is the vector of I ‘s . h owever , we do not asssunic
this for reasons which will become clear  in Sect ion 4 .

— 7 —
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then it is clear that q + A p > 0 for all  A >  3:. Thus ~~ ( A )  = 0 for all

A > 3:. To determine ~~( A )  for those A less than 3:, we resort to the
parametric principal pivotin~~~~ qorithrn which is a parametarized version of

Graves ’ lexicographic principal pivoting algorithm [10] . The parametric

principal pivoting algorithm is valid if M is either a P—matrix or a

positive semi-definite matrix. It is described in Cottle [4]. We reform-

ulate the algorithm for the case of a P-matrix as follows. For those

readers who are unfamiliar with the theory of pivotal algebra , we a d v i s e

them to consult on the references 12], [5], 110).

Algorithm 1: Original version of the parametric principal pivoting al-

gorithm for M c P

Ste~~~~. Determine A by (2.2). Let the initial canonical tableau he

given by

u = q + A p + M x

where q 4- Ap > 0 for all A > 3 : .  Let (~~~( X ) ,  ~ (A )) = (q 4- )p, O) for

A > 3: . Pu t A old = 3: and go to St-op 1.

Ste~~~l .  If p < 0  (this cannot occur initiall y), let (u(A), ~~(A)) =

(q 4- A p,  0)  on ( — — , X old ) and t e r m i n a t e .  Otherwise  de t e rmin e  the  new

c rit i cn l v n l u c

A = max{-~~~: p
~ 

> 0)

and let the now c r i t i c a l  in d e x  k be a m a x i m i z in q  index .  Put -  (~~( A )  ,~~V ’ ) )

= (q + Ap, 0) on [ A old , X new ] . Set Aold 
= A i~ew 

and to to Step 2.

St ep 2. Pivot on mkk and let u,x,q,p and N correspond to the result-

ing canonical form. Go to Step 1.

Algorithm 1 may he exp lained briefly as fol lows . m i  ti ai1 y, the de-

t e r m i n a t i o n  of \ such th at  q + Ap > 0 for  a l l  A i-~ is posrible hecaus - p

is positive . This then produces the solu tion ~~
(\ )  for all A A immecli—

ately. Next , one wants to decrease A and to determine the solution

1. We sornelimes ur ,e the l e t t e r  P to denote the c l u e s  of P — m a t r i c e s .

— 8—
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~ (A) for those A less t han  3: . This is done in precisely

the san~e way as in parametric linear programming , namely,  by a ratio test.

In this instance , it is a maximum ratio test because one is decreasing A .

Having obtained the maximum ratio (which gives the largest extent for the

decrease of A , keeping the current basic solution satisfy the nonnegativ—

ity conditions) and the maximizing index , one performs a principal pivot

to replace the current ‘blocking ” basic variable by its nonbasic pair. One

then repeats the ratio test to decrease A further. The algorithm termi-

nates when the current p—vector becomes non—positive . In this case , a

further decrease of A can res u l t onl y in an increase of the values of the

current basic variables. Therefore the algorithm terminates.

Several r e mar k s  are i msortant to Aiqori thm 1 and subsequent  dev~ lop--

ment. Firstly, the pivots in Step 2 are a lways  possible becaus’: of the

fact that the m at r i> :  N after- each such pivot r~-ma ins a P—matrix (see 12]

e.g. ) thus has positive diasanal entries. Secondly, by i ncorporatinq a

lexicographic rule to choor t h e ma> .imizinq i n dex  in Step I , like the one

used in Craves ’ algorithm [10] , t he  above alqori thm will c~~ ’a r t hr  solu-

t ion ~~( A )  for all va]ues of A , in a fini to numbe r of si c  - The lex-

icogr aphy is used to avoid d eqen ~~r a c y.  Las t l y ,  each l a i r  of old and nc -w

c r i t i ca l  va lues  of \ , n a m — — ’l y ,  A 11 and A , actuall y coim or ends to

a pa i r  of consecutive hr i~ 1-:in t s of the  s o l ut i o n  cu rve  ~~( A )

As m e n t i o n e d  ea r l i e r , t1-~e p r t m : t r i c  p r in c i  pa l  p i v o t i ng  alqoui tI~m

was va l id  for  a p a r a me tr i c  l i nea r  complementarity problem with ci thor a

P — m a t r i x  or a p o s i t i v e  semi-definite m a t r i x .  In t h i s  papel- , we r e s t r i c t

our cons idera t ion  to  t h e  P — m a t r i x  case and leave the oth er case as the  sub-

ject : for another  report .

2 . 2 .  t ica L i o~~~~~~~~~ x sJ_ç’uj . Before  prece~-d~ :ig f u r t h e r , we expl aim

some n o t a t i o n s  to he used l a t e r .  Let. N he an n x n m a t r i x  and let

I , J C { l , . . . n ) .  ‘.-:e d e f i ne

- 
-9-
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m.
1 3  ... In. .1 1 113t

- ... in.1s3 l.

where I {i 1,. .. ,i~~} and J ( j , . with 1~~~i1 < < i s n and

1<  j1 < ... < j~~<n . In p a r t i c u l a r , N 11 is a pr inci pal submatr ix  of N

Similarly, if q is an n—vector , we define q (q. , . q  )T If
1

1

I = {l ,. . . , f l} ,  we write to mean M1~~. Similarly, if J = {l,.. . ,n)- ,

we write N~~ to mean . Any vector indexed by the empty set is

meant  to be the zero vector. The le t ter  e always denotes the vector of

l’ s.

In the sequel , we f i r s t  m o d i f y  Al gor i thm 1 in such a way that it can

be efficiently adopted to large-scale applications and then extend it to

al low fec upper bounds  on the va r iab les .  In order to r e f r a i n  us from re—

pea t i .nq ,  we hereb y declare that  a l l  the al gor i thms  descr ibed  i.n t h i s  paper

are f i n i t ~ p rovided t h a t -  degeneracy or c y c l i n g  is t reated app rop r i a t e ly  by

some lox i c o y  ap hic ’ r u l e .

We saw exp l a i n  how we modify Aiqorithm 1. Foilow~ nq the usua l  lan--

guaqo in p~ v ot a l  al gebra , we cal l  t h e  vectors  u and x in the  system

of 1 m oor equat  icns

u = q + Ap + Mx

basic and n o n — h ~~s~~c vect- ers rc- spect ivel y and t h e i r  component .s  b a s i c  and

n o n — b a r i c va r i~ hlcs  r espec t ivel y .  Now , suppose that  Steo 2 of Algorithm 1

h as bee n per for :- icd  evei~~i t i m e s  and t ha t  the  a l g o r i t h m  is not  yet  te r m i—

nat -ed . The co~- pen~~nt s  of the cur r e n t  basic  vect or  w i l l  them consist  of

some r c m p o n e n t . s of the  or iq i n al  x—vecto r  t oge the r  w i t h  the rest of the

co np: s~~nt s  of t h e  o r ig i na l  u—vector . More p rec ise ly ,  there are two dis-

j o i n t  in dex  sets I and ~T with I UJ = { 1,... ,n ) such that I and J

consist  of , r e sp e c t i v e l y ,  t hose  i n d ic e s  of the components of the orig i n a l

u— an d x — v c c t o r s  t h a t  ar e  currently b a s i c .  ( I n i t i a l l y ,  I = { 1, . . . ,n
— 10—
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and J = ~ .) Furthermore , the current canonical tableau can be obtained

by performing a block pivot in the initial tableau . In other words , writing

the initial tableau in partitioned form as

U
1 

= + Ap
1 + ?~11x1 +

u~ = q
~ 

+ A p~ + N
1~
x~ + M~,3x~

and solving for u1 and x3 in terms of x1 and ~~~ we obtain the

current canonical tableau:

(2.3a) u1 
= (q 1 

— N
1~~~~~~~ q3~ + A ( P 1

—N 13M~~~P~~) + (N
11 

—

—l+ ?41~ N~~ u~

(2.3b) x~ = — M~~~q 3 
- A M 3~ p3 

- N3~~M 31x 1 + I4JJ U J

Letting g
~ 

and h3 be the  (unique ) solutions to the f o l l o w i n g  systems

of linear e q u a t i o ns  r e sp e c t i v e l y ,

(2.4) ~~~~~ = q
~ 

and t4jjhJ p~

and d e f i n i n g

(2.5) c1 = q1 
-- M1~ g3 and d1 

= p_ _M
1~ h3

we may write (2.3) cc

(2.6a) u1 = c1 + ~d1 + (N
H 

— t41~ M~~ M31
) x 1 

4-

(2.6b) x~ -g
~ 

- Ah~ - M~~M31x1 + M~~ u3

Not ing  tha t  the  ra t io  t e st  in St-op  I of A l g o r i t h m  I depends so le l y on tl~

vectors ~~~ c3
~~
, g

~ 
and h~ and that performing the pivot in Step 2 is

actually equivalent to adjusting the sets 1 and J suitably and then t-o

obtaining the corresponding canon i cal tableau (2.6), we car readily state

the m o d i f i e d  v e r s i o n  of A lgor i thm 1 as follows .

A l go r ith m  2; Modified version of the parametric principal pivoting for

M c  P

—1 1—
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~~~~~~~ Let A old 
= ‘°. Let 1 = (1 ,. ..,n} and J =

Step 1. Solve the systems of equations in (2.4) for g3 and h3 and

then compute c1 and d1 by (2.5). Go to Step 2.

p
~~

. If d1 < 0 and h3
> O , set 

~~
(A) = 0 and ~3

(A) -g~ 
- Ah3

for all A < A old and te rminate . Otherwise , determine the new c r i t i ca l

value

C.  q.
A ew = maxt max ( — 

~~
-
~~~; d

1 
>0 , i n ) , ma x h~— : h~~< 0 1 j c j ) }

1 3

and let the new c r i t i ca l  index k be a m a x i m i z i n g  index.  Put  ( A )  0

and ~3 ( A )  -g 3 
- Xh 3 for A c IA ,A ld I . Set >‘old = A and go to Stop 3.

Step 3. I f  k I .  I, then replace I and 3 by I\ i k )  a nd 3 U (k} re-

spectively. Go to Step 1.

If k c 3, then replace 1 and 3 by I U {k) and 3 \ ~k) respec-

tively. Go to Step 1.

Remark. The set 3 will always contain at least one e lemen t  except initi Ol —

ly. This is clear from the wa y the  ~r i  t i cal index is chosen in St01) 2 and

the fa ct  f-ha t  h3 ~ 0 i f  3 is a s i ng l e t o n .

A lgo r i thm 2 is b a s i c a l ly the same as A l g o r i t h m  1 except  t ha t  the

pivot step in the l a t t e r  algorithm has been replaced by t h e  upd a t i n g  of the

two m dcx sets I and 3 and by solving the two systems of l inear  c qu a— .~
t ions  in ( 2 . 4 )  w h i c h  always  have un ique  solutions. The ratio test is per--

formed in Step 2 without any change . The updating of the sets I and J

is clear and requires no further exp lanation .

The idea of r e p l a c i n g  the  pivot  steps by solving systems of l ine -a r

equat ion i.n the above m od i f i c a t i o n  seems as though f a i r l y  simple , neverthe-

1ess i t  suggest s  a very e f f i c i e n t :  way to a c t u a l l y  implement the or ig inal

algorithm , and is especially useful in large—scale applications. As a

mat ter  of f ac t , the same idea has been applied to Lemko ’s algorithm [‘71

for certain class of linear complementarity problems . The application was

— 
described in 126]. It should ho pointed out that the modification described

— 1 2—
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in Algorithm 2 is not con tain ed  ~n 126 1 a-  is obtained independently  h e x t - .

Indeed , the author is indebted to Profes Stephen Robinson who has

Called his attention to the reference [2t~ j after learning t h e  rosu l  Is oh-

• tam ed by the author.

A large part of the computational effort required in Al gorithm 2

con sists of s o l vin g  the systems of linear equations in (2.4) for various

Sets 3 . Of course t he se  sys tems  can be solved i n i - p  SLiest ly of each

other  by ,  for instance , factorization me t hods .  l3u t  so l v i n g  t he  syrten 5;

in th i~ way is de finit el y not most elf icie ~ t because  one i s  not m a k i n g  U r e

of any old i n f o l m a t  ion  to q~ - ;IcL ate now dat a. Here the updat itig approach

describc-d i n  126] can bc app i -3 . The idea is to avoid solving the whole

current sy stems  of linear equa t  ion s  in (2.4) from scratch , but instead ,

by t a k i ng  u~v an t c q e  of the  i n f o r m a t i o n  one h as  about  the previous  sys t ems .

First note that each time (2.4) is invoked , the set 3 chaflges by one

element- , or more precisely, increases or decreases by t he  new critical in-

dex. Th i s  means t : hat  the  s u bn i at r ix  N 13 e i t h e r i n creases or dec reases

by one row and the  cor respond ing  column . If one uses or thcgonal  (Q R )

f~- ctorizntion to solve the  s y s t & --c’~; of equations in (2.4) (see Il l ], e.a.)

then bared on the f a c t  about  the change of the submatrix M
33, it is oss-

sibie to develop fast n u m e r i c a l  procedures to update the OR factors of the

flew M~31
. These updat ing procedures can then be used to facilitate the

eomputut~~on of the solution vectors g3 and h 1 in (2.4). The amount of

operat ions requi red  to compute the  vectors g~ and h3 by t h i s  approach

is of order where Q is the size of the cur ren t  N
33 . This is better

than solving the systems of equations in (2.4) directly by an order of mag-

nitude. The up c la t i  ng procedures are doscr i  bed in more detai l  in 126 ]  . Wa-

would also l i k e  to ment ion tha t  upd a t i n g  f o r m u l a s  for the i~~verses of N33

arc given in [27) , Ill). The approach of using updated i nverses to solve

the systems of equations in (2.4) is slightly inferior (although of the

same order of computational effort) than that of using updated QR factors

— 13—
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(see [26)). Finally, we point out that the total amount of storage j-~~~~

quired by using either one of these two approaches is of order

It is clear that Al gor i thm 2 has the two properties mentioned in the

introductiOn when it is applied to parametric linear complementarity pro—

bleins { (q + Ap ,M): A c R) with speciall y structured matrices M , namely ,

it can take advantage of and preserve the special structures throughout the

solution process. Sometimes , certain special structure allows the solu-

tions g3 and h3 in (2.4) to be computed readily (or even explicitly)

without the need of going through the updat ing  procedures mentioned in the

last paragraph. This is true for example , in the case of the index models

as we shall see in Section 4.

In the rest of this subsection , we extend the above anal ys i s and

Algorithm 2 to deal wi th upper bounds.  A similar extension of Lemke’s al-

gorithm is described in [26] .

Specifically, we consid er the following parametric linear comple—

inentar i tY problem :

- (2.7) U = q + Ap -t Mx + y~~o x > 0

v = a  -
~~~~ .~o

T Tu x = v y =  0

where A ,q,p and M are as above and a is a given positive vector of upper

bounds Ofl the variables. Problems of the tyce ( 2 . 7 )  a r i se , for  examp le ,

from quadratic minimization oroblems wit.h un~er hounds. For fixed value

of A , problem (2.7) is a l inear  coniplenientarity problem wi th  vector
+ A o  - N I  -

and matrix (~~ o~ 
T h e r e f o r e , by varyinu A over the wholo

a
real line , problem (2.7) becomes the ar ametr ic  l i n e a r  complementari ty

problem t ( ~~) + A (s) , ( _~~ ~) ) :  A~ R). Linear eoml lcmentarity ~roblems of

the type (2.7) with fixed A have been studied intensive l~’ in two recent

papers [61 , [21]. See also [16]. In particu lar , it was proved in 16] that

jf M is a P—matrix , then for every fixed I , ~rohlem (2.7) has a solution

_a
(\) (from which the corrcsponc-hinq ~~~~~ can be clcnerated eas i l y ) .  The

—14—
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uniqueness of ~
a (X) was oroved in 12 1 ] .  Our oblec t ivo  here is to extend

Algori thm 2 to determine ~ 
a ( )~) as a f u n c t i o n  of A parametrically. For a

unified study on problems (2.7) with A 0 and (2.1), we refer to [22)

where the author  t rea t s  the vector a of upper bounds as having some corn-

pononts equal to infinity .

The reason that Algorithm 2 is not d i rec t ly  applicable to problem ( 2 . 7 )

is obvious: (~~ ~) is not a P-matr ix  even if M is. Suppose that we

have obtained some value A of A for which we know the so lu t ions  ~~~( A )  for

all A> ~ and now we want to decrease A to complete the solution process.

In the solut ion ~~~( A ) ,  some components will be basic and others nonbasic.

Among the b a s i c  components , some wi l l  at the i r  upper bounds.  Let I and

J den ote respect ivel y ,  t he sets of indices of the now basic u— and x—

variables , with 3 consisting of 
~l and 

~ 2 where 
~ 2 corresponds to

the subset of 3 such that the basic x -var i ab les  w i t h  indices  in 
~ 2 are

at t he i r  upper  bounds and is the  comp l e m e n t  of 
~ 2 in 3. (Initially ,

~ is g iven b y ( 2 . 2 ) ,  1 = {l , . . ., n )  , and = J2 = ~.) With the sets

~~ ~l and 
~ 2 ’ we can wr i t e  the i n i t ia l  c a n o n i c a l  tableau in pa r t i t i oned

form as:

U
1 

— q1 + A p 1 ~ N11x1 + M11 x 3 + M 73 x3 +

U
3 

= q~ + + N3 1x1 + Nj j~~ 
+ M3 3 x3 +

= + X p 3 + N3 1x1 + M3 3 x3 + M3 7 x3 +

v1 = a 1 - x 1

v = a -x

~
‘1 l

v = a —x~
~2 

‘
~2 2

and the i n t e r m ed i a t e  canon ica l  tableau before  the f u r t h e r  decrease of A as:

—1 5— 
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= [q
1-M13 M~~3 (q3 +M3 3 a3 ) + N13 a3

] +

+ (M
11-M 13 M~~3 M3 1 )x1 + M13 M~

1
3 u3 

— (N13 
—

—

I:: I E 

- AM33 p3 M3 3 M3 1x +

v3 = [a
3 ÷N~~3 (q3 ÷r-13 3 a3 )) + AM~~

1
3 p3 +N3

1
3 N3 1x1-N~~3 U

3

- M~
1
3 N3 3  v3 

+ N 3 y3

= q32
M3231~~~~31 31

4~ 13132
a32 

+ — X ( p ~~~_ M
3 1 M ’

3 p3
)

-(N3 1 -M3 3 N~~3 N3 1 )x1 
-

+ MJ J NJ J y 1

Letting g and h3 denote the (u n i q u e )  solutions to the followingJi I
systems of linear equa t ions  respectively,

(2.8) M
3 ~ 

= q3 + M3 -
~ 
a3 and M 1 ~ 

h3 =
1 1  1 1 l~ 2 2 ~l 1  1

and d e f i n i n g

(2.9a) c1 = q1 
— M13 g3 + N13 a3 , d1 p1 

—

(2.9b) c~ = — M
3 3

g3 + M3 3 a3 , d 1 p3 
—

we may rewrite the tableau correspond ing to A = as

—1 6--
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u = c  +A d 1

x3 -g3 -A h 3

x3~~~~ a3

1 1

(2.10) V1 = a~ + nonbasic portion .

v~ (a3 + g 3 ) + A h J1 1 1 1
y3 =- c~ ~~Ad32 2 2

It is now clear from (2.10) how to proceed to determine the decrease

of A - Based on (2.10) and the same idea as before, we deduce the next

algorithm which is an extension of Algorithm 2 to solve problem (2.7).

~!~~rit.hm_3: Extension of the parametric principal pivoting algorithm to

deal with upper bounds for M r P -

~~~~~~~ 
let Aold 

= . Let I = (1 ,... ,n} and 3
~ ~2 

=

Stepj~. Solve the systems of equations in (2.8) for g3 and h3 and
1 1

then compute c1 , d 1, c3 and d
3 by (2.9). Go to Step 2.

2 2

Step 2. If d <0 , h = 0 and d >0 , set ~
a (A) = a for all A 

~1 2
and terminate ( i n  fact , I and will then  be empty) . Otherwise determine

the new c r i t i ca l  value

A new = rnax ( max (— ~~
-
~~ : d. > 0 , i I.) , max f —  ~~—~~: h

1 
< 0, j1 3~~)

i -l

max C 

a~ 1
+:~ 1 h . > 0 ,j 1 J 1 }, max~~— ?: d , <0 , j2

t3 2
1)

and let the new c r i t i ca l  index k be a m a x i m i z i n g  index . Put X a U )  =

(A) = — Ah
3 and (A) a3 for A c IA old~

A new ] - Set
1 1 2 2

A new and go to Step 3.

Step~~ . If k c I, th en replace I and J
~ 

by I \ {k) and 3~ U {k )

respectively. Go to Step 1.

If k 
~ ~2’ then replace J1 and 

~2 
by J~~U (ki and 

~2
’ {k)

— respect ive ly .  r.o to step I . —17—
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If k c J1 and h k < 0 , then replace I and J1 by I U  {k } and

\ {k} respectively.  Go to Step 1.

If k and hk > 0 , then replace 
~ l and 

~ 2 by J1\ {k} an d

32 u {k )  respectively.  Go to Step 1.

The termination of Algorithm 3 deserves some more discussion . Ac-

cording to Step 2 of the algorithm , we have at terminat ion d 1 < 0 , h3 0
1

and d3 > 0 , and for all  A < A id’ all the components of the solut ion X a ( X )
2

are at their upper bounds. In fact , h3 = 0 if and only if =

1
Therefore since p is positive , we must have I = ~~~. On the other hand , the

fact  tha t  the solut ion ~~~( X )  = a for all A is to be expected and can

be justified directly from the original formulation (2.7) of the problem.

As we know , the solution ~~( A )  is a piecewise l inear  func t ion  of A

Therefore , there e x i s t s  a value  A (which  is in fac t , A011 at termination

of Algor i thm 3 )  such that ~~ (A) is linear for all A - : A .  Now since Xa (A)

is bounded above and below , it must  be independent  of ~ for  A < A , i . e .  ~~~( X )

is equal to some constant vector for A < A .  (This is not true in the case

without  the  upper h o u n d s . )  Suppose the i—th component of this vector lies

strictly bc-low its upper bound. Then we must have , by complemontarity

0 < u~ = + A p .  + (~~
a (A))

which certainly can not be true for all negative A - Therefore it follows

that for  all  A < A , ~
-a ( A )  is equal to the vector a of upper bounds .

It should be pointed out that every time Step 3 is passed , the set

3
~ 

changes (by one e l e m e n t ) .  It may sometimes be empty (as it must  be at

t e r m i n a t i o n) .  Fur thermore , the upda t ing  procedures described earlier can be

used to solve the systems of equations in (2.8) more e f f i c i e n t ly .

We conclude this  subsection and also this  section by remarking that

under sui table  m o d i f i c a t i o n , Algor i thm 3 can he applied to the s i tuat ion

where some of the upper bounds are infinity. Roughly speaking , this is done

by restric t ing the set 
~2 

to include only those indices for which the

upper bounds are less than infinity. See the discussion in [22) for the

case of fixed A. 18
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3. APPLICATIONS TO PORTFOLIO ANALYSIS

3.1. The case without explicit upper bounds. In this subsection , we

apply Algorithm 2 to develop a new and efficient algorithm (Algorithm 5) for

the following parametric quadratic pi-ograin.

(3.1) minimize ~ x
’
~
’Mx + (q + Or)Tx

subject to x > 0

and

where N is a given symmetric positive definite n X n  matrix; p,q and r

are g iven n-vectors w i t h  p posit ive; and 0 is a nonnegat ive  parameter .  We

recall that the genera l  p or t f o l i o  a n a l y s i s  problem wi th  a no r i s ingu la r  cc—

variance matrix is a problem of t h i s  type . Fur thermore  we have q = 0 and

p = e (see ( 1 . 2 ) ) .  The fir~-L identification (q = 0) has ce r t a in  ad-

vantage in the implementation of the first algorithm proposed below .

Since p is positive , the variables in problem (3.1) are always in—

plicitly bounded above. Therefore since N is symmetric and positive def-

inite , problem (3.1) has a un i que s o l u t i o n  x ( O )  for  every 0 . Further-

more, x(O) is also the unique vector satisfy inq th e following Kuhn—Tucker

conditions

(3.2a) u = q + A p + O r + M x > 0 , x > 0

(3.2b) ~~~ = 0
T(3.2c) p x = 1

where A is the Lagrange multiplier associated wit.h the equality constraint

(3.2c) and is dependent on 0 - Also A is not restricted in sign. Consider

o = 0 first. The resulting problem is

(3.3a) u = q + A p + M x > 0 , x>- 0

(3.3b) T 
= 0

T(3.3c) p x = 1

Now problem ( 3 . 3 )  can be regarded as the p iir ametric l inear  comple—

ment ar ity  problem { (q + A p , N): A ~ R )  coup l ed wi th the si ng le equal i ty

— 19—
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constraint  ( 3 . 3c ) .  In other words , t-o obtain ~~( 0 ) ,  we can let A be a

parameter vary ing over the real line and aim at d e ter m i n i n g  a su itable
* — *A such that the solution x(A ) to the l inear  compleincntari ty problem

(q + A~ p,M) satisfies condition (3.3c) also. It is then clear that ~~(0)
— * *is given precisel y by x ( A  ) - One way to find such a A and the solution

— *x(A ) is to solve the parametric linear complementarity problem

{(q + A p, M ) : A  C R} and to develop a systematic way to cheek if the solution

~ (A) satisfies condition (3.3c). Algorithm 2 can be applied here to obtain

~~( A )  for every A and in fac t , it also provides an easy way to check (3 .3c ) .

In what follows , we explain how this latter part can be done . Roughly speak—

ing, it is achieved by linear interpolation .

Recal l t ha t x ( X )  is a cont inuous  p i ecewise  l i n e a r  func t ion  of A -

Indeed , according  to Step 2 in Al go r i t hm 2 , we ha ve

= 0 and ~ 3
( A )  = —g3 

- Ah
3 f or A 

~ 
[A , A 

3d 1

where and Aold correspond to a pair  of consecutive breakpoints of

the so lu t i on  curve ~~( \ ) ; g3 and h3 are s o l u t i o n s  to the systems of l i n e a r

eq u a t i o ns  i n  ( 2 . 4 ) .  Thus ,

T Tp x ( A )  — p 3 g3 
- Ap3 h3

for A r IA , A ]d ). Setting p x(X ) = 1 gives

— T T( 3 . 4 )  A —(1 + p3 g3)/p3h3

provided t h a t  .1 is noncouty .  Geometr ica l ly ,  the q u a n t i t y  -x given by

( 3 . 4 )  i n  p r c n i  s~- i y t h a t  v a l u e  of A where  the  (possibly extended)  l ine see—

rnc~nt  of t h L  soj u l i o n  curve ~ t~) in the  interval [A ,A ld) meets the line

1) = I . So if this quantity lies w i t h i n  the in t e rva l  ( i .e .  if the

~~~~~ nec t ion  occurs  w i t h i n  the i n t e r v a l ) ,  we have found A~ = - Other—

WISC we h- F ( as’- k and proceed to the next  i n t e rva l .  Eventua l ly  in a f in i t e

nuTnt ,(-I of steps , this process will terminate with a and of course , the

~-‘ 1u t~~~ i ~ (~~~) 
(-- ~~( 0 ) )  - We summarize the discussion in the next algorithm

I -h so l v - 
~~ p J O h l  c-rn (3 . 1) with 0 = 0

— 2 0 —

~~~~~ 
-
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AlgOrithm 4: QP with 0 = 0 and no upper bounds. H
Sten 0. Determine A id max C-  -— ) and let k be a maximizing index .

° l < i <n  ~ i
Let I = {1, . . ., n } \ ( k )  and 3 = ( k } .  Go to Step 1.

Step 1. Solve the systems of linear equations in (2.4) for g3 and h3
and then compute c1 and d1 by (2.5). Go to Step 2.

Step 2. Compute ~ by (3.4). If d1 < 0 and h
3 > O , then set

(3.5) A
* 

~~
, 

~I
(0) = 0 and ~~ (0) —g3 

— A h 3

and t e rmina te .  Otherwise determine

c.
( 3 . 6 )  A new = x n a x ( m a x ( —  ~~

-
~~

- : d~ 
~~~~~~ 

i r i}, m a x ( —  ~~~~~ : h~ <0 , j  c 3) }

If A c  {A nOW I A O1d
) ,  then de f ine  A and x ( 0 )  by (3.5) and terminate.

Otherwi~~c let k be a maximizing in~ cx in ( 3 . 6 ) .  Go to Step 3.

Step 3. lf k ~ I , replace I and 3 by I \ ~k )  an d J O  ~k )  respect ivel ’

Go to St ep 1.

I f k c J , replace I and 3 by I U {k} and 3 \ {k) respectively.

Go to F~tep 1.

Remark 1. As in Al gorithm 2, the set. 3 always contains at least one ele-

ment , so that the quanti ly ~ in ( 3 . 4 )  is a l w a y s  well—defined by the poe1—

tive d ef i n it en e ~~s of N

Rerr ark 2. If q ha~’pcns  t o  be z er o , as in the po r t fo l i o  a n a l y s i s  problem

( 1 . 2 ) ,  then it is c~~;y to ~ee tha t  A 01c1 and A new will always he zero.

Therefore  t h e  r a t io  test  ( 3 . 6 )  and the one i n  Step 0 can be e l imina ted .

Fur thermore , the r;~~ : i m~ z in g  i n~1ey : k can be chosen “ a r b i t r a r i l y” ( sub j ect

to non—cycling) pr~ v idc 1 ei~ h cr  one of the f o l l o w i ng  two c o n d i t i o n s  is

satisfied:

(1) dk > O I k I T

(2) hk
< O f k c J

In Step 0 , k can be cho~;en a r b i t r a r i l y  in {i , . .  . ,n) . Finally, if q 0,

A l g o r i t h m  4 t e i - i~in ~i tes  i f  and o n l y  i f  cli < O  and h3
> ( )  for some su i tab le

I and j - —2 1.— — - 
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Remark 3. The assumption that N is positive definite is essential for

the success of Algorithm 4 to produce the solution ~ (0) to problem (3.1)

with 0 = 0 - This is because , on the one hand , the assumption guarantees

the existence and uniqueness of ~~( 0 )  which also s a t i s f i e s  condit ions

( 3 . 2 a ) — ( 3 . 2 c )  for 0 = 0 and sui table  A ;  on the other  hand , it guaran tees

that for every A , the linear complementarity problem (q + A p, N ) has a

unique solution. Consequently, by solving the parametric linear comple-

mentarity problem C (q + Ap ,M): A c R}, one is bound to arrive at the

and the solution ~~( 0)  g iven in ( 3 . 5 ) .

Using Algorithm 4 as a start , we may proceed t-o develop a parametric

algorithm for problem (3.1), or e q u i v ale n t l y , problem ( 3 . 2 ) .  Observe tha t

there are “two” parameters and 0 in (3.2), with A depending 0 - It will

be shown in what follows that A can always he eliminated by means of the

equality constraint (3.2c) and expressed in terms of the valu s of the

current  basic x — v ar i a b l c -s and the real parameter 0 - Henc e we are le f t  wi t h

one parameter and can therefore proceed as before.

Let I an d 3 be the index sets at t e r m i n a t i o n  of A l g o r i t h m  4 .

Then we can wr i te

u = q + A p + Or + Mx

in canonical  form w i t h  respect to I and 3 as :

(3. 7a)  u 1 = c1 + Ad 1 + 0b 1 + (M11 
— M 13M~ ’1 M31

) x 1 -f

( 3 .7 b )  x3 = — g 3 
— Ah 3 

— Of3 
— M~~M31x1 +

where f3, g3 and 113 are (un i que)  solut ions to the systems of l in e a r  equa-

tions

(3 . 8) M
33

(f 3 ,g 31h3) (r 3,q 3,p3)

respectivel y; c1 and d1 are given in (2.5); and f i n a l l y

b1 = r 1 
- M13

f 3 -

Setting the nonbasic v a r i a b le s  x 1 and u3 at zero , we have

— 2 2 —
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T T T Tp x = -p3g3 - Ap 1h3 
- 0p3f 3 -

Setting pTx = 1 gives

(3. 9) A = - ~~~~~~~~~~~~~~ -

p3h3 p3h3

provided that j is nonompty . Substituting A into (3.7), we obtain

T Pl -i- p3g p
( 3 . l O a )  u 1 (c 1 

— —,~~
-----

~~ d~~) ÷ 0 ( b 1 
— —

~~
---

~
-- d1)

p3h 3 p3h3
+ nonbasic por t ion

P T1-f p3q 1 p3f 3(3.loh) x3 —( ti 3 
- —,~r ----~- hi

s
) - O(f3 

— —
~~

-— h3)p3h3 p3h3

Sta r t i ng  wi th  0 = 0 , we may use t ab leau  (3 . 1 0 )  to determine the in-

crease of 0 and proceed as be fore . Reca l l i ng  the d e f i n i t i o n  of c1, d1
and b1, we may wr i t e

l-f p~ q3 l+p~ g3 l+p~ g 3c1 
— —

~
--—--— d 1 = (q 1 

- —
~~

---—— p1) - N13 (g3 — 
Th 

h3)
p
3 3  p

3
-1
3 

p
3 3

P P Pp 1f3 p3f3 p3f 1b1 
- —

~~~
----— d1 ~~I - 

~~~~~~~~~~ 
p1) 

— N~ 3 (f 3 — —f— h3) -

p3h 3 p3h3 p3h3

Now we can fo rmu lat e  the paramet r ic  al gor i thm for problem ( 3 . 1)  as

fol lows .

~~~~ rithm 5: Parametric QP with no upper bounds.

Step 0. Use A l g o r i t h m  4 to obtain ~~( O )  and let I and 3 be the two

index se~ s at t e r m i n a t i o n  of the a lgor i thm.  Let 0old 0

~~~~~~~ Solve the systems of linear equation s in (3.8) for f 3, g3 and

Compute

—23—

~~~~~~~~~~~
-. ______



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~ - - -~~~~~~~ - --- -- - -

(3.11) = - (1 -t p~g3)/p~h 3, 
ii - p~ f3/p~

’h3

(3.12) s3 = -i Th3 , t3 = f~ + ph 3

(3.13) C
1 

= (q~ + ~p1) — M
13

s3-, d1 = Cr 1 + u p 1) — M
13

t3 -

Step 2. I f d 1 > 0  and t 1 < 0 , set 
~~~

( O )  = 0 and ~~~( O )  —s~ for

0
~~~

0old and t e rmina te  ( i n  fac t , t 3 w i l l  then  be zero) . Otherwise  do—

ter inine

(3 .14)  °new = m in ( m i n { -  ~-~ : d .  < 0 , 1 c i} , m i n i —  ~~ t .  > 0 , j r 3})

and let k be a minimizin g index. Put 
~~

(0) = 0 and ~~ (B) = — s 3 
— Ut3

f or O c  [0 , O I .  Set 0 0 and go to Step 3.old new old new -

Step 3. I f  k c I , repl ace I and 3 by I \ {k }  and 3 U 1k) r c s p ~ ct : i v —

el y. Go t o  Step 11.. 
-

If k cJ , replace I and 3 by TV 1k) and 3 \{k} respectiv~~ly.

Go to Step 1.

Remark 1. The set 3 w i l l  never  be empty  because of the f a c t  t h a t  t~ 0

for sing leton 3 and al so  of the w ay the m i n i m i z i n g  i ndex  k is chosen.

The r efo re , the q u a n t i t i e s  ~ and ~i in (3.11) are al ways well—defined.

Remark 2 .  Th is  t ime , a m i n i m u m  r a t i o  test  is pe r form ed  in Step 2 because

we are in c r ea s in q

Remark 3. The following two identities are clear f rom ( 3 . 1 1)  and ( 3 . 1 2 )

( 3 . 1 5 )  p~ s~ = -1 and p~ t3 = 0 -

They gua ran tee  that  for  every 0 , the  solut ion ~~( O )  d e f i n e d  in  Step 2

s a t i s f ie s  T~~( 0 )  = 1 -

Rc-rn ark 4 .  As different from the l a s t  a l g o r i t h m , t h e  c o n d i ti o n  Cq = 0)

does not induce too much u i m p l i c a t i o n  19 A l g o r i t h m  S except possibly in the

computations (3.I1)—(3 .13).

—2 4—
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It is worth p o i n t in g  out two r a t h e r  i n t e r e s t i n g  consequences at the

t e r m i nat i o n  of A l g o r i t h m  5. The f i r s t  consequence is tha t  the solution

~ (O) for all U greater than  or equal  to the  value of 0 at termination is

equal to some cons tan t  vec tor  which is independent  of the parameter  0 . The

direct justification for  t h is  is s i m i l a r  to tha t  fu r  Al gorithm 3 which we

have discussed earlier. The second consequence reflects certain relationship

between the solution ~ (0) at termination and the ratios (r1/p1)~~~1 - Ac-

cording to Step 2, we ha v e d1 > O  and t 3 < 0  at termination . Since p is

posit iv e , ( 3 . 15 )  then  i m p l i e s  t hu t  indeed  t3 0 - R e c a l l i n g  the  d a f i n i —

tions of d1 and t3, we may deduce that

( 3 . 1 6 )  r 1 -f jip 1 > 0 and r3 + ~p3 = 0

or equivalentl y,

r. r.
(3.16)’ rnin [---~-} ~ — r-~ .—

~~
- foi every j C -

id 1

This latter relation rays that if 0 is large enough , then component  j of

the solution ~ (0) can not be positive unless the  corresponding ratio

is no greater than al the other ratios (r
1/p~

) -

3.2. The case w i t h  oxp i i n  t upr~ b o u n d s,  in th~ subsection , we extend

the a n a l y s i s  and ai g o r it  1r~s in t h e  p r ev ious  subsect ion to the problem w it h

exp i ici t u ppe r b o u n d s :

( 3 . 1 7 )  m i n i m i z e  ~ ~~~~ + Or)TN

sobj~ ct to a > x > O

and ~~~ = 1

where p , q , r and N arc as above and a is a positive vector such that

a1 < 1/p . for every i - This latter condition is imposed on the vector a

so tha t  the  upper  boun d s w i l l  not hr redundant. Furthermore, in order for

the problem ( 3 . 1 7 )  to be feas ib le , we must  have pT~ > 1  . I f  pTa = 1,

then every f eas ib le  vector x mus t  sa t i s f y x a because p is pos i t ive.

The problem ( 3 . 1 7 )  t h us  becomes t r i v i a l .  C on s e q uen t l y ,  we assume pTa >  1

—2 S—
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throughout  the discussion below . The p o r t f o l i o  anal ysis problem w i t h  noper

bounds (1.7) is of the form (3.17) with q = 0 and p = e -

For every f ixed  0 ,  let ~a ( 0 )  denote the (unique ) s olu t ion  to

problem ( 3 . 1 7 ) .  Since M is symmetr ic  and pos i t ive  d e f i n i t e , problem ( 3 . 1 7)

is actually equivalent to its Kuhn—Tucker optimality conditions

(3.l8a) u = q + Ap 4- Or + Nx + y > 0 , x > 0

(3.18b) v = a — x > 0 , y > 0

T T( 3 . ) 8 c )  u x = V y = 0
T(3 .18d)  p x = 1

Consider 0 0 . Then con d i t i o n  (3 .lSa)—(3.18c) can be regarded as

a pa ramet r i c  l i n e a r  c o r p l e m e i it a r i  ty  p rob lem of thc  form (2 .7) with A as the

paramc- te l - . T her e fo r e , in order  to Ccn~ n!t ~a (0 )  w h i c h  must  sat i s f y  Con-

d i t ions (3 .  i 8 : t ) —  (3 .  18d) fo r  some s u i t  s h le  A , we may use Al qo r i thm  3 and

incorporate a r u i c -  to check c-oi~~iI  t i  on (3 .  1 Sd)  . T h e  idea is exac t l y the

same for the case w i t h  no exp l i c i t upper bound s ;  t h e r e f o re  we omi t the de-

t a i l .  T h e  n ex t  a] gosh ho ext  c-n ’l~ A l g a  i t h m 4 to solve p r o b l e m  (3. 17) w i th

0 = 0

Algorithm 6: QP wit !- 0 = 0 and exp licit uppc-r bounds.

Step O. Det c - rm ine  A ld = max [ — q . / p 1 
I and lc-t k be a m s x im i . z i n q  i n d ex .

l~~i— n
Let I = (1 ,. . . ,nI \ 1k), ~k 

} arid = ,~ . Go t o  Step I -

r~J. Sol ve the syst ems of I incas s-p t i s n a  ~n ( 2 . 8 )  fo r g 1 a n d h3I
and then comput e c , d 1 , c and d by ( 2 . 9 ) .  Go to Step 2.I - 

~2

Step 2. Detirraiinc

(3.19) A~0~ = max {max (— ~
-
~~: d. > 0, i i i ) ,  max !— -~~~

---
~- :  h . < 0 , j

1
C 

~~~~1 j i 
1

a. +g. C.

inax {— -_--~‘
-__---2-: h . > 0 , j 1 c 

~l~~’ 
max {— ~

_ ? : d . < 0, j
2
C 

~~~~1 
~2 

2

Case (i) I ~~~. Put

—26—
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= —( 1 + p~~ g3 
— 

‘~2

if ~ c [A ,A ld l ,  set =

a ~a *x1
(O) 0, x3 (0) = -g

~ 
— A h3 and x

3
(0) a

3

and t e r m i n a t e .  Otherwise le t  k be a m a x i m i z i n g  m dcx i n  ( 3 . 1 9 ) .  Set

A old = A new and go to Step 3.

Case (i i)  -= ~ (or e q u i v a l e n t l y ,  h3 0 ) .  I f  p~ a3 1, set
* 

1 2 2
A = A new

-~a —ax 1 (O) = 0 and x3 ( 0 )  = a32 2

and t e r m i n a t e .  Oth erwi  s~~, let k be a max i m i  r i ng  i nd e x  i n  (3 .  19) . Set

A old = and go t:o Step 3.

~~~~ 
TI  k r I , replace I and 3

~ 
by I “ {kI and 3

~ 
U 1k 1

tively. Go to Step 1.

If k 
~2’ 

replace 3
~ 

and 
~2 

by j
1

U {k} and ‘~ ~~~~~

spec t iv ely .  (~o to Step I .

I f  k c 3
~ 

and h k < 0 , rep lace  I a nd J~ by I U (ki and

~~~ 
{k) respectivel y. Go to Step 1.

I f k c and il k Cl , rep l a c e  
~l a n d J2 by 3~ \ (k} and

{k) respectivel y. Go t-o Step I.

The existence of a maximizing index k in ( 3 . 19 )  st i l l  r e q u i re s

j u s t i f i c a t i o n .  However , t h i s  is clear because if d1 
< 0, h3 = 0 and

1
d3 0, then according to wh a t  we have remarked  e ar l i e r , these con d i t  ir - r .

2
indicate that in fact , I = 3

~ 
~i and that we have arrived at the last

breakpo in t  of the solution curve ~a (\) . These latter two facts together

would impl y ~a (0) = a , contradicting p
T
a i 1 - Ther e fore  a m a x i m i z i n g

index k in (3.19) always exists.

Finall y, we present; t h e paramet ric algorithm to solve pr obi c-rn (3 .  1 7 )  -

I t  is an ex t e n s i o n  of A l g o r i t h m  5 to deal  w i t h  e x p l i c i t  upper bounds .

— 2 7 —
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Al gorithm 7: Parametric QP with explicit upper bounds.

Step 0. Use Algorithm 6 to obtain Xa (O) and let I, 3~ and ~2 
be the

three index sets at termination of the algorithm. Let 0old = 0 . If

= ~ , set X = X~~, ~ 0 and go directly to (3.23). Otherwise go to

Step 1.

Step 1. Solve the systems of linear equations

(3.20) M3 3 (f3,g3 ,h3 ) = (r1 ,q3 + N 3 3 a3 ,p3 )

for f
3 , g3 and h3 - Compute

( 3 . 2 1) ~~~~= - (1 + p~~ g3 
— p~~ a1 )/p~~ h3 , li -p~~~f 3 /p~~~h3

(3.22) S
3 

= g3 + 5~h3 ,  t31 
f31 

+

(3.23) c1 
= (q 1 + ~p1

) 4- N~ 3 
a3 — M~ 3 s 1 , d1 = (s1 

-f lip1 ) 
— M13 t3

(3.24) C
3 

= (q3 + ~p1 ) + N3 3 a~~ — N3 3 s 1 , d3 = Cr 3 + lip3 ) —

Step 2. If d1 > O , t = 0 and d 7 < 0 , set ~~ (O) 0, ~~ (U) =

~~1 ~1
and (0) = a for 0 > 0 Id and t e r m i n a t e .  Otherwise  d e t e rm i n e

2 ~2 
°

(3.25) ~~~ = min (min (- ~~ : d. < 0, ~ c i ) , miii !- ~—~~ : t. > 0 , j1 r 3
3
}

1 

~l ~
a. -4-s . c.

~i ~i- <0 , ~1c ~l~~’ 
mit~~~ ~~~~ 

> 0, £

and let k be a m i n im i z i n g  index .  But ~~~( O )  0 , ( 0 )  = — s~ — 0t3

and = a
3 for O C  I0oldl0new J

~ 
Sot 0old ~~~~ 

and go to Step 3.

Stc~~j. If k c l , replace I and 
~~~ 

by i\ {k) and 3
1
U{k} respective—

ly.  Go to Step 1.

—28—
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If k c J 2, replace 3
~ 

and 
~2 

by 31 U (k) and !k) respective-

ly. Go to Step 1.

If k c and t
k 
>0 , replace 1 and 3

~ 
by I U (k} and {k)

respectively. Go to Step 1.

If k c and tk < 0, replace J1 and 
~2 

by J1 
\ {k} and 

~2 
u {k }

- respectively. Go to Step 1.

Remark 1. The set 
~l 

will never be empty except possibly at the termina-

tion of Al gor i thm 6. The reason is the same as in the case w i t h  no upper

bounds-. F u r t her m or e  ( 3 . 1 5 )  holds  if 3 is replaced by J1 -

ge n a rk 2 .  The f ol l o w i n g  analog of r e l a t i on  (3 .16 )  holds at termination

of Algori thm 7:

(3.20) r1 
+ ~‘O , r3 + up 3 

= 0 and -f jJp3 < 0

or equ iva lent l y ,

r. r .r. :t
~ ~2( 3. 26)  ‘ mint—’-) ~ — 17 -—— > max — } for every j1 c 3~ -

i d  1 
~~~~~ -½

T h i s  l a t t e r  r e l a t i o n  ( 3 .  26 )  i n d i c a t e s  how t he  s o l u t i o n  ~~~~~ i s  re la ted

to (h e  r a t ios  ( r
~~/p~~

)
~~ 

fo r  su f f i c ie n tl y l a r g e  U -

—2 9—

- - 
- -

~~~~~
—

~~~~~~~~~~~ 
— 

~~~~~~~~~~~~~~~~~ - - 

- 

~~~~~~~~~~~~ _~~_
_

_
i~~~~ ~~~~~- - - — - -



- 

- 

- - - ---- — - — - --V - - -  - 
- 

~1

4. SPECiALIZATIONS TO INDEX MODELS

In this section , we appl y the algorithms developed in the last sec-

tion to some specific models in portfolio analysis , namely ,  the index models.

Recall that in an r n — i n d e x  model , the returns of the securities are given by

(1.3) and there are three assumptions (l.4a)-(l.4c) concerning various co-

variances. Since it is rather  unreasonable  in practice to assume that no

two indices are correlated , we will drop the assumption (l.4a) throughout

the fo l lowing  d iscuss ion . We denote by C the covariance matrix of the

i n d ices , i . e .  C = (c. .)  where
ij UI X I I I

cov(I
~~i

l
~
) for every i,j = 1,... ,m

Under  t h i s  s e t t in g ,  it is easy to deduce that the covariance m a t r i x

V of po r i f o ]  i c  r e tur  an is qiv~ n by

( 4 . 1 )  V = ~: + (
~~~~

,.. . , U )  C(~ 1,... ~~~~~

where ~: is the nonneqa t  iwo d i a g o na l  m a t r i x  whose i — t b  cl i  agona l  e lement  i s

equal  to V a r ( c 1) and r = (~~] ~~~~~~~~~ for j l , . . . , m - If  C i s

d iagonal  , then ( 4 . 1 )  reduces to ( 1 . 5 )  men t ione d  ~~ri the  i n t r o d u c t i o n . Note

tha t  (~~1 , . . . , U ) is an n X m  m a t r i x .

I n the seq u el , we add the  f o l l o w i n g  a s s u m p t i o n  to the model :

(A) the diagonal entries of Y a re a l l  posi t ive , i . e .  Var (~~. )  > 0  for

i = l , . . . , n -

Since the i ’s can be viewed as the differences between the actual

securit y returns and those obtained by t a k i n g  l i n e a r  comb in at -ions  of the in-

dices , the  assumpt ion  (A)  says  t ha t  the re  are a l w ay s  e r rors  in mc ’asuri  mci t he

a c t u a l  s e cur i t y  r e t u r n s  by linear combinations of t-he indices. Fortunatel y,

t h i s  is not a too unreasonab l e  assumpt ion  because the c o e f f i c i e n t s  of com-

b i nat i o n s , i .e .  the  f ’ s, are usuall y obtained by statistical estimation

based on past history in the stock market , thus arc themselves subject to

er rors .  P r e s u m a bly ,  taking linear combinations i nvolving these erroneous

—30—
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f~~.’s would provide only approximate and not exact values of the actual

security returns. Unfortunately ,  assumption (A) will exclude riskless

securities in the model.

If the index models are of any significance in reducing the compu-

tational and informational complexity of the general portfolio analysis

prob lem , it would seem very reasonable not to include too many indices in

the models; or in other words, we may consider m relatively small com-

pared with n - This latter condition is particularly mean inç ilu l  when n

is very large.

Under assumption (A) , the ma t r ix  V given in (4.1) i.s symmetric

and positive definite. Therefore the algorith-kms developed in Section 3 are

applicable. Of course , (A) is only a sufficient condition for V to be

positive definite. Making the change of variables ,

4
z E x

4
where Z is the diagonal matri.x whose diagonal entries are the square roots

of the cor respond ing  d iagona l  eat ries of- ~: , we may r e f o r m ul a t e  problem

(1.2) ((1.7)) as

(4.2) minimize 
~~

- z
’
~Mz -t or 1 Tz

subject to (a ’ > ) z > 0

and p ’~~z = l

where

(4•3) N I + ~~~~~~~~~~ ~~~~~~~~ ,61)
T

—4
(4.4a) i 1 ,... ,m

4
(4.4b) a~ = a

(4.4c) r’ = ~ r an d p ’ = ~: e -

If the ii s tandard d e v i a t i o n s  ( v a r ( [ . ) 1’2 ) ? 1 a r e g i ven ,  thou it

requires  a X  si di y i~~i~~n~ t.o compute all the ;~~‘s~ n multip lications to

obtain a ’ and 2n d iv i s io n s  to ob tain r ’ and p ’ -

— 3]—
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To facilitate practical computations , it  is convenient  to f ac to r i ze

C in to

(4.5) C =

where G is an in X m  l ower t r i a n g u l a r  m a t r i x .  The f ac to r i za t ion  is pos-

sible because C is symmetric and positive semi-definite . It can be

achieved for  example , by the scheme described in L7 , p. 491—492). The

amount of operations (i.e. multiplications and add i t i ons )  required by the

scheme is 0(m3) - Since in is small , this factorization will , presumably,

present no computational difficu lty. With (4.5), we then compute the n X in

matrix

( 4 . 6 )  V 
~~~~ .. ,~~‘)G -

The computat ion  of 1 requires nX r n multiplications and additions. By

( 4 . 5 )  and ( 4 . 6 ) ,  ( 4 . 3 )  can hr r e w r i t t e n  as

(4.7) N = I + rr” -

As we she] 1 see , th e i  c is  flO Cl 1 a cco~~u c’ the product 1,1 , T The total

amowit of vç~ r~et ions t o  t r : i n - r f e r c t h e  o r i g i na l  oroblcm (1.2) (or (1.7)) w i t h

a c o v e r i an -e m i t  ri -: qivt :i by ( 4 . 1 )  to  the e qu i v a l en t  problem ( 4 . 2 )  w i t h  the

m a t r i x  N g iv en  i y (4.7) is 0 ( u ) -4 O ( m X n )  -i 0(m3)

Reca l l  t h a t  we have a e n t i on e d  some u p d a t i n g  procedures in Section 2

which can be used t o  erecut e Step 1 in each of the four algorithms in

Section 3. These procedures  u su a l l y  require  0 (n 2 ) storacje and arc ooerat—

iui g on matr ices  w i t h  vary ing sizes which somet imes  can be very large . On

the other h and , by exp l o i t in g  t h e  special  st -r u c t u r e  of the m a t r i x  N given

in (4.7), we can achieve  enormous sa v i n g s  in both the storage and opera-

tions of t h e  al g o r i t h m s . More specificall y, we can reduce total  storage to

0 ( n )  + O ( m X n )  + 0(m2) and in Step 1 we need to operate on matrices of order

in o n l y .  These are indeed savings  because in is u s ual l y  very small com-

pared wi th  a - I n  what .  fol  l ows , w -’ i ll  u s t ret e  how these sav ings  can be

a c h ie v ed  in the case with upp er bounds and omit. the eas ier  case w i t h o u t  the

Upper bounds
-32—
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In the sequel , we put subscripts  in the iden t i ty  m a t r i x  I to denote

its dinuensionalities and write I S I to mean the ca rd inali ty  of a set S -

Let V be an n X m  matrix and

(4.7) M = + rrT

Let p ,q ,r and a be n—vectors. Let I, and be subsets of ti ,. ..,n},

disjoint from each other and such that IUJ 1
UJ 2 = (1,. . .  ,n) - Then we

have

= 11j
1

1 + ~j  
(F J ) T

whose inverse can be computed by the Shermun—N orr i son-Woodbury  f o r m u l a  (1 11 ,

p. 79))

NJ J  
= ‘I~~1I — + (F~~~)

T ( 1~~~ ) ) l (r~~~)
T

I j  (S
For each (S CR 1 , let o be the (unique) solution of

(4.8) (I + (F )T (1. ) ] (S 
= (F )T sin ~

li
. ~1.

Now if f,~ , gj and h~ are the solutions of the systems of equa t ions  in
1 1 1

( 3 . 2 0 ) ,  then
r~ p

~
(4 9) f~1~ 

r~ F~ o and h3 p
~ 

— F3 ~ 
1

To compute g3 , it is necessary to evaluate M3
1
3 M3 ~ 

a . We have
1 1 1  1~ 2 2

N3 3  a3 F3 ( F 3 ) Taj  -

Thus ,

= rj (rj )Ta3
_r
3 rI~ .F(r 3 )T(r3 )1~~~(r3 )T(r3 )(rj

2
)Taj

F31 m
_ II

m+(FJ1
)T 31

)) ( r 31
)T(F31

))(FJ2)
Ta32

= r3 II - ‘-Cr 3 )T(rj ))~~~(r 1 )Ta -

1 1. 1- ~2- 2
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a3
Latting ~ 2 be the ( u n i qu e )  solution to

a3

(4.10) ~i 
+ (I’ 1 )

T (1’ ))-r 2 (F ) T a
Si 1•

we deduce tha t a3

(4.11) g3 
= q 3 — r  (ci l _

~~ 
2 ) -

1 1 1 .

If  , , c1, 
d~~, c3 

and d3 are the vectors g iven by ( 3 . 2 2 ) ,  (3 . 2 3 )

i ~ 
2 2

and (3.24), they can be computed 
in the following way. By (4.8), (4.9) and

- (4.11), we have

(4.12a) s = g +

J1 ~~ 
1

q3 +Ap 3 
a3

(q3 
+ Xp3 

) — 
1 1 

— 
2 )

1 1 1.

and

(4.12b) = + ph3
1 1 1

r3 
-4
~ ’p 3

— 1 1
= (r3 

+ ) — I (ci ) -

1 1

Therefore ,

M~~~a3 
— M13 53

q3 +Xp3 c]~

= VI. (F 32 
)Ta _ 1

1 
)(~ 3 p~~~~~1 1 

(i ) T 1 ( 0  ~ 1
— T  

2)

a3 
q -tAp

= F1 E (F32
)Ta32

_ (
31

) ( 1 31.
)T 2_ (1~

3 
)T( q+ ~ pj )+(j~j )T(Fj ~~ 

1

q3 +Ap 3 
a3

— u )

where the last equality follows 
from (4.8) and (4.10). Hence ,

q3 
+Ap 3 

a3

(4.l3a) c1 
(q1 

+ ~p1) — r1 
(e 1 1 - T 

2 )

Similarly we may deduce
r3 

+pp 1

( 4 . 13 b )  d 1 
(r 1 + ~ip1) —r 1

(e 1

—3 4—
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qj 
+~p~ a3

(4.14a) c3 = (q
3 

+ ~p3 
) —r 3 (ci 

~~ 1 
- 

~ 
2 ) + a

2 2 2 2-

r3 +~
p3

(4.4b) d3 = (r
3 -f 

~Tp3
) — F3 (ci 1 2)

I f  we define the n—vectors s and t by

q3 
+~p3 a3

(4.lSa) s = (q + 
~p) 

— N ~ 
1 ~ — T 

2 )

r
3 ~upj

(4.15b) t = (r + 
~p) 

— r(ci ~ 1)

then we can immediately generate all the vectors s~ ,t3 ,c1, d1,c and d
1 1q3 r p a

In p rac t ice  the vec tors  a ,ci ,ci and T are generated by solving

the fo l lowing  three sy st e m s  of e q ua ti o ns

q,~ a~ r3 p3
(4.16) I1m

4(Fj )1 (r~ ) )  (~ 
1 _ -r 2 (~ l

~~ 
1) =

- l~ 1-

= ( ( F
3

) T a
3 

- (F3 )Ta (F3 )Trj, (I’s )T ~~~ )

q3 a3
Note that there i s  no need to cjenerate  ~ 

1 and T separately .  I t is

their difference tha t  is requ i red .  Fur thermore , the m a t r i x  I + (F3 )T(F 31. 1.
is symmetr ic , pos i t ive  d e f i n i t e  and of or*~r in which  is indeperi c~en t  of

I J i l - Now , suppose t ha t  3~ changes by one e l e m e n t , then it is easy to

see that I~ + (F
3 

)T(1. ) is affect-ed by a rank-one modification , i.e.
1- l~

(4.17) new matrix old matriy . ±

where 1
T is a suitable row in the matrix V . If we solve (4.16) by apply-

ing Cholesky factorization (see [11) e.g.) on the matrix I~ + (F~ )T(r ),
1• ‘1-

then we can upda te the Cholesky factors very qu i c k l y  by taking advantage of

the relation (4.17). An updating procedure is docicribod in 18 , Al gorithin ci).

See also [9). The number of operations necessary to compute the modified

— 35— 
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Lactorization using the procedure is ~~ + 0(m) multiplications and

+ 0(m )  addi t ions [ 8 ] .  Furthermore , the procedure is numerically stable

because for  every 3
~~

, the matr ix  I + (F3 )T(F ) is sufficiently
1 1’

positive definite , its smallest eigenvalue is greater than or equal to 1

We note that if in = 1, (corresponding to the single index model), then

+ ( V
3 

)T(r  ) becomes a scaler and the updating process reduces to
1- 1-

trivial.

Based on the above analysis , we may now formulate the specializations

of Al gor i thms  6 and 7 to problem ( 4 . 2 )  wi th  the upper bounds. To keep the

notations simple , we delete the primes in all the  vectors in (4.2). Nore—

over we assume that the vector q does not vanish  in the object ive f u n c t i o n

of ( 4 . 2 ) ,  i . e .  we cons ider  the  objective function to be ~~- zTMz + (q + Or )Tz -

Furthermore , we assume pTa 1 in order to elimi- iate the trivial case.

F i n a l ly ,  we rcsomm -k that the vectors q3 , h3 , c1,d 1, c3 and d3 reouired in
1 1 2 2

Al go r i t h m  6 can he obtained ea s i l y from ( 4 . 1 5 )  hv soni c simp le m o d i f i c a t i o n s .

Sc~ ( 4 . 1 8 )  and ( 4 . 1 9 )  below .

A l g o r it h m  8. Specialization of Algorithm 6 wi th  N g iven  by ( 4 . 7 ) .

Step 0. Determine A ld 
= max {—q . / p . }  and let  k be a m a x i m i z i n g  index.

0 1<i<ui ~ 1

Let I = {l,... ,n) \ {k), 
~~ 

Tk} and = . Go to Step 1

Step 1. Solve t he~ ~yst ems of l i nea r  e q u a t i o ns

a3 p
~

(4.18) I ]~ 4 (V )T(1~ )J (ci 1 
— ~ 2 

~ 
1)

‘~l. 
3~~.

= 1~31
~~) T q — (r3 )T a3 , (F 3 )T p )

and compute

q3 
a
3 p3

(4.19) s = q — r(~ 
1 

T 
2), ~ = p —

—36—
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_________Step 2 .  De te rmine

(4.20) 
= ma x (ma:~ —~~~-: ~~ 

~~~~~ i ~~~~ ~~~~~~~~~ ~~~~ 

:
~

1

:s. 

~1 
£J i

}

max (- : t > 0 , j1
i J~~}, mcxl-

Case ( i )  
~ l ~~ Put

= -(1 ÷ p~~s~ -

If ~ i: 
~~~~~~~~~~~ 

set A = 
—

—a ‘-a * —a -

x1 (0) = 0, x~ (0) 
~~~ 

— A t3 and x (0 )  a31 ~1 1 ~2 2

and terminat e . 0therwis~- , let k be a maximizing index in (4.20). Set

A = A coil no to Step 3.old new -
~ -

- .  T *Cas e ( i )  3
~ ~

- - If p 1 a1 
-- 1 , set A = 

~n v- -

~2 ’ 2 C

~~ (0) 
- 0 and (0 )  = a32

and t e r m i n a t e .  Otherwise , let k hr a m o x i m i z i n q  in ( 4 . 2 0 ) . Set =

A new and go to step 3.

Step 3 . If k I, rep lace I and 3 by I \  [ k)  and U 1k) r e spec tive—

ly. Go to Step 1 .

If k j
2 ,  replace J~ and ‘

~2 
by J

1
U {k) and 

~~~ 
1k) respect ivel y

Go to Step I

If k ~ ~l 
and tk < 0, replace I and 

~l by I U 1k) and ‘
~ ~~~~~~

respec t ive ly .  Go to Step 1.

If k u 3 and t
k 

> 0 , replace and J2 by \ {k ) an d U ( k )

respec ively .  Go to Step I .

~ i9~Lithm 9: S p e c i a l i z a t i on of Al gor i thm 7 wi th  N g iven by (4.7).

St~ p 0 .  Use ltlgori’-hm 8 to obtain ~~ (0) and let 1 , 3~ and 
~2 

be the

three index  sets at t e r m i n a t i o n  of the al qor i thm . Let 0old = 0 . If

—37.-
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~~l ~ set s q + A p  and t r , go to Step  2.  O t her w i s e  go to Stes  1.

Step 1. Solve the syst ems of e q u a t i o ns  in (4.16). Compute

T P
fl P3 1 31 1

q
P T 1PG p q — ( ,  — I

1 1

r
P P 1P F ’ = p3 r 3 

-
~~~~~ o -

1 1

T PPH = p 1 p3 
— 

~ a
~l I

A — (1 -~ PC~ — p
~ 

a3 ) /Pli , ~ —P P/ PH
~ 2 2

and the vectors s and t by (4.15).

S tc p 2 .  I f  t 1 > 0 , t 1 0 , t
3 

< 0 set x~~(~~) U , 
~j  

( (i ) = —s~ and

( 0 )  a3 for 1 
~ 

t old a nd  r1~ i r ~~t o . Ot~ier wi s c  d,~~~ (-l oiiic 
1

5 -  
S

~j
0 = m i n 1 m i n ( —  1

~: t . < 0 , i i i } , m i n I —  —~-: t - > 0  1 3ncw t . ~ t. j - l 1
1 

~l 
1

m i n I -  ~~—~~—
-—-~~~: t .  < 0 , j1 c ~l~~’ 

nii n r -  ~~~~~~~~~~~~~~~ t i  > 0 , 
~2- l  2

an( 1 1L-t Ic be a min ~ r i z ~~l ’ T  ~~~~~~~~~~~~~ ~~ = 0, ~a (1) = _
~~ — and1 j

l 1 1
~~ ( 0 )  a f or p 

~o , o  I - Set 0 = 0 and go te Step 3.old nc-w old new -

S~~ p 3. Same as Step 3 i n  Al g o r i t h m  7.

The systems ef linear eqiiat ions i n  (4. 1 6)  or (4.18) should best he

solvc-d by C!~c l  e~~ky factori ?at i s  t o q - 1 her w i t h  Alq orit flm Ci in [8] to update

the  Chol i ’sk y f ac tors .  Pcc~ u se  o f the fj cl. t h at  starts initially in

— 3 1 3--
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Algor i thm 8 as a sing le ton , there is no need to compute the product

(F )T(F3 
) th rou cihout .  F i n a i l v , whenever 

~l 
becomes a singleton , it

1.
is more convenient to compute the Cholesky factors of the matrix

I + (f3 
)T(F 3 

) f rom scratch . Formulas  for computing such factors are
1. 1.

gi ven in 18 ] .

Of course , the above two a lg o r i t hm s  are a p p l i c a b l e  to the genera l

portfolio a n a l y s i s  p roblem (1.7) w it h  the covariance m a t r i x  V given by

(4.1), provided that we first obtain the t r ans fo rmed  problem ( 4 . 2 )  w i t h  the

t r a n s fo~ mcd da ta  (4 . 3) and (4 .4) by the nroc -as described eai-iier.

The to tal  st orage r e c j u i r < d in th is n pp i ic a t :o n  c o nsist s  of the n standard

- 1/2 - - - -dev~ at ic ns V a r ( c . )  , the mX in covariance  m a t r i x  C , the  in >~ in m at r ix
- m ( n+ 1 )

C, (C ens C each reqsi ~e ~~~~
-
~~~

-- — --  storage because of symmet ry)  , the n X in

matr ices  (~~~~
, .  - - ,~~~) a n d  F , the n — v e c t o r s  r , a and x , f i n a l l y ,  some

storage  l ay  the Cholcs-ky factors. These add up to 0(n) + 0(m 2 )

~ O ( n  X ni )  . T h is  l at t e r  am ount  is best described as m i n i m a l .

We cone] nile t h i  ec t ion  by r e m a r k i ng  i-h- at the  m a t r i x  V g i v e n  by

( 4  - 1) apl l ~ed air a in  an np p i i c : n ti on  of the  p ar a m et L- ic l i n e a r  compi e r y - n t a r —

i ty  probi  em to i t  i -u c t u i - e i  en g in e rr i  n y  - In fact , it was shown i n  115) (see

also t h e  r e fer e n e s s  t hose)  t ha t  t h e  b eh av i o r  o~ a r e i n f o r ce d  concre te  beam

ca n be d e s cr ih e l  in terms of t h e  1 ara m ~ tr i c  l i n e a r  comp lomenta  c i t y  p rob lem

{(q + A p , f l )  A t- N] w her e  N is p r e c ise l y ~~ t he f o rm  (4 . 1) . Of course ,

Alqo r i  I Sri 2 is a~ >p l icab i ~ i n  this i n s t a n ce .  I-S reovcr  , the a n a l y s is  devel-

oped i n  this section can ho used t o  i n r l - cn i e  the  o v e r a ll  e f f i  r i en c y  of t h e

al gor.i t S n .  See [23) for a more detailed d iscu s s ion  of t h i s  s u b j e c t .

~ 

~ ~~i:.S~~ _ _ _ _



5. CONCLUSION

In th is paper , we have developed several new algorithms for portfolio
analysis and discussed their efficient implementation . We have also shown
how their Specializations to the index models will result in drama t ic
savings in storage and computations. In a forthcoming paper [23], we shall
report our con~putatjona1 experience with the algorithms in solving sonic port-
f o l i o  problems .
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~~ This paper f i r s t  describes a modified version of the p a ra m 2t r i
principal pivoting algorithm f+?~~or the class of p a r a m e t r i c  1iFICa ~complementar ity  problems wi th  P-mat r ices .  The modi f i ed  version of
the Parametric  p i-incipa l .  p ivot ing al gor i thm is then used to develo!-
a new and e f fi c i e n t  a l c i o r it h m  to solve the c lass  of p o r t f o li o  anal-
ysis  problems wi th positive d e f i n i t e  (or e q u i v a l e n t l y ,  n o n s i nc iu l a r )
covar lance mat r ices .  Ex t e n s i c - i - t of the new a l g o r i t h m  to hand le  cx—

t up p er — h o un d s  is also i - : Lah l i shec l .  The new a l u o r i t -h m  and  i t~
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‘ extensiofl are then special ized to the ~‘iridex models” introduced by

Sharpe [ 2 8 ] ,  E 2 9 1 .~~ In these speci aliza tion s, the algorithms are

particularly effective , achieving dramatic savings in both storage and

computations.
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