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This paper first describes a modified version of the

1 parametric principal pivoting algorithm [4] for the class of
parametric linear complementarity problems with P~matrices.

The modified version of the pvarametric principal pivoting al-
gorithm is then used to develop a new and efficient algorithm
to solve the class of portfolio analysis problems with positive
definite (or equivalently, nonsingular) covariance matrices.
Extension of the new algorithm to handle exvlicit upver-bounds
is also established. The new algorithm and its extension are

then specialized to the "index models" introduced by Sharve

[28), [29). 1In these specializations, the algorithms are var-
I ticularly effective, achieving dramatic savings in both storage

and computations.
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| SOME NEW AND EFFICIENT ALGORITHMS
FOR PORTFOL1O ANALYS1S

Jong-Shi Pang

" 1. INTRODUCTION

In 1952, Markowitz [19] suggested formulatina the general portfolio

analysis problem as a parametric (convex) quadratic programming problem.
The quadratic term in the objective function corresponds to the predicted
variance of portfolio return which is used as a mecasure of risk; the lin-
ear term in the objective function corresponds to the expected value of
portfolio return; the parameter of the problem which is assumed to be
nonnegative and appears in the linear term of the objective is a measure
of the relative importance of reduced risk and increased return; finally,

the constraints consist of the nonnegativity of the proportions of an in-

vestor's fund to be invested in the securities and the sum of the propor-
tions being egual to unity. Specifically, the general portfolio analysis

problem is

(1.1 minimize % V_ - 6F
LY p
n
with v = Var() x.R.)
o) S i7i
& i=1
)
E = Exp() x.R.)
P jop id
subject to x>0
and elx = 1

where n is the number of securities; 0 is the nonnegative parameter;

X = (xl,...,xn)T e R is the vector of proportions invested in the sccur-
Tad T y
ities; R = (Rl""'Rn) is the vector of returns on the securities

which are assumed to be stochastic; and e is the n-vector of 1's .
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2) the National Science Foundation under Grant No. MCS75-~ 17385.




Letting V be the covariance matrix of the security returns, we can re-

write problem (1.1) in the following equivalent format,

(1.2) minimize % xTVx + 0rox

subject to x>0

and e'x = 1
where r = (ry) e R" is the vector with Ty = —Exp(Ri) for every
1= Yool

The matrix V, being a covariance matrix, is symmetric and positive
semi-definite. Therefore, for every fixed 6, problem (1.2) is a convex
quadratic program. Methods for solving (1.2) parametrically (i.e. obtain-
ing a solution for every value of 6) include, among others, Markowitz'
critical line method [20] and Wolfe's simplex-like parametric algorithm
[35). Markowitz' method starts by finding a portfolio with maximum ex- g
pected return (i.e. a solution corresponding to 6 = «), then decreases the
value of 0 successively and proceeds in parametric manner. The algorithm
stops when it reaches the minimum risk portfolio (i.e. when 6 = 0). Wolfe's
parametric algorithm operates in precisely the reverse order. It starts
by using the unparametarized version of the algorithm to obtain an initial

solution corresponding to 8 = 0 and then increases the value of 6 until

it reaches «, Both methods (and a few others) require the storage of the
entire matrix V and an extensive amount of computational effort.
Recognizing the informational and computational complexity of the
general model, Sharpe [28]) introduced some simplified models for portfolio
analysis. These are the "index models" which assume that the seccurity re-

turns are expresscd in terms of some market indices. Specifically, a

typical index model assumes that

(1.3) R, = a, + ¥ e ® BT C#F B i
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where the a's and B's are constant scalars, the I's are appropriate
market indices which are random variables with mean zero, and the e's are

random variables with mean zero. There are three assumptions to the model:

3 % (1.4a) Cov(I;, 1) =0 for it
! (1.4b) Covle;, e5) = 0 for it
|
(1.4c) Cov(ci, Ij) =0 for all i,j .

Under these assumptions, as shown in [30], the covariance matrix V is

given by

= T
(1.5) V=7 +] var(Ir,)g.B.

=1 ]

J
where z is a nonnegative diagonal matrix whose i-th diagonal entry is

/
T .

equal to Var(ci), and Bj = (le,..., Sjn) for 3J = 1lzo:m . TE m= 1;

the model is called a single index model, and in general, it is called an

m-index model. For practical purposes, it is rcasonable to assume that m

is smaller than n
One of the simplifications resulting from the introduction of the
index models was the transformation of the quadratic term xTVx in the

objective function of (1.2) into one with a diagonal matrix (i.e. into a

sum of square terms). By (1.5), problem (1.2) can be cast in the form:
Beidan s 3 .V N 0 x T %
(1.6) minimize 3> (y) (P I) (y) + 0(,) (y)
subject to X >0
e x =1
y. = Var(I1.) B?x § = Lisseltt o f
J J J
where y = (yl,...,ym)T . By treating the y's as separate variables and i
the equalities
T
yj = Var(Ij) Bjx J = Llyeve M
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} ' as additional constraints, special purpose quadratic programming codes have

been written [12], [34] to take full advantage of the fact that the objec-

tive now has a diagonal matrix.

a

Sharpe [31) and Stone [32] have proposed another approach to simplify

the general model. This involves first diagonalizing the covariance matrix

V by some numerical procedure, e.g. the one described in Dantzig [7,

p. 491-492), then approximating the resulting diagonalized objective func-

tion by a piecewise linear function, and finally, applying linear program-

ming to solve the approximated problem. With the index models, the first |

step of diagonalizing the covariance matrix V 1is not required because of

the formulation (1.6). Of course, the solution obtained by this linear

programming approach gives only an approximated solution to the general

problem (1.2). 7
Due to some legal or personal constraints, it is common in practice

to impose explicit upper bounds on the proportions invested in the secur-

ities. An example of this was described in [29] concerning the mutual

fund portfolio analysis. To formulate the general portfolio analysis

problem with explicit upper bounds, let a be a positive vector, then the

problem is

(1.7) minimize % xTVx + OrTx
subject to a>x>0

and eTx =1

Assuming a single index model and that the bounds are rather restric-
tive, Sharpe {29] proposed a linear programming approximation to problem
(1.7). Although the solution procedure then becomes a very simple one,

(as a matter of fact, the approximated problem is almost trivial) it pro-
duces only an approximate solution to the original problem.

Recently, Jucker and de Faro [13], assuming that the covariance
matrix V is diagonal, described a simple algorithm for problem (1.2) for

fixed valuc of the parameter 6 and extended the algorithm to the problem

wlfm




(1.7) with upper bounds. They also provided a graphical interpretation to
their algorithm. As a matter of fact, the problem they considered, namely,
(1.2) with diagonal V and fixed 6 , is a special case of the single index
model corresponding to Var(Il) = 0 . More recently, Alexander [l] has re-
ported some computational experience with the use of Lemke's algorithm [17]
to solve problem (1.2) in a somewhat different formulation. The largest
problem solved in the paper contains 90 securities and was solved in an
average of 190.3 seconds (CPU time). Finally, Rosenberg and Rudd [24] has
reported some rather encouraging computational results with the use of a
new and general-purpose quadratic programming algorithm in portfolio anal-
ysis. The algorithm is due to Von Hohenbalken [33] and is not parametric.
It uses techniques in linear programming.

Despite the fact that there are many quadratic programming algorithms
that can be used to solve the problems (1.2) and (1.7), few of them are
successful in solving problems with a large number of securities (say,
when n is in the order of hundreds or thousands). A major limitation in
the application of these algorithms to large-scale problems is the exces-
sive computational cost. This is very often caused by the lack of effici-
ency in the implementation of the algorithms.

In this paper, we propose a fresh approach and develop some new al-
gorithms to solve the classes of portfolio problems (1.2) and (1.7) with
positive definite covariance matrices V . We will also discuss efficient
implementation of these algorithms, with special emphasis placed on their
implementation for large-scale problems. It should be pointed out that
since V 1is a covariance matrix, it is positive definite if and only if
it is nonsingular. The essential tool used to devclop the new algorithms
is a modified version of the parametric principal pivoting algorithm ([4]
for the class of parametric linear complementarity problems with P-matrices.
We shall explain the terminology and describe the modified algorithm in the
next section.

The new algorithms that we shall propose for the general portfolio

B
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_analysis problem in Section 3 have two basic properties which are extremely
important and useful for the application of these algorithms to problems
with specially structured covariance matrices. These properties are:
(1) the algorithms can take full advantage of the special structures; and
(2) they preserve the special structures throughout the solution process.

Oof course, without either one of the properties, the other would not be so
useful. In order to provide an example of a specially structured covariance
matrix, consider the single index model (and in general, a multiple index

model also). We know from (1.5) that

0 T
W= % varif,}p, 8]

which is a diagonal matrix plus a rank one modification. This is special!

Matrices of this class (or even its generalization (1.5)) have certain nice
properties which can be used in the new algorithms to facilitate their im-

plementation. In Section 4, we shall specialize the new algorithms to the

general index models where we drop assumption (l.4a). oOur purvose there is
to exploit the special structures inherent in these index models and to

show how they can be uscd in the algorithms most effectively.

e ———— ".~‘~ i 4
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2. PARAMETRIC PRINCIPAL PIVOTING

2.1. Background. This subsection is concerned with a brief review with |
& the background materials required for the entire paper. For a given n-

vector g and n X n matrix M, the linear complementarity problem, de-

! noted by (q,M) is that of finding an n-vector x satisfying

(2.1) g+Mx >0, x>0 and x'(q+ Mx) = 0 .

Recently, there has been. an extensive amount of navers ovublished on the
theory and applications of the linear complementarity problem. We mention
three most recent survey papers on this subject, Cottle [3], Kanecko [14]
and Lemke [18].

It has been proved (sce Samelson et al. [25]) that if M is a P-

matrix i.e. a real square matrix with positive principal miners, then the
linear complementarity problem (q,M) has a unique solution for every vector
a .

The parametric linear complementarity problem, denoted by {(g + Ap,M):

A € R} consists of the family of linear complementarity oroblems
(g + Ap,M) where X is a scalar, to be varied over the whole real line,

and v 1is a given n-vector. For some introductory exposition to the par- 1

ametric lincar complementarity problem, we refer to Cottle [4] and Kaneko

{E5] <

Throughout this entire section, we assume that M is a P—matrixl,

which is not necessarily symmetric, and that p is positjvez. It then
follows that the lincar complementarity problem (g + Ap,M) has a unique
solution x(\) for every X . In fact X()) is a continuous piccewise lincar
function of A with finitely many breakpoints (see {4} c.g.). If we let
l (2.2) X = max (-q./p.) .,
1<i<n i ta

P |

l. See also the discussion in the last paragraph of this subsection.

2. O0of course, we can then assume for simplicity and without loss of gen-
erality, that p 1is the vector of 1's . However, we do not asssumne
this for reasons which will become clear in Section 4.

-
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then it is clear that q + Ap>0 for all A> X. Thus X(A) = 0 for all
A > X. To determine x(\) for those A less than X, we resort to the

parametric principal pivoting algorithm which is a parametarized version of

Graves' lexicographic principal pivoting algorithm [10]. The parametric
principal pivoting algorithm is valid if M is either a P-matrix or a
positive semi-definite matrix. It is described in Cottle [4]). We reform-
ulate the algorithm for the case of a P-matrix as follows. For thosec

readers who are unfamiliar with the theory of pivotal algebra, we advise

them to consult on the references [2], [5], [10].

Algorithm 1: Original version of the parametric principal pivoting al-
gorithm for MeP 1.

Step 0. Determine X by (2.2). Let the initial canonical tableau be
given by

u=gq+ Ap + Mx

where q + Ap > 0 for all A>X. Let (u(})), X(A)) = (g + Ap,0) for

X > X . Put dolg = X and go to Step 1.

Step 1. If p <0 (this cannot oceur initially), let (W(X), %)) =
(@ + xp,0) on (-, Xold) and terminate. Otherwise determinc the new

critical value

q.

= -1, >
A — max { Py P, ° 0}

and let the new critical index k be a maximizing index. Put (u(a) ,x))

= (q + Ap, 0) on [Aold’xnew] v Set Aold = Anew and to to Step 2.

Step 2. Pivot on LU and let u,x,q,p and M correspond to the result-
ing canonical form. Go to Step 1.

Algorithm 1 may be cxplained briefly as follows. Initially, the de-
termination of Y such that q + Ap > 0 for all A>} is possible because p
is positive. This then produces the solution X(1) for all X > X immedi-

ately. Next, one wants to decrease )\ and to determine the solution

1. We somotimes use the letter P to denote the class of P-matrices.

-l




X (A) for those A less than X . This is done in precisely

the same way as in parametric linear programming, namely, by a ratio test.
In this instance, it is a maximum ratio test because one is decreasing A .
Having obtained the maximum ratic¢ (which gives the largest extent for the
decrease of A , keeping the current basic solution satisfy the nonnegativ-
ity conditions) and the maximizing index, one performs a principal pivot
to replace the current "blocking" basic variable by its nonbasic pair. One
then repecats the ratio test to decrease X further. The algorithm termi-
nates when the current p-vector becomes non-positive. In this case, a
further decrease of A <can result only in an increase of the values of the
current basic variables. Thercfore the algorithm terminates.

Several remarks are important to Algorithm 1 and subsequent develop-
ment. Firstly, the pivots in Step 2 are always possible because of the
fact that the matrix M after each such pivotl remains a P-matrix (sce [2]
e.g.) thus has positive diagonal entries. Secondly, by incorporating a
lexicographic rule to choose the maximizing index in Step 1, like the one
used in Graves' algorithm [10], the above algorithm will compute the sclu-
tion x(A) for all values of X , in a finite number of steps. The lex-
icography is used to avoid degeneracy. Lastly, each pair of old and new
critical values of A , namely, Xold and Ancw' actually corresponds to
a pair of consecutive breakpoints of the solution curve x(A) .

As mentioned carlier, the paramctric principal pivoting algorithm
was valid for a parametric lincar complementarity probhlem with either a
P-matrix or a positive semi-definitc matrix. In this paper, we restrict
our consideration to the P-matrix casc and lcave the other case as the sub-

ject for another reporxt.

2.2. Modification and extension. Before procceding further, we explain
some notations to be used later. Let M be an nXxn matrix and let

I,3c{1,...n}. We define




l
|

. m. .
le lth

where I = {il,...,is} and J = {jl,...,jt} with 1§.i1< e is n and

l§_j1< Sic e jti"' In particular, Mpy is a principal submatrix of M .
Similarly, if g is an n-vector, we define qp = (qi reeedy )T o BE

1 s
I={1,...,n}, we write M . to mean Mig. simidarly, Vi€ F = (1, 0k,

we write M;. to mean Myy . Any vector indexed by the empty set is
meant to be the zero vector. The letter e always denotes the vector of
s,

In the sequel, we first modify Algorithm 1 in such a way that it can
be efficiently adopted to large-scale applications and then extend it to
allow for upper bounds on the variables. In order to refrain us from re-
peating, we hereby declarc that all the algorithms described in this paper
are finite provided that degeneracy or cycling is treated appropriately by
some lexicographic rule.

We now explain how we modify Algorithm 1. Following the usual lan-
guage in pivotal algebra, we call the vectors u and x in the system
of linear equaticns

u=gq+ Ap + Mx

basic and non-basic vectors respectively and their components basic and

non-basic variables respectively. Now, suppose that Step 2 of Algorithm 1
has been performed several times and that the algorithm is not yet termi-
nated. The components of the current basic vector will then consist of
some components of the original x-vector together with the rest of the
components of the original u-vector. More precisely, there are two dis-
joint index sets I and J with TUJ ={l,....1} such that I and
consist of, respectively, those indices of the components of the original
u= and x-vectors that are currently basie. (Initially, & = {1,deesn

=G
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and J = ¢ .) Furthermore, the current canonical tableau can be obtained
by performing a block pivot in the initial tableau. In other words, writing

the initial tableau in partitioned form as

§

uI = dg + ApI + NIIXI + MIJXJ

i

uJ qJ + ApJ + MIJXJ + MJJXJ

and solving for u and x in terms of x and u we obtain the

T J 1 J’
current canonical tableau:
(2.3a) . = fg- = M T A(p.~M M_lp ) + (M. ~M M- u ) x ?
i | i i 10 JJ -J 1 1TJ Ja dJ II I 33 J1 X '
~1
+ MIJMJJUJ
S ) o —1 il -1
(2.3b) X3 = ey XMJJpJ MJJMJlxl + MJJuJ

Letting ay and hJ be the (unique) solutions to the following systems

of linear equations respectively,

(2. 4) MJJgJ = gz and MJJhJ = Py s

and defining

Lot IS e L R T T T

we may write (2.3) as

) T e
(2.6a) uI = c1 + AdI + (hll MIJMJJMJI)XI 4 MIJMJJUJ
(2.6b) x_. = - - Ah, - M-lM LTS M_lu

- i S J SR Jatla

Noting that the ratio test in Step 1 of Algorithm 1 depends solely on the

vectors ¢ dl’ 93 and hJ and that performing the pivot in Step 2 is

1’
actually ecquivalent to adjusting the sets 1 and J suitably and then to
obtaining the corresponding canonical tableau (2.6), we can readily state

the modified version of Algorithm 1 as follows.

Algoxithm 2: Modified version of the parametric principal pivoting for

Mc P

=11=




Step 0. Let Aold =w, Het Ji= {1,000 nF and J =@ .

Step 1. Solve the systems of equations in (2.4) for 93 and hJ and
then compute C1 and dI by (2.5). Go to Step 2.

Step 2. If 4; <0 and h;>0, set X;(A) =0 and X;(0) = -g; - A
for all X < Aold and terminate. Otherwise, determine the new critical

value

Q

is
i : ;
xnew = max{ max{ - a;: di >0, ieI}, max{- E% : hj <0, 3e Ik}
J

and let the new critical index k be a maximizing index. Put ;T ()= 0

X = —q = Xh = 3.
and xJ(A) 93 XhJ for A E[Anew’xold]' Set Aold Anew and go to Step

Step 3. If keI, then replace I and J by I\{k} and JVU{k} re-

spectively. Go to Step 1.

If keJ, then replace I and J by IVU{k} and J\ {k} respec-

tively. Go to Step 1.

Remark. The set J will always contain at least one eclement except initial-

ly. This is clear from the way the critical index is chosen in Step 2 and
the fact that hJ >0 if J 1is a singleton.

Algorithm 2 is basically the same as Algorithm 1 except that the
pivot step in the latter algorithm has been replaced by the updating of the
two index sets I and J and by solving the two systems of lincar equa-g,
tions in (2.4) which always have unique solutions. The ratio test is per-
formed in Step 2 without any change. The updating of the sets I and J
is clear and requires no further explanation.

The idea of replacing the pivot steps by solving systems of linear
equation in the above modification seems as though fairly simple, neverthe-
less it suggests a very efficient way to actually implement the original
algorithm, and is especially useful in large-scale applications. As a
matter of fact, the same ideca has been applied to Lemke's algorithm [17]

for certain class of linear complementarity problems. The application was

described in [26]. It should be pointed out that the modification described

P2




in Algorithm 2 is not contained in [26] a' 1 is obtained independently here.
Indeed, the author is indebted to Profes Stephen Robinson who has
called his attention to the reference [2u] after learning the results ob-
tained by the author.

A large part of the computational effort required in Algorithm 2
consists of solving the systems of lincar equations in (2.4) for various
sets J . Of course these systems can be solved independently of each
other by, for instance, factorization methods. But solving the systems
in this way is definitely not most efficient because one is not making use
of any old information to generate new data. Here the updating approach
described in [26] can be applied. The idea is to avoid solving the whole
current systems of linear equations in (2.4) from scratch, but instead,
by taking advantage of the information one has about the previous systems.
First note that each time (2.4) is invoked, the set J changes by one
element, or more precisely, increases or decrecases by the new critical in-
dex. This means that the submatrix Myg either incrcases or decreases
by one row and the corresponding column. If one uses orthcgonal (QR)
factorization to solve the systems of equations in (2.4) (see [11], e.a.),

then based on the fact about the change of the submatrix M it is pos-

JJ’

sible to develop fast numerical procedurecs to update the OR factors of the

new MJJ . These updating procedures can then be used to facilitate the

computation of the solution vectors 9 and hJ in (2.4). The amount of

operations required to compute the vectors 95 and hJ by this approach

is of order ¢ 2 where ¢ is the size of the current MJJ . This is better
than solving the systems of equations in (2.4) directly by an order of mag-
nitude. The updating procedures are described in more detail in [26]). We

would also like to mention that updating formulas for the iuverses of MJJ
are given in [27]), [11). The approach of using updated inverses to solve

the systems of cquations in (2.4) is slightly inferior (although of the

same order of computational effort) than that of using updated 0OR factors

T E—————




(see [26]). Finally, we point out that the total amount of storage re-
quired by using either one of these two approaches is of order n2 .

It is clear that Algorithm 2 has the two properties mentioned in the
introduction when it is applied to parametric linear complementarity pro-
blems {{(g + Ap,M): X e R} with specially structured matrices M, namely,
it can take advantage of and preserve the special structures throughout the
solution process. Sometimes, certain special structure allows the solu-
tions 9g; and hJ in (2.4) to be computed readily (or even explicitly)
without the need of going through the updating procedures mentioned in the
last paragraph. This is true for example, in the case of the index models
as we shall see in Section 4.

In the rest of this subsection, we extend the above analysis and
Algorithm 2 to deal with upper bounds. A similar extension of Lemke's al-
gorithm is described in [26].

specifically, we consider the following parametric linear comple-

mentarity problem:

(2.7) u=gq+Aip + Mx +y>0 x>0
bt o & yzh

u ' x = va =0

where A,q,p and M are as above and a is a given positive vector of upper
bounds on the variables. Problems of the tyve (2.7) arise, for example,
from quadratic minimization problems with upper bounds. For fixed value
of A, problem (2.7) is a linear complementarity problem with vector

& * XP) and matrix (_? é) . Therefore, by varyina A over the whole

rea? line, problem (2.7) becomes the varametric lincar complementarity
problem {(g) + X(g), (_¥ g)): AeR}. Linear comvlementarity oroblems of
the tvoe (2.7) with fixed X have been studied intensively in two recent
papers [6], [21]. sSec also [16]. 1In particular, it was proved in [6] that

if M 1is a P-matrix, then for every fixed ), problem (2.7) has a solution

$?(\) (from which the corresponding §a(\) can be aenerated easily). The

L
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uniqueness of ia(k) was oroved in.121]. Our objective here is to extend
Algorithm 2 to determine X (1) as a function of ) parametrically. For a
unified study on problems (2.7) with A = 0 and (2.1), we refer to [22]
where the author treats the vector a of upper bounds as having some com-
ponents equal to infinity.

The reason that Algorithm 2 is not directly applicable to problem (2.7)
is obvious: (TI é) is not a P-matrix even if M is. Suppose that we
have obtained some value X of A for which we know the solutions x°()A) for
all A> 1 and now we want to decrease A to complete the solution process.
In the solution §a(A), some components will be basic and others nonbasic.
Among the basic components, some will at their upper bounds. Let I and
J denote respectively, the sets of indices of the now basic u- and x-

variables, with J consisting of J and J where J, corresponds to

1 2
the subset of J such that the basic x-variables with indices in J2 are
at their upper bounds and J1 is the complement of J2 in J. (Initially,

X  is given by (2.2}, T = fl,...,n} , &nd J; = J, = ¢.) With the sets

I, J, and Jz, we can write the initial canonical tableau in partitioned’

1
form as:
Ue = g+ F AP + Moo, + M X + M x + y
I I i EE-T IJl Jl JJ2 J2 I
u = q + AP + M x. + M . + M X
Jl Jl J] JlI X J]J]_kJl JlJ2 J2 * le
u =q + AP + M X + M ®. + M X + ¥
J2 J, J2 JZI o JZJl J] J2J2 J, J2
vy = ayg - X
v = a. =3
Jl Jl J1
4
v = a. =X v
3 2 ‘2

and the intermediate canonical tableau before the further decrease of A as:




3 gty Wy Tdyde W, L o
My Ny MSIJ My p)¥p + M, MSIJ uy My, - M, MSIT By 3 17, +¥,
3y 3 Ty 1 139, 2 dq Fydy dydy ey
)
-M.. M
3, a0 T
=1 = 3 = <3
X = ~-M (q, +M as ) AM M M + M +M M v
3, 3,3,'%,™M3,3,%, 3,3,P3, M3 3. M3 1% 39,3, %2, 0,%.3.%a,
=
Sydy sy
X = a =N
P Ty 4y
b i e |
¥y = 1 +“51J Sy T g B 104 A”Ela Py +M31J " IXI_MSIJ oy
1 Rl o e T LR 19 Ty e 3%y %
-1 -1
- M M v + M Yy
3,3, M9,3,%, 9535 Y3,
Yy, = “lag 85 5 M;lJ (q; My a3 ) + My 5a;1 - Mp; -My 4 MglJ Py )
2 a Doty Gty Ty e ds 295 93 Sy gty Sy dy
My My MSlJ My ghxp =~ M, 5 M;]J vy HMy 3 n MSIJ i s e W
2 394 Mgty g e s s e - e e B o M
* My 4 MSIJ ¥
2o S e S

Letting 9 and hJ denote the (unique) solutions to the following
il ]
systems of linear equations respectively,

(2.8) M g = q + M a and M h =p
JlJl Jl Jl J1J2 J2 JlJl Jl J1
and defining
(2.9a) ¢ = g ~ M g + M 8y 5 Gy =p. =M h
I I IJl Jl IJ2 J2 L I IJl Jl
(2.9b) c = q - M ge t M - (SRR - =p - M h
J2 J2 J2J1 Jl J2J2 J2 J2 J2 J2Jl Jl

we may rewrite the tableau corresponding to A = X as

=16




b N
“I = cI + AdI
X, = -g - Ah
%3 J1 ¥y
X = a
iy ag
(2.20) vy = a; ? + nonbasic portion.
v, = (a; + g. ) + Ah
Jl Jl Jl Jl
Yy = -c ~ Ad
J2 J2 J2
J

It is now clear from (2.10) how to proceed to determine the dccrease
of X . Based on (2.10) and the same idea as before, we deduce the next

algorithm which is an extension of Algorithm 2 to solve problem (2.7).

Algorithm 3: Extension of the parametric principal pivoting algorithm to

deal with upper bounds for MeP .

Step 0. Let xold =®» , Let T = {1,...,n} and Jl = J2 = ¢
Step 1. Solve the systems of equations in (2.8) for ng and th and
then compute c¢., d., ¢ and d by (2.9). Go to Step 2.
I I J2 Jz
Step 2. IE dxf_o, hJ = 0 and dJ >0, set §a(x) = a for all X < xold
1 2
and terminate (in fact, I and J1 will then be empty). Otherwise dcetermine
the new critical value
£y : el a3 3
Anew = max{ max {- 39 >0, 1eI} , max {- g hj <0, j;ed;) .
i bR 1
a. +g. -~
L 3y (- =2 a, <0, §,e3,}}
max {- b e hjl >0,J1xJ1}, max {- =1 dj DL
h 12 2
and let the new critical index k be a maximizing index . Put §a1(k) =0,
—a o b -a "
Xy () = 95 AhJ and Xy ()) ay for Xe leld’Anew] . Set
1 1 1 2 2

Aold = Anew and go to Step 3.

Step 3. If keI, then replace I and J; by I \(k} and J, V {k}
respectively. Go to Step 1.

1If keJ,, then replace J, and J, by J;V{k} and J,\ {k}

1
respectively. Go to step 1. -17-
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If ked and hk<:0, then replace I and J by IV {k} and

1 1

J, \ {k} respectively. Go to Step 1.

1

If kedJ and h_>0, then replace J and J

1 k 1
J, VU {k} respectively. Go to Step 1.

5 by Jl\ {k} and

The termination of Algorithm 3 deserves some more discussion. Ac-
cording to Step 2 of the algorithm, we have at termination dIfAO' hJ =0
and dJ >0, and for all xf-xold' all the components of the solution Qa(X)

2
are at their upper bounds. 1In fact, h =0 if and only if J, = ¢ .

J 1
Therefore since p 1is positive, we mustlhave I = ¢. On the other hand, the
fact that the solution X2(\) = a for all A < Xold is to be expected and can
be justified directly from the original formulation (2.7) of the problem.
As we know, the solution x()) is a piecewise linear function of )
Therefore, there exists a value ) (which is in fact, Aold at termination
of Algorithm 3) such that Xx%()) is linear for all A <A. Now since X2 (0
is bounded above and below, it must be independent of ) for X<}, i.e. ia(x)
is equal to some constant vector for A <A. (This is not truc in the case
without the upper bounds.) Suppose the i-th component of this vector lies

strictly below its upper bound. Then we must have, by complementarity

- -a
0 < u; =gy + kpi + (Mx ()\))i

which certainly can not be true for all negative X . Therefore it follows
that for all A<}, §a(A) is equal to the vector a of upper bounds.

It should be pointed out that every time Step 3 is passed, the set
Jl changes (by onc element). It may sometimes be empty (as it must be at
termination). Furthermore, the updating procedures described carlier can be
used to solve the systems of equations in (2.8) more efficiently.

We conclude this subsection and also this section by remarking that
under suitable modification, Algorithm 3 can be applied to the situation
where some of the upper bounds are infinity. Roughly speaking, this is done
by restricting the set J, to include only those indices for which the
upper bounds are less than infinity. See the discussion in [22] for the

case of fixed .

-18-




3. APPLICATIONS TO PORTFOLIO ANALYSIS

3.1. The case without explicit upper bounds. In this subsection, we

apply Algorithm 2 to develop a new and efficient algorithm (Algorithm 5) for

the following parametric quadratic program.

(3.1) minimize % xTMx + (q + Or)Tx
subject to x>0
and pTx =1

where M is a given symmetric positive definite nXn matrix; p,q and r
are given n-vectors with p positive; and ¢ is a nonnegative parameter. We
recall that the general portfolio analysis problem with a nonsingular co-
variance matrix is a problem of this type. Furthermore we have q = 0 and
p=c¢ (see (1.2)). The first identification (g = 0) has certain ad-
vantage in the implementation of the first algorithm proposed below.

Since p 1is positive, the variables in problem (3.1) are always im-
plicitly bounded above. Therefore since M 1is symmetric and positive def-
inite, problem (3.1) has a unique solution x(0) for every 0 . Further-

more, x(6) 1is also the unique vector satisfying the following Kuhn-Tucker

conditions

(3.2a) u=gq+ Ap + 6r + Mx> 0, x>0

(3.2b) uTx = 0

(3.2c) pTx = 1

where ) 1is the Lagrange multiplier associated with the equality constraint h

(3.2c) and is dependent on 8 . Also A is not restricted in sign. Consider

6 = 0 first. The resulting problem is

(3.3a) u=gq+p+ Mx>0, x>0
(3.3b) ulx = 0
(3.3c) pTx =1 .

Now problem (3.3) can be regarded as the parametric linear comple-

mentarity problem {(q + Xp,M): X e R} coupled with the single equality

=19= '




constraint (3.3c¢). In other words, to obtain §(0). we can let X be a
parameter varying over the real line and aim at determining a suitable
At such that the solution f(A*) to the linear complementarity problem
(g + A*p,M) satisfies condition (3.3c) also. It is then clear that x(0)
is given precisely by ;(A*) . One way to find such a A* and the solution
§(A‘) is to solve the parametric linear complementarity problem
{(g + Ap,M):12 € R} and to develop a systematic way to check if the solution
x()) satisfies condition (3.3c). Algorithm 2 can be applied here to obtain
x()) for every X and in fact, it also provides an easy way to check (3.3c).
In what follows, we explain how this latter part can be done. Roughly speak-
ing, it is achieved by linecar interpolation.

Recall that x()) is a continuous pieccewise linear function of A .
Indeed, according to Step 2 in Algorithm 2, we have

for X e [A

il(x) = 0 and (A) = -g; - Mh ]

3 J new'Ao]d

where ) and )

] correspond to a pair of consccutive breakpoints of
new old .

the solution curve x(1); and hJ are solutions to the systems of linear

93
equations in (2.4). Thus,

T— A .
Px(X) = -p; g5 - Wy by

for » e [) ]. Setting pTi(k) = 1 gives

new'xo]d
T T
(3.4) A= =1 + Py 95}/P5h;

provided that J is nonemply. Geometrically, the quantity X given by
(3.4) is precisely that value of A where the (possibly extended) line seg-

ment of the solution curve X()) in the interval [\ ] meets the line

new'xo]d
pTi(A) =1 . So if this quantity A lies within the interval (i.e. if the

*

intersection occurs within the interval), we have found A = X . Other-

wise we decrease A and proceed to the next interval. Eventually in a finite
*

number of steps, this process will terminate with a A and of course, the

s A : g ; :
solution x(A ) (= x(0)) . We summarize the discussion in the next algorithm

which solves problem (3.1) with 0 = 026

e




Algorithm 4: QP with 6 = 0 and no upper bounds.

q.
Steo 0. Determine A = max {- —} and let k be a maximizing index.
18 qcien Py

Let I = {1,...,n} \{k} and J = {k}. Go to Step 1.

Step 1. Solve the systems of linear equations in (2.4) for 93 and hJ
and then compute Cr and dI by (2.5). Go to Step 2.

Step 2. Compute A by (3.4). 1If d; <0 and hy >0, then set

* — ~ A *
(3.5) A =2, XI(O) = 0 and xJ(O) = =gy - A hJ

and terminate. Otherwise determine

C. g.
(3.6) Anew = max{max{~ 3% : di> 9, ie1}, max{- E% : hj< 8 1ed¥r .
i 3

— 5 * o .
EE A(‘Iknew'Aold]’ then define 2 and x(0) by (3.5) and terminate.
Otherwisc let k be a maximizing index in (3.6). Go to Step 3.
Step 3. 1f keI, replace I and J by I \{k} and JUVU {k} respectivelv
Go to Step 1.

If kedJ, replace I and J by I U {k} and J \ {k} respectively.

Go to Step 1l.

Remark 1. As in Algorithm 2, the set J always contains at least one ele-
ment, so that the guantity X in (3.4) is always well-defined by the posi-

tive definiteness of M

Remark 2. If q happens to be zero, as in the portfolio analysis problem
(1.2), then it is casy to see that Aold and Anew will always be zcro.
Therefore the ratio test (3.6) and the one in Step 0 can be eliminated.
Furthermore, the maximizing index k can be chosen "arbitrarily" (subject
to non-cycling) provided either one of the following two conditions is
satisfied:

(1) dk >0 KeI @ j

(2) hk<0, Xed .
In Step 0, k can be chosen arbitrarily in Vi oottt » Finally, iE g = G,

Algorithm 4 terminates if and only if dISiO and hJ.:O for some suitable

I and J . ~21-




Remark 3. The assumption that M is positive definite is essential for
the success of Algorithm 4 to produce the solution §(0) to problem (3.1)
with 6 = 0 . This is because, on the one hand, the assumption guarantees
the existence and uniqueness of X(0) which also satisfies conditions
(3.2a)-(3.2c) for 6 = 0 and suitable A; on the other hand, it guarantees
that for every A, the linecar complementarity problem (g + Ap,M) has a
unique solution. Consequently, by solving the parametric linear comple-
mentarity problem {(g + Ap,M): X € R}, one is bound to arrive at the A*
and the solution X(0) given in (3.5).

Using Algorithm 4 as a start, we may proceed to develop a parametric
algorithm for problem (3.1), or equivalently, problem (3.2). Observe that
there are "two" parameters X and 6 in (3.2), with X depending 6 . It will
be shown in what follows that A can always be eliminated by means of the
equality constraint (3.2c) and expressed in terms of the values of the
current basic x-variables and the real parameter 0 . Hence we arc left with
one parameter and can therefore proceed as before.

Let I and J be the index sets at termination of Algorithm 4.
Then we can write

u=gq+ Ap + 0r + Mx
in canonical form with respect to I and J as:

] 1

(3.7a) up = ¢ + AdI + ObI + (MII = MIJMJJMJI)XI + MIJMJJUJ
(3.7b) X, = ~g., = Ah_ - 6£_ - M_]M x. + M—lu
3 J J J J JJ JI'1I JJ-J
where fJ, 93 and hJ are (unique) solutions to the systems of linear equa-
tions
(3.8) MJJ(legJIhJ) — (rJ'qJ'pJ)

respectively; €1 and dI are given in (2.5); and finally

Setting the nonbasic variables X; and uj; at zero, we have

-22-
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T
dJd

IPL.C g ol o T
P X = PJgJ AP hJ epJfJ -

Setting pTx = 1 gives

T T
| 1+p_g p-£
Lt | (3.9) PR L

’

T T
PRy P;h;

provided that J is nonempty. Substituting A into (3.7), we obtain

\
(3.10a) 1+p§ga png
FEES wy = ey = ST dg} * Bthy - T dp)
373 By
}+ nonbasic portion
L4pd, Py
(3.10b) St = (gl = SO A S e
J 3 e J J T
L Py

Starting with 6 = 0, we may use tablcau (3.10) to determine the in-

d

crease of 0 and proceed as before. Recalling the definition of Cpr dg

and bI’ we may write

l+pT9 1+pTg l+qu
SRS b RS TR SR T e i B
i i T 9y 8 Py Tg ' Sa By 3
P35 Fa'a Ps3
T T T
P5fy Pyty PyEy
s " g dy = (ry - e Py) - My, if5 = e hy)
P35 P3hy P5hy

Now we can formulate the parametric algorithm for problem (3.1) as

follows.
Algorithm 5: Parametric QP with no upper bounds.
Step 0.  Use Algorithm 4 to obtain X(0) and let I and J be the two

index secs at termination of the algorithm. Let 00 =0

1d

Step 1. Solve the systems of linear equations in (3.8) for f4, g4 and

hJ . Compute

w23 E
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S ok T v o D B
(3.11) X = - (1 +py95)/pshy, ¥ = - pyfi/pihg
(3.12) sy = a5 + AhJ, tJ = fJ + th
(3.13) c; = (qI & ApI) = MIJSJ7 dI = (rI + upI) - MIJtJ .
Step 2. If d;>0 and t;<0, set X (6) =0 and X;(0) = -s; for
6>6,,4 and terminate (in fact, ty will then be zero). Otherwise de-
termine

¢y ii

(3.14) L R min{min{- a;: a; <0, i €1}, min{- tj: tj >0, Se )}
and let k be a minimizing index. Put QI(O) = 0 and §J(8) k- B 0ty
for © Claold’anow]' Set Oold = Onew and go to Step 3.

Step 3. If keI, replace I and J by I ‘\{k} and JU({k} respectiv-
ely. Go to Step 1.
If keJ, replace I and J by IV {k} and J ‘{k} respectively.

Go to Step 1.

Remark 1. The set J will never be empty because of the fact that t, =0

for singleton J and also of the way the minimizing index Kk 1is chosen.

Therefore, the quantities ) and |} in (3.11) are always well-defincd.
Remark 2. This time, a minimum ratio test is performed in Step 2 because

we are increasing 0

Remark 3. The following two identities are clear from (3.11) and (3.12)
5 T = - T =

(3-15) PS5 1 and Pty 0

They guarantee that for every €, the solution x(0) defined in Step 2

satisfics pTi(O) = 1

Remark 4. As different from the last algorithm, the condition (g = 0)
does not induce too much simplication in Algorithm 5 except possibly in the

computations (3.11)-(3.13).




It is worth pointing ou
termination of Algorithm 5.

x(0) for all o greater than

equal to some constant vector
direct justification for this

have discussed carlier. The s

between the solution X (6) at

cording to Step 2, we have d

1

positive, (3.15) then impliecs

tions of dl and tJ, we may
(3.16) Xy
or equivalently,
3
(3.16)" min{-iﬂ >
. D —
1el ~i
This latter relation says that
the solution Q(ﬁ) can not be
rj/pj is no greater than al
3.2. The case with explicit u

t two rather interesting consequences at the

The first consequence is that the solution

or equal to the value of 0 at termination is

which is independent of the parameter 60 The

is similar to that for Algorithm 3 which we

econd consequence reflects certain relationship
n
i=1

;)

L

. Ac-

termination and the ratios (ri/p

>0 <0

J —

5

and t at termination. Since p is

that indeed 0 Recalling the defini-

.

deduce that
+ ﬁp] >0 and ry t HpJ =0
i1 Y.
= = 54 for every jE€J
3
if €is large enough, then component j of

positive unless the corresponding ratio

the other ratios (ri/pi) .

pper bounds. In this subsection, we extend

the analysis and algorithms in

explicit upper bounds:

so that the uppcer bounds will
the problem (3.17) to be feasi

then every feasible vector X

The problem (3.17) thus becomes trivial.

the previous subsection to the problem with

(35 X%} minimize % xTMx + (g + Qr)Tx
subject to a>x>0
and pTx =1
where p,q,r and M arc as above and a 1is a positive vector such that
a; <1/pi for every i This latter condition is imposed on the vector a

not be redundant. Furthermore, in order for

ble, we must have PTalzl « LE pTa = 1,
must satisfy x = a because p is positive,
T
Consequently, we assume p a>1
-7




throughout the discussion below. The portfolio analysis problem with upper
bounds (1.7) is of the form (3.17) with g =0 and p = e

For every fixed 6, let ﬁa(ﬂ) denote the (unique) solution to
problem (3.17). Since M is symmetric and positive definite, problem (3.17)

is actually equivalent to its Kuhn-Tucker optimality conditions

(3.18a) n=qg+Ap + 0r + Mx +y >0, X >0
(3.18b) v = a = X >0, y >0
(3.18¢c) ulx = va =0
(3.184) pTx =
Consider 06 = 0 . Then condition (3.18a)-(3.18c) can be regarded as

a paramctric linear complementarity problem of the form (2.7) with ) as the
parameter. Therefore, in ordey to compute ﬁa(O) which must satisfy con-
ditions (3.18a)-(3.18d) for some suitable )\ , we may use Algorithm 3 and
incorporate a rule to check condition (3.18d4). The idea is exactly the
same for the case with no explicit upper bounds; thercfore we omit the de-

tail. The next algorithm extends Algorithm 4 to solve problem (3.17) with

6 =0
Algorithm 6: QP with 8 = 0 and explicit uppcr bounds.
Step 0. Determine ) = max {-q./p.}! and let k be a maximizing index.
Bt R edem 4
Tet B = {1 et ke | Jl':-"'{k} and J, = ¢ . Go to Step 1.
Step 1. Solve the systems of linear equations in (2.8) for gy and hJ
i X
and then compute c¢., d., ¢ and d by (2.9}. Go to Step 2.
1 1 J? J?
Step 2. Determine
(3.19) A = max {max {- Si' a,>0, ie1}, max{- ?il- h. <0 §o & 3. 1
L4 new d-' J p E ] an h. H j ' ]l 1 ’
i ) 1
ay +gj cj
e i : - iy < i.e 3. 1}
max { e : hj >0,j;¢€ Jl}, max { e dj 0, j,¢J,
J1 1 B} .

Case (i) Jl 1 ¢. Put




EE X e iX A 1, set X =X,

new’ “old

* -~
; - X h and %2 (0) = a

Aa =5 -~
xp(0r = 0, x 93 J 3,

(0) = -
1 75

and terminate. Otherwise let k be a maximizing index in (3.19). Set

Aold = Anew and go to Step 3.
Case (ii) Jl = ¢ (or equivalently, h = 0). If pT a =1, set
J Ju J
* 1 2 "2
x = X
new
~Aa oy aa -
xl(o) = 0 and xJZ(O) an

and terminate. Otherwise, let k be a maximizing index in (3.19). Set

Aold = Ancw and go to Step 3.
Step 3. If k € I, replace I and Iy by I ‘{k} and Jl\J{k} respce-

tively. Go to Step 1.

If k ¢ J2, replace J and J by J

) E J., \{k} ~e-
1 2 U {k} ind 12 {k} re

1
spectively. Co to Step 1.
If k ¢ J1 and hk

\ {k} respectively. Go to Step 1.

< 0, replace I and I, by I UVU{k} and

=y

If k ¢ J1 and hk

JZLJ{k} respectively. Go to Step 1.

> 0, replace Jl and J, by Jl\ {k} and

The existence of a maximizing index k in (3.19) still requires

justification. However, this is clecar because if dI = 0, hJ =0 and
1

dazlio' then according to what we have remarked earlier, these conditions
indicate that in fact, 1 = Jl = ¢ and that we have arrived at the last
breakpoint of the solution curve §a(X) . These latter two facts together
would imply £2(0) = a, contradicting pTa +1 . Therefore a maximizing
index k in (3.19) always exists.

Finally, we present the parametric algorithm to solve problem (2.17).

It is an extension of Algorithm 5 to deal with explicit upper bounds.
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Algorithm 7: Parametric QP with explicit upper bounds.

Step 0. Use Algorithm 6 to obtain §a(0) and let I, Jl and Jz be the
three index sets at termination of the algorithm. Let @ =0 . If

old
— * —
Jy=¢.,set X=X, u=0 and go directly to (3.23). Otherwise go to

Step 1.

Step 1. Solve the systems of linear equations

(3.20) M (£ ;9. ;b )} = (r_ ,aq. =M A P )
o T gy Uy gy gy
for f£. , g and h . Compute
Ty )
- i P By - - T
(3.21) A =- (1L +p_ g = p-a- )/fps h. v W ==ps . /fpco h
Jl Jl J2 JZ Jl J1 Jl J1 Jl Jl
(3.22) s, =g. +%., t. =£. +7h
Jl J], J1 J1 Jl J1
(3.23) CI = (qI + ApI) + MIJ ay - M]J sJ ” dl = (sI + up]) - MIJ tJ
2 2 i 1 |
(3.24) c, = (q; + Ap, ) +M a, - M S o d- =Ur % jip. ) = M e
J2 J2 J2 J2J2 .12 J2J] Jl JZ JZ J2 JZJl Jl
Step 2. I d.>0, 't =0 and d. <0; set Qa(ﬁ) = 0, %2 () = -s
—= = I3, I, = 1 3, 3y
and %2 (6) = a for 6>0 and terminate. Otherwise determine
J2 J2 - "old
T e : . 3y ; ;
(3.25) Onew = min{min{- 3 di< 0, ieI}, min{- 5 tj >0, Jjpedpt .
i iy 1
aj +sj cj
. ) S ; S Y O iy, 92
min { — Lj <0, e Jl}, min { - dj2 >0, iy LJZ}}
3y L iz
and let k be a minimizing index. But £3(0) =0, %2 (9) = -s - Bt
1 Jl J1 Jl
~a _ & H !
and xaz(o) = an for ef‘foold'onew]' Set oold s Onew and go to Step 3

Step 3. 1f keI, replace I and J, by I\ {k} and Iy U {k} respective-

ly. Go to Step 1.

-28~




If kz:Jz, replace J

and J, by J,U{k} and J,\ {k} respective-
1 2 1 2

ly. Go to Step 1.

If ke Iy and t, >0, replace 1 and Iy by 1IU{k} and Jl\ {k}

respectively. Go to Step 1.

If kcJ, and t, <0, replace J, and J, by J, \ {x} ana 3,V {k}

respectively. Go to Step 1.

Remark 1. The set Jl will never be empty except possibly at the termina-

tion of Algorithm 6. The reason is the same as in the case with no upper

bounds. Furthermore (3.15) holds if J is replaced by J1 5

Remark 2. The following analog of relation (3.16) holds at termination

of Algorithm 7:

(3.26) ro+yp; >0, r. +fp;, =0 and r, + pp; <O
1 L~ Tay Iy J, J,

or equivalently,

Yo ¥,
. i ot .
(3.26) " min{=%) S 1 > max { T—g } for every j

I &2
< y D - . : D%
eI = i jztdz J2

1 1 S
This latter relation (3.26)' indicates how the solution §a(u) is related

to the ratios (ri/pi)n for sufficiently large 0 .
i=1

=3




4. SPECIALIZATIONS TO INDEX MODELS

In this section, we apply the algorithms devéloped in the last sec-
tion to some specific models in portfolio analysis, namely, the index models.
Recall that in an m-index model, the returns of the securities are given by
(1.3) and there are three assumptions (l.4a)-(l.4c) concerning various co-
variances. Since it is rather unrcasonable in practice to assume that no
two indices are correlated, we will drop the assumption (1.4a) throughout
the following discussion. We denote by C the covariance matrix of the

indices, i.e. C = (c..) where

1) mXm

C,. = cov(Ii,lj) for every i,3 = l,cce,m .

1)

Under this setting,

V of portfolio returns is

it is easy to deduce that the covariance matrix

given by

(4.1) =125 + (Bl,...,Bm) C(Bl,.,

g
s}

where ¥ is the nonnegative diagonal matrix whose i-th diagonal element is

in * for J = Ll,ccemm » Ef € 1S

diagonal, then (4.1) reduces to (1.5) mentioned in the introduction. Note

equal to Var(ci) and Cj = (ﬁn e R

that (Bl,...,Bm) is an n Xm matrix.
In the sequel, we add the following assumption to the model:

(A) the diagonal entries of ¥ are all positive, i.e. Var(ki) >0 For

5 RS |

Since the ti‘s can be viewed as the differences between the actual
security returns and those obtained by taking lincar combinations of the in-
dices, the assumption (A) says that there are always errors in measuring the
actual sccurity returns by lincar combinations of the indices. Fortunately,
this is not a too unreasonable assumption because the coefficients of com-
binations, i.e. the Gij's, are usually obtained by statistical estimation
based on past history in the stock market, thus are themselves subject to

errors. Presumably, taking lincar combinations involving these erroncous
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Bij‘s would provide only approximate and not exact values of the actual
security returns. Unfortunately, assumption (a) will exclude riskless

securities in the model.

If the index models are of any significance in reducing the compu-
tational and informational complexity of the general portfolio analysis

problem, it would seem very reasonable not to include too many indices in

the models; or in other words, we may consider m relatively small com-

pared with n . This latter condition is particularly meaningful when n
is very large.

Under assumption (A) , the matrix V given in (4.1) is symmetric
and positive definite. Therefore the algorithms developed in Scction 3 are
applicable. Of course, (A) is only a sufficient condition for V to be

positive definite. Making the change of variables,

H

z = % x
i

where ¥ is the diagonal matrix whose diagonal entrics are the square roots
of the corresponding diagonal entries of ¥ , we may reformulate problem

(2.2) ((1:7})) as

(4.2) minimize % zTMz + or'Ty

subject to (a' 3z >0

' T

and p' 2z =1
where
(4.3) M=I+ ;s'.....s;n) C(BY v - csB)”
(4.4a) Bi — By B2 Lot
i
(4.4b) a' = ¢ a
-4 -4
(4.4c¢) r' =1 r and p' = % e .

If the n standard deviations (var(c.)1/2)P 3
i i=

reguires nXm divisions to compute all the fi's, n multiplications to

are given, then it

obtain a and 2n divisions to obtain r' and p'
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To facilitate practical computations, it is convenient to factorize

C into
(4.5) C = GGT
. * where G is an mXm lower triangular matrix. The factorization is pos-

sible because C is symmetric and positive semi-definite. It can be
i achieved for example, by the scheme described in [7, p. 491-492]. The

amount of operations (i.e. multiplications and additions) required by the

i scheme is O(m3) . Since m is small, this factorization will, presumably,

present no computational difficulty. With (4.5), we then compute the nXm

' matrix
| (4.6) I' = (Bi,...,sx'n)c:

The computation of I' requires nXm multiplications and additions. By

(4.5) and (4.6), (4.3) can be rewritten as

(4.7) M=1+TITT,

As we shall see, there is no need to compute the product FPT . The total

amount of opecrations to transform the original wroblem (1.2) (or (1.7)) with
a covariance matrix given by (4.1) to the equivalent problem (4.2) with the
matrix M given by (4.7) is 0O(n) + O(mXn) + 0(m3) -

Recall that we have mentioned some updating procedures in Section 2
which can be used to execute Step 1 in each of the four algorithms in
Section 3. These procedures usually require O(nz) storage and are operat-
ing on matrices with varying sizes which sometimecs can be very large. On
the other hand, by exploiting the special structure of the matrix M given
in (4.7), we can achieve e¢normous savings in both the storage and opera-
tions of the algorithms. More specifically, we can reduce total storage to :
O(n) + O(axn) + 0(m2) and in Step 1 we need to operate on matrices of order
m only. These are indeed savings because m  is usually very small com-

pared with n . In what follows, we illustrate how these savings can be

achicved in the case with upper bounds and omit the ecasier case without the

upper bounds.
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In the sequel, we put subscripts in the identity matrix I to denote
its dimensionalities and write |S| to mean the cardinality of a set S .

Let ' be an nXm matrix and

% (4.7) W= T P,
Let p,q,r and a be n-vectors. Let I, Jl and J2 be subsets of {1,...,n},
disjoint from each other and such that Uy, v, = {1,...,n} . Then we
have
M =1I + T (r T
|
3,9, L3, Ty, g

whose inverse can be computed by the Sherman-Morrison-Woodbury formula ([11,

p. 791)

-1 T -1 i

M = 1 = BT e (] (IR (T Y-
J19, lJll J m Jg. Jg. Ji.
lJll s
For each 6 €R , let o be the (uniquc) solution of
. T, » G T
(4.8) [Im * (!J .) (IJ Yoo = (TJ S
1 2

Now if fJ v 9y and hJ are the solutions of the systems of equations in

I i 1
(3.20), then

r P
(4.9) e i T WS g 1
. = = an = G o
Jl J] Jl- Jl le Jl_
To compute 93 it is necessary to evaluate M;lJ MJ y. a5 - We have
1 adrastlisd S
Y
M a =T (@ ) a 5
3,9,°9, I L, J,
Thus,
-1 Lt 14 =] T T
M M. a =0 F (r Yas =} [ _+(r Yo (e )1 (T iy IR e
39,793,709, CIPRLL R Ml e il 3. Jy. @y, 7 Vel Ty 4
T 1 T T
= I =11 (1 ) (T )L B ) (T ))(r ) a
Jl' m m J1~ Jl- Jl* Jl' J,. J2
gy BRtre YFy W T Yag
) 5 Xe ) Y2 2

=33




a
J
Letting T 2 be the (unigue) solution to

J
T = 2 T
(4.10) A Y S Y1t = (T el
m Jl' Jl' J2 J2 ]
we deduce that
9, 9
(4.11) g = = (o ST )
Jl Jl Jl-

If le, tJl, Crv dI’ CJ2 and sz are the vectors given by (3.22), (3.23)
and (3.24), they can be computed in the following way. By (4.8), (4.9) and

(4.11), we have

(4.12a) s = g + Ah
2o 0y Fy 15
— qu”‘le g o
= (q. *+ AP ol (o = )
J Jl Jl-
and
(4.12b) 6. = E. * #hy
ay . 1
- rJ14ﬁle
= (£, +Pp;) - T4 (o )
1 1 31
Therefore,
M a =1 S
IJZ J2 IJl Jl ¥
q. +\p q
J J J
T T < : : T 1 1 2
o Po b YA <Py (Tp ) g FAEg R (v, 1 &y o o
I J2. J2 X Jl- ] Jl 1 Jl- Jl-
a +X
J 93 T
T L 2 . T - T 1 1
= Py I(F; ) a5 =l T (i et G )i (g, +Aps YH(TL ) (T Yo ]
X" g o0 J;. Jy . Jy. I,y J;. Jy.
q. +2p a
= =Fs { "1 1 -1 J2)
s R
where the last cquality follows from (4.8) and (4.10). Hence,
o quﬂ‘le %3,
(4.13a) cy = (qp + Apy) - Ty, (o - T ) 4
similarly we may deduce
81 rJ1+1|p]
(4.13b) a, = (ry + wpy) -rI.(a )
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95, +3p; By
(4.14a) e, =g, + 3@, ) ~I, lo Pax %4 a
%5 ¥a ¥y il 32
x, +up
J J
(4.4b) & =, +3p, Y =P, (¢ > . T
J, J J, J,.
If we define the n-vectors s and t by
- ququl 3,
(4.15a) s =(g+ 2Ap) - TI'(o0 = )
i IJ1+ple
(4.15b) t = (r + pp) - I'(o )
then we can immediately generate all the vectors SJl'tJl'CI'dI'CJz and dJ2
b L TR e’
In practice the vectors o 1,0 1,0 5 and 1 - are generated by solving
the following three systems of equations
q a r P
g o J J J J
(4.16) (T 4T, 23 (P, ¥ilo Y= 2,0 Lo Iy »
m. J J %
p 1- 1-
\ T T T
= ((I ) as = (F )Ta, (F Ve o (CE Yo )
J;. gy VT dy," Tyt Iy Jy. I,
93, %,
Note that there is no need to generate o and 1 separately. It is
their difference that is required. Furthermore, the matrix Im + (TJ )T(I‘J
1. 3=

is symmetric, positive definite and of order m which is independent of

IJlI . Now, suppose that Jl changes by one element, then it is easy to

see that Im + (FJ )T(l‘J ) is affected by a rank-one modification, i.e.
1. 1

(4.17) new matrix = old matrix * yy

where YT is a suitable row in the matrix I' . If we solve (4.16) by apply-

ing Cholesky factorization (sce [11] e.g.) on the matrix I_ + (TJ )T(F b

m J

1- 1
then we can update the Cholesky factors very quickly by taking advantage of
the relation (4.17). An updating procedure is described in [8, Algorithm Cl].

See also [9]. The number of operations necessary to compute the modified
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factorization using the procedure is m2 + O(m) multiplications and

n2 + O(m) additions [8]. Furthermore, the procedure is numerically stable
because for every J,, the matrix I _+ (T )T(F ) 1is sufficiently
1 m Jy. Jl‘

positive definite, its smallest eigenvalue is greater than or equal to 1 .
We note that if m = 1, (corresponding to the single index model), then

T
Int (FJ1-) (r

trivial.

) becomes a scalar and the updating process reduces to

Jl'

Based on the above analysis, we may now formulate the specializations
of Algorithms 6 and 7 to problem (4.2) with the upper bounds. To keep the
notations simple, we delete the primes in all the vectors in (4.2). More-

over we assume that the vector g does not vanish in the objective function

of (4.2), i.e. we consider the objective function to be % zTMz + g + Or)Tz
Furthermore, we assume pTat 1 in order to elimiuate the trivial case.
Finally, we remark that the vectors ng'th’CI’dI'CJZ and sz reauired in
Algorithm 6 can be obtained easily from (4.15) bv some simple modifications.

Sec (4.18) and (4.19) below.

Algorithm 8. Specialization of Algorithm 6 with M given by (4.7).
Step 0. Determine A = max {-q./p.} and let k be a maximizing index.
—— old teien e
Let I ={1,...,n)\{x}, J; =7k} and J, = ¢ . Go to Step 1 .
Step 1. Solve the systems of linear equations
q a P
o 1 o T T
(4.18) BB (1 ) ) )] (o SRR G )=
m J J
1. 1
T T T
= ((r )T q =D ) - O R
J;. 3, J,. J, J5. 3y

and compute

(4.19) s=q - T(o -1 Ve & =p = lo .
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Step 2. Determine

8.
S. 3j
(4.20) A = max{max{- —: t. >0, ic7T}, max{~ ——l: t. < 0, j1 ch} '
E N new t, 1 €, I
| | 2
|5 a. +s. a. +s.
i J J J ]
waxi~ —L-—% : £, >0, j, €J.}, max{- S SN SPETS <0, 3 e T 1}
. 3 1 1 €. i 272
iR 1 ]2
Case (1) Jl t{ ¢. Put
= T T T
X =-(1 +p. s. -p-a, )/p. t ,
Jl Jl J2 J2 Jl Jl
. * -
If X € [Anew'xold]' set A = A
~a ~a * ~a s
x> (0) = 0, =x_ (0) = =s S and x_ (0) = a
1 Jl Jl Jl J2 JZ
E and terminate. Otherwise, let k be a maximizing index in (4.20). Set
g Xo]d = Ancw and o to.Stcp i
'. e _ P b
g Case (ii) J] = d, X E Py ay = 1o G O X o
v e
~a ~a
X0} =10 and X% (OF = a
1 d2 J‘2
i and terminate. Otherwise, let k be a maximizing in (4.20). Set lold =
Xnew and go to Step 3.
Step 3. If keI, replace I and J by I\ {k} and JlLJ{k} respective~

1y. Gol to Step it.

S

EE Y(iJz, replace J, and Ty by J,v {k} and J2\ {k} respectively

1
Go to Step 1 .

£ Ked and t, <0, replace I and Jl by I U{k} and Jl\ {k}

i k
respectively. Go to Step 1.

If kz-Jl and tk >0, replace Jl and J2 by Jl\ {k} and Jsz{k)

respecively. Go to Step 1.

Algorithm 9: Specialization of Algorithm 7 with M given by (4.7).

Step 0. Use Algorithm 8 to obtain X%(0) and let I, J, and J, be the

threec index scts at termination of the.algorithm. Let Oold =0 .

. w3 e

P 1 3




*
Jl =¢ set s=qg+Xp and t =1r, go to Step 2. Otherwise go to Step 1.

Step 1. Solve the systems of equations in (4.16). Compute

nt = pr I
Iy 9.
q q
J 3
T
PG = p; a4 - nte =1 %)
T
T
J
PF = p:I]‘ I‘J = HT o 1
i ]
P
R
PH = pf By HPO !
S
X = =(1 4+ PG -~ }“'q; a. )/PH, u = -PF/PH
dy 9y

and the vectors s and t by (4.15).

~da

o = < < - il = i = g =
Step 2. If t;2>0, tJl =0, tJ?vdo set  xp(0) 0, xJ](() S and
~a 3 ; . .
3] = 7 ) > O an T ate. W1 S ete 2]
xJZ(.) aJ2 for (--(old and terminate Otherwise determine
0 iitlaeiie <0, i€1}, min{ i '
new = minlmini- —: &, 0, ie1}, min{- R Lj >0, i1 cJ1) 7
i 5P 1
S0 D
in{- —% “1. . T O s S ;
min { T : tj <A 3y ¢ Jl], min{ : tj > 0, 3, rJz}}
Jy 1 Jo 2
and let k be a minimizing index. Put ﬁa(ﬁ) =0 32 (8) = =s. -~ ¢t and
1 Jl Jl J1
sa o —_—y & i "
XJz(L) = aJ2 for 0 ¢ 10,)4/0,.,) - Set 0,4 = 6,,, 2and go to Step 3.

Step 3. Same as Step 3 in Algorithm 7.
The systems of linear cquations in (4.16) or (4.18) should best be

solved by Cholesky factorization together with Algorithm C1 in [8] to update

the Cholesky factors. Because of the fact that Jl starts initially in




s

T e

Algorithm 8 as a singleton, there is no need to compute the product

(FJ )T(I‘J ) throuchout. Finally, whenever Jl becomes a singleton, it
1. 1.
is more convenient to compute the Cholesky factors of the matrix
Im + (rJ )T(l‘J ) from scratch. Formulas for computing such factors are
Tl 1

given in [8].

of coursc, the above two algorithms are applicable to the general
portfolio analysis problem (1.7) with the covariance matrix V given by
(4.1), provided that we first obtain the transformed problem (4.2) with the
transformed data (4.3) and (4.4) by the nrocess described earlier.
The total storage required in this application consists of the n standard
deviaticns Var(ci)l/2, the mXm covariance matrix C, the mXm matrix
G, (C and G each require —=—"- storage beccause of symmetry), the nXn
matrices (al,...,sm) and ' , the n-vectors r,a and %, finally, some
Tlﬁg}) storage for the Cholesky factors. These add up to O(n) + O(mz)
+ O(nxm) . This latter amount is best described as minimal.

We conclude this section by remarking that the matrix V given by
(4.1) appeared also in an application of the parametric linear complementar-
ity problem to structural enginecering. In fact, it was shown in [15]) (see
also the referenccs there) that the behavior of a reinforced concrete beam
can be described in terms of the parametric linear complementarity problem
{{qg + Ap,M): X e R} where M is precisely of the form (4.1). Of course,
Algorithm 2 is applicable in this instance. forcover, the analysis devel-
oped in this section can be used to increase the overall efficiency of the

algorithm. Sec [23])] for a wore detailed discussion of this subject.

~30-




5. CONCLUSION

In this paper, we have developed several new algorithms for portfolio

analysis and discussed their efficient implementation. We have also shown

how their specializations to the index models will result in dramatic

savings in storage and computations. 1In a forthcoming paper [23], we shall

report our computational experience with the algorithms in solving some port-

folio problems.
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