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ON THE CONVERGENCE OF THE CONJUGATE GRADIENT METHOD
FOR SINGULAR CAPACITANCE MATRIX EQUA’I‘IONS1

A. S. L. Shieh

§ 1. Introduction

Over the past decade, very fast direct methods have been developed to solve Poisson's
equation on certain simple regions with Dirichlet, Neumann or periodic boundary conditions.
See e.g. [2], [7], [10], [17], [19], and [29]. The capacitance matrix methods are
developed recently to solve Poisson's equation on arbitrary bounded regions with smooth
boundaries by imbedding the discrete problem into a region where these fast direct methods
are applicable. See section 7 of this work for a brief survey of previous work on capacitance
matrix methods. In this work it is shown mathematically that by making the correct
Ansatz guided by classical potential theory, the convergence of the conjugate gradient
method for solving the capacitance matrix equations is essentially independent of the mesh.
size. The total operation counts of the algorithm do not exceed constant nz( log n)2 where
h = 1/n is the mesh size. Only numerical schemes of first order accuracy for the interior
Neumann problem of the Poisson equation on bounded two dimensional regions with smooth

boundaries are considered here. Sec [ 28] for a similar treatment of the Dirichlet problem.

{
lIssued also as Lawrence Berkeley Laboratory Report #4668.L

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the
National Science Foundation under Grant No. MCS875-17385. Also partially supported by
the Energy Rescarch and Development Administration under Contract No. W-740 5-ENG-48.
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§2. Certain results from classical potential theory

We give only a very brief review of a few results of classical potential theory. For a
detailed exposition see e.g. [8], [12], [22] and [25]. We define the potential ¥

resulting from a charge distribution p on a smooth boundary curve 8% by

7(x) = (I/n) [ p(&) log r ds() .
;19

Here x = (xl,xz), £ = (gl,gz) and r'2 = (xl - gl)z + (x2 - ¢ )2. The Green's function

2
*
(1/2w) log r which we shall denote by G  satisfies
A(l/2rm) log r = &(r) ,

where 6(r) is the delta function. For the interior Neumann problem, we make the Ansatz

(2.1) u(x) = (1/2m) [ [ 1(8)G de +7(x)
Q

for the solution of

Au = f, X cQ
(2.2)

i

au/av = g, X e Q.
Here v denotes the outer normal to the boundary curve 9Q. The first term on the right
hand side of (2.1) is a space potential term and will be denoted by us. The boundary

condition is satisfied by choosing p such that

(2.3) p-(/r) [ paG /ov ds = g +(a/ov)ug
o an

This equation can be written as

(2.4) (1-Kp =g,

where K is a compact operator defined by the integral above. The equation is a Fredholm
integral equation of the second kind and thus a well posed problem. It has a simple zero
eigenvalue and is solvable if § has a zero mean value. We remark that G' in equations
(2.1) and (2. 3) can be replaced by the Green's function on a rectangle with zero Dirichlet

boundary conditions or any other Green's function of the Laplacian.




§ 3. The capacitance matrix mmethod for the Neumann problem

In this section we develop a similar formal potential theory for the discrete problems
arising from the original Neumann problem (2.2). See also sections 3 and 5 of [26] for a
similar discussion. We shall assume that uniform mesh sizes in both coordinate directions
are used.

We replace the Laplace operator by the five-point formula. The Green's function G*
used in section 2 will then be replaced by the discrete Green's function on a rectangular
region S with Dirichlet boundary conditions. We denote this Green's function by B_l

where B is the matrix representing the discrete Laplacian hZA employing undivided

h?
differences, on S and zero boundary values on the grid points of 88S.

We imbed @ in S as follows. The set of mesh points is decomposed into three
contains all the irregular mesh points

disjoint sets Qh' 9%, and (CD)h. The set 3

h h

in @, i.e. mesh points that do not have all four neighbors within the open set . Qh
is the set of regular mesh points inside £ and (CQh) contains the remaining, the
exterior mesh points. We further require that © is bounded away from §S uniformly in
h. We then set up the matrix equation

(3.1) Au = v

that we are solving as follows. We require that B and A differ only on the rows that
corresponds to the irregular mesh points. On these rows we combine the discrete
Laplacian with difference approximations to the normal derivative. We must, however, be

sure that the solution on rzh U 90, 1is independent of the solution or data on (CQ)h.

h
This is achieved by eliminating from the discrete Laplacian, centered at an irregular mesh
point, the values of the solution at its exterior neighbors. We write

A= B- UV,

.




The matrices U and V have m columns where m 1is the number of points in th.

U represents an extension operator that retains the values of mesh function on th and
makes the remaining values equal to zero. The rows of VT are simply the differences
between the corresponding rows of B and A. After a suitable permutation, the matrix

A is reducible,

(3.2) A= .

The submatrix A“ is the matrix for the linear system of equations of the original discrete
problem arising from discretization of the original problem (2.2). It is easily seen that

the restriction to Qh U 82, of any solution of Au = v must be a solution to the original

h

discrete problem. VT will be chosen so that the row sums of A“ and VT vanish and
A” has a simple zero eigenvalue. The matrix AZZ is nonsingular since it represents
a finite difference approximation to a Dirichlet problem on CQ. It is then easily verified
that the matrix A also have a simple zero eigenvalue.

We now describe our method for solving the system equations (3.1). It is solvable
if and only if the right-hand side v is orthogonal to the left eigenvector of A which
corresponds to the zero eigenvalue. It is shown in section 5 of [ 26] that the right hand
side v is always consistent regardless of its values on (CQh) if the data is already
consistent on @, U o2, -
Guided by the classical potential theory, we make the Ansatz

(3.3) u=8'v+B 'uDp.

Here p 1is a m-vector to be determined. D 1is a nonsingular diagonal matrix containing

certain scaling factors to be specified later. Computing the residual vector we obtain

v +B”'uDp) - v

8~ 'up)p - uvTB v .

(3.4) Au-V=(B- uvT)(B'

= (UD - UVY
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Because of the factor U the residuals are zero for all x ¢ QhU(CQ)h. They must also

vanish on th. We therefore multiply equation (3. 4) by U'r and obtain

(3.5) (D- V5 lup) = Vi le
Here we have used the relation UTU = Im’ the m X m identity matrix. We shall refer
to equation (3.5) as the capacitance matrix equation and the matrix on the left hand side

of (3.5) as the capacitance matrix. It is shown in section 5 of [ 26] that the capacitance

matrix which we shall denote by C has a simple zero eigenvalue and that the right hand

Fo=1

side VB v of (3.5) is consistent if v is consistent for the original problem Au = v.

T =
For the special case when v = UU v, we can simply make the Ansatz u = B lUDp. The

capacitance matrix equation now becomes

(3. 6) Cp= U .

T T -1

Let ¢T satisfy ¢TC = 0. Then ¢T = ¢TV B_'U. Therefore ¢TV B 'v=0 implies
¢TUTv = 0. Hence the right hand side UTV of equation (3. 6) is again consistent if v is
consistent for Au = v.

We now describe our choices of difference equations at the irregular mesh points.

Let P« th. Let PElk be its closest point on 3%. Let W, E, N, S and NE
be its western, eastern, northern, southern and northeastern neighbors on the mesh.
Assume that the local orientation of the boundary is such that W is always in (CQ)h

while N is eitherin 992, or (Cn)h depending on whether P has one or two neighbors

h
in (CQ)h. Let a« <m/4 be tne angle that the normal through P makes with the closest
coordinate axis. We approximate the Neumann boundary conditions by the following first

order scheme.

(3.7) u(W) = (1 - tan a)u(P) - (tan a)u(S) = g(P )h cos a
(3.8) u(N) - (1 - tan a)u(NE) - (tan a)u(E) = g(P )h cos a .
-5=




In our first scheme, we combine the equations (3.7) and (3. 8) with the discrete
Laplacian to form the following equation regardless of whether N is in (CQ)h or not
(3.9) cos a[(3 + tan a)u(P) - (1 + tan @)u(S) - (1 - tan a)u(NE) - (1 + tan a)u(E)]

= cos a[hzf(l’) + Zg(P*)h cos a] .
We shall refer to this scheme as scheme I.N.a.

The second scheme is as follows. If P e 3 has two neighbors in (CQ)h, we

h
obtain the equation (3.9) as in scheme I.N.a. Ifonly W is in (CQ)h, we only use
equation (3.7) to combine with the discrete Laplacian. We then multiply both sides of
the combined equation by 2 cos a instead of cos a to obtain the following equation
(3.10) 2 cos o[ (3 + tan a)u(P) - u(N) - u(E) - (1 + tan @)u(S)]
= 2 cos af f(P) + g(P*)h cos a .

We shall refer to this scheme as scheme I.N.b. Both schemes I.N.a and 1.N.b give rise
to matrices All that are positive semidefinite with null space of dimension one that
consists only of constant functions. It is easily verified (see e.g. [ 3]) that the solutions
of the discrete problems are O(h log h) approximations to the exact solutions.

The matrix D on the left hand side of equation (3. 5) contains the scaling factors
dp = sec a. Here dP is the diagonal element of D on the row corresponding to the point
P« th. The scaling factors cos a and 2 cos a in equation (3.9) and (3. 10) respectively
and the diagonal elements dP of D are chosen so that the off diagonal part of C may
be a formal approximation to the compact integral operator K defined by equations
(2.3)-(2.4) with G* replaced by the Green's function on a rectangle with Dirichlet boundary

conditions. Because of the irregular patterns of points in 8Q the near diagonal part,

hl
the remaining part of C, will not in general be a formal approximation to the identity
operator. It will be shown in section 5 that this near diagonal part is uniformly well

conditioned in the spectral norm and that the singular values of C are distributed like that

-




of the sum of a positive definite symmetric operator and a compact symmetric operator. It
is shown in [14] that the convergence of conjugate gradient method for solving operator
equations with such operators depend asymptotically only on the spectral condition number
of the positive definite symmetric parts of the operators. The method of proof in [14] does
not apply in our case. We shall show, however, in section 6 with a different approach
that the corresponding rates of convergence in our. cases depend also asymptotically on

the spectral condition numbers of Bh'




§4. Computational procedures and operation counts

We shall solve the matrix equation

T 1

(4.1) CTCp = OB e
by the conjugate gradient method. This is equivalent to solving the least square problem
for the capacitance matrix equation. See section 6 for further details.

In principle we can set up the matrix C by computing VTB_IUD. This takes at
least m fast Poisson solvers and m2 storage requirement. It is therefore much better
to use the following algorithm. For any vector v we compute Cv as follows. Generate
the mesh function UDv, use the fast solver to obtain B—lUDv and compute VTB- lUDv
at an expense on the order of m operations. The vector CTCv can be obtained in this
fashion at a cost of essentially two fast solvers. It is easily seen from (6.1) and (6. 2) of
section 6 that cach iteration of the conjugate gradient method will thercfore cost about two
fast solvers. The theory presented in sections 5 and 6 does not preclude the possibility
that the number of iterations to achieve a given accuracy grows like log m as we refine
the mesh size. We have, however, consistently found in our experiments that the number
of iterations stays constant as m increases and that we can achieve an accuracy of between
two and three correct decimal digits for only four iterations. The operation counts for many
discrete problems are therefore ten times that of a fast Poisson solver on a rectangle and

the storage requirements are of the order nz where n = 1/h. We have used the generalized

marching algorithm described in [ 2 ] for our fast solver on the rectangle. The operation

n_+1
2( k ))

1
marching step, if n = k2" - 1 for some positive integer (. The marching algorithm is

counts of this fast solver is approximately 3nzlog where k is the size of each

unstable for large k. We have, however, found that k = 16 is good enough for our
2
purpose. The operation counts for many problems therefore do not exceed 120 n~. Itis

possible that if fast Fourier transform methods are used to compute B-lUDv in the




computation of Cv, the algorithm will be even more efficient if we exploit the sparsity
of the vector UDv in the Fourier analysis step. One big advantage of the capacitance
matrix method is that it can be speeded up by the replacement of a subroutine, whenever a
faster Poisson solver becomes available. Finally we mention that our algorithm can be
used for the numerical solution of the Neumann problem for

-Au +Cu=f on R, C>0,

although the theoretical results in this work does not immediately apply.




§ 5. The distribution of sinqular values of C

We shall show that given € >0, then almost all the singular values of C lie in

the interval [dl - €, dZ + €] where d, and dZ are positive numbers independent of h.

1

This is accomplished by first proving that Bh is uniformly well conditioned in the spectral

norm and that almost all the singular values of Kh lie in the interval [0,&]. Our main
result then follows by a simple application of a well known result in matrix theory which
we shall state below as lemma 5. 8.

Definition. The matrix Bh which we refer to as the near diagonal part of the capacitance

“

matrix is defined as follows. Each entry of Bh that corresponds to the irregular mesh
points P and Q is zero if d(P,Q) > Nh; otherwise Bh(P, Q) =C(P,Q). Here d(-,"*)
denotes the Euclidean distance funcfion.

Definition. The matrix Kh which we refer to as the off diagonal part of the capacitance

i.e. K. = C-B,.

matrix is defined to be the difference betwecn M and Bh’ h h

Theorem 5.1. Given € >0

— ’

there exists a positive integer N such that for all 0 <h,

all except N singular values of K_ liein [0,¢].

h
This theorem will be a consequence of lemmas 5.1-5. 6 below. First we need some
basic results from the theory of collectively compact operators. Let K :X - X be a compact

operator on a complex Banach space X.

Definition. A subset S C X is sequentially compact if any sequence in S contains a
convergent subscquence with limit in X,

Definition. A family of operators Kn on X is collectively compact if the set

(an el <1, feX, n=12,...} is sequentially compact in X. The following result
is an immediate consequence of a theorem in [1]. See also Chapter 4 of [ 26].

Lemma 5.1. Let {Kn) be a family of collectively compact operators on a complex Banach

space X with Kn converging pointwise to a compact operator K. Given & >0, let By

-10-
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with algebraic multiplicities m, be the N(e) eigenvalues of K with absolute values
greater than €. Then there exists a positive integer N* and an 2* >0 such that for all nzN*,
each t‘.* neighborhood of By contains exactly mi eigenvalucs of Kn while all the
other eigenvalues of Kn lie in an €-neighborhood of zero.

We now construct a family of operators {Ks} from {Kh) as follows. Let &,
both mappings from the unit interval [0,1] to the real line, be a smooth parametc:: zation
of 8Q. Let P, j=1,...,m be the irregular mesh points. Let Pj* = (¢(tj), ¢(tj)) be

)
*
the points on 82 which lie on the normals through Pj with d( Pj, Pj ) <h. We require that

St St eve < <[,
O_tl 12 tm 1

Let Lm denote the space of m tuples with the sup norm. Let C[0,1] denote the Banach

space of continuous functions on the unit interval with the sup norm. Let

(5.1) k(t,tj) = YK (P, Pj) i (1~ y)Kh(Pi, Pj) ,

where

(5.2) yE=tIAL  -t) t  StSt, d=2,..,mg
(5.3) y = (t- t1 - 1)/(tm - tl -1), t> tm; Pi-l = Pm’ Pi = P1 ;
(5.4) y = (t- tl)/(tm i 1), t < W R, =R, B

Define bounded lincar operators P_ : C[0,1] =L , K :L - C[0,1], and
m T

K_:C[0,1] = C[0,1] by

(5.5) me =V vj = f(tj) :
" m
(5.6) (K v)(t) = I8 k(t,tj)V(tj) ;
(5.7) (K D(t) = (K P (1) = (K V) -

T
We then construct another family of operators {K;n) from {Kh] by the above procedure.

il

- - e B T s e g g AU TN 5 TRPIAGI—— ok oo~




Let Ks = K;nKm. It is easily verified that (Ks} is also the family of operators formed from
T

{KhKh} by the same procedure.

Lemma 5.2. Let [X] denote the Banach space of bounded linear operators on a Banach

space X. For any \#0,

(AT - K:Kh)-ls[Lm] iff (M - Ks)-le[C[O,l]] :

Proof. For X\ =1, the lemma is proved in [1]. Exactly the same argument applies for any X\ 7 0.
E
Therefore, the nonzero eigenvalues of KhKh and Ks coincide.

We shall now briefly describe the relations between various discrete and
continuous Green's functions. Let the discrete analogue of the logarithmic
Green's function be denoted momentarily by G. This discrete Green's function G has
been studied in great detail in [4], [24], Chapter 3 of [27] and section 4 of [28]. Itis
translational invariant so that we may assume that the second parameter is fixed at the
origin and define G as a function of one parameter by
G(a,b) = G(P;O) where P= (a,b), O=(0,0).

*

Let G :(a,b) - R be defined by
* 2 2
G (a,b) = (1/2r) log(a™ +b") .
Let G, G be defined by
X Y

G(a + h,b) - G(a,b) ;

"

Gx(a, b)

G(a,b) = G(a,b + h) - G(a,b) .

* *
Let Gx’ Gy be similarly defined. It is shown in section 4 of [ 28] that for any nonnegative

integers r and s, r >s, the following holds

* * -
(5.8) max{ |Gx(sh,rh) - Gx(sh,rh) [, le(sh, rh) - Gy(sh,rh') < (0.34)r =
(5.9) Gx(sh, rh), Gy(sh, rh), —ny(sh, rh) are always positive .
w2
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(5.10) —ny(sh,rh - h) and ny(sh,rh - h) - ny(sh - h,rh - h) are
always nonnegative for r>s, r#0 or s+0 .
The following property of G permits us to extend (5.8)-(5.10) to negative values of
r and s
(5.11) G(rh, sh) = G(sh,rh) = G(-sh,rh) = G(sh, -rh) .
Finally, G satisfies
l, r=0, s=0;

hZAhG(rh,sh) =
0, otherwise ,
so that by (5.11), the following holds

(5.12) G, (0,0) = G,(0,0) = 1/4 .

Let G' be the Green's function on the rectangle with zero Dirichlet boundary conditions. It
is shown on p. 315-318 in [1l] that G' and G* differ only by a smooth function H and
that B—l and G differ by a mesh function ”h which is an O(h) approximation to H.
Using the same technique of proof used in [11], it is easy to sce that if P, Q are both
bounded away from 9S uniformly in h, then I-Ih(l’, Q) is an O(hz) approximation to
H(P;Q). In what follows, we shall denote B—l and G' by G and G* unless stated
otherwise.
Lemma 5.3. aG*/avP is uniformly continuous with respect to both parameters P and Q
of G“k if both P and Q liec on a closed curve with continuously turning tangent and with
continuous and bounded curvature.
Proof. This result is well known if G* is the logarithmic potential. See e.g. [25]. Since
G' and G* differs only by a smooth function, the lemma clearly follows.
ﬁ *
, B<1/2 andlet P

Lemma 5.4. Let P and Q be two points in th with d(P,Q) = h

*
and Q be their corresponding points on 99Q. Let a, and @q be the angles that the

P

normals through P and Q respectively make with the closest coordinate axis

+ O~ ,

(5.13) K (P,Q) = 2(aG /ov ,)(P";Q") h sec a
P Q

-]3=
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Froof. We shall only treat the case for scheme I.N.b when P has only one neighbor in

(CQ)h. The proof for all other cases is almost identical and will not be given. Let
W ¢ (C'.))h. Then

K (P, Q) = (sec Q-Q/sec (rP)[ 2G(W,Q) - 2(1 - tan ap)G(P, Q) - 2 tan apG(S, Q)] .

By (5.8) and the discussion following (5.12),

*

c'w;Q) - c"(rQ) + o’ ,

"

i

. £ * [}
G(S,Q) - G(P,Q) = G (S;Q) - G (P;Q) + O(h ) .
Here 6 = min{2,3(l - p)}. Since the modulus of the second partial derivatives of log d(P, Q)

is not greater than [d(P, Q)]—Z, it is easily verified that (5.13) holds.

Lemma 5.5. The family of operators {KS} is collectively compact on C| 0,1].

Proof. We first show that {Km} is collectively compact on C[0,1]. We construct a family
*
of operators Km on [C[0,1]] by the same procedure described above with k(t,tj) in

*
(5.1) replaced by k (t, tj) defined as follows

*
B

* * *
(5.9) k (t,tj) = yh sec @p [ oG /av](l’i__1 f

j

* * *
+ (1 - y)h sec op [ 6G /av](Pi;Pj) d
j

where the normal derivative is taken with respect to the first vari#ble and vy is defined by

(5.2)-(5.4). Let ”kt” = maxlk(t,tj)l and "k" = max"kt I . By lemma 5. 3,
j j j

*
Il Kmf” < constant kI el 3

K000 - (67 0() | < constant Nk, -k, 11 .

*
Hence, {Km} is collectively compact on C[0,1] by the Ascoli-Arzela theorem. By

lemma 6. 3,

* m *
Ik -k I <max L |k(t,t.)-k(t,t)|=0(l) as m -+ ,
s t g=1 :

-14-




i
There fore {Km} and similarly {K;n} are collectively compact on C[0,1]. The theorem
easily follows.
Lemma 5.6. st - KTKf foreach fe C[0,1] where K is the compact integral operator
defined by
; *
(5.10) (KN(t) = 2 [ [8G /ov ]fds,
P I
;193
where P = (¢(tp), ul(tp)).
Proof. Let {Qj = Pi(j)’ j=1,...,n} be a subset of th that is chosen as follows. The
l ti(j) are strictly increasing as j ranges from 1 to m and d(Qj’QjH) is between ~h
|
| *
i and 2~h. Let Qj be the corresponding points on §%. It is easily seen that as h - 0,
} 1) (KD(t) = 2 Y [6G /ov] (@O0, Q% )t ) +0()
5 t = 2 2 A ey ) S + 0 #
' ( P 5= R j ( J' U )

| The d(Q;, Qj*“) on the right hand side of (5.11) can be replaced by [i(j +1) - i(j)] h sec eq
f without affecting the 0(l) nature of the remaining term. It then easily follows from lemma ‘3.,‘}
that Kmi - Kf and similarly Kr'nf - KTf for each f ¢ C[O,1].

Proof of Theorem 5.1. By lemmas 5.1, 5.5 and 5.6, we see that Theorem 5.1 holds for the

singular values of Km. The thecorem then follows because of lemma 5. 2.

Theorem 5. 2. 0.251 < B:Bh <7.291 for scheme I.N.a ;
0.25] 5BTB <141 for scheme I.N.b .

h h

Proof. Below we give the proof for scheme 1. N.a. Details of the proof for scheme I.N.b may

" S — -

be found in section 5 of [28 ], where it is shown that the Bh matrix for schemes I. N.a and

I.N.b are essentially the same as that of schemes I.a and I.b considered in [ 28] respec-

tively. We shall first prove that the following holds for scheme I. N.a

T
. .
(5.14) BB, > 1

The following lemma is well known.

-]5-
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Lemma 5.7. Let the symmetric part of a matrix A satisfy

(A+AT)/2_>_61, 6§>0 .

Then
AT > 871 .
Let Bs denote Bh + B:. We shall show that
(5.15) min {6 (PP~ B (P, Q) 21
Pea2, Qecaq, Q7P

so that (5.14) holds because of lemma 5.7 and a well known Gerschgorin theorem.

Let Pe th. Assume that the local orientation of the boundary near P is such that
for any point P' ¢ th in a neighborhood of P, either W' and N', the western and
northern neighbors of P!, are both in (CQ)h or W' alone is in (CQ)h. Let E and S

denote the eastern and southern neighbors of P respectively. Then

(5.16) Bh(P’ Q) = (sec aQ/sec aP)[ GX(W:Q) - (tan ap) Gy(S;Q)
+ Gx(N;Q) - (tan ap) Gy(E;Q)] .

Here the subscripts x and y denote the forward differences in the xl and x2 directions
respectively taken with respect to the first parameter of G. Because of the band structure

of Bh' we may assume without loss of generality that G is the discrete analogue of the

logarithmic Green's function. The error resulting from this assumption is less than a constant
times ~h.

Assume that tan ap is bounded away from 0 and 1. Then for h sufficiently small,

(aﬂh)l , a subset of th
oc
into blocks as follows. Let

which contains a ~¥h neighborhood of P can be partitioned

Iy = {(O,h),...,(O,Mlh)} -
I = {(kh, M, h + h),...,(kh,Mk“h)}, k=10, K,
k™ {(-kh,—M_(k_l)h),...,(-kh,-M_kh +h)}, k= Lo Ky o

«]b=




Then
Kl
(8%2)) = U, by Fed .
loc k=-K
2

Let mk and m_k be the number of points in the nonempty sets Ik-l and I_k respec-
: ! 2 AL . = v e . = < >
tively. Then Mk m] 4 + mk' M-k m_l + m_k, MO 0. Let P)_ denote the

point with y-coordinate jh. By (5.8), (5.16) and the smoothness of 8%, it is easily

verified that L lBS(P, Q)l will remain essentially unchanged if tan aQ is replaced

Q+#P
throughout by tan ap: Let a = tan ap: Let G(i,j) = G(ih, jh). Let P= Pi. Then
5. = & - 4 H
(5.17) BS(P, P} =2 + 2(1 a)C‘xy(O, 0)

B(P,P) = (1-a)lG (L, [j -1l -0 -G (0 [j-il 1], P 1.

Hence, if P), € ]0, then

(5.18) ,é;x B (P, pj) = (1- a)lG(0,0) - G (0, M, - i) - G (0,1) + G (0, M, +1=-1i)]

(5.19) i§j B (P, I’j) = (1 - all G,(0,0) - G (0,i - 1) - G (0,1) + G, (0,i)]

Similarly, if P}, R NS g W ST then

kl 2y li

B (P, Pj) = (1 - a)[ny(k,j - 1) + ny(k -Lj-1=-1],

) (}Jl BL(P,P) = ~(1 - a)[ G, (k, M +1 - 1)
"

_t1-1) -G (k,M

k k+l

+G(k-LM -1}~G (k=~1,M , -1)].

On the other hand, if P ¢ k=12...,K then

- k! » o

BS(P, l’_j) = (1 - a)[ny(k,i +j) + ny(k -Li+j-1],
: 2('1 ; By(P,P_) = ~(1 - a)[G(k,M_ |\ +1) = G (k,M_, +1)
_j -

+Gx(k - I'M-(k-l) +i-1) - Gx(k ~1,M_, +1-1)].

k

=17~

e




B |
It is easily verified from (5.9) and (5.10) that

BJ(P,P) <0, P el k=#l£2,..
(5.20) B,(P, Pj) >0, Pj 3, -
Since we only want to obtain an upper bound for Z IBS(P, P) |, we may assume without

P4P, ]
loss of generality that BS(P,P,)¢ 0 iff ch (th) Then, by summing P, over j > NH
! loc )
- B(P,P) = (1~ a)[ G, (1, M, +1-1) + G (0, M - 1)
K-‘l
+ k};l {6 leeM . #1-1+G (k=-LM ., - i)}
- Gx(l(l,MKl+l -1i) - Gx(K -1, MKl+1 -i)] .
By (5.9)
Kl
k%ﬁ[GW(k +EM =) ¢ G, (k, My ) - 1= i)] < G (2,M, - i) + G (1, M, - i - 1) .
Hence, the following holds when l"j is summed over all j > Ml
521 y - - -
(5.21) ) |BS(P, Pj)l <(1-a)lG (LM +1-1)+G(0,M ~i)
+ Gy(z,M2 - 1) + Gy(l,M2 -i-1)].
Similarly, the following holds when Pj is summed over all j <0
' <(1- 3 - - -2)] .
(5.22) ), Ins(p, pjl (1-a)[Gy(1,1) + G (0,i=1) + G (2,M_ +i-1) + G (1, M +i-2)]
By (5.17)-(5.22),
(5.23) B_(P,P)- ) [B_(P,P)] <2-4(1-a)[G(0,0)-G (0,1)]~(l-a) HG),
s s X X
P+P
J
where
H(i) = Gx(O,i) + Gx(l, i) + Gx(O, M1 +1-1)+ Gx(l, Ml +1-1)
+Gy(l,M__l +1-2) +Gy(2,M_l +i-1)+G (l,Mz -i=1) +Gy(Z,M2 -1i).
-

-18-




It is easily seen from the table on p. 292 of [ 24] that H(i) attains its maximum at
either i =] or i = Ml' It is then easily verified with the aid of the above mentioned
table that

(5.24) 4aG _(0,0) + 4(1 - a)Gx(O,l) >(1-a)H(), i=1...,M

By (5.23) and (5.24), we see that (5.15) holds for our choice of P.
The proof for other choices of P is almost identical and will not be completed. Thus

we complete the proof for (5.6). We now proceed to prove

(5.25) B:Bhf (7.29)1 .
We shall show that the following holds ¢
(5.26) max(}, |B.(r,Q), ) I8](p, @)1} <2.7 .
Q Q
We assume that the local configuration of points in th in a ~Nh neighborhood of P is
similar to that in (th) described earlier in this section. Let B;(P, Q) be defined by

loc - *
equation (5.8) with G replaced by its continuous analogue G . Let B: (P, Q) be

similarly defined. We shall first show that
~ *
(5.27) X I8, (P, Q)| <0.7 .
v lss
Q —

*

Let r,r,r, ', r, and r, denote d(P,Q), d(w,Q), d(S,Q), d(NE, Q), d(N,Q) and

1 2

d(E, Q) respectively. We again assume that tan @p = tan aq =a forall Q such that
B, (P,Q) # 0. Then
* *
2n - Bh(P, Q) = =log(r /r) + a log(rl/r)

-log(r /r') + a log(rz/r') .

Let the coordinates of P,Q be (0,0) and (xQ, yo) respectively. We have
*2 2 o & 2 e & 2 2 2 2 2
r =r —thQ+h,r,—r -thQ-h.rl—r -ZhyQ+h.rz-r -Zhyo-—h

-19-




Hence,

4vB (P, Q) = (-2x h + zath)u/r2 P ) 4 s - IBTOAS - 1 D 4 B

Q Q’
where

IRQI <[(2x,. + h)z + a(ZyQ + h)zlhz/Zr‘1 + [(ZxQ - h)2 + a(ZyQ - h)Z]hz/Zr'4 -

Q
It is easily verified that if P, Q are two points on 92 with d(P, Q) < hY, 0 <y<l,
and ta is the tangent at Q to 3%, then
d(P, ta) < (x + O(1)KZY,
where « is the maximum absolute value of the curvatures of 3Q. Hence, for all practical

purposes we may assume « = 0. Then

xQ=ayQH:h, lelfl.
Hence,
- *
| L V= mmalsrne,
Yol >2
Q
where

P, = Y (2?08 v 168 v - a)liad -l
yol >2

+ (Zxéh2 + Zayé)hz)(l/rll + l/rw) + (1 + .a)(hq/Zr4 + h4/2r,4)
+ Z(xQ 4 ayo)(h3/2r4 - 113/2r'4)) b

Taking into account the local configuration of points in a ~h neighborhood of P for

a certain a = tan ap we easily sec that for all 0 <a <],

L g rargt< 30k -0t ekl 0’y
lyol>2 k=3

Hence,

-20-

-3—-L-=r- e p—— — —_— = —




F(r,r') < Z (8/k% + (3-a)/(k - 1)2 +(1 +a)/(k + 1)2
k=3

v 220/ - 0 4 1k + Y

st 200 - 0t v ek 4 )t

+282 (17 + 1k + 1))

<8.78.

This completes the proof of inequality (5. 27). By (5.17),
(5.28) IBh(P,P)! <1.
It is easily verified that ElBh(P, Q) [, P+Q, |yQ| <2 attains its maximum when a = 0
and P has two neighbors in (CQ)h. A simple calculation with the aid of table I in [4]

or table II in [ 24] shows that when summed over al} Q with 0 < 1yO} <2

(5.29) ElBh(P,Q), <0.96 .

By theorem 4.3 of [ 28] and table I of [4], we see that

(5.30) b IB,(P, Q) - B;(P, Q)| <0.04 .
lyolzs

By (5.27)-(5. 30),

(5.31) b lBh(P, Ql<2.7.
Qcaah

Since the same inequality holds by a similar argument when B. in (5. 31) is replaced by A

h

B:, we easily see that (5.26) and hence (5. 25) holds.

Lemma 5.8. If D=A+B, where A and B are arbitrary matrices with singular values

a >a 2'--_>_an20 and plzngn-zpnzo respectively and 6 > 6 _>_~--26n30

1 1

are the singular values of D, then

2 2

<
6““1 S + pj ny i,j positive integers .

See e.g. ex. 28 on p. 89 of [20],

e

-2]l=
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‘Theorem 5. 3. Let dl and d2 be the spectral bounds of Bh. Then given € > 0, there

exists a positive integer N independent of h such that all except N singular values
of C lie in [dl - c,dZ +e].

Proof. Let C, Kh and Bh be matrices A, B and D respectively in lemma 5.8. By

theorem 5.1, given € >0, thcre exists a positive integer p such that forall h >0,
< i =
pp+j+l—e’ 5 IR0 1

Since

d <6 <a +p

15 % 2 mepey P Py 1002,

only the last p +1 singular values of C may lie to the left of dl - €. Similarly, by

letting Bh, -Kh and C be the matrices A, B and D respecctively in lemma 5.8, we
see that only the first p +1 singular values of C can lie to the right of d2 + €.
Theorem 5.4. Let ”M " and R(M) denote the spectral norm and range of a matrix M
respectively. Let A“ be the same as in (3.2). Let AS = A;rlAll IR(AE) and

Cs= CTC|R(CT) be the restrictions of AJTIA” and CTC to R(A;rl) and R(CT) respec-

tively. Then

Il < 1a s 2o~ 2,

where B and D are the same as in equation (3. 5).

Proof. Let v = UUTV ¢« R(A). It is shown in section 3 that UTv ¢ R(C) so that we may
make the Ansatz u = B-IUDp for the solution of Au = v and solve the alternative form

of capacitance matrix equation Cp = UTv for p. Let Pl be the eigenvector corresponding
to the smallest eigenvalue of the positive definite matrix Cs' Let Cpl = UTvl, where

e UUTvl. Then

2 -
(5.32) P o T TR

- *
Here llvll denotes the Euclidean norm of a vector v. Let u = B lUDpl- Let U and

-22-




to all mesh points and from Qh to
* *T * *
respectively that are defined the same way as U. Let ul = ul = u2 + u3

U' be the extension operators from S)h U anh

nh U anh

* T
where u ), the null space of A ;u_ ¢ R(A“). Because of the reducible structure

¢ N(A W Y3

*

2
*

of A, U "ve N(An) if v ¢ N(A). Hence we may write u, = u_ +u_, where u, ¢ N(A),

1 2 3
*T T *

* *
U u, = u, and U uy = U, Let ¢ # 0 ¢ N(C). It is readily verified that

11

-3

B—IUD‘,—» # 0 ¢ N(A). Since both N(A) and N(C) are of dimension one, we can choose 2

such that B 0Dy, = 4. Ten u, = U B U U'Dlp, - ¢). Clearly, lo, ~w 012 llp, 1.
B 3 L P o ’ T e e

Hence,

-1 die
(5.33) (ol N ETR P Y

* *T

On the other hand, A“u3 =U vy Hence,

2 -1 2
(5.34) B3 l2 < I Wl 17

The theorem then easily follows from (5.32)-(5. 34).

“23e
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§ 6. Rate of convergence of the conjugate gradient iterations

Let b denote the right hand side of the capacitance matrix equation. We are concerned
T T
with solving C Cp = C'b by the conjugate gradient method. It is shown in [21] that the

conjugate gradient method gives the solution

p:C+b+(I—P)p0.

Here C+ is the generalized inverse of C. For any m-vector b, C+b is the unique least
square solution of Cp = b that is of the minimum Euclidean norm. P is the orhtogonal
projection of Lm onto R(CT) and Po is the initial guess. We shall assume throughout
this section that Po ¢ R(CT) so that p = C+b. Let v = CTb. Then p = C;lv. More-
over, from (6.1) and (6.2) below we see that all the relevant vectors generated in the
conjugate gradient process are in R(CT). Hence, the original problem is reduced to solving
Qp = v by the conjugate gradient method where Q = Cs is a positive definite symmetric
matrix.

We now briefly describe the conjugate gradient method. See e.g. [9], [14], [15], .
[16] and [ 23] for details. Let Py = ~0p 2 ¥ = on. The conjugate gradient process

generates a sequence of vectors approximating the solution p by

Pk

x S

T T
(6.2) Prear = “Iq1 * L9490 /P QP 1P,

where gk = ka - v. The pk are Q-conjugate, i.e. p;erj =0, i+#j. The Pk

minimizes the quadratic form (l/Z)wTQw - va on the linear variety Po + Yk where Yk

is the subspace spanned by (po,pl, ooy pk-l}' The iterates P satisfy

(6.3) P = Po t P (Qg

where P, is a polynomial of degree k - 1. It is shown in [ 23] that among all iterative

k-1
methods that satisfy (6. 3), the conjugate gradient method is optimal in the sense that

wdiw




! Y
I?(pk) = (1/2)(0k p) Q(pk p)
is minimal. It then easily follows that if )‘i are the eigenvalues of Q, then

(6.4) E(p,) <max(l +x P, )E(p ),

N,
i

for any choice of a polynomial Pk-l of degree k -1. Let Z:(a,b) - R, where (a, b)

are ordered pairs of positive numbers a and b be defined by
s o la)1P
Z(a,b) = [(1 - Na)/(1 + Na)]”~ .
It is known (see e.g. [9] or [ 23]) that we can select Pk_l()\) such that

(6.5) max |1 +xipk§l(xi)l < 2Z(«,k) ,

N\
i

where «  is the spectral condition number of Q. On the other hand, suppose all except
N eigenvalues of Q lie in the interval [cl,czl . Let Xi’ i=1,...,N be the excep-

tional eigenvalues. let Ky = cl/cz. Then as before we can choose Pk_N(x) such that

max 1ax B o] <2001 N AL+ NN

i k~N
<N <
Cl_ i“CZ

Choose Pk_l(x) such that
= = . ® o s - - N . ..
l+ka_l(x) ] +xpk_N(x)](x xl) ( xN)( 1) /xl X
Then,

N
(6.6) max |1 4\ l’k_l(ki)f < 2%,k = N)  max (1T h Y2Y I} .

i
< i=
)‘i cljk__c2 i=1

By (6.4)-(6.6) and theorem 5. 3, we easily have the following theorem.
i
Theorem 6.1. Let « and ) be the spectral condition numbers of CS and BhBh respec-

tively. Then given € >0, there exists a positive integer N independentof k and h

such that

«28=

T —————— R y - T ———— v e — -




R S T

}:(pk)/t:(po) < min{42(«, 2k), 47,(.<1 - g,2k = 2N)x(N} .

N
Here x(\) = max - x/xil where xi, i=1,...,N arethe N eigenvalucs
c, <X<c, i=l
1 =2
of CS that lie outside [cl - &,C, + ¢]. Here c1 and ¢, are the spectral bounds
it
of BhBh.

Corollary 6.1. The number of iterations needed to reduce E(pk)/E( po) to a given accuracy
can grow no faster than constant logm as h --0.

-4
Proof. By theorem 5.4, the smallest eigenvalue of Cs is larger than constant- m . The

corollary is therefore an immediate consequence of theorems 5. 2. 5.3 and 6.1.

26~
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. §7. Survey of previous work on capacitance matrix methods

We give here only a brief survey of previous work on capacitance matrix methods.
See also section 8 of [ 26] for more references and more details on some of the references
mentioned here. C. W. Hockney gave a brief description of a method of this type in [18].
He credited Oscar Buneman for the idea.

The papers [7] and [13] by Buzbee, Dorr, George, and Golub and George respectively
used the same Ansatz

ly s B"IUDp

u=B"
as is used in our algorithm to treat the Dirichlet problem. It is then shown experimentally
l in [26] and theoretically in [ 27] that the resulting capacitance matrices C are ill-
conditioned and that the singular values of C cluster around zero. The conjugate gradient
method was used in [13] to solve the capacitance matrix equations using an iterative
imbedding technique similar to that mentioned in section 4 of this work. The number of
iterations used to achieve a given accuracy are proportional to the square root of m, the
order of C. The regions considered in [7] are of a rather simple type. The matrices C

are positive definite symmetric and the Cholesky method is used to factorize C. The

2 numerical results are obtained on a CDC6600 and a gain in speed of a factor three is

reported in [ 5] for runs on CDC 7600.

The paper [ 26] by Proskurowski and Widlund is probably the first one that exploits
the similarity between the classical potential theory and the capacitance matrix method.
It is shown experimentally there that by making the correct Ansatz guided by the classical
potential theory the capacitance matrix method becomes a well posed problem. The matrices
C for many test regions are uniformly well conditions in the spectral norm and the
convergence of the conjugate gradient iterations for thcse rejions appears to be independent

of the mesh sizes. It is then shown theoretically in [ 26] that for a large class of domains

«2l=

— e e ——
e - :



- and some special schemes of approximating boundary conditions, the above observation
is always valid. This work is mainly an outgrowth of [26]. It extends some of the

theoretical estimates in [ 26] to all bounded domains with smooth boundaries.

i
|
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§8. Numerical experiments
To illustrate the effectiveness of our algorithm, we have used linear polynomials as test
functions. Truncation errors are not present and the right hand side of equation (8.1) is always
consistent
*
(8.1) Aus=TU Tv.
11
*
Let u and u be respectively the exact and numerical solutions of (8.1). Let
* *
E = |ls (u=-u )" +l6 (u-u )” , where & and 6 denote the undivided forward
max ) 0 X, © xl xz
differences in the xl and X, directions respectively. The domain € is an ellipse with the ratio
of half axes equal to y and the test function u satisfies u(x) : xl. The following is a table of
numerical results obtained by test runs on the Univac 1110 at MACC, University of Wisconsin,
“ Madison.
Table 1
No. of iterations Y m Norm of C.G. Residual Emax (approx.)
C
4 1 36 .5172056-03 -04
4 1 76 . 5409905-03 -04
4 1 108 .7234433-03 -04
1
! 4 0.7 32 .3189510-02 .2-03
i 4 0.7 | 64 .8658407-03 .2-03
[ 4 0.7 92 .1266753-02 .2-03
{
i 4 0.5 60 . 5768389-02 .2-03
4 0.5 84 . 3497684-02 .2-03
7 1 108 .1820406-04 -06
7 0.7 92 .1372015-04 -06
7 0.5 84 .3218270-04 -06

Scheme 1. N.a is used to obtain results listed in Table I. Typically it will take one or two
more iterations to achieve similar accuracies if scheme I.N.b is used. The norm of C.G. residual
given in the fourth column of Table I is the L2 norm of the conjugate gradient residuals divided

by the square root of the number of mesh points inside .

-29-
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*§9. Conclusions

Since it takes two fast Poisson solvers to complete each conjugate gradient iteration,
the total operation counts of the algorithm are approximately ten or eleven times that of
a fast Poisson solver for the Laplace or Poisson equation respectively. It is reported
in [ 2] that the operation counts of a fast Poisson solver can be reduced to O(nz) if
the fast Fourier transform methods are combined with k cyclic reduction methods if k
is proportional to logzn. It is, however, more realistic to say that the operation counts
of our algorithm are proportionally to nzlogzn in the experiments carried out so far.
Our theoretical estimate of a constant times nz(logzn)2 is perhaps too conservative. It
is shown in [ 27] and [ 28] that theoretical estimates of constant - nz(logzn) can be
obtained for a special class of domains in some cases although it is still an open question

whether this is true in genecral.

-30-




Acknowledgements

The author would like to thank Dr. Paul Concus of the Lawrence Berkeley Laboratory
for many interesting and fruitful discussions when he first began work on this project.
He is also greatly indebted to Professor Olof Widlund for suggesting the topic and to

Professors A. Chorin and G. Golub for their encouraging suggestions.

——— T

3]




1.

10.

11.

12.

13.

, o "
R e e . m

REFERENCES

P. M. Anselone, Collectively compact operator, New Jersey, 1971.

R. E. Bank, Marching algorithms for elliptic boundary value problems, Ph.D. Thesis,

1975, Harvard University.
J. H. Bramble and B. E. Hubbard, The Neumann problem for Poisson's equation,

SIAM ]. Numer. Anal, Ser. B, 2 (1965), 1-14.

O. Buneman, Analytic inversion of the five-point Poisson operator, ]J. of Comp. Phys.,

8, (1971), 500-505.

B. L. Buzbee and F. W. Dorr, The direct solution of the biharmonic equation on
rectangular regions and the Poisson equation on irregular regions, SIAM ]J. Numer.
Anal., 11 (1974), 753-763.

B. L. Buzbee, F. W. Dorr, J. A. George and G. H. Golub, The direct solution of the

discrete Poisson equation on irreqular regions, SIAM ]J. Numer. Anal., 8 (1971),

722-736.

B. L. Buzbee, G. H. Golub and C. W. Nielson, On direct methods for solving

R. Courant and D. Hilbert, Methods of mathematical physics, Interscience, 1953.

J. W. Daniel, The conjugate gradient method for linear and nonlinear operator equa-

tions, SIAM ]. Numer, Anal.,

D. Fischer, G. Golub, O. Hald, C. Leiva and O. Widlund, On Fourier-Toeplitz
methods for separable elliptic problems, Math. Comp., 28 (1974), 349-368.

G. E. Forsythe and W. R. Wasow, Finite difference methods for partial differential

uations, Wiley, 1960.

P. R. Garabedian, Partial differential equations, Wiley, 1964.

J. A. George, The use of direct methods for the solution of the discrete Poisson equa-

tion on nonrectangular regions, Comp. Sci. Dept. Report 159, Stanford University, 197!

-32=




-14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

R. M. Hayes, Iterative methods of solving lincar problems on Hilbert space, Nat. Bur.

of Standards, Applied Math. Secries, 39 (1954), 71-103.

M. R. Hestenes, The conjugate gradient method for solving linear systems, Proc.
Symp. Appl. Math., 6 (1956), 83-102.
M. R. Hestenes and E. Stiefel, Method of conjugate gradients for solving linear

systems, ]. Res. Nat. Bur. Standards, 49 (1952), 409-436.

R. W. Hockney, A fast direct solution of Poisson's equation using Fourier analysis,

1. Assoc. Comp. Mach., 12 (1965), 95-113.

R. W. Hockney, Formation and stability of virtual electrodes in a cylinder, ]J. Appl.
Phys., 39 (1968), 4166-4170.

R. W. Hockney, The potential calculation and some applications, Methods_in computa-

tional physics, 9 (1970), Academic Press.

A. S. Householder, The theory of matrices in numerical analysis, Blaisdell, 1964.

W. J. Kammarer and M. Z. Nashed, On the convergence of the conjugate methods for

singular operator equations, SIAM 1. Numer. Anal., 9 (1972), 165-181.

O. D. Kellog, Foundations of potential theory, Dover, 1953.

D. G. Luenberger, Introduction_to linear and nonlincar programming, Addison-Wesley,

1973.
W. H. McCrea and F. J. W. Whipple, Random paths in two or three dimensions, Proc.

Roy. Soc. Edinburg, Sect. A, 60, 281-298.

I. G. Petrovsky, Partial differential equations, Interscience, 1954.

W. Proskurowski and O. Widlund, On the numerical solution of Helmoltz equation by

the capacitance matrix method, Math. Comp., 30 (1976), 433-468.

A. Shieh, Fast Poisson solvers on nonrectangular regions, Ph.D. Thesis, N.Y.U., 1976.

A. Shieh, Fast Poisson solvers on general regions, I. The Dirichlet problem, to appear.

-33~




B S N ——

29. O. Widlund, On the use of fast methods for separable finite difference equations for

the solution of general elliptic problems, Sparse matrices and their applications,

Ed. by D. J. Rose and R. A. Willoughby, Plenum Press, 1972.

-34-

T RS ]

J



SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE ] BEFORE COMPLETING FORM
1. REPORY NUMBER g 2. GOVY ACCESSION NO.| ). RECIPIENT'S CATALOG NUMUER
1730
& TITLL (and Subtitle) S. YYPE OF REPORT 8 PERIOD COVERED

THE CONVERCENCE , : Summary Report - no specific
ON THE CONVERGENCE OF THE CONJUGATE séooeting seriod

GRADIENT METHOD FOR SINGULAR CAPACITANGE [ Fenroman onc. Revony Rowaen
MATRIX LQUATIONS

7. AUTHORK(s) 8. CONTRACT OK GRANT NUMGE R(s)
W-7405-ENG-18
qw AG29-75-C-0024—
A. S. L. Shich DAAGZ9-75-C.
MCS75-17385
> G SANI T 10. PROGRAM ELEMENT. PROJECT, TA
9. PL H'CRNIN'( ORGANIZATION NAME AND ADORESS s AR(E?A a :ORLK :N:JT N’LVH)E.RS SK
Mathematics Research Center, University of
610 Walnut Street Wisconsin 7 (Numerical Analysis)
| Madison, Wisconsin 53706 .
11, CONTROLLING OFFICE NAME AND ADORESS P 12. REPORY DATE
March 1977 7
See Item 18 below. 5 {UWBER OF PAGES
b 34
T MONITORING SGLNCY NAME & ADDRESS(/ different from Controlling Office) | 5. SECURITY CLASS. (of this report)
UNCILASSIFIED
[1Sa. DECL ASS' FICATION OOMNGRADING |
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Kepori)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the statract entered in Block 20, il dilterent from Keport)

10, SUPPLIMENTARY KOTES - e ) (Rl oo i B : pogi ”;_‘_‘,W std Developd
U. 8 Arny Research Office Ndl{().nql bc.u nce Encrgy Resc .‘l.kvh m.:. Develog
P. O. Box 12211 Foundation ment Administration

. . ¥ - - 2 > :‘ -
Research Triangle Park Washington, D.C. Washington, D.C. 20515

20550

19. KEY WORDS (Continue on reverse side (I necensary and Identily by block number)

North Carolina 27709

Capacitance matrix singular values
conjugate gradient methods collectively compact operator
Poisson cquation
Neumann problem
NS\ HACT (Continue on reverse aide [f necessnry and [dentify by dlock number)
It is shown analytically in this work that the conjugate gradient method is
an cfficient means of solving the singular capacitance matrix equations arising
from the Neumann problem of the Poisson equation. The total operation counts

of the algorithm does not exceed constant times n;(log n)?(n = 1/h) for any
bounded domain with sufficiently smooth boundary. “_ /

\ Ssuased

DD o' 1473 toimion oF 1 NOV 6513 OBSOLETE Ul:Ch‘\SSl FIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dara Entered)

B e— — — —




