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ON THE CONVERGENCE OF THE CONJUGATE GRADIENT METHOD

FOR SINGULA R CAPACITANCE MATRIX EQUATIONS
1

A. S. L. Shieh

§ 1. introduction

• Over the past decade , very fast  direct methods have been developed to solve Poisson ’s

equation on certain simple regions with Dirichiet , Neumann or periodic boundary conditions.

See e.g. [z ] ,  [ 7 ] ,  [ 10 ] ,  [ 17 ] ,  1) 9 ] ,  and [ 2 9 ] .  The capacitance matrix methods are

developed recent ly to solve Poisson ’s equation on arbitrary bounded regions with smooth

boundaries by imbedding the discrete problem into a region where these fast direct methods

are applicable.  See section 7 of this work for a brief survey of previous work on capacitance

matrix met hods. In this work it is shown mathematically that by making the correct

Ansatz guided by classical potential theory, the convergence of the conjugate gradient

method for solving the capacitance matrix equations Is essentially independent of the mes h

size. The total operation counts of the algorithm do not exceed constant n2( log n)2 where

h = 1/n Is the mesh size . Only numerical schemes of first  order accuracy for the interior

N euni ar ,n  problem of the Poisson equation on bounded two dimensional regions with smooth

boundaries are considered here . See [ 28 ]  for a similar treatment of the Dlrlchlet problem.

1lssued also as Lawrence Berkeley Laboratory Report #4668. L : ~

Sponsored by the United States Army under Contract No. DAAGZ9-75-C-0024 and the
National Science Poundation under Grant No. MCS7 S- 17385 . Also partially supported by
the Energy Research and Development Administration under Contract No. W-740 5-ENG-48.



2. CertaIn results from classical  potential theory

We give only a very brief review of a few resu lts of classical potential theory. For a

detai led exposition see e.g. [ 8 ] ,  [ 12 ] ,  [ 2 2 )  and [ 2 5 ] .  We define the potential 2’

resulting from a charg e distribution p on a smooth boundary curve ac~ by

~ (x) = (l/~) f p(~ ) log r ds (~ ) .
aQ

Here x = (x 1, x 2 ), ~ = 
~~l’ 

E~ ) and r 2 = ( x 1 
- ~I ) 2 

+ (x 2 
- ~2 ) 2 . The Green ’s function

(1/Zn) log r which we shall denote by G satisfies

i~(l/2ir ) log r = 6(r)

where 6( r )  is the delta function . For the interior Neumann problem, we make the Ansatz

(2.1)  u(x) = (l/2n) ff f(~ )G *d~ +~~r(x)

for the solution of

~~u = f , x t I
(2 .2)

= g, x 8t2 .

Here v denotes the outer normal to the boundary curve aQ. The first  term on the r ight

hand side of (2.1) is a space potential term and will be denoted by u~~. The boundary

condition is sa t i s f ied  by choosing p such that

*(2.3) p - (1/it ) f pBG /Ov ds = g + ( a/av)usl811 all

This equation can be written as

(2 .4)  ( 1- K )p =

where K is a compact operator defined by the Integral above. The equation is a Fredholm

Integral equation of the second kind and thus a well posed problem. It has a simple zero
— *elgenvalue and is solvable If g has a zero mean value. We remark that G In equations

(2.1) and (2.3)  can be replaced by the Green’s function on a rectangle with zero Dirichiet

boundary conditions or any other Green ’s function of the Laplacian.
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§ 3. The cap acitance mat r ix  method for the N e u m a n n  problem

In this section we develop a similar formal potential  theory for the discrete problems

aris ing from the original  Neumann problem ( 2 . 2 ) .  See also sections 3 and 5 of [26] for a

similar discussion.  We shall assume that  uni form mesh sizes in both coordinate directions

are used .

*We replace the Laplace operator by the five—point formula.  The Green ’s function G

used in section 2 will then he replaced by the discrete Green ’s function on a rectangular

region S with Dirichlet boundary condit ions.  We denote this Green ’s function by B ’

w hore B is the matrix representing the discrete Laplacian h2
~~h, employing undivided

differences , on S and zero boundary values on the grid points of aS.

We imbed I? In S as follows. The set of mesh points is decomposed into three

disjoint  sets c�1~ ac? h and (CQ)
h. The set aclh contains all the irregular mesh points

In 11, i . e .  mesh points that  do not have all four neighbors within the open set 11.

is the set of regular mesh points inside 11 and (Cl�h ) contains the remain ing ,  the

exterior mesh points . We further require that lI is bounded away from aS uni formly  in

h. We then set up the matrix equation

(3.1) Au = v

that we are solving as follows. We require tha t  B and A differ  only on the rows that

corresponds to the irregular mesh points . On these rows we combine the discrete

Laplacian with difference approximations to the normal derivative. We must , however , be

sure that the solution on U 011h is independent of the solution or data on (Cl2 )h .

This Is achieved by eliminating from the discrete Laplaclan , centered at an irregular mesh

point , the values of the solution at Its exterior neighbors. We write

A =  B _ U V T .

3
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The matrices U and V have m columns where m is the number of points in

U represents an extension operator that retains the values of mesh function on 811h and

makes the remaining values equal to zero . The rows of vT are simply the differe nces

between the corresponding rows of B and A. After a suitable permutation , the matr ix

A is reducible ,

[A11 
0

(3 .2 )  A = I A AL z l  22

The submatrix A 1 is the matri x for the linear sy stem of equations of the original discrete

problem arisi ng from discretization of the original problem ( 2 . 2 ) .  It is easily seen that

the restriction to U 811h of any solution of Au = v must be a solution to the original

di screte problem. vT will be chosen so that the row sum s of A
1 I 

and vT va nish and

A has a simple zero eigenvalue . The matrix A
22 

is nonsingular  since it represents

a fi nite difference appr oximation to a Dirich let problem on Ccl . It is then easi ly  verified

th at the matri x A also have a simple zero cigenvalue.

We now describe our method for solving the system equations (3.1) .  It is solvable

if and only If the right-hand side v is orthogonal to the left eigenvector of A which

corresponds to the zero elgenvalue . It Is shown in section 5 of [ 2 6 ]  that the right hand

side v Is always consistent rega rdless of its values on (C11h ) if th e data Is already

consistent on 11h U

Guided by the classical potential theory, we make the Ans atz

(3. 3) u B ~~v + B ~~ UD p .

Here p is a m-vector to be determined. D is a nons ingular diagonal matri x containing

certain scaling factors to be specified later. Computing the residual vector we obtain

(3.4)  Au - V = (B - uVT)(B~~v + B 1UD p) - v

= (UD - uvTB
_ )

uD)p - UVTB
)

V

—4—
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Because of the factor U the res iduals are zero for all x ( lIhU(Ccl)h. They must also

vanish on al2~~. We therefore mult iply  equation (3 .4 )  by U T and obtai n

(3.5) (D— V
T
B I

UD)P = V
T
B
_ l

v

Here we have used the relation uTu = ‘m’ the m X m identity matrix. We shall refer

to equation (3 .5)  as the capacitance matrix equation and the matri x on the left  hand side

of (3. s) as the capacitance matr ix.  It Is shown in section 5 of L 2 ( J  that the capacitance

matri x which we shal l  denote by C has a simple zero cigenvalue and that  the right hand

side VTB I v of (3. s) is consistent if V is consistent for the original  problem Au = v.

For the special case when v = uu T~, we can simply make the Ansatz u = B 1 UD p. The

capacitance matrix equation now becomes

(3 .6 )  cp u Tv

T T T T T - j  T T - iLet 4) s a t i s fy  4, C = 0. Then 4) = 4 V B U. Therefore • V B v = 0 implies

.
TUTv = 0 . Hence the right hand side uT~ of equation ( 3 . 6 )  is again consistent  if v is

consistent for Au = v.

We now describe our choices of difference equations at the irregular  mesh points.

Let P 8
~

1h~ 
Let V be Its closest point on 811. Let W, E , N , S and NE

be its western , eastern , northern , souther n and northeastern neighbors on the mesh.

Assume that  the local orientation of the boundary is such that W is always in (CQ)
h

while N is either in 811h or (ClI )h depending on whether P has one or two neighbors

in (CQ)
h . Let a < ir/4 be tne angle that the normal through P makes with the closest

coordinate axis. We approximate the Neumann boundary condition s by the following first

order scheme.

(3.7) u(W) - (1 — tan o)u(P) — (tan a)u(S) = g(P *)h cos a
*(3.8) u(N) - (1 — tan n.)u(NE) — (tan a)u(E) g(P )h cos a

— 5-.
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In our first scheme, we combine the equations (3.7) and (3.8) with the discrete

Laplaclan to form the following equation regardless of whether N is in (Cf2)
h 

or not

( 3 . 9 )  cos cw[(3 + tan a)u(P) — (I + tan a)u (S) — ( 1 —  tan a)u(NE) — (1 + tan a)u(E) ]

2 *
= cos a[h f(P) + 2g(P )h cos a]

We shall refer to this scheme as scheme I . N . a .

The second scheme is as follows . If P has two neighbors in (C11)h, we

obtain the equation (3.9) as in scheme I.N.a. If only W is in (CQ)h, we only use

equation (3.7) to combine with the discrete Laplacian. We then multiply both sides of

the combined equation by 2 cos a instead of cos a to obtain the following equation

(3 .10) 2 cos a [( 3  + tan a)u(P) — u(N) — u(E) - (1 + tan a)u(S)]

*
= 2 cos a[f(P) + g(P )h cos a]

We shall refer to this scheme as scheme I . N . b .  Both schemes I . N .a  and l . .N .b  give rise

to matrices A11 that are positive semidefinite with null space of dimension one that

consists only of constant functions. It is easily verified (see e .g .  [3 ] )  that the solutions

of the discrete problems are O(h log h) approximations to the exact solutions.

The m at r ix  D on the left  hand side of equation (3. 5) contains the scaling factors

d~ SeC a. Here d~ Is the diagonal element of D on the row corresponding to the point

The scaling factors cos a and 2 cos a in equation (3 .9 )  and (3.  10) respectively

and the diagonal elements d~ of D are chosen so that the off diagonal par t of C may

be a formal approximation to the compact Integral operator K defined by equations
*(z . 3)-(2.4) with  G replace d by the Green ’s function on a rectangle with Dirichlet boundar y

conditions . Because of the irregular patterns of points ~~ 8
~~h~ 

the near diagonal part ,

the remaining part of C, will not In general be a formal approximation to the Identity

operator. It will be shown In section ‘ that this near diagonal part is uniformly well

conditioned In the spectral norm and that the singular values of C are distributed like that

—6—
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of the sum of a positive definite symmetric operator and a compact symmetric operator. It

is shown in [14] that the convergence of conjugate gradient method for solving operator

equations with such operators depend asymptot ical ly  only on the spectral condition number

of the positive defini te  symmetr ic  parts of the operators. The method of proof in [14] does

not apply in our case. We shall show , however , in section 6 with a different  approach

that the corresponding rates of convergence in our cases depend also asymptotically on

the spectral condition numbers of Bh .



• ~ 4. Computat ion i_pfgcedures an&~ peration counts

We shal l  solve the matrix equation

(4. 1)  CTCP CTV
TB

_ I
V

by the conj ugate gradient method.  This Is equivalent to solving the least square problem

for the capacitance matrix equation. See section 6 for further  detai ls .

In principle we can set up the matrix C by computing vT
11 1 UD This takes at

least m fast Poisson solvers and m
2 storage requirement . It is therefore much better

to use the following algori thm . For any vector v we compute Cv as follows. Generate

the m esh function UDv, use the fast solver to obtain B ’UDv and compute V
T
B

I UDv

at an expense on the order of m operations. The vector cTc~ can be obtained in this

fashion at a cost of essenti~ ll y two fast solvers, it is easily seen from (6.1) and (6.2) of

section 6 that each iteration of the conjugate gradient method will therefore cost about two

fast  solvers. The theory presented in sections 5 and 6 does not preclude the possibil i ty

that the nu m ber of i terations to achieve a given accuracy grows like log m as we refine -

the mesh size . We have , however , consis tent ly  found in our experiments that  the number

of iterations stays constant as m increases and that  we can achieve an accuracy of between

two and three correct decimal digits for only four i terations. The operation counts for many

discrete problems are therefore ten times that  of a fast Poisson solver on a rectangle and

the storage requirements are of the order n 2 where n 1/h . We have used the generalized

marching algorithm described In L 2 J for our fas t  solver on the rectangle . The operation

2 n + lcounts of this fast  solver is approximately 3n log 2
(— ~~~-) ,  where k is the size of each

ma rch ing step, if n = k2
1 

- I for some positive integer I. The marching algorithm is

unstable for large k. We have , however , found that  k = 16 is good enough for our

purpose. The operation counts for many problems therefore do not exceed 120 n 2 . It is

possible that if fast Fourier transform methods are used to compute B
1 UDv In the

‘
I
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computation of Cv , the algorithm will be even more ef f ic ien t  if we exploit the spar sity

of the vector UDv in the Fourier analys is  step. One big advantage of the capacitance

matrix method is that it can be speeded up by the replacement of a subroutine , whenever a

faster Poisson solver becomes available.  Finally we mention that our algorithm can be

used for the numeric al solution of the Neumann problem for

-~~u 4- Cu = f on 11, C > 0

although the theoretical results in this work does not immediate ly  apply.

—9-

_ _ _ _ _ _ _ _ _ _  
V

4
J - -.-.-. — --—-—-—-. 

— —



§ 5. The d i s t r i b u t i o n  of sj ijg ~j ar  va lues  of C

We shal l  show tha t  given c > 0 , then almost all the singular  values of C lie in

the interval  E d 1 
- c , d 2 + c]  where d1 and d 2 are positive numbers  independent  of h.

This is accomplished by f i i s t  proving that  8h Is un i fo rmly  well condit ioned in the spectral

norm and that  a lmos t  all the s ingular  values of Kh lie In the in terval  [0 , c ) .  Our main

resul t  then follow s by a simple application of a well known result  in matr ix theory which

we shall state b c l ow  as lemma 5. 8.

Pc~fthflJ~~~. The ma t r ix  8h which we refer to as the near diagonal part of the capaci tance

m a t r i x  is def ined  as fol lows.  Each entry of 
~h that corresponds to the irregular mesh

points  P and Q is zero if d(P , Q) > ‘Jh ; otherwise Bh(P , Q) EC(P, Q). Here d (, )

denotes the Euc l i d ean  dis tance funct ion.

Def in i t ion .  The matr ix  Kh which we refer to as the off  diagonal  part of the capaci tance

m a t r i x  is  def ined  to be the d i f fe rence  betwc.-or i M and Bh , i . e .  K1 
C — Bh .

Thcorpm c . l ,  Given e > 0, there exists a positive integer N such that  for all 0 < h ,

al l  except N sin ~j u l a r  values of Kh lie in [o , c J .

This theorem wi l l  be a consequence of l emmas  5 .1 -5 .6  below. First we need some

basic m e r ~u lt s  from th  theory of collectively compact operators . Let K : X — X he a compact

oper atoL on a comp lex Banach space X.

D e f i n i t i o n . A subset  S C X is sequent ial ly  compact if any sequence in S contains a

convergent subsequence wi th  l i m i t  in X.

Def in i t ion .  A f a m i l y  of operators K on X is collectively compact if the set

( K !  : f i f  Ij < I , f C X , n = 1, 2 , . . .)  is sequent ia l ly  compact in X. The following result

Is an immedia te  consequence of a theorem in [ 1 ] .  See also Chapter 4 of [2 6 ] .

Lemma 5. 1. Let be a famil y  of collectively compact operators on a complex Banach

space X with K converging polntwise to a compact operator K. Given c > 0, let

— 10—
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with algebraic mu lt i p l ici t ic s  m ., be the N(c)  e igenvalues  of K with absolute  values

greater than c. Then there exists a positive integer N and an c >0  such that  for a l l  n � N

each e neighborhood of 
~~

. contains exact ly m 1 e igenva lu es  of Kn whi l e  all the

other eigenvalues of K lie in an c-neighborhood of zero.

We now construct  a f a m i l y  of oper ators {K8) fro m (K h
) as fol lows.  Let ~,4 i

both mapp ings  from the uni t  in te rva l  [0 , 1] to the real l ine , be a smooth parametc~ zat ion

of ~Q. Let P~ j = 1, .. . , m be the i r regular  me sh points .  Let P . (~ (t .) , ~(t .)) be

the points on ~~i which lie on the norm a ls  through P~ wi th  d (P ., P . )  < h .  We require that

0 < t  < t  < ‘ . ~~~< t  < 1 .  
*

— l  2 m

Let L denote the space of m tuples  with  the sup  norm . Let C E O , 1]  denote the Ban ach

space of cont inuous  func t ions  on the u n i t  i n t erva l  wi th  the ~up norm . Let

( s . l )  k(t , t .) y Kh ( P . P .) i (1 — 

~
)K

h (P i ,  P .)

where

( 5 . 2 )  = (t - t )/( t . 1  - tj ,  t . ,  < t < t .,  1 2 , .. . , m

(5. 3) = (t  — t1 
— l)/( t t 1 

— 1), t � t ;  
~
‘i—l  ~‘ ‘~m ’ ~

‘i

(5 .4 )  = (t — t 1)/( t — t1 
— 1), t < t 1

; 1 i— l  ~m ’ P1 P1

Define bounded l inear  operators P : C[ 0 1] L , K L -. C[ 0, 1) ,  and
m m nì m

K
m 

C[0,1] -
~~ C[0,1] by

(5. s) 
~~~ 

= v, v~ = f ( t
1

)

(5 .6)  (~~ 
v)(t)  ~ k( t , t .)v( t . ) ;

j = l

(5 .7)  (K f)( t )  = (~~~r f) ( t )  (R m~~~
t )

We then construct another fami l y  of operators (K ’ ) from {K~ ) by the above procedure .

-11-
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Let K K’ K . It is eas ily  ver i f ied that  (K ) is also the f a m i l y  of operators formed from
5 m m  5

{K h Kh ) by the same procedure .

Lemma~~ .2 .  Let [ X]  denote the Banach space of bounded l inear operators on a Banach

space X. For any )~ � 0 ,

(XI  — K
~

Khi
1c [ L J i f f  (XI  — K ) 1c [C[ O , l J ]

Proof.  For X = 1, the lemma is proved in [ 1 ] .  Exact ly  the same argument  applies for any X ~ 0.

Therefore , the nonzero eigenvalues of ~~~~ and K5 coincide.

We sha l l  now b r i e f l y  descri be the relat ions between various discrete and

cont inuous  Green ’s func t ions .  Let the discrete analogue of the logar i thmic

Green ’s func t ion  be denoted momentar i ly  by G. This discrete Green ’s function G has

been studied in groat de ta i l  in [ 4 ] ,  [ 2 4 ] ,  Chapter  3 of [27 ] and section 4 of [ 2 8] .  It is

t rans la t iona l  i n v a r i a n t  r ;o tha t  we may assume that  the second parameter is fixed at the

or ig in  and de f ine  G us a f u n c t i o n  of one parameter  by

G(a , h) = G(P;O) whore P~~- (a , b) ,  0 (0 , 0)

*
Let G (a,b) R be defined by

* 2 2
G (a , b) = (1/ 2 ff) log(a + b

Let G , G be defined byx y

G ( a , b) = G(a + h , b) — G(a , b)

G ( a , b) = G(~~, b + h) - G(a , b)

Let G , G be s i m i l a r l y def ined , It is shown in section 4 of 1 28 ] that for any nonnegat ive

In tegers  r and s , r > s , the fol lowing holds

(5.8) niax (IG (sh,rh) — G (sh,rh) I , IG~ (sh ,rh) — G
;
(sh~ rhI ) ~~(0.34)r

3

(5.9)  G (sh,rh) , G (sh,rh), _Gxy(sh,
rh) are alw ays positive

—12—
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(5.10) —G (sh rh — h) and C (sh ,rh - h) - G (sh - h rh - h) areyy yy yy

always nonnegative for r ~ s , r ~
‘ 0 or s ~

‘ 0

The followin g property of G permits us to extend ( S .  8)-(s .  10) to negat ive  values  of

r and s

( 5.11) G( rh , sh) = G(sh , rh)  = G(—sh , rh) = G(sh, —rh)

F inall y , C satisfies

2 ( 1, r = 0 , s 0
h 

~ h
(
~~~ , 5h) =

L 0 , otherwise

so tha t  by (5 .11) ,  the fol lowing holds

(5.12) G(O ,O) G
y
(O~0) = 1/4

Let G’ be the Green’s function on the rectangle with zero Dirichlet bound ary  condit ions.  It

*
is shown on p. 31~ - 3l8 in 11 11 that G’ and G differ only by a smooth funct ion H and

that B
1 

and G differ by a mesh function which is an 0(h) approximation to 11.

Using ti-ic same technique of proof used in [ I I ] ,  i t  is easy to see that  if  P , Q are both

bounded away from as uni f o r m ly  in h , then 1-i~ (1’, Q) is an 0(h 2 ) approximat ion to

H(P;Q) . In wha t  follows , we sha l l  denote B and C’ by G and G unless stated

otherwise.

Len im: 5. 3. aG /at ’~ is u n i f o r m l y  cont inuous  w i th  respect to both parameters  P and Q

of G if both P and Q lie on a closed curve with con t inuous ly  tu rn ing  tangent  and w i t h

continuous and bounded curvature .

*

~~~~~ This resul t  is well known if C Is the logarIthmic potential. See e . g .  [z c ] .  Since
*G’ and C dif fers  only by a smooth funct ion , the lemma clearly follows .

Lemma 5.4. Let P and Q be two points in 0
~~h with d(P , Q) = h~ , p ~ 1/2 and let P

and Q be their  corresponding po ints  on OQ . Let and eQ be the angles that  the

normals through P and Q respectively make with the closest coordinate axis

* * * Z~ 2A(5.13) K
h

(P , Q) = 4 8G /av ~J (~ 
;Q ) h sec a -f O(ii ~‘)P

— 13—
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I

Frool. We shall  onl y t reat  the case for scheme l . N . b  when P has only one neighbor in

(CcI )
h . The proof for all  other cases is almost identical and wi l l  not be given.  Let

W (C
~~

)
h . Then

Kh (P , Q) (see a Q/sec cr p)[ 2G(W , Q) - 2( 1 - tan a~ )G(P , Q) - 2 tan a~ C(S , Q)]

By ( 5 . 8 )  and the d i scuss ion  fol lowing (~ . 12),

* * 6G(W ,Q) - G(P,Q) = C (W;Q) - C (P; Q) + 0(h

* * 6
G(S , Q) - G(P , Q) = G (5;Q) - C (P;Q) + 0(ti

Here 6 = n i in{2 , 3(1 - p)}. Since the modulus of the second partial derivatives of log d(P , Q)

is not greater than [d ( P , Q) 1
2

, it  is eas i ly  veri f ied that (5.13) holds.

Lemrna c .5 .  The f a m i l y  of operators { K )  is collectively compact on C[ 0 , 1].

Proof. We f i rs t  show that  ( K )  Is collectively compact on C [0 , l J .  We construct a f a m i l y

of operators K on [C[ 0, 1]] by the same procedure described above with k( t , t .) in

(s.l) replaced by k (t , t.) defined a~ follows

(5.9) k (t,t .) yh sec 
~i’~ 

aG /ai’1(P. 1 ;P .)

+ (I - y)h sec 
~~ 

aG / a vj ( P ;P . )

where the normal der iv a t ive  is taken w i t h  respect to the f i r s t  van ole and 
~ is defined by

(s .  2)-( 5 .  4 ) . Let II k~ If = max !k( t , t .) I and Ilk II = max I k
~ H . By lemma 5. 3,

J 
I 

J J

II K f l  ~ constant Il k II I f II ,
l ( K f)(t)  - (K

*
f)(tI) I < constant II k t 

- k
~, II II! II

He nce , {K * ) is collectively compact on C[0 , l ) by the Ascoli-Arzela theorem . By

lemma 6. 3,

m
II~ — K H < max ~ I k ( t , t ,) — k ( t , t~) I = 0( 1) as m -

~~ •m 
~



Therefore (K) and similarly (K’ ) are collectively compact on C[0,lJ . The theorem

easily follows .

i~ j iima 5.6. K
s
! -~~ K

T
Kf for each f C[o,1] where K is the compact integral operator

def ined by

(5.10) ( K f ) ( t ~ ) = 2 f [8G */bp p j f d s
ad

where

~~~~~ Let (Q
1 

P
1~~~ 

j = 1, . . ., n )  be a subset of aQ h that is chosen as follows. The

are strictly increasing as j ranges from 1 to in and d(Q., is between ~‘[h

*
and 2 ’Jh. Let Q. be the corresponding points on ad .  It is easily seen that  as h -

~~ 0 ,

* * * *(5.11) (Kf)(t~) = 2 
~~

, I aG lay ](P; Q~ )d(Q
3 ~~ +l

)f ( t i (j ) ) + 0(1)

The d(Q~~ 
~~~~~+1~ 

on the r ight  hand side of (5.11) can be replaced by [ i ( j  + I) - i ( j ) ]  h sec a
Q

without  a f f e c t i n g  the 0(1) nature of the remain ing  term.  It then easily follow s from l e m m a  5. -1

that K f  Kf and similarly K’ ! -. KTf for each f CEO , I).

Proo f of Theorem 5. 1. By lenimas 5.1, 5. 5 and 5. 6, we see that Theorem 5.1 holds for the

s ingu la r  values of K .  The theorem then foll ows because of lemma 5 . 2 .

Theorem 5 . 2 .  0.25I<B
~
B
h
<7.29I for scheme I.N.a

0.251 <B
~
B
h 

< 1 41 for scheme I. N .b

Proof. Below we give the proof for scheme I . N. a. Details of the proof for scheme I. N. b may

be found in section 5 of [2 8 ] ,  where it Is shown that  the mat r ix  for schemes I. N. a and

I.N.b are essentially the same as that  of schemes l .a  and I . b  considered in [28 ) rospec-

t ively. We shal l first prove that the following holds for scheme 1.N.a

(5.14) B
~
B
h

>I

The following lemma is well known .

— 15—
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Lenima_~~i. Let the symmetric part of a matrix A satisfy

(A ., AT)/Z~~~6I , 6 > 0 .

Then

AT
A � 6

21

Let B denote B + 8T, We shall show tha t
s h h

• (5 .15)  mtn  {B (P , P) — I B (P , Q ) I )  ~~l
Q aclh, Q

~
P

so that (5.14) holds because of lemma 5.7 and a well known Cerschgorin theorem.

Let P aQh. Assume that the local orientation of the boundary near P is such that

for any point P1 in a neighborhood of P, either W’ and N’, the western and

northern neighbors of P’ , are both in (CU)
h 

or W’ alone is in (Cc� )
h
. Let E and S

denote the eastern and southern neighbors of P respectively. Then

(5 .1 6)  Bh(P , Q) = (sec eQ
/sec ap)IG~

(W ;Q) - (tan ep) G~ (S ;Q)

+ G (N;Q) - (tan ap) G~(E; QYI . -

• Here the subscripts x and y denote the forward differences in the x
1 

and x
2 

direction s

respectively taken with respect to the first parameter of C. Because of the band structure

of Bh, we may assume without loss of generality that C is the discrete analogue of the

logar ithm ic Green ’s function. The error resulting from this assumption is less than a constant

times “hi.

As sume that tan ap is bounded awa y fro m 0 and 1. Then fo r h su ff ic ien tly small ,

(af
~h

) , a subset of aQ
h 

which contains a ~Jh neighborhood of P can be partitioned
b c

Into blocks as follows. Let

‘0 
= ((o , h), . . . ,(0 , M

1
h ) )

¼ = ((kh , M kh + h) , . . . ,(kh , M k+i
h ) ) ,  k = 1, . . ., K1,

= ((-kh , _ M
_ (k l) h)

~ 
. . 

~~1 (-kh , _ M
kh + h ) ) ,  k = 1,. . ., K2

—1 6—
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Then

K1
(ad1) = U ‘k 

P 10b c  k = - K 2

Let m k and in k be the number of points in the nonempty sets and respec-

t ive ly .  Then M k 
= m l + . .. + mk

; M k = m 1 
-I- . • .  + 1

~~k 0. Let P . denote the

point with  y-coordinate j h .  By ( s . 8 ) ,  (5 .16 )  and the smoothness of ad , it is easily

verified that  ~ lB (P , Q)I  will  remain essentially unchanged if tan a~-~ is replaced
Q�P S

throughout by tan o~~. Let a tan Let G(i , j )  ~ G(ih ,j h ) . Let P c  Then

(5.17) B(P ,P) = 2 + 2(1 — a)G yy (0~ O)

B ( P , P
1

) = (1 - a)[ G ( l , Ii - i i  - 1) - C ( O , Ii - ii - 1)], P .

Hence , if P . J
~~

, then

(5. 18) 
~ 

B ( P , P .) = ( 1 —  a ) [ G ( 0 , 0) — G ( O , M 1 — i) — G(0,l) + G
~
(O,M1 

+ 1 — i)J

(5.1 9) ~ B ( P , 1’.) = ( 1 —  a ) [ G ( O , O) — G(O ,i — 1) — G(O ,l) + G
~

(O , i ) J
I>)

Similarly, if P~ ‘k ’ k 1,2, . . . ,  K1, then

B (P,P.) (1— a)[C
~~

(k ,J — I) + G ( k  — 1, j  — i — i ) ]

P 1
k 

B ( P , P
1
) = — ( 1 — a ) [ G ( k , M k + 1 — I )  — G

~
(k , M k+l + 1 — i)

+ G ( k  - 1, - i) - G
~

(k - 1, M k+l 
-

On the other hand , if P_~ 1 k’ k 1, 2 , . . ., K2, then

B ( P , i’ s ) = (1 - a ) [ G (k , i + i) + G~~ (k - 1, 1 + J - 1)1

~ ~~ 
B5(P , I’

s
) = -(1 - a)[ G

~
(k , M ( k_ l )  + i) - G

~
(k , M k + i)

— j -k

+ G
~

(k — 1, M _ (k )) + i — 1) — G
~

(k — 1, M _k + I — 1)] •

—1 7—
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It is easily verified from (5.9) and (5.10) that

B ( P , P~) <O~ P~ c ¼’ k = ±1 , ±2 ,

( 5 . 2 0 )  B5
(P ~ P

J
) �0 ~ P

i ~~
Since we only want to obtain an upp er bound for ~ IB (P, P~) I , we may assume without

P� P~
loss of generality that B ( P , P .) � 0 if! P~ ( (ad h ) . Then , by summing  P . over j >

b c

— ~ B ( P ., P.) = (1 — a) [G (l , M1 + 1 — i) + GX
(O , M

1 
i)

+ :~ 
{G

~~
(k , M

k+ l + 1 -- i) + G~~~(k - 1, M k+l 
- i))

— GX(K i, M K + l  — I) — G ( K  — 1, M K + l  
—

By ( 5 . 9 )

K1 
.

+ l ;M k+l 
— i) i~ G~~ (k~ M k+l — 1 — i ) j  < G ( 2 , M 2 

— i) 1~ G ( l , M 2 — i — I)

Hence , the following holds when P. Is summed over all J > M 1

(5 .  21) ~ I B (P , P
1

) I < (1 — a)[ G
~

(1 , M 1 + 1 — i) 4 G
~

(O , M1 I)

+ G ( 2 , M 2 
— I) + G ( l , M 2 — I — 1))

Similar ly,  the following holds when P~ is summed over all j ~ 0

(5 .  22) ~~ IB (P , P~ I < ( 1 —  a)[ G
~

(l , i) + C
~

(0 , I — I) + G~ (2~ M _ 1 + I — 1 )  + Gy(l~ M 1 
+ i — 2) )

By ( 5 . 1 7 ) — ( 5 . 2 2 ) ,

( 5 . 2 3 )  B ( P , P) — ~~ IB (P , PJ ) I  < 2 — 4 ( 1 — a ) [ G ( O , O) — G ( 0 , l ) )  — ( 1  — a) 11(i)
P�P j

where

H( l) = G
~

(0 , I) + G ( 1 , i) + G
~

(0 , M 1 + 1 — i) + G
~

(l , M 1 + 1 — i)

+ G ( l , M 1 + i — 2) + G ( 2 , M 1 + i — 1) + G (1 , M 2 — I — 1) + G~ (2 , M 2 
— I)

— 18-



It is easily seen fro m the table on p. 292 of [ 2 4 )  that  11(i) a t ta ins  its m ax imum at

either I = I or I = M1. It is then easi ly  verified wi th  the aid of the above mentioned

table that

(5. 24) 4aC (O , 0) + 4(1 — a)C (O , 1) > (1 — a)H( i ) ,  i = 1, .. ., M
1

By (5 .23 )  and (5. 24) ,  we see that (5.15)  holds for our choice of P.

The proof for other choices of P is almost identical and will not be completed. Thus

we complete the proof for (5. 6). We now proceed to prove

(5 .25)  B
~

B
h

< ( 7 . 29)l

We shall show that  the following holds

(5.26) maxQ~ I B h (P , Q) l , ~ I B ~ (P , Q ) l ) < 2 . 7
Q Q

We assume that the local configuration of points in in a ‘-Iii neighborhood of P is

s imilar  to that  in (aQ h ) described e ir l i er  in th i s  section. Let Bh(P , Q) be defined by
b c  

* T*equation (5.8)  with  G replaced by its continuous analogue C . Let B
h (P , Q) be

similarly defined. We shall first show that

( 5 . 2 7 )  ~ IB ~(P , Q ) I~~ O .7
IY Q �3

Lot r , r *
, r1, r ’, r~ and r 2 denote d(P , Q), d(w , Q), d(S , Q), d (NE , Q), d(N , Q) and

d(E, Q) re spect ively.  We again assume that tan tan a for all Q such that

Bh (P , Q) ~ 0. The n

2ir 
~~~~ 

= _bog(r *
/r) + a bog(r 1/r)

—b og (r~/r ’) + a log(r 2/r ’) .

Let the coordinate s of P, Q be (0 , 0) and (X Q~ yQ) respectively. We have

*2 2 2 2  ‘2 2 2  2 2 2  ‘2 2r — r  = 2hx Q + h ; r ~~-r  = Zhx Q
_ h ; r

1
. r  2hy

0
+ h ; r 2 - r  = Zhy Q — h

—1 9—



Hence ,

* 2 ‘2 2 2 ‘24lr B
h(P, Q) (_ 2x

Q
h + 2aY Qh)( l/r  -4 l/r ) + (a - l)h (!/r — 1/r ) + R

Q

where

IRQ I < [(2x
Q 

+ h) 2 
+ a(2 Y Q + h) 2

J h
2
/2r

4 
+ [(2xQ 

— h) 2 + a ( 2YQ 
— h) 2

Jh
2
,/2r 4

It Is easil y verified that  if P , Q are two p oints  cii all with d (P , Q) < h i’, 0 < y < 1,

and ta is the tangent at Q to ad , then

d(P • ta) < (. + O( l ))h 2’
~
’

where K is the maximum absolute value of the curvatures  of all . Hence , for all practical

purposes we ma y assume K = 0 Then

xQ - a y Q + c h , I c L ~ l

Hence ,

~ 14u . Bh (P , Q) l  < l’(r,r ’)
IYQ I > 2

where

F(r , r ’) ~ {2h 2(i/r 2 
+ l/r 2 ) + ( 1 - a) I l/r 2 

- 1/r
2 I

IY Q I > 2

+ (2x ~~h 2 
+ 2 ay~~h

2
)(1/r 4 

+ l/r
4 ) + (1 + a)(h

4
/2r

4 
+ h

4
/2r

4
)

+ 2(x
Q 

-I aY Q)(h /2r — h
3
/2r

4)) .

Taking into account the local conf igura t ion  of points in a “Ih neighborhood of P for

a certain a tan a~,, we eas i ly see that  for all  0 .~~ a ~ 1,

~ (x~ + ay~ )/r
’4 

< ~~~ fk
2/(k - ]) 4 

+ k
2/(k + J) 4) •

IY Q I>2 k = 3

Hence,

—20—

_______________ 
.4

________ _______ .----— - 
-

-- .- — -- ~- -----—-~~~~~~ -‘- —- - — - — -~~~- • -  --- -r~-—--- •~••~———-- .- -~~ --



(8/k 2 + ( 3 —  a)/(k — 1) 2 
+ (I + a)/( k + 1)2

k= 3

+ 2k 2(1/(k - i)~ + l/( k + 1)~ )

+ 1/k 4 + l/2(k — i)~ + 1/2(k +

+ 2’./Z (b/k 3 
+ 1/( k + l)~~)

< 8 . 7 8 .

This complete s the proof of Inequality ( 5 .27) .  By (5. 17),

(5.2 8) I Bh (P , P ) f < l

It Is easily verified that 2
~IB h(P ,Q) I , P ~ Q, IY Q I $ 2  attains its maximum when a = 0

and P has two neighbors In (Cc2)
h. A simple calculation with the aid of table I in [4J

or table II in [24] shows that when summed over all Q with 0 < I Y Q I < 2 ,

(5.29) ZIB
h

(P ,Q)I ~$O .96

By theorem 4.3 of [ 2 8)  and table I of [ 4] ,  we see that

(5.30) L IB h
(P ,Q) — Bh (P ,Q) I < 0 .04

IY Q I �3

By ( 5 . 2 7 ) — ( s .  30),

(5.31) 
~ 

IB h (P , Q ) t < 2 . 7

Since the same inequality holds by a similar argument when Bh in (5. 31) is replaced by

B~ , we easily see that (5. 26) and hence (5. 25) holds.

i~eni ma 5.8. If D = A + B, where A and B are arbitrary matrices with singular values

a1 ~ 
a2 ~~~ 

> ~ � 0 and 
~l ~~ ~~~~ ~ > 0 respectIvely and ói � 6~ ~~ 

... 
~ 6~ ~ 0

are the singu lar  values of D, then

< 0
1+1 + 

~~~
, I , j positive integers

Pr29.f. See e.g. ex. 28 on p. 89 of [20).
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Theorem 5. 3. Let d 1 and d 2 be the spectral bounds of Bh . Then given c > 0, there

exists a positive integer N independent of h such that  all except N singular values

of C lie in [d 1 
— c, d 2 + c ) .

Proo f. Let C , K
h 

and B
h 

be mat rices A, B and ID respect ively in lemma 5.8. By

theorem 5.1 , gIven c > 0 , there exists a positive Integer p such that  for al l  h > 0 ,

J = 0 , 1, 2 

Si nce

d < 6  < a +~ 3 j O l 2 . . .I — m — m — p — j  p+j +l’ ‘

only the last p + 1 singular values of C may lie to the left of d1 
- c. Similarly,  by

letting Bh, 
_K

h 
and C be the matrices A, B and D respectively in lemma 5. 8, we

see that only the f i r s t  p + 1 singular values of C can lie to the right of d
2 

+ E .

Theorem 5. 4. Let IM II and R(M) denote the spectral norm ari d range of a matr ix M

respectively.  Let A11 be the soni c as in (3 . 2 ) .  Let A = A~~A11 I R(A ~~) and

c cTcI R ( c T) be the restrictions of A~~A11 and cTc to R(A~~) and R(C T) respec-

tively. Then

11c ’ II ~ II A;’ II t B 11 2
11 D

l 11 2

where B and D are the same as in equation (3. s).

~~~~~ Let v = U~~
T
v t R(A) . It is shown in section 3 that  ~

Tv R(C) so that we ma y

make the Ansotz u = B 1UD p for the solution of Au v and solve the alternative form

of capacitance matrix equation Cp uT~ for p. Let p
1 

be the elgenvector corresponding

to the smallest elgenvalue of the positive def ini te  matr ix C .  Let Cp1 = tiTv1, where

= uuT~1. Then

(s. 32) ~ 11 2 
= tic;’ II IIUTV1 11 2

— l *
Here liv II denotes the Euclideari norm of a vector v. Let u

1 
B UD p1

. Let U and

—22—
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U’ be the extension operators from 
~ h 

U ac
~h to all mesh points and from 1

~h to

* *T * *U all
h 

respectively that are defined the same way as U. Let u
1 

= U u1 
= u 2 + u 3

* * T
where u 2 N(A

11
), the null  space of A,,; u 3 R(/111). Because of the reducible s t ructure

of A, u T~ £ N(A 11
) l f  v c N(A). Hence we may write u

1 
= u 2 + u 3, where u 2 N(A ) ,

U u 2 = u
2 and U u 3 

= U
3
. Let ~ � 0 N(C ) .  It is readily verified that

B 1UD~ � 0 c N(A) . Since both N(A) and N(C)  are of d imension one , we con choose

such that B ’UDq’
1 

= u 2 . Then u 3 
= U TB U ’D(p 1 

— q,
~). Clearly, li p 1 — II ~ il~1 !l .

Hence ,

(5. 33) lID ’ Ji j IB ii 11u J1 ? I JP ~ Il
*

On the other hand , A
11u3 

= U v
1. Hence ,

* 2 —l 2
(5. 34) li u 3 iI 5 h A 5 II II v~ II

The theorem then easily follows from (5. 32)—(5. 34).

—2 3—
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§ 6. Rate of con~~ j~~ence oL the con ugate gradient  i ter at ions

Let b denote the rig ht hand side of the capacitance mat r ix  equation . We are concerned

wi th solving cTc~ CT
b by the conjugate  gradient  method. It is shown in [21] that  the

conjugate gradient method g ives the solution

p C+b + (I - P)p 0

Here C~ is the generalized inverse of C. For any m-vector b , C+b is the unique least

square solution of Cp = b that  is of the m i n i m u m  Euclidean norm.  P is the orhtogonal

projection of Lm onto R(C T) and p0 is the ini t ial  guess .  We shall  a ssume th~oucjh out

this section that p0 R(C
T
) so that p = C +b. Let v = cTb. Then p C 1v. More-

over , from (6.1)  and ( 6 . 2 )  below we see that all the relevant vectors generated in the

conjugate grad ien t  process are in R(C T). Hence , the original  problem is reduced to solving

Qp = v by the conjugate  gradient  method where Q C is a positive def in i te  symmet r ic

matrix.

We now br ie f ly  describe the conjugate gradient  method.  See e .g .  [9 ] ,  [11] ,  [ i s ) ,

[16) and [. 23]  [or details. Let p0 = —g
~ 

= v — Qp 0 . The conjugate gradient  process

generates a sequence of vectors 
~k approximat ing  the solution p by

T T
(6.1) 

~k+1 = — ~~~~~~~~~~~~~~~

( 6 . 2 )  1
~k+ 1 = + ~~~~~~~~~~~~~~~~~~~

Twhere = Qx
k 

- v. The 
~k are Q-con)ugate , i . e. p~ Qp, = 0, 1 � j. The

minimizes  the quadr at ic  form (l/Z)w TQw - ~~~ on the l inear variety p0 + where

Is the subs pace spanned by {p0, p,, . . ., 
~k-l~~ 

The iterates 
~k sa t isfy

(6.3) 
~k 

= ~o +

where is a polynomial of degree k - 1. It Is shown in [ 2 3 )  that among all iterative

methods that sa t is fy  (6. 3), the conjugate gradient method Is optimal in the sense that

—24 —



E(p
k) (l/2)(

~ k 
- 

~~~~~ k 
-

Is m i n i m a l .  It then eas i ly  follows tha t  if  \ .  are the eigenvalue s of Q, then

(6.4) L(p~ ) ~ + 
~.
Pk l (x .))

2
E(p )

for any choice of a polynomial  of degree k - 1 .  Let Z (a ,h) R , where (a, b)

are ordered pairs of positive number s  a and b be defined by

Z(a , b) = [ ( i  - ~1a)/( 1 +

It is known (see e .g .  [9 )  or [ 2 3 ] )  th a t  we can select 
~k— l~~~ 

such that

(6. s) max1! +X i Pk l~~~
) I  $ 2Z(~< , k)

where K is the spectral condition nu i i iber  of Q. On the other h and , suppose a l l  except

N el genvalues of Q lie in the interval  1c 1, c2 J . Let X ., i = 1, . .  . , N be the excep-

tional cigen val ues . Let 1<
1 

= c1/c2 . Then as before we can choose 
k — N ~~~ 

such th a t

max I i  + X iPk N~ 
. ) l  < z [ ( l  - ‘~!K ,)/( l +

c,.$X . .$c 2 
1

Choose Pk , (X)  such that

1 + X 
~k-l~~~ ~ ~ 

~k -N~ 
))~ - x 1) - 

~ ~~~~~~~~~ 1 N

Then ,

(6.6)  max Ii + X j Pk ~~ 
•~~ ~ 2Z(~ 1, k - N) max ( TI Ii - X /X . I}

C < X < c  i = l

By (6. 4)-(6. 6) and theorem 5. 3, we eas i l y have the follow ing theorem.

Theorem ( . 1 .  Let K and ,<
~ 

be the spectral condition numbers  of C and B
~

B
h respec-

tively. Then given c > 0 , there exists a positive integer N independent of k and h

such tha t

- ~~~~~~~~
-.- — -—

~~~~~~
.. 
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E(p k )/E( p O ) $ m i n { . I Z ( c . c , Zk) , 4Z( i< l 
— c, 2k — 2N) ~ (X) )

N
Here ~( X )  = max IT Ii - x/x i  where X ., i = 1, .. . , N are the N elgenvalucs

c, < X < c 2 1=1

of C that  lie outs ide I c 1 
— c ,c2 

+ e }. Here c1 and c2 are the spectral bounds

of B
~

Bh .

Corollary _6.1.  The number  of i terat ions needed to reduce E(p
k )/E( po) to a g iven  accuracy

can grow no fas te r  than constant  log m as h -. 0.

Proof. By theorem 5. 4 , the smal les t  c igenva lue  of C is larger than conet ant ~ m 4. The

corollary is therefore an immedia te  consequence of theorems 5. 2 , 5. 3 and 6.1.

-26—
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- § 7.  Su~~~y o f _previou~jjvork o n e  cit an cc m a t r i x  methods

We give here onl y a brief survey of previous work on capacitance matr ix methods .

See also section 8 of [ 26 ]  for more references and more details on some of the references

mentioned here . C. W. Hockney gave a brief description of a method of th is  type in [18] .

He credited Oscar Bun emar i  for the idea.

The papers [ 7 )  and [13]  by Buzhee , Dorr , George , and Golub and George respecti vely

used the same Ansatz

u B 1v 4 B ’UD p

as is used in our a lgor i thm to treat the Dirichiet problem. It is then shown exper imenta l ly

in [26 ]  and theore t ica l ly  in 1 27 ] th at  the resul t ing capacitance matrices C are ill—

conditioned and th at  th e s ingu la r  values of C cluster around zero. The conjugate  gradient

method war - used in [13 1 to solve the capacitance matrix equations us ing  an i te ra t ive

Imbedd ing t echn ic :ue  ~; im i l~~r to that  mentioned in section -1 of this work.  The number of

i tera t ions  used to achieve ~i given accuracy  are proportion al to the square root of m , the

order of C. The reg ions considered in 17 )  are of a ra ther  s imple type. The matr ices  C

are p(~~i t i v ( -  d t - f i n i t e  syu r tv t r i c  and the Cholesky m ethod is used to factorize C. The

n u m e r i c a l  re~ u l ~:; ~i m &  oL-t aine d on a ( :DC6600 and a gain in speed of a [actor three is

re l~~rt ~ in ~ j b r  r uns  on CDC 7600.

The Pa 1~ -r 2 ( J  by l o - s k u r o w s k i  and Wid lund  is probably the f i r s t  one that  exploi ts

the ~ m r - i l a r i t y  hc- tw ~-en the classical  potential theory and the capacitance mat r ix  method.

It Is shown ex; r i m e n t c m l l y  t h e m e  tha t  by m a k i n g  the correct Ansatz guided by the classical

potential theory  the capaci tance mat r ix  method becomes a well posed problem. The matrices

C for many test regions arc un I fo rmly  well condi t ions  In the spectral norm and the

convergence of the conjugate gradient Iter at ions fer  ~l~c~ C rc-~ ons appears to be independent

of the mesh sizes.  It is then shown theoretically in ( 2 6 )  that  for a large class of domains

—27-
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and some special schemes of approximating b oundary  condit ions , the above observation

is always valid.  This work is m a in ly  an outgrowth of [ 2 6 ] .  It extends some of the

theoretical estimates in [2 6 )  to all bounded domains with smooth b oundaries .

{
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§ 8. Nu m er i  ca1 ex~~ ELment s

To i l lustrate  the effect iveness  of our a lg or i thm , we have used l inear  polynomials as test

funct ions .  Truncation errors are not present and the r ight  hand side of equation (8 .1)  is a lways

cons isten t

(8.1) 

* 

A11u = U *TV

Let u and u be re spectively the  exact and numerical  solut ions of (8 .1 ) .  Let

• E a H o (u — u
t

) I l  + lb (u  — u ) J j  , where 6 and 6 denote the undivided forwardmax x ~ x x x

differences in the x1 and x 2 directions respect ively .  The domain Q is an ellipse with  the ratio

of half  axes equal to ‘~ and the test func t ion  u sati s f ies  u(x) x 1. The follow inq is a table of

numerical  results  obtained by test runs on the Univ a c  1110 at MACC , Univers i ty  of Wisconsin ,

Madison .

Table I

No. of i terat ions y m Norm of C. G. Residual  E (appro~~~

4 1 36 .51720 s6 -03  -04

4 1 7 6 . 540990 5—0 3 — 0 -i

4 1 108 .72  3 -1- 133—03 —0 1

4 0.7 32 . 3 ) 8 9 5 1 0 — 0 2  . 2 — 0 3

4 0 . 7  64 .865 8407-03 . 2 — 0 3

4 0 .7 92 . 1 2 6 6 7 5 3— 0 2 . 2— 0 3

4 0 . 5  60 .57 68389-02 . 2 — 03
4 0 . 5  8-i .3497684—02 .2—03

7 1 108 .1820406 — 04  —06

7 0.7 92 .137201 5- 04 —06

7 0 . 5  84 .32 18270—04 —06

Scheme I.N.a is used to obtain results listed in Table 1. Typically it will  take one or two

more iterations to achieve similar accuracies if scheme I . N . b  is used . The norm of C.G.  residual

given in the  fourth column of Table I is the L2 norm of the conjugate gradient re siduals  divided

by the square root of the number of mesh poInts Inside 11.
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§ 9. Conclusions

Since it takes two fa s t  Poisson solvers to com plete each conjugate  gradient  iteration ,

the total opera tion counts of the a lgor i thm are approximate ly  ten or eleven t imes  that of

a fast  Poisson solve r for the Laplace or Poisson equat ion respec t ively .  It Is reported

in [2 ]  tha t  the operat ion counts of a f a s t  Poisson solver can be reduced to 0(n 2 ) if

the fas t  Fourier t rans form method s  are combined w i t h  k cyclic reduction methods if k

is prop ortional to log 2 n. It is , however , more realistic to say that  the operation counts

of our algori thm are proport ion al ly to n 2 log 2n in the exper iments  carried out so far .

Our theoretical estimate of a constant times n 2(log 2n) 2 
is perhaps too conservative . It

is shown in [2 7 ]  and [ 28] that  theoret ical  es t imates  of constant  n 2(log 2n) can he

obtained for a special  class of domains  in some cases a l though i t  is still  an open ques t ion

whether thi s is true in gener al .
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