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Abstract. This paper considers the comparative eval-

uation of algorithms for mathematical programming problems.

It is concerned with the measurement of computational speed

and examines critically the concept of equivalent number of

function evaluations Ne~ Does this quantity constitute a

fair way of comparing different algorithms?

The answer to the above question depends strongly on

whether or not analytical expressions for the components of

the gradient and the elements of the Hessian matrix are

available. It also depends on the relative importance of

the computational effort associated with algorithmic opera-

tions vis-a—vis the computational effort associated with

function evaluations.

Both theoretical considerations and extensive numerical

examples carried out in conjunction with the Fletcher-Reeves

algorithm, the Davidon—Fletcher—Powell algorithm , and the

quasilinearization algorithm suggest the following : the

Ne concept, while accurate in some cases, has drawbacks in

other cases; indeed, it might lead to a distorted view of

the relative importance of an algorithm with respect to

another.

The above distortion can be corrected through the in-

troduction of a more general parameter Ne This generalized

parameter is constructed so as to ref lect accurately the com-

putational effort associated with function evaluations and

algorithmic operations.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~
— -  

- ----~~_~~~~ - - .



3 NPS—3

From the analyses performed and the results obtained , it

is inferred that, due to the weaknesses of the N concept,e
the use of the Ne concept is advisable. In effect, this is

the same as stating that, in spite of its obvious shortcomings ,

the direct measurement of the CPU time is still the more

reliable way to compare different minimization algorithms.

Key Words. Numerical analysis, numerical methods, computing

methods, computing techniques, complexity of computation,

philosophy of computation , comparison of algorithms, computa-

tional speed, measurement of computational speed , number of

function evaluations, equivalent number of function evalua-

tions, unconstrained minimization , mathematical programming .

II
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1. Introduction

Over the past two decades, a lar ge number of mathematica l

programming problems have been studied both analytically and

numerically. Generally speaking, these problems belong to

four principal categories: (i) unconstrained minimization

problems , (ii) constrained minimization problems involving

equality constraints, (iii) constrained minimization problems

involving inequality constraints, and (iv) constrained mini-

mization problems involving both equality and inequality con—

strain ts.

For each category of problems , three types of methods

have been developed, more specifically: (a) zeroth—order

methods, (b) first-order methods, and (C) second-order

methods. Methods of type (a) utilize only the functions

under consideration and avoid the computation of derivatives.

Methods of type (b) utilize the functions under consideration

and their first derivatives. And methods of type (c) utilize

the functions under consideration together with their first

and second derivatives.

For each category of problems and each method, several

classes of algorithms have been developed. As an example,

wi th reference to the category of uncons trained minimiza tion

problems and first-order methods, the followin g classes of

- —.
~—--~tT - -_,_ — mo (_.. 

- ____________-
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5 NPS—3

algorithms are available today: ordinary-gradient algorithm,

conjugate—gradient algorithm , variable—metric algorithm,

memory-gradient algorithm, and supermemory-gradient algorithm.

It is clear that a bewildering combination of problems,

methods, and algorithms exists and that the proliferation of

these algorithms is bound to cause some confusion in the

user , that is, the engineer, the chemist, or the economist

who must solve problems of the real world. Faced with a

given technical problem , the user would like to know an

answer to the following question: what kind of algorithm

should be selected to solve the problem under consideration?

Unfortunately, no clear-cut answer can be given to the

above question. Nevertheless, the identification of poten-

tially successful algorithms can be facilitated if the de-

veloper of an algorithm supplies sufficient information

about the following items: (A) algorithm robustness or

convergence range; (B) convergence rate ; (C) computational

speed; (D) memory requirements; and (E) programming corn-

plexity. Only for simply-structured problems (for instance,

linear—quadratic problems), the above information can be

predicted theoretically. For more general problems, the

help of computer experimentation is nearly indispensable.

_ _ _ _ _  
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6 NPS-3

In this study , we are concerned with Item (C), the

measurement of computational speed. In particular, we

examine critically the concept of equivalent number of

function evaluations Ne and inquire whether this quantity

constitutes a fair way of comparing different minimization

algorithms. Then, we introduce a more general parameter

Ne ~ which is constructed so as to reflect accurately the

computational effort associated with function evaluations

and algorithmic operations. Next, we examine the N~ con-

cept vis—a-vis the Ne concept through several numerical

examples. These examples include some widely used test

functions (Rosenbrock, Wood , Powell, and Miele functions

plus generalized Rosenbrock function) and some widely used

minimization algorithms (Fletcher-Reeves algorithm , Davidon—

Fletcher—Powell algorithm, and quasilinearization algorithm).

Unconstrained Minimization. For the sake of simplicity ,

we consider in the following sections only one category of

problems, namely, unconstrained minimization problems. More

specifically , we consider the function

f=f(x) , (1)

where f is a scalar and x is an n-vector whose components

are unconstrained . We denote by g(x) the gradient and by

_ _ _   

. - i



7 NPS-3

H(x) the Hessian. We observe that the gradient vector has

n components and that the Hessian matrix has n2 elements.

Of these n2 elements, only

m = n(n+l)/2 (2)

need to be calculated , owing to the symmetry of the Hessian

matrix.

_ _ _ _ _  
_ _ _  

I 
_ _ _ _
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2. Measurement of Computational Speed

The methods employed for measuring the computational

speed of different minimization algorithms can be grouped

into two classes: (i) direct measurement and (ii) indirect

measurement.

Direct Measurement. The most direct way for evaluating

the computational speed of an algorithm is to measure the

so called CPU time (the symbol CPU stands for central pro-

cessing unit). The main advantage of this quantity is that

it includes both function evaluation time and algorithmic

time. The main disadvantage is that the CPU time is machine

dependent as well as operator (programmer) dependent. The

above difficulties can be removed to some degree if the com-

parison of different algorithms is done on a single computer ,

with the same programming language , with the same compiler ,

with the same subroutines, under similar workload conditions

of the computer, and by the same programmer. In other words,

it is essential that the same experimental conditions be kept

for all of the algorithms being investigated . For an ex-

ample of comparative experiments done under these conditions,

see Refs. 1—2.

Normalized Time. In an attempt to make the direct measure-

ment of the CPU time independent of the particular computer ,

L~i • ~~~~~ 
. 

________________ 
- _____
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Colville introduced in Ref .  3 the concept of normalized time:
‘I,

T = T / T  . (3)

Here, T is the CPU time required to solve a particular test

problem with the algorithm under consideration , and T5 is

the CPU time required to execute a so-called standard pro-

gram, devised by Colville. This standard program consists

of inverting a 40x40 matrix ten times. Ideally, this para-

meter should be machine independent. In practice , it still

depends on the subroutines and the compiler used (Ref. 4).

Indirect Measurement. There exist three major ways for

evaluating the computational speed of an algorithm indirectly:

(a) number of iterations; (b) number of function , gradient ,

and Hessian evaluations; and (c) equivalent number of function

evaluations. All of these quantities are machine independent ,

operator independent, and simple to compute . However , their

use implies the drawbacks discussed below .

Number of Iterations. Generally speaking , the time per

iteration varies from one algorithm to another. Therefore ,

one cannot employ the number of iterations N as an indicator

of computational speed , unless one can be reasonably sure

that all of the algorithms being compared require approxi-

mately the same workload per iteration . For an example where

this situation arises , see Ref. 5. 

— -p :— . - ,• -
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Number of Function, Gradient,  and Hessian Evaluations.  If

one can be reasonably sure that the algorithmic time is

negligible by comparison with the function evaluation time,

one can use the triplet composed of number of function evalua-

tions (N0), number of gradient evaluations (N 1), and number

of Hessian evaluations (N2) as a collective indicator of computa-

tional speed. The trouble is that the resulting indication is

unclear , unless one is willing to attribute relative weights

to function , gradient, and Hessian evaluations.

Equivalent Number of Function Evaluations. Let the rela-

tive weights (l,n,m) be attributed to the elements of the

triplet (N 0, N1, N2). With this understanding , one can form

the following linear combination:

N~~~~N0 +nN 1+mN 2 , (4 )

which is called the equivalent number of function evaluations.

This parameter can be used as an indicator of computational speed

providing the algorithmic time is negligible by comparison

with the function evaluation time and providing the weights

(l,n,m) measure correctly the relative importance of function

evaluation , gradient evaluation , and Hessian evaluation.

However , this depends on whether analytical expressions for

the components of the gradient and the elements of the Hessian

matrix are available or not.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ L ~~~~~~~~~~~~~~~~ - -~~~~~~~~~ -~~~~~.
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3. Standard Definition of Equivalent Number of Function

Evaluations

Assume that some particular algorithm is employed in order

to obtain the minimum of the function (1) on a digital computer.

The total CPU time T can be written as

T = T  + T  . (5)a e

Here, Ta is the algorithmic time, namely, the CPU time required

to perform the arithmetic operations intrinsic to the al-

gorithm being employed. And T
e is the function evaluation

time, namely, the CPU time required to evaluate the function ,

the gradient, and the Hessian . Therefore , Te can be written as

Te = T0 + T1 + T 2 • (6)

Here, T0 denotes the CPU time associated with function

evaluations , T1 denotes the CPU time associated with gradient

evaluations , and T2 denotes the CPU time associated with

Hessian evaluations.

Let T 0,  T 1, T
2 
denote the basic time s required to compute one

function, one gradient , and one Hessian , respectively. Observe

that the following relations hold:

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~ 
~~~~~~~~~~~~~~~~~ -
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T0 = T
0
N0 , T1 = t 1N 1 , T 2 = T2N2 . (7)

As a consequence , Eq. (5) can be rewritten as

T Ta + T 0N 0 + + t 2 N 2 . (8)

Next, let the following assumptions be employed :

(Al) From the point of view of the CPU time , one gradient

evaluation is equivalent to n function evaluations.

(A2) From the point of view of the CPU time , one Hessian

evaluation is equivalent to m function evaluations .

(A3) The algorithmic time is negligible by comparison

with the function evaluation time.

In equation form , the above assumption can be rewritten

as follows:

(Al) = n r ~ , (9-1)

(A2) = mt 0 , (9—2)

(A3) Ta << Te 
(9—3)

As a consequence,Eq. (8) can be rewritten as

______ ___~
_

~~::: 
— •—

.• 
—.-— -_• -- — — -L
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T = r 0N (10)

where

N = N  + n N  + m N  . (11)e 0 1 2

This is the standard definition of equivalent number of

function evaluations for second—order methods, which reduces to

N = N 0 + nN1 (12)

for first—order methods (N2 = 0) , and to

N = N 0 (13)

for zeroth-order methods (N1 = N
2 = 0)

- - 
- - 

— — -  - G~ ~~~~ — . ~~~~~~~~~~~~~~~ — . -- ~~
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14 NPS—3

4. Cases Where the Assumptions Are Satisfied

In this section , we present some cases where the

equivalent number of function evaluatiors (11) can be regarded

to be a correct indicator of computational speed.

Example 4.1. Suppose that the function (1) is such that

analytical expressions for the components of the gradient and

the elements of the Hessian matrix are not available. Con-

sequently, some numerical approximation scheme to the gradient

and the Hessian is necessary . For example , suppose that a

forward difference scheme is employed. Denote by € some

small number, and denote by u~ a unit vector in the x1- direction .

Then, the following relations hold:

f(x + cu
1
) — f(x) = E4g(x) = Eg~~(x) , (14)

where i = 1,2,... ,n, and

f(x+cu.+cu~ )—f(x+cu~ )—f(x+cu.)+f(x) = c2uTH (x)u. = c2H. . (x) , (15)

wher e i = l,2,...,n and j = i ,n

If f(x) is known, Eq. (14) shows that the computation of

_ _ _ _  - - I
~~~ 0 — - —~~~~ — •~~~~~~~~~~ ••~-~~~~~~~



15 NPS—3

the gradient g(x) requires n additional function evaluations .

In turn, if f(x) and g(x) are known , Eq. (15) shows that the

computation of the Hessian H(x) requires m additional function

evaluations. Clearly , Eqs. (14) and (15) illustrate the

validity of Assumptions (Al) and (A2). Then, providing one

can ascertain that Assumption (A3) is true, one concludes that

the parameter (11) is a correct indicator of computational

speed.

Example 4.2. Suppose that the fun~~ion f depends on x,

not directly , but indirectly through some variable y,

which is a function of x defined by means of some definite

integral. For simplicity , assume that x and y are both

n—vectors. Then , the situation is as follows:

f = f(y) , (16)

where

y = J ~(x,t)dt . (17)
0

Denote by

F(x) = f(y(x)) (18)

2 ~~~~~~~~~~~~~~~~~~~ -. ~~~~~~~~~~~~~~~~~ 
— -

~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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the function obtained by combining (16)-(l7) and eliminating

y. Observe that

TF = y f  , F = y  f + y f y (19)x x y  xx x x y  x y y x

where the square matrix and the cubic array are given

by

r l
= J 0 c~ (x , t ) d t  

‘ 

~~~~~ J ~~~ (x,t)dt • (2 0 )

Next , assume tha t some par t icular  al gorithm is employed

in order to f ind  the minimum of the funct ion F ( x ) , u t i l i z ing

the gradient (19—1) and perhaps the Hessian ( 1 9- 2 ) .  Since

the computation of F, F
~
, 
~~~ 

requires previous numerical

integrations, defined through (17) and (20), this example

illustrates a situation where the validity of Assumption

(A3 ) is plausible . Then , providing one can ascertain that

Assumptions (Al) and (A2) are true, one concludes that the

parameter (11 ) is a correct indicator of computational

speed.

L. ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ .-  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

•
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5. Cases Where the Assumptions Are Not Satisfied

In this section, we present some cases where the equivalent

number of function evaluations (11) cannot be regarded to be

a correct indicator of computational speed.

Example 5.1. Suppose that the function (1) is such that

analytical expressions for the components of the gradient and

the elements of the Hessian matrix are available. In par-

ticular, assume that the function (1) has the quadratic form

f(x) = a + bTx + 
T 

, (21)

with the implication that

g(x) = b + c x , H(,x)=c (22)

In (2l)-(22),a,b,c are constants having appropriate dimen-

sions.

Next, consider the operational count associated with

function, gradient, and Hessian evaluations. Observe that

the computation of the function requires (n+l)2 multiplications

and n (n+1) sums and that the computation of the gradient

requires n2 multiplications and n2 sums. If we neglect the

addition times by comparison with the multiplication times,

we arrive at the following conclusions for the ratios of the

basic times r0, t1,t~

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
- .-
• 

.

~~~~~~ 
-

~~~~
- 

• 
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18 NPS—3

= n2/(n+l)2 , T a / T o = 0 (23)

Hence , for n relatively large , we have

1 , T
2
/T

0 
= 0 . (24)

Therefore , it appears that, from the point of view of the

CPU time, one gradient evaluation is equivalent to one (not n)

function evaluation , and one Hessian evaluation is equivalent

to zero (not m) func t ion  evaluations.  As a conclusion , it

appears that Assumptions (Al) and (A2) are not justified for

the quadratic function (21).

Remark. The result (24-1) represents a worst-case condition ,

because function evaluation and gradient evaluation have been

regarded to be separate operations. Had one accounted for

the commonality of the product cx to both f(x) and g(x), then

Eqs. (24) would have been modified as follows:

= 0, 12/T O = 0 , (25 )

therthy invalidatirg I~ssumptions (Al) and (A2) to an even

larger degree.

Example 5 . 2 .  Suppose that the function ~l) is such that
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the Hessian matrix has a banded structure. For example,

consider the fol3o~iing generalized Rosenbrock function

(see Oren , Ref. 6):

n—i 2 n—i 2 2f(x) = Z (x.—1) + 100 E (x. — x.~~1) , (26 )
i=l 1 i=1 1 1

and observe that the associated Hessian matrix is tn-

diagonal. Therefore, only those elements H
13 

which are

located on the principal diagonal and on a contiguous sub—

diagonal need to be computed , since all of the remaining

elements vanish. The number of nonzero elements of the

Hessian matrix that need to be computed is

fft = 2n—l , (27 )

instead of m. Table 1 shows the values of m , ñt, and ni/n for

n ranging between 5 and 30. Note that the ratio ni/rn decreases

as n increases and becomes of order 1/10 for n=30. Therefore,

even if finite-difference methods were to be employed in the

computation of the Hessian matrix , it appears that Assumption

(A2) is not justified for the generalized Rosenbrock function

( 2 6 ) .

- .___ _ .~~~_i ~~~~~~~~~~~~~~~~ 
-_ —- ‘— ~~~~~~~~~~~~~~~~~~~~~~~ — - - - -— j.— . . .
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Table 1. Generalized Rosenbrock function .

n i~i m rn/rn

5 9 15 0.600

10 19 55 0.345

15 29 120 0 .242

20 39 2lo 0.186

25 49 325 0.151

30 59 465 0.127

I
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6. New Definition of Equivalent Number of Function Evaluations

From the examples of the previous sections, it appears

that there are cases where Eq. (11) cannot be regarded as

representative of the computational speed of an algorithm,

in that it might overestimate the importance of the gradient

contribution and the Hessian contribution to the equivalent

number of funct ion evaluations. In addition , Eq. (11) dis-

regards the contribution due to algorithmic operations.

In an attempt to correct the above situation, we supply

here a new definition of equivalent number of function

evaluations. Specifically, we introduce a more general

parameter Ne which is constructed so as to reflect ac-

curately the computational effort associated with function

evaluations and algorithmic operations.

While we retain Eqs. (5)-(9), we replace the assumptions

expressed by Eqs. (9) with the following definitions:

(B i) T i = C1r 0 , (28—1)

(B2) 12 = C210 , (28—2)

(B3) Ta = C3Te • ( 28—3)

Here , C1, C2, C3 are coefficients to be determined experimentally

- -- -.~~~~~~~~ . - , 
- -
- —-- 

—-—-
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22 NPS—3

or theoretically through an operational count. With this

understanding , Eq. (8) can be rewritten as

T = T 0N , (29)

where

N = (1 + C3) (N0 + C
1
N
1 + C2N2) . (30)

This expression constitutes a new definition of equivalent

number of functions evaluations.

Alternative Definition. If one introduces the new

coefficients

K1 = C1/n , K~ = C2/m , K3 = l+C3 , (31)

Eq. (30) can be rewritten in the alternative form

N = K3 (N0 + K1nN1 + K2mN2) . (32)

Remark. With the terminology of this section , Assumptions

(Al), (A2), (A3) can now be restated as follows :

(Al) C1 = n or K1 = 1 , (33—i)

____  ____- .- ---- - . - -c~~~~L - ~~~~~~~~~~~~~~~~~~ ~~~~~~- --.-~~~~~~~~~~~ —- --- - — --~----~~~~~~~~~~~~~~~ ---- -~~—~~~~~



- -- . 
~~ . - - .

23 NPS—3

(A2) C2 = m or K2 = 1 , (33—2)

(A3; C3 = 0 or K3 = 1 . (33—3)

Comment. The coefficients C1 and C2 measure the relative

importance of the computational effort associated with gradient

evaluation and Hessian evaluation vis-a—vis the computational

effort associated with function evaluation . The coefficient

C3 measures the relative importance of the computational

effort associated with algorithmic operations vis-a—vis the

computational effort associated with function , gradient , and

Hessian evaluations. While the coefficients C1 and C2 depend

on the nature of the function f(x), the coefficient C3 depends

also on the structure of the particular algorithm and search

technique employed.

The above coe f f i c i en t s  can be determined th rough  e i ther

an operational count or through computer expe r imen ta t i on.

By determining the triplet (C1, C2, C3) arid the associated

triplet (K1, K2, K3), and by measuring the deviation of these

coefficients from the idealized values (33), one can supply

an answer to the basic questions formulated in this paper ,

namely, those concerning the correctness of Assumptions (Al),

(A2), (A3).

-- - -  
-
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7. Numerical Experiments

In the following sections , we describe some numerical

experiments , leading to the computation of the coefficients

C. and K. for several test functions and minimization al-

gorithms.

All computations were performed on the IBM 370/155 com-

puter of Rice University . FORTRAN programming was employed

in conjunction with double-precision arithmetic. A FORTRAN

Gi compiler was used. A FORTRA N TIME subrout ine was used

in order to determine the CPU times. Note tha t  the IBM

370/155 computer of Rice University has multi-programming

and time—sharing capabilities.

Test Functions. Five test functions were employed ,

namely , the Rosenbrock , Wood , Powell, and Miele functions

plus the generalizel Rosenbrock function . The results per-

taining to twelve additional test func tions can be found in

Ref. 7.

Example 7.1. Rosenbrock Function:

f ( x )  = (x
1—l )

2 
+ l00(x~ — x 2 ) ; (

~~~
)

Example 7.2. Wood Function:

= (x 1— 1 )  2 
+ 100 (x~ — x 2 ) 2 

+ (x3—l) 
2 

+ 90 (x~ — x 4 ) 2

2 2 (35)
+ 10.1 (x2—l) + (x 4 — l )  ~ + 19.8(x2—l) (x4—l)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~ - - --~~~~~~~~~~~~~~~ ---—- :~:;~~~ 1- -- —~~~~~ - - — -
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Example 7.3. Powell Function:

f ( x )  = (x 1+ lOx 2 ) 2 
+ 5 ( x 3 — x4 ) 2 

+ (x 2 
— 2x 3 ) 4

4-4 l 0 ( x ~ — x4 )

Example 7.4. Miele Function:

f ( x )  = (exp x1 
— x2 ) 4 

+ 100 (x
2 

— x 3 ) 6

+ tan 4 (x 3 
— x4 ) + x~ + (x~ — 1)2 ; 137)

Examp le 7.5. Generalized Rosenbrock Function:

n—l 2 n—l 2 2f ( x) = ~ (x.—l) + 100 E (x. — x~ +1 ) . (38)
i=l i=l

For the generalized Rosenbrock function , values of n ranging

between 5 and 30 were considered.

Minimiza t ion  Al gori thms.  Three unconstrained minimiza-

tion al gori thms were employed : The Fletcher-Reeves algorithm

(FR) , the Davidon-Fletcher-Powell algorithm (DFP) , and the

q u a sil i n e a r i z a t i o n  a lgor i thm (QL) . The FR and DFP a lgori thms

exemplify first-order methods , and the QL algorithm exem-

plifies second—order methods. For the detailed structure of

- 1

~

.

~

T--

~ 
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these algorithms, see for example Ref. 7.

Fletcher-Reeves and Davidon-Fletcher-Powell Algorithms.

For these algorithms, one—step cubic interpolation was em-

ployed in order to determine the optimum stepsize a. In

the cubic interpolation process , two ordinates and two

slopes were employed. Therefore , it was assumed that one

iteration of each of these algorithms requires two function

evaluations and two gradient  evaluat ions .  For the details,

see Refs. 7-8.

Quasilinearization Algorithm. For this algorithm , the

stepsize a=l was employed. Therefore , it was assumed that

one i teration requires  one func t ion  evaluat ion, one gradient

evaluation , and one Hessian evaluation. The solution of the

• linear system governing the components of the search direction

was done by Gaussian elimination without pivoting. For the

details, see Ref. 7.

Coefficients C
1 
and C2. These coefficients can be

computed with the aid of Eqs.  (28-1) and (28—2) as fol lows :

C1 = T
i
/T

o 
C2 = T

2
/T

0 
. (39)

For the basic times T
~~

, T 1, 12 to be s u f f i c i e n t l y  precise ,

it is necessary that the computation of f(x) , g(x) , 11(x) be

repeated a large number of times at the same nominal point x

(for instance , 1000 times).

__________________________ ~~~~~~~~~~~
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With the above considerations in mind , the basic times

r O~ T]1 12 were determined as follows: (i) by evaluating

separately the funct ion , the gradient , and the Hessian

1000 times; (ii) by monitoring the associated CPU times,

which include the do-loop time ; (iii) by determining

separately the do-loop time ; and (iv) by subtracting the

do—loop time from the experimentally determined CPU times.

With the basic times -r 0, Ti, 12 known, the coefficients

C1 and C2 can be computed with (39). Then , the coefficients

• K1 and K2 can be determined with (31—1) and (31—2).

Coefficient C3. This coefficient can be computed with

the aid of Eqs. (5), (6), and (28—3) as follows:

C3 = (T—T
0
—T1—T2

) / (T
0

+T1+T 2) . (40)

Next , we invoke Eqs. (7) and the definition

T = TN , (41)

where N denotes the number of iterations and i denotes the

time required to perform one iteration (this includes both

the algorithmic time and the function evaluation time). In

the light of (7) and (41), Eq. (40) can be rewritten as

C3 = (TN—T 0N0— 11N1—T 2N2
)/(-r

0N0
4--r

1
N1

-1-1
2N2

) . ( 4 2 )
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Examination of one iteration of the algorithms under

consideration shows that, for the search conditions assumed ,

N0/N = 2 , N1/N = 2 , N2/N = 0 (43)

for the FR and DFP algorithms and that

N
0/N = 1 , N

1/N = 1 , N2/N = 1 (44)

for the QL algorithm. As a consequence , Eq. (42) simplifies

to

C3 = ( T  — 210 
— 2T

1
)/(2T

0 
+ 21

i
) (45)

for the FR and DFP algorithms , and to

C3 = (1 — — T
1 

— T
2

)/ ( r
0 
+ T

i 
+ 1

2
) (46)

for the QL algorithm . For the basic time I to be sufficiently

precise, it is necessary that one iteration of each of the

algorithms under consideration be repeated a large number of

times at the same nominal point x (for instance , 1000 times).

With the above considerations in mind , the basic time T

was determined as follows : (i) by executing one iteration of

_ _ _ _ _  
.- -- . 
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each of the algorithms under consideration 1000 times; ( i i )

by monitoring the associated CPU times, which include the

do—loop time ; (iii) by determining separately the do—loop

time; and (iv) by subtracting the do-loop time from the ex-

perimentally determined CPU times.

With the basic time T known , and with TO, Ti, 12 also

known , the coefficient  C3 can be computed with (45) for the

FR and DFP algorithms and with (46) for the QL algorithm.

Then , the coefficient K3 can be determined with (31-3).

I

I - • - - 
__g - - 
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8. Numerical Results

Careful numerical experiments were performed along the

lines outlined in Section 7, and the results are given in

Tables 2—5. Tables 2-3 give the coefficients C1, C2 and K1,

K2 for the test functions (34)-(38). Tables 4-5 give the

coefficient C3 for the test functions (34)-(38) and the FR ,

DFP, and QL algorithms. The coefficient K3 is not given ,

since it can be computed with the simple relation (31-3).

Coefficient C1. Table 2 shows that the coefficient C1

for the Rosenbrock function has the value 1.04 (instead of

n=2), and the coefficient C1 for the Powell function has the

value 1.21 (instead of n=4). Thereby , use of the standard

definition (11 ) of equivalent number of function evaluations

overestimates the e f f o r t  associated with gradient  computation

by a factor of 2 for the Rosenbrock function and by a factor

of 3 f or the Powell funct ion .

Table 3 refers to the generalized Rosenbrock function

and shows that , for the case n=5 , the coefficient C1 has the

value 1.17 (instead of 5 ) ;  for the case n=30 , the coeff ic ien t

C1 has the value 1.28 (instead of 3 0 ) .  Thereby , use of the

standard def ini t ion (11 ) of equivalent number of function

evaluations overestimates the effort associated with gradient

computation by a factor of 4 for n=5 variables and by a factor

of 24 for n=30 variables.

L __________________ ____ 
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In conclusion , under the hypothesis that analytical

expressions for the components of the gradient are available ,

and for Examples 7.1 through 7 .5 , it does not appear that

Assumption (Al ) is sat isf ied .

Coeff icient  C2 . Table 2 shows that the coeff ic ient  C2
for the Rosenbrock function has the value 1.01 (instead of

m = 3 ) ,  and the coefficient C2 f or the Powell function has the

value 0 .98  (instead of m=lO). Thereby, use of the standard

definition (11) of equivalent number of function evaluations

overestimates the e f f o r t  associated with Hessian computation

by a factor of 3 for the Rosenbrock function and by a factor

of 10 for the Powell func t ion .

Table 3 refers to the generalized Rosenbrock function

and shows that, for the case n=5 , the coefficient C2 has the

value 1.42 (instead of m=15); for the case n=30 , the co-

efficient C2 has the value 3.56 (instead of m = 465).

Thereby , use of the standard definition (11 ) of equivalent

number of function evaluations overestimates the effort

associated with Hessian computation by a factor of 11 for

n=5 variables and by a factor of 130 for n=30 variables.

In conclusion , under the hypothesis that analytical

expressions for the elements of the Hessian matrix are

available , and for Examples 7.1 through 7. 5 , it does not

appear that Assumption (A2) is satisfied .

L. ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~ _ _ _ • ~~
_

•~ • _ •
_
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Coefficient C3. Inspection of Tables 4-5 shows that the

coefficient C3 is never negligible by comparison with 1,

meaning that the algorithmic time is never negligible by

comparison with the function evaluation time. Indeed , in

many cases, C3 can be larger than 1, meaning that the al-

gorithmic time can be larger than the function evaluation

time .

For example, consider the Wood function. Table 4 shows

that the coefficient C3 has the value 1.14 for the FR al-

gorithm, 3.18 for the DFP algorithm , and 2.09 for the QL

algorithm.

As another example , consider the generalized Rosenbrock

function . Table 5 shows that, for values of n ranging be-

tween 5 and 30, the coefficient C3 ranges between 0.56 and

0.73 -fo r the FR algori thm , between 2 . 8 7  and 10.67 for the

DFP algorithm , and between 1.94 and 22.05 for the QL al-

gorithm.

In conclusion, under the hypothesis that analytical ex-

pressions for the components of the gradient and the ele-

ments of the Hessian matrix are available , and for Examples

7.1 through 7.5 , it does not appear that Assumption (A3) is

satisfied for the FR, DFP, and QL algorithms.

Comments. With reference to the previous results , the

following comments are pertinent.

Li ~~~~~~~~~~~ 
_

~~~~~~~~~~~~~
-
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( i )  In devising the subroutines necessary to the compu—

tation of the functions (34)-(38) and their first and second

derivatives, an effort was made to render the CPU time as

small as possible. The commonality existing between the corn—

ponents of the gradient was exploited. The commonality

existing between the elements of the Hessian matrix being

computed was also exploited . Finally, the fact that the

Hessian matrix might have many elements which vanish was taken

into consideration .

(ii) For the subroutines mentioned in (i), the computa-

tion of the function , the computation of the gradient , and the

computation of the Hessian matrix were conceived to be sepa-

rate operations. No attempt was made to exploit the common-

ality between function and gradient nor the commonality between

function , gradient , and Hessian matrix. In other words , a

worst—case situation was postulated , and conservative esti-

mates of C1, C2, C3 were arrived at.
5 Had the above commonality

been exploited , the values of C1, C2 would have been smaller

than those given in Tables 2-3 and the values of C3 would

have been larger than those given in Tables 4-5.

Here, the adjective conservative is employed in the sense

of “favorable” to the old definition (11) of equivalent

number of function evaluations.

~~ ~~~~ ._ • _~~~ i_ • - 
_~a_a • ~~
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(iii) For the generalized Rosenbrock function , Table 5

illustrates in a striking way the effect of the size of the

problem on the relative importance of algorithmic time vis—a-

vis function evaluation time. As n increase, C3 tends to be

constant for the FR algorithm; it increases at a linear rate

for the DFP algorithm; and it increases at a faster-than-

linear rate for the QL algorithm .

The explanation for this result is quite simple. As n

increases, the function evaluation time Te increases linearly

for the FR and DFP algorithms and quadratically for the QL

algorithm. On the other hand , as n increases , the algorithmic

t ime Ta increases l inear ly  for  the FR a lgor i thm, quadratical ly

for the DFP algori thm, and cubically for  the QL al gori thm .

(iv) The coefficients C~ and C2 depend mostly on the

nature of the function f(x). On the other hand , the coef-

ficient C
3 for the FR and DFP algorithms depends also on the

search technique employed to determine the stepsize a; should

a different search technique be employed , the value of C3 would

change. By the same token , the coefficient C3 for QL algorithm

depends on the subroutine used to solve the linear system

governing the components of the search direction; should a

different subroutine be employed , the value of C3 would change.

(v) In this paper , the coefficients C1, C2, C3 were

determined through computer experiments. An alternative way

h~ ~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 
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is to determine these coefficients through an operational

count. This operational count requires the a priori know-

ledge of the times necessary to perform each computer

operation; in other words, it requires the a priori knowledge

of the relative weight of each computer operation . An

analysis along these lines has been carried out in Ref. 7

and leads to results quali tat ively consistent with those

presented here. However, this analysis is omitted for the

sake of brevity . 

---~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •
- -  
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Table 2. Results for the Rosenbrock , Wood , Powell, and

Miele functions.

Example n m C1 C2 K1 K2

7.1 2 3 1.04 1.01 0.52 0.34

7.2 4 10 1.02 0.81 0.26 0.08

7.3 4 10 1.21 0.98 0.30 0.10

7.4 4 10 1.29 1.78 0.32 0.18

Table 3. Results for the generalized Rosenbrock function.

Example n m C1 C2 
K
1 K2

7.5 5 15 1.17 1.42 0.23 0.09

7.5 10 55 1.20 1.82 0.12 0.03

7.5 15 120 1.23 2.36 0.08 0.02

7.5 20 210 1.21 2.71 0.06 0.01

7.5 25 325 1.28 3.15 0.05 <0.01

7.5 30 465 1.28 3.56 0.04 <0.01

~~~~~~~~~~~~~~~~~~~~~~~~~ --- —~~~~~~~ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
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Table 4. Results for the Rosenbrock , Wood , Powell, and Miele

functions.

Algorithm FR DFP QL

Example n rn C3 C3 C3

7.1 2 3 1.65 2.68 1.17

7.2 4 10 1.14 3.18 2.09

7.3 4 10 1.28 3.31 2.21

7.4 4 10 0.43 1.05 0.55

Table 5. Results for the generalized Rosenbrock function.

Al9orithm FR DFP QL

Example n m C3 C3 C3

7.5 5 15 0.73 2.87 1.94

7.5 10 55 0.68 4.24 4.89

7.5 15 120 0.62 5.70 8.09

7.5 20 210 0.61 7.46 12.54

7.5 25 325 0.58 9.01 17.34

7.5 30 465 0.56 10.67 22.05

~ 

~~~~~
• -• 
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9. Conclusions and Recommendations

In this paper , we have considered the comparative

evaluation of algorithms for mathematical programming

problems from the point of view of computational speed. We

have examined cri t ical ly the indirect measurement of com-

putational speed through the equivalent number of function

evaluations Ne~ 
and we have found that the N

e concept ,

while accurate in some cases, has drawbacks in other cases.

Indeed, it might lead to a distorted view of the relative

importance of an algorithm with respect to another.

In an effort to correct the above distortion , we have

imbedded the parameter N
e into a more general parameter

which is constructed so as to reflect accurately the

computational effort associated with function evaluations

and algorithmic operations. This new parameter Ne in-

cludes coefficients C1, C2, C3 which can be determined

either exper imenta l ly  or through an operat ional  coun t . When

the triplet (C1, C2, C3) takes on the values (n , m , 0 ) ,  the

new parameter Ne reduces to the old parameter Ne~
We have determined experimentally the coefficients

C1, C2, C3 for five test f’ -ictions and three minimization

algorithms. And we have found that the deviations of these

coefficients from the idealized values n ,m ,O can be sub-

stantial.

L ___ • . --- - ~~-~~—
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More specifically, the experimental values found for

C1 are 2 to 24 times smaller than the idealized value n.

The experimental values found for C2 are 3 to 130 times

smaller than the idealized value m. And the experimental

values found for C3 are never negligible with respect to

1; they are of order 1 for the FR algorithm , and of order 1 to

10 for the DFP and QL algorithms .

Obviously, the experimental values of C1, C2, C3 are

subject to errors due, among other things , to the multi-

programming and time—sharing capabilites of the IBM 370/155

computer of Rice University . However , the basic fact re-

mains that the deviations detected for C , C , C , from the1 2

idealized values ri ,m ,O are so lar ge that  the use of the Ne
concept is open to serious question . By the way, conclusions

along these general l ines have also been obtained by Hil i s t rom

in Refs. 9—1 0.

From the analyses performed and the resul ts  obtained , it

is inferred that, due to the weakness of the N concept , the

use of the Ne concept is advisable as a means for comparing

different algorithms from the point of view of computational

speed. In effect , this is the same as stating that, in spite

of its obvious shortcomings , the direct measurement of the

CPU time is still the most reliable way to compare different

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ __  
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minimizat ion algori thms.

However, for the direct measurement of the CPU time to

be really meaningful , provisions similar to those implemented

in Refs. 1—2 should be employed . That is, it is necessary

that the comparison of different algorithms be done on a

single computer , wi th  the same programming language , with

the same compiler , with the same subroutines , under similar

workload conditions of the computer , and by the same pro-

grammer.

In closing , these authors stress that  the conclusions of

this paper should not be interpreted as an invitation to

other authors to disregard reporting on number

of iterations N , number of func t ion  evaluat ions N 0 ,  number

of grad ien t eva lua t ions  N 1, and number of Hessian evaluations

N2. By all means , these are useful quantitites , which should

be reported because their knowledge does shed some light on

the comparative behavior of different algorithms . Neverthe-

less , none of the methods for the indirect measurement of

the computational speed is t ru ly  sa t is factory,  and these

authors feel that there exist no reliable alternative to the

direct measurement of the CPU time.

_ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _  _ _ _   
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