1 OF 2				carrage of the second s			1670/652 2525275	大学		
		And and a second s	No.			E. (antin Sector and Antina and Antina antina Antina antina antina Antina antina antina anti-			
	Č.X.									11
M			 An and a second s				ingener Renner Fantante	ng manangan na n		
					Description of the second seco		Anne Transmission Difficie Constanting Con		Therese TRANSPE	
		TERIES		ante II. an						#//
-			La	uludu.						

AD A 043400

RADC-TR-77-259 Final Technical Report August 1977

A GTD ANALYSIS OF THE CIRCULAR REFLECTOR ANTENNA INCLUDING FEED AND STRUT ANTENNA

The Ohio State University

Approved for public release; distribution unlimited.

NUG 24 1917

200 DC FILE

ROME AIR DEVELOPMENT CENTER Air Force Systems Command Griffiss Air Force Base, New York 13441 This report contains a large percentage of machine-produced copy which is not of the highest printing quality but because of economical consideration, it was determined in the best interest of the government that they be used in this publication.

This report has been reviewed by the RADC Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

This report has been reviewed and approved for publication.

APPROVED:

CARMEN S. MALAGISI Project Engineer

APPROVED:

rend 2 Byenon

JOSEPH L. RYERSON Technical Director Surveillance Division

ACCESSION for White Section NTIS B.if Section DDC UNANNOUNC D 0 JUSTI ICA 1 BY DISTRIBUTION/AVAILABILITY ·d/or SPEC Dist.

FOR THE COMMANDER:

how S. Hung

JOHN P. HUSS Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (DAP) Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM **REPORT DOCUMENTATION PAGE** 3. RECIPIENT'S CATALOG NUMBER REPORT NUMBER 2. GOVT ACCESSION NO. 1 RADC-TR-77-259 S. TYPE OF REPORT & PERIOD COVERED TITLE (and Sublitie) A GTD ANALYSIS OF THE CIRCULAR REFLECTOR ANTENNA Final Technical Report . INCLUDING FEED AND STRUT SCATTER March 1976 - April 1977 6. PERFORMING ORG. REPORT NUMBER 4381 - 1AUTHOR(+) 8. CONTRACT OR GRANT NUMBER(S) S. H. Lee R. G. Kouyoumjian F30602-76-C-0224 ne R. C. Rudduck C. A. Klein PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMEN 62702F The Ohio State University Electrical Engineering Department 4506049 Columbus OH 43210 1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DAT August 1977 Rome Air Development Center (OCTS) Griffiss AFB NY 13441 13. NUMBER OF/PAGES 99 14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. Same UNCLASSIFIED 154. DECLASSIFICATION DOWNGRADING SCHEDULE N/A 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: Carmen S. Malagisi (OCTS) 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Diffraction Reflector Antennas Numerical Analysis Scattering Geometrical Theory of Diffraction Strut Scattering Computer Program ABSTRACT (Continue on reverse side if necessary and identify by block number) Recently, the wide angle side lobes of a circular reflector antenna pattern were calculated by the Geometrical Theory of Diffraction and an overall pattern can be obtained from a combination of GTD and aperture integration methods. In this report, the analysis is extended to include the scattering from the feed supports. The feed support scattering is treated using the concept of equivalent current line source. The cylinder scattering model developed in this report gives the effect of strut scattering on the wide angle side lobes of the reflector. The scattering from the feed struts DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

UNCLASSIFED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

always has its greatest effect near the scattering cones for each strut. These scattering cones usually give rise to a maximum aperture blockage effect in certain off-principal plane patterns. The analysis given here can be used to compute the complete pattern of any arbitrary plane cut for a practical circular reflector antenna system.

i

TABLE OF CONTENTS

Page

PART I - Theory

1	INTRODUCTION	1
II	RADIATION PATTERN	4
	 A. Primary Feed B. Aperture-Integration C. The Two Point Method Using GTD D. Ring Current Method 	4 6 11 15
III	FEED STRUCTURE SCATTERING	17
	 A. Equivalent Line Source Model for Feed Support Scattering B. Coordinate Transformation C. Feed Horn Scattering Model 	17 21 27
IV	RESULTS AND DISCUSSIONS	30
v	CONCLUSIONS	40
REFERENCE	S	41
	PART II - User's Manual for Computer Program	
	 A. Description of Computer Program B. Example Computer Run C. Appendix - Computer Program Listing 	43 66 78

C. Appendix - Computer Program Listing

EVALUATION

This contractual effort resulted in the development of a geometrical theory of diffraction (GTD) computer code for circular parabolic reflectors with feed and strut scattering. This computer code analytically predicts the far field pattern of the parabolic reflector including the scattering from reflector edges, feed supports, and the feed structure.

The results of this effort provide a means of simulating a parabolic reflector with obstructing feeds and supporting structures and predicting the far outside lobe responses. This computer code can more accurately simulate the parabolic reflector environment than previously accomplished in the past.

This fits into the RADC Technology Plan (TPO I-B) for analytically simulating parabolic reflector antenna system before fabrication, installation and test.

The computer code, OSU PATT, is presently operational on the RADC-HIS 6180 computer facility and will be used to analyze the performance characteristics of radar and communication parabolic reflector type antenna systems.

0 annen Malagui

CARMEN S. MALAGISI Project Engineer

PART I - THEORY

CHAPTER I INTRODUCTION

The classical analysis of reflector antennas was well developed in the late 1940's. Accordingly, the radiation pattern in the forward hemisphere of a reflector antenna can be calculated by either the aperture field method or the current distribution method [1]. However, these methods are rather slow for electrically large antennas, and in general do not predict the wide angle side lobes accurately. Recently, the wide angle side lobes were calculated [2] by the GTD [3,4,5] which offers an efficient way to obtain the radiation pattern except for the forward axis region. Thus an overall pattern results from a combination of GTD and aperture integration methods. Using this approach, the far field patterns of the circularly symmetric parabolic reflector antenna with the feed at the focus were calculated in [2]. The effect of a rapid field variation at the edge of the reflector and the coupling between two reflector antennas were also analyzed using the GTD approach [6].

In this report, the same approach is extended to the scattering from the feed supports. Also the analysis has been extended to include calculation of the off-principal plane patterns. The feed horn blockage is also treated in a similar manner to that in [2] by replacing the feed structure by an equivalent circular or rectangular flat plate model whose area approximates the cross section of the feed structure. This approximation is justified in the forward direction, where the feed horn blockage is generally most significant. The flat plate scattering is analyzed by the conventional physical optics approach [7].

On the other hand, the feed support scattering is treated in a different way in which the scattered field of each individual strut is obtained using the concept of equivalent current line source [8,9]. The GTD is used to determine the equivalent line sources. The total effect of the feed support scattering is the sum of the scattered fields from each individual strut. Then the scattering from the feed horn and the feed supports is simply added to the other radiation components of the antenna. Thus the total pattern of the reflector, the direct feed pattern and the scattering from the feed structure.

A user-oriented computer program is described in Part II of this report. The input to the program consists of the E- and H-plane patterns of the feed, the frequency, the dimensions of the reflector, the positions and diameters of the feed supports, and the physical cross section of the feed. In addition to the reflector antenna code described in the body of this report, a second computer code developed by W. D. Burnside and R. F. Marhefka has been made operational on the RADC Honeywell computer system. This code referred to as the flat plate program is used to compute the far-zone scattered fields for antennas radiating in the near zone of structures made of flat plates. In its present form this code simulates structures such as buildings, or ships by a set of finite flat plates forming a convex structure for which the scattering from one flat plate to another is negligible. Using the present code, one can treat the structure by a single flat plate, a rectangular box, a rectangular pyramid, etc. Also a separate ground plane can be introduced. This additional effort was supported by the Naval Ocean Systems Center, San Diego, California under Contract N00123-76-C-1371.

The present code is limited to one structure which can be simulated by as many as 14 plates. This is based on the array dimensions in the code and is not a limitation of the theory. Each plate can consist of 6 corners; however, each corner must lie in a plane or the computer code will abort. The definition of the plates is made by first setting up a fixed cartesian coordinate system relative to the structure under investigation. The plates are, then, defined by the location of the corners. The antenna location is, also, specified in the same coordinate frame. One should note that the fixed coordinate system should be chosen such that one can easily define the structure. The program has the flexibility to handle arbitrary pattern cuts relative to this coordinate system as is discussed later.

The antenna presently considered in the computer code is simulated by a set of electric or magnetic elemental radiators. There is a maximum of six such radiators which is limited by the computer code dimension and not the theory. Each electric or magnetic radiator has cosine distribution, arbitrary length, arbitrary magnitude and phase, and arbitrary orientation. This elemental antenna is considered initially but can be easily modified in that the code is modular in construction. In this case, the SOURCE subroutines can be easily exchanged with another antenna pattern subroutine.

The present form of the computer code is not large in terms of computer storage and executes a pattern in short order. The storage is, of course, dependent on the dimensions which might vary; however, the present code requires approximately 100 K bytes. It will run a pattern cut of 360 points for a flat plate structure with one antenna in approximately 10 seconds on a CDC-6600 computer.

The limitations associated with the computer code results from the basic nature of the analysis. The solution is derived using the Geometrical Theory of Diffraction (GTD) technique which is a high frequency approach. In terms of the scattering from a finite flat plate, this means that each plate should have edges at least a wavelength long. In addition, antenna elements should not get closer than about a wavelength to any edge. In some cases, the previous wavelength limit can be reduced to a quarter wavelength.

A part of the work carried out under this contract concerned the development of diffraction coefficients for perfectly-conducting cylindrical scatterers. These diffraction coefficients were used to calculate the scattering from the feed support of a reflector antenna, as described in the body of this report. However, they also were used to predict the degradation of the pattern of the LAMPS antenna caused by the presence of a nearby cylinder. The LAMPS antenna is a 34" parabolic reflector antenna with a nominal frequency of 4.6 GHz. A report [13] was prepared on this task, and since the results were of interest in the analysis of a shipboard antenna configuration, its publication was supported by NOSC through the Naval Regional Procurement Office, Long Beach, California under Contract N00123-76-C-1371.

CHAPTER II RADIATION PATTERN

A. Primary Feed

Reflector antennas are classified according to the geometry of the reflector surface as well as the shape of the reflector rim. In this report, a focus-fed paraboloid with circular rim is considered. However, this approach can also be applied to other kinds of reflector antennas. Since the feed is located at the focus, it is convenient to introduce a spherical coordinate system to describe the field of the primary feed with origin at the focus (P_f) and the y axis as the polar axis as shown in Figure 1a. To describe the radiation from the feed at the reflector, another spherical coordinate system also with origin at the focus, but having the z axis as the polar axis is used (see Figure 1b).

Figure 1. Coordinate systems for the primary feed.

The relations between the coordinate variables and unit vectors of these two systems are given by

$$\cos \psi = \cos \phi_f \sin \theta_f \tag{1}$$

$$-\cos\hat{\phi}'\sin\psi = \sin\phi_f \sin\theta_f$$
(2)

$$\hat{\psi} = -\theta_{f} \frac{\sin \phi' \cos \psi}{B} + \hat{\phi}_{f} \left(\frac{\cos \phi'}{B}\right)$$
(3)

$$\hat{\phi}' = -\hat{\theta}_{f} \frac{\cos \phi'}{B} - \hat{\phi}_{f} \frac{\sin \phi' \cos \psi}{B}$$
(4)

where

$$B = \sqrt{1 - \sin^2 \psi \sin^2 \phi'} , \qquad (5)$$

The coordinate systems for the reflector geometry are shown in Figure 2 where (R,θ,ϕ) are the spherical coordinates of the far field

Figure 2. Coordinate systems for the reflector.

point. If we assume that the reflector is in the far zone region of the feed source, the field of the primary feed having the same polarization in the far zone as a dipole oriented in the y direction is given by

$$\mathbf{E}^{\mathbf{f}} = -\hat{\theta}_{\mathbf{f}} \mathbf{A} \, \mathbf{g}(\theta_{\mathbf{f}}, \phi_{\mathbf{f}}) \frac{\mathbf{e}^{-\mathbf{j}\mathbf{k}\mathbf{R}'}}{\mathbf{R}'}$$
$$= -\mathbf{F} \left(\hat{\theta} \, \frac{\cos \psi \sin \phi'}{\mathbf{B}} - \hat{\phi} \, \frac{\cos \phi'}{\mathbf{B}}\right) \, \mathbf{f}(\psi, \phi') \, \frac{\mathbf{e}^{-\mathbf{j}\mathbf{k}\mathbf{R}'}}{\mathbf{R}'} \tag{6}$$

where

 $g(\theta f, \phi f) = f(\psi, \phi')$ is the primary feed pattern,

A is set equal to F, the focal length of the reflection, for convenience

and

 $R' = \frac{2F}{1 + \cos\psi}$ is the distance from the feed to the reflector surface.

In the off-principal planes ($\phi \neq 0$, $\frac{\pi}{2}$), the feed patterns are approximated by interpolating between E- and H-plane patterns in the following way,

$$f(\psi,\phi') = f_{T} - f_{s} \cos 2\phi'$$
(7)

where

$$f_{T} = \frac{f_{e}(\psi) + f_{h}(\psi)}{2}$$
$$f_{\delta} = \frac{f_{e}(\psi) - f_{h}(\psi)}{2}$$

(8)

and

$$f_{e}(\psi) = f(\psi,\phi' = \frac{\pi}{2})$$

$$f_{b}(\psi) = f(\psi,\phi' = 0) . \qquad (9)$$

B. Aperture-Integration

In this and the next two sections we are considering the antenna pattern without aperture blockage or "to calculate most of the scattering from the reflector". The GTD together with the direct feed radiation provides a very efficient method to calculate most of the antenna pattern. The GTD fields can be calculated from only the feed illumination of the aperture edges. However, the main beam and the first few sidelobes depend on the fields over the entire aperture. Consequently, the classical technique of aperture integration is used to calculate the pattern in the forward axial region. Using the concepts of geometrical optics and conservation of power, it can be shown [2] that the magnitude of the aperture field is related to that of the incident field by

$$|\mathsf{E}^{\mathsf{a}}| = |\mathsf{E}^{\mathsf{f}}(\mathsf{R}')| \sqrt{\mathsf{R}' \frac{\mathrm{d}\psi}{\mathrm{d}\rho}} \quad . \tag{10}$$

It follows from the above expression, adding the appropriate polarization and a phase factor, that the aperture field is given by

$$\overline{E}^{a}(\rho',\phi') = \hat{e}_{r} F f(\psi,\phi') \frac{e_{r}}{R'}$$
(11)

where

$$\hat{e}_{r} = -\frac{1}{B} \left[\hat{\rho}' \cos \psi \sin \phi' + \hat{\phi}' \cos \phi' \right]$$
$$= +\frac{1}{B} \left[\frac{1}{2} \sin 2\phi' \left(1 - \cos \psi \right) \hat{x} - \left(\cos \psi \sin^{2} \phi' + \cos^{2} \phi' \right) \hat{y} \right] .$$
(12)

Ro is the distance from the feed to the rim of the reflector (see Figure 4), and

$$\rho' = R' \sin \psi \quad . \tag{13}$$

The coordinate system for describing the aperture field is shown in Figure 2a in which the origin is at the center of the reflector aperture.

In evaluating the radiation from the aperture, a spherical coordinate system, shown in Figure 2b, and also centered at 0, is introduced to describe the far zone field of the reflector antenna. By the equivalence principle with image theory, the equivalent magnetic current induced by the aperture field is

$$\overline{K} = 2 \overline{E}^a \times \hat{z}$$

The pattern function of this equivalent current source is given by

$$\overline{F} = -\frac{jk}{4\pi} \int_{0}^{2\pi} \int_{0}^{a} \left[\overline{K}(\rho',\phi') \times \hat{r}'\right] e^{jk\rho' \sin\theta \cos(\phi-\phi')} \rho' d\rho' d\phi' (14)$$

where \hat{r}' is the unit vector along r', the distance between the field point and the source, and a is the radius of the aperture.

In substituting \overline{E}^a into Equation (14), we consider the x and y polarizations separately. As in [2], the aperture field E_y^a can be approximated by interpolating between the aperture distributions along the principal axes.

$$\overline{E}_{e}^{a} = E_{y}^{a}(\rho', \frac{\pi}{2}) = -\hat{y} F f_{e}(\psi) \frac{e}{R'}$$

$$\overline{E}_{h}^{e} = E_{y}^{a}(\rho', 0) = -\hat{y} F f_{h}(\psi) \frac{e}{R'} . \qquad (15)$$

Thus the aperture field is given by

$$E_{y}^{a}(\rho',\phi') = T_{f}(\rho') - \delta_{f}(\rho') \cos 2\phi'$$
(16)

where

$$T_{f}(\rho') = \frac{E_{e}^{a} + E_{h}^{a}}{2},$$

and

$$\delta_{f}(\rho') = \frac{E_{e}^{a} - E_{h}^{a}}{2} .$$
 (17)

Hence for the y component of the aperture field in Equation (14), we have

$$\overline{K}_{y} \times \hat{r}' = 2(\hat{y} E_{y}^{a} \times \hat{z}) \times \hat{r}'$$

$$\approx 2 \hat{x} E_{y}^{a} \times (\hat{x} \sin \theta \cos \phi + \hat{y} \sin \theta \sin \phi + \hat{z} \cos \theta)$$

$$= 2(\hat{z} \sin \theta \sin \phi - \hat{y} \cos \theta) E_{y}^{a} \qquad (18)$$

where we have assumed $\hat{r} \simeq \hat{r}$ for far field calculation.

8

The pattern function of E_y^a is therefore given by

$$\overline{F}_{y}(\theta,\phi) = (\hat{y} \cos\theta - \hat{z} \sin\theta \sin\phi) \frac{jk}{2\pi} I_{y}$$
(19)

where

$$I_{y} = \int_{0}^{2\pi} \int_{0}^{a} E_{y}^{a} e^{jk\rho' \sin\theta \cos(\phi - \phi')} \rho' d\rho' d\phi' .$$

The ϕ' integration can be analytically evaluated using the well-known properties of the Bessel function J_n ; thus we get

$$I_{y} = 2\pi \int_{0}^{a} [T_{f}(\rho') J_{0}(k\rho'sin\theta) + \delta_{f}(\rho') \cos 2\phi J_{2}(k\rho'sin\theta)]\rho'd\rho' .$$
(20)

The above integration is numerically evaluated by Simpson's rule.

Next consider the x polarized aperture field. From Equations (11) and (12)

$$E_{x}^{a} = \frac{1}{2B} \sin 2\phi' (1 - \cos \psi) F f(\psi, \phi') \frac{e}{R'} .$$
 (21)

In the principal planes ($\phi = 0, \frac{\pi}{2}$), these x polarized fields vanish. Thus only the y-component of the aperture field contributes to the radiation patterns in the principal planes. In the off-principal planes, the x polarized component E_x^a may have significant contribution to the radiation pattern which reaches a maximum in the 45° plane. For the E_x^a component in Equation (14) we have

$$\overline{K}_{x} \hat{r}' \cong 2(-\hat{x} \cos\theta + \hat{z} \sin\theta \cos\phi) E_{x}^{a} .$$
 (22)

Thus the pattern function F_X becomes

$$\overline{F}_{x}(\theta,\phi) = (\hat{x} \cos\theta - \hat{z} \sin\theta \cos\phi) \frac{jk}{2\pi} I_{x}$$
(23)

where

$$I_{x} = \int_{0}^{2\pi} \int_{0}^{a} E_{x}^{a} e^{jk\rho' \sin\theta \cos(\phi - \phi')} \rho' d\rho' d\phi' \qquad (24)$$

Using the interpolation for the primary feed pattern as given by Equation (8), the above integral becomes

$$I_{x} = \frac{F e^{-jkR_{0}}}{2} \int_{0}^{2\pi} \int_{0}^{a} \frac{1}{BR'} [\sin 2\phi'(1 - \cos \psi)] [f_{T} - f_{\delta} \cos 2\phi']$$

$$x e^{jk\rho' \sin \theta \cos (\phi - \phi')} e^{jk\rho' d\phi'}$$

$$= \pi F e^{-jkR_0} \int_{0}^{a} \frac{1}{B} [\sin 2\phi(1-\cos\psi) \frac{f_T}{R^*} J_2(k\rho'\sin\theta) + \frac{1}{2}\sin4\phi(1-\cos\psi) \frac{f_{\delta}}{R^*} J_4(k\rho'\sin\theta)]\rho'd\rho' .$$
(25)

In carrying out the ϕ integration, we have made a stationary phase approximation that $\phi' \cong \phi$ in the expression for B, i.e., B = $\sqrt{1 - \sin^2 \psi \sin^2 \phi}$. Again the above integration is evaluated by Simpson's rule. Hence the total far field as obtained from aperture integration is given by

$$\overline{E}(\overline{R}) = [\overline{F}_{x}(\theta,\phi) + \overline{F}_{y}(\theta,\phi)] \frac{e^{-jkR}}{R}$$
(26)

which is expressed in spherical components by

$$\overline{F}_{y} = -(\hat{\theta} \sin\phi + \hat{\phi} \cos\theta \cos\phi) \frac{jk}{2\pi} I_{y}$$

and

$$\overline{F}_{x} = (\hat{\theta} \cos \phi - \hat{\phi} \cos \theta \sin \phi) \frac{jk}{2\pi} I_{x}$$

•

C. Two Point Method Using GTD

The wide angle side lobes of a circular reflector have previously been analyzed by using the two point method based on GTD [2]. This method states that the diffracted field from the paraboloid is contributed mainly by two stationary points, Q_1 and Q_2 on the rim of the reflector (see Figure 3). The detailed formulations of the diffracted field in the E- and H-planes are given in [2]. The off-principal plane diffracted field pattern can be obtained by using a similar procedure. The far zone diffracted fields from Q_1 and Q_2 are given by

$$\overline{E}_{1}^{d}(P) = \overline{E}^{f}(Q_{1}) \cdot \overline{\overline{D}}(Q_{1}) \sqrt{\frac{a}{\sin\theta}} \frac{e^{-jk(R-a\sin\theta)}}{R}$$
(27)

and

$$\overline{E}_{2}^{d}(P) = \overline{E}^{f}(Q_{2}) \cdot \overline{\overline{D}}(Q_{2}) \sqrt{\frac{a}{\sin\theta}} \frac{e^{-jk(R+a\sin\theta)} + j\pi/2}{R}$$
(28)

respectively, where \overline{D} is the dyadic diffraction coefficient for a curved edge, $E^{f}(Q_{1,2})$ is the electric field of the feed at $Q_{1,2}$ and a is the radius of the reflector aperture. For rays normally incident on the edge, as is the case here, the dyadic diffraction coefficient [4] can be expressed as:

$$D = e e D_s + p_d p D_h$$
(29)

where D_s and D_h are the scalar diffraction coefficients for the soft and hard boundary conditions, respectively, and are given in [4], and

e is the unit vector tangent to the edge,

p = e x I; I being the unit vector in the direction of the incident ray,

 $p_d = e \times d$; d being the unit vector in the direction of the diffracted ray.

For the ray diffracted at Q1

 $\hat{e} = \hat{\phi},$ $\hat{p}_{d} = \hat{e} \times \hat{d} = \hat{\theta},$ $\hat{p} = \hat{e} \times \hat{I}_{1} = \hat{\phi} \times \hat{I}_{1}$ $\psi = \alpha \text{ is the half angle spanned from}$ the focus to the rim of the reflector.

and

 $R' = R_0$ is the distance from the focus to the rim (see Figures 3 and 4).

Combining Equations (6), (27) and (29) with $\phi'=\phi$ and $\psi=\alpha$ (i.e., B = B₀ = $\sqrt{1 - \sin^2 \alpha \sin^2 \phi}$, the diffracted field from point Q₁ (see Figure 3) is given by

$$\overline{E}_{1}^{d}(P) = \overline{E}^{f}(\alpha,\phi) \left[\hat{\phi} \ \hat{\phi} \ D_{s}(Q_{1}) + \hat{\theta} \ (\hat{\phi} \ x \ \hat{I}_{1}) \ D_{h}(Q_{1})\right]$$

$$\times \sqrt{\frac{a}{\sin\theta}} \ \frac{e^{-jk(R-asin\theta)}}{R}$$

$$= \left[\hat{\phi} \ \frac{\cos\phi}{B_{0}} \ D_{s}(Q_{1}) - \hat{\theta} \ \frac{\cos\alpha \ sin\phi}{B_{0}} \ D_{h}(Q_{1})\right] F \ f(\alpha,\phi)$$

$$\times \frac{e^{-jkR_{0}}}{R_{0}} \ \sqrt{\frac{a}{\sin\theta}} \ \frac{e^{-jk(R-asin\theta)}}{R} \qquad (30)$$

Similarly, the diffracted field from Q_2 is given by

$$\overline{E}_{2}^{d}(P) = \left[\widehat{\phi} \ \frac{\cos\phi}{B_{0}} D_{s}(Q_{2}) - \widehat{\theta} \ \frac{\cos\alpha \ \sin\phi}{B_{0}} D_{h}(Q_{2})\right] F f(\alpha,\phi)$$

$$\times \frac{e^{-jkR_{0}}}{R_{0}} \sqrt{\frac{a}{\sin\theta}} \ \frac{e^{-jk(R+a\sin\theta)+j} \frac{\pi}{2}}{R} \quad . \quad (31)$$

The reflector rim is illuminated by the feed pattern as interpolated from the E- and H-planes. Thus

$$f(\alpha,\phi) = f_{T}(\alpha) - f_{\delta}(\alpha) \cos 2\phi \qquad (32)$$

where f_T and f_δ are defined in Equations (3a) and (3b). The diffracted field in the different GTD regions is given by

$$\overline{E}^{d} = \begin{cases} \overline{E}_{1}^{d} + \overline{E}_{2}^{d} & \theta \leq \frac{\pi}{2} \\ \overline{E}_{1}^{d} & \frac{\pi}{2} < \theta < \theta_{t} \\ \overline{E}_{1}^{d} + \overline{E}_{2}^{d} & \theta_{t} \leq \theta \end{cases}$$
(33)

where θ_t is the angle of the shadow boundary for Q_2 (see Figure 4). Then the field of the primary feed is superimposed on the diffracted field in the region from $\theta = 0$ to $\theta = \pi - \alpha$ which is the shadow boundary of the field from the feed.

D. Ring Current Method

In the rear axis region, the ring current method is used to calculate the diffracted field, since the two point method is not valid there [2]. The E-plane and H-plane field patterns for θ close to π have been formulated in [2] as

$$\overline{E}_{e} = -\hat{\theta} \frac{\pi a}{\sqrt{\lambda}} \frac{e}{R} [A_{1}J_{0}(x) + A_{2}J_{2}(x) + A_{3}J_{4}(x)], \quad (34)$$

where $x = kasin\theta$,

$$A_{1} = T_{f}(D_{h} - D_{s} \cos \theta) + \frac{\delta_{f}}{2} (D_{h} + D_{s} \cos \theta) ,$$

$$A_{2} = -T_{f}(D_{h} + D_{s} \cos \theta) - \delta_{f} (D_{h} - D_{s} \cos \theta) ,$$

$$A_{3} = \frac{\delta_{f}}{2} (D_{h} + D_{s} \cos \theta) , \qquad (35)$$

and

$$\overline{E}_{h} = \hat{y} \frac{\pi a}{\sqrt{\lambda}} = \frac{-j(kR - \frac{\pi}{4})}{R} [B_{1} J_{0}(x) + B_{2} J_{2}(x) + B_{3} J_{4}(x)],$$
(36)

where

$$B_{1} = T_{f}(D_{s} - D_{h} \cos \theta) - \frac{\delta_{f}}{2} (D_{s} + D_{h} \cos \theta),$$

$$B_{2} = -T_{f}(D_{s} + D_{h} \cos \theta) + \delta_{f}(D_{s} - D_{h} \cos \theta),$$

$$B_{3} = -\frac{\delta_{f}}{2} (D_{s} + D_{h} \cos \theta).$$
(37)

Note that the diffraction coefficients D_S and D_h are assumed to have their rear axis values, i.e., for θ = π .

In the off-principal planes, the field in the rear axis region is obtained by interpolating between $E_{\rm e}$ and $E_{\rm h}$ as follows:

$$E_{y} = E_{e} \sin^{2} \phi + E_{h} \cos^{2} \phi. \qquad (38)$$

This can be transformed to spherical components by

$$E_{\theta} = E_{y} \sin \phi \tag{39}$$

$$E_{\phi} = E_{V} \cos\phi \quad . \tag{40}$$

since $\pi - \theta$ is assumed to be small.

CHAPTER III FEED STRUCTURE SCATTERING

In practice, the scattering from the feed horn and the feed supports increases the side lobe levels and reduces the gain of the antenna. Therefore, the blocking effect of the feed structure should be taken into account.

To analyze the scattering from the feed structure, two different models are used. An equivalent line source model is used for feed support scattering and a flat plate model is used for feed horn scattering.

A. Equivalent Line Source Model For feed Support Scattering

The effect of the feed support blocking is usually estimated by the projected shadow method in which the feed support or strut is replaced by its effective shadow on the reflector plane. The radiation field from the shadow area is then calculated and subtracted from the antenna pattern [10,11]. In this report, an alternative approach is developed in which the scattered fields from the struts are computed by the equivalent current approach [7]. Since struts often take the form of circular cylinders, only metallic circular cylinder struts are considered here. Also, the incident field on the struts is assumed to be the reflected wave from the reflector only. That is, the interaction of the direct feed radiation and the strut is not considered. The strut scattered field as reflected by the reflector is also neglected. Therefore, the feed support scattering problem is equivalent to a circular cylinder scattering with a plane wave incident at a specified incident angle; however the amplitude of the plane wave can be a slowly-varying function of position. The equivalent current approach is used to take into account the variations of the incident field along each strut, which includes the effect of the finite length of each strut. In this approach, the scattering from each element of a strut is assumed to be the same as that from an element on an infinite cylinder with the same incident field.

Let (χ, η, ξ) , (ζ, γ, ξ) and (r, α, γ) denote the rectangular, cyindrical and spherical coordinates of the strut system, respectively. Consider a plane wave incident upon an infinite conducting cylinder of radius a, located at the origin, with an incident angle β , at $\gamma' = \pi$, as shown in Figure 5.

Figure 5. Geometry of the scattering cylinder with an incidence angle β .

(Note that E_{ξ} and E_{g} both lie in the plane of incidence, which contains the incident ray and the cylinder axis.)

The incident field can be expressed as

$$\overline{E}^{i} = (\hat{\chi} \cos\beta + \hat{\xi} \sin\beta) E_{\alpha} e^{-jk(\chi \sin\beta + \xi \cos\beta)} .$$
(41)

The field component parallel to the axis of the cylinder is given by

$$E_{\xi}^{i} = E_{I} \sin\beta e^{-jk(\chi \sin\beta + \xi \cos\beta)} . \qquad (42)$$

Noting that

$$\chi = \zeta \cos\gamma \tag{43}$$

we have

$$E_{\xi}^{i} = E_{\parallel} \sin\beta e^{-jk\xi} \cos\beta e^{-jk\zeta} \sin\beta \cos\gamma . \qquad (44)$$

For a wave incident at an angle β with respect to the cylinder axis, the analysis of the cylinder scattering closely follows that for $\beta = 90^{\circ}$ [7]. Thus

$$E_{\xi}^{i} = E_{\parallel} \sin\beta e^{-jk \xi} \cos\beta \sum_{-\infty}^{\infty} j^{-n} J_{n}(k\zeta \sin\beta) e^{-jn\gamma}$$

Then the scattered field component from the infinite circular cylinder is given by

$$E_{\xi}^{S} = E_{\parallel} \sin\beta \ e^{-jk} \ \xi \ \cos\beta \ \sum_{-\infty}^{\infty} j^{-n} \ a_{n} \ H_{n}^{(2)}(k\zeta \sin\beta) \ x \ e^{jn\gamma} .$$
(45)

In the far field zone

$$E_{\xi}^{S} \simeq E_{\parallel} \sin\beta \ e^{-jk(\xi} \cos\beta + \zeta \sin\beta) \sqrt{\frac{2j}{\pi k \zeta \sin\beta}} \sum_{-\infty}^{\infty} a_{n} \ e^{jn\gamma}$$
$$= E_{\parallel} \sin\beta \ \frac{e^{-jks}}{\sqrt{s}} \ \frac{1}{\sin\beta} \ \sqrt{\frac{2j}{\pi k}} \ \sum_{n=0}^{\infty} \epsilon_{n} \ a_{n} \cos n\gamma$$

where

$$a_{n} = -\frac{J_{n}(ka \sin)}{H_{n}^{(2)}(ka \sin)}$$

$$\varepsilon_{n} = \begin{cases} 1 & n = 0\\ 2 & \text{otherwise} \end{cases}$$

and

 $s = \zeta/sin\beta$.

The scattered field for parallel polarization can be represented by

$$\overline{E}^{S} = \hat{\alpha} \frac{E_{\xi}^{S}}{\sin \beta} = \hat{\alpha} E_{\parallel} D_{S}(\gamma, \beta) \frac{e^{-jks}}{\sqrt{s}}$$
(46)

where the diffraction coefficient is given by

$$D_{s}(\gamma,\beta) = \frac{1}{\sin\beta} \sqrt{\frac{2j}{\pi k}} \sum_{n=0}^{\infty} \epsilon_{n} a_{n} \cos n\gamma \qquad (47)$$

Comparing \overline{E}^{5} with the field of an infinite line source with current $I = I_{o} e^{-jk\xi\cos\beta}$, which is given by

$$\overline{E} = -\hat{\alpha} \quad \frac{k^2 I_0}{4\omega\varepsilon} \quad \sqrt{\frac{2j}{\pi k}} \quad \frac{e^{-jks}}{\sqrt{s}}$$
(48)

we obtain an equivalent electric current line source for the conducting cylinder with a current equal to

$$I_{0}(\xi) = \frac{4\omega\varepsilon}{k^{2}} \frac{D_{s}(\gamma,\beta)}{\sqrt{\frac{2j}{\pi k}}} E_{\parallel}(\xi) .$$
(49)

Then the scattering from a finite section of conducting cylinder can be obtained by calculating the radiation from the equivalent finite length line source. Thus the equivalent current I for the parallel polarized incident field becomes

$$I(\xi) = I_{c}(\xi) e^{jk\xi\cos\beta}$$
(50)

and the far zone radiation field is given by

$$E_{\alpha} = -\sqrt{\frac{jk}{2\pi}} D_{s}(\gamma,\beta) \frac{e^{-jkr}}{r} \sin\alpha \int_{\xi_{1}}^{\xi_{2}} E_{\parallel}(\xi) e^{jk\xi(\cos\alpha + \cos\beta)} d\xi$$
(51)

where (r, α, γ) specifies the spherical coordinates of the strut system. Similarly for the electric field component perpendicular to the axis of the cylinder, the scattered field can be obtained from H_{II} as

$$H_{\alpha} = \sqrt{\frac{jk}{2\pi}} D_{h}(\gamma,\beta) \frac{e^{jkr}}{r} \sin\alpha \int_{\xi_{1}}^{\xi_{2}} H_{II}(\xi) e^{jk\xi(\cos\alpha + \cos\beta)} d\xi$$
(52)

where

$$D_{h}(\gamma,\beta) = \frac{1}{\sin\beta} \sqrt{\frac{2j}{\pi k}} \sum_{n=0}^{\infty} \epsilon_{n} b_{n} \cos \gamma$$

and

$$b_n = - \frac{J'_n(ka \sin\beta)}{H'_n(2)(ka \sin\beta)}$$

The corresponding electric field for the **perpendicularly** polarized incident field is given by

$$E_{\gamma} = -\sqrt{\frac{jk}{2\pi}} D_{h}(\gamma,\beta) \frac{e^{-jkr}}{r} \sin\alpha$$

$$\times \int_{\xi_{j}}^{\xi_{2}} E_{\perp}(\xi) e^{jk\xi(\cos\alpha + \cos\beta)} d\beta \qquad (53)$$

B. Coordinate Transformation

In order to add the fields scattered from the feed struts to the radiation field from the reflector, each strut coordinate system needs to be transformed into the reflector coordinate system. As described in the previous section, the rectangular coordinates of the strut coordinate system are denoted by (χ,η,ξ) ; and (r,α,γ) denotes the spherical coordinates. The relationship between their respective unit vectors is given by

 $\begin{bmatrix} \hat{r} \\ \hat{\alpha} \\ \hat{\gamma} \end{bmatrix} \approx \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{n} \\ \hat{\xi} \end{bmatrix}$ (54)

where

$$[A] = \begin{bmatrix} \sin\alpha & \cos\gamma & \sin\alpha & \sin\gamma & \cos\alpha \\ \cos\alpha & \cos\gamma & \cos\alpha & \sin\gamma & -\sin\alpha \\ -\sin\gamma & \cos\gamma & 0 \end{bmatrix}$$
(55)

is the transformation matrix.

Similarly for the reflector coordinate system

$$\begin{bmatrix} \hat{\mathsf{R}} \\ \hat{\Theta} \\ \hat{\varphi} \end{bmatrix} = \begin{bmatrix} \mathsf{B} \end{bmatrix} \begin{bmatrix} \hat{\mathsf{x}} \\ \hat{\mathsf{y}} \\ \hat{\mathsf{z}} \end{bmatrix}$$

where

$$[B] = \begin{cases} \sin\theta \cos\phi & \sin\theta \sin\phi & \cos\theta \\ \cos\theta \cos\phi & \cos\theta \sin\phi & -\sin\theta \\ -\sin\phi & \cos\phi & 0 \end{cases}$$
 (57)

Now let us transform the (x,y,z) coordinates into the (x,n,ξ) ones. The transformation consists of two steps: first rotate the x axis an angle ϕ_0 about the z axis, then the z axis is rotated an angle θ_0 about the y' (or n) axis, as shown in Figure 6. The resultant transformation can be expressed by the following representation:

$$\begin{bmatrix} \hat{x} \\ \hat{n} \\ \hat{\xi} \end{bmatrix} = \begin{bmatrix} \cos\theta_{0} & \cos\phi_{0} & \cos\theta_{0} & \sin\phi_{0} & -\sin\theta_{0} \\ -\sin\phi_{0} & \cos\phi_{0} & 0 \\ \sin\theta_{0} & \cos\phi_{0} & \sin\theta_{0} & \cos\theta_{0} \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{bmatrix} .$$
(58)

If we denote the angle between the strut along the ξ axis and the negative z-axis as β , and the angle between the x-axis and the strut projection on the xy plane as ϕ_S (see Figure 7), we have

 $\phi_{0} = \phi_{S} \tag{59}$

$$\theta_{\Omega} = \pi - \beta \tag{60}$$

and

 $\begin{bmatrix} \hat{x} \\ \hat{n} \\ \hat{\xi} \end{bmatrix} = \begin{bmatrix} T \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{bmatrix}$

(61)

where

$$[T] = \begin{bmatrix} -\cos\beta \ \cos\phi_{s} & -\cos\beta \ \sin\phi_{s} & -\sin\beta \\ -\sin\phi_{s} & \cos\phi_{s} & 0 \\ \sin\beta \ \cos\phi_{s} & \sin\beta \ \sin\phi_{s} & -\cos\beta \end{bmatrix} .$$
(62)

22

Then the relation between the two spherical coordinates (R,θ,ϕ) and (r,α,γ) is given by

$$\begin{bmatrix} \hat{r} \\ \hat{\alpha} \\ \hat{r} \end{bmatrix} = [A][T][B]^{-1} \begin{bmatrix} \hat{R} \\ \hat{\theta} \\ \hat{\phi} \end{bmatrix}$$
(63)

where $[B]^{-1}$ is the inverse matrix of [B]. To express α and γ in terms of θ, ϕ, β , and ϕ_s , the components of χ, η, ξ are written in the (x,y,z) coordinate system as

$$\chi = - x \cos\beta \cos\phi_{c} - y \cos\beta \sin\phi_{c} - z \sin\beta$$
(64)

 $n = -x \sin \phi_{s} + y \cos \phi_{s}$ (65)

$$\xi = x \sin\beta \cos\phi_{c} + y \sin\beta \sin\phi_{c} - z \cos\beta$$
. (66)

But

χ =	R	sina	COSY	(67a)
	n			1071)

$$\eta = \kappa \sin \alpha \sin \gamma \tag{670}$$

$$\xi = R \cos \alpha \tag{67c}$$

and

$x = R \sin\theta \cos\phi$	(68a)
$y = R \sin \theta \sin \phi$	(68b)
$z = R \cos \theta$	(68c)

Putting Equations (67a) and (68) into Equation (64) and combining terms, we obtain

 $sin\alpha \cos\gamma = - [sin\theta \cos\beta \cos(\phi-\phi_s) + \cos\theta \sin\beta]$. (69)

Similarly, putting Equations (67b) and (68) into Equation (65), we get

$$\sin\alpha \sin\gamma = \sin\theta \sin(\phi - \phi_c)$$
 (70)

Dividing Equation (70) by Equation (69), we have

$$\tan \gamma = \frac{\sin\theta \sin(\phi - \phi_s)}{-[\sin\theta \cos\beta \cos(\phi - \phi_s) + \cos\theta \sin\beta]}$$
 (71)

Also, substituting Equations (67c) and (68) into Equation (66), we get

$$\cos \alpha = \sin \theta \sin \beta \cos(\phi - \phi_s) - \cos \theta \cos \beta$$
 (72)

For a given observation direction θ and ϕ , the angular coordinate α and γ for a given strut can be calculated from Equations (71) and (72), where β and ϕ_s specify the orientation of the strut. The field components in the strut coordinate system can be transformed to the reflector coordinate system by using the following dot products obtained from Equation (63) as

$$\alpha \cdot \theta = -\cos\theta \cos(\phi - \phi_s)[\sin\alpha \sin\beta + \cos\alpha \cos\gamma \cos\beta]$$

+ $\cos\alpha \sin\gamma \sin(\phi - \phi_s) \cos\theta$
+ $\sin\theta(\cos\alpha \cos\gamma \sin\beta - \sin\alpha \cos\beta)$ (73a)

$$\alpha \cdot \phi = [\sin \alpha \sin \beta_i + \cos \alpha \cos \gamma \cos \beta] \sin(\phi - \phi_s) + \cos \alpha \sin \gamma \cos(\phi - \phi_s)$$
(73b)

$$\hat{\gamma} \cdot \hat{\theta} = \sin \gamma [\cos \beta \cos \theta \cos (\phi - \phi_s) - \sin \beta \sin \theta] + \cos \gamma \cos \theta \sin (\phi - \phi_s)$$
 (73c)

$$\hat{\gamma} \cdot \hat{\phi} = -\sin\gamma \cos\beta \sin(\phi - \phi_s) + \cos\gamma \cos(\phi - \phi_s)$$
 (73d)

Thus the far field scattered from the strut can be expressed in the (R,θ,ϕ) coordinate system as

$$E_{\theta} = \hat{\theta} \cdot \hat{\alpha} E_{\alpha} + \hat{\theta} \cdot \hat{\gamma} E_{\gamma}$$
(74)

$$E_{\phi} = \hat{\phi} \cdot \hat{\alpha} E_{\alpha} + \hat{\phi} \cdot \hat{\gamma} E_{\gamma} . \qquad (75)$$

 E_{α} and E_{γ} are given by Equation (51) and (53), respectively in which

$$E_{\rm H} = E_{\rm y}^{\rm a} \sin\phi_{\rm s} \tag{76}$$

and

$$E_{\perp} = E_{y}^{a} \cos \phi_{s}$$
 (77)

as shown in Figure 7.

In addition to the coordinate rotation described above, the transformation also consists of a linear displacement of the coordinate centers along the z-axis as shown in Figure 8. Thus

 $r \approx R - z_0 \cos \theta$ in the phase expression for the far field approximation in Equations (51) and (53), and $r \approx R$ in magnitude. The quantity z_0 is the distance between the two coordinate centers, i.e., the distance from the center of the reflector aperture to the intersection of the strut on the z-axis.

C. Feed Horn Scattering Model

1

A commonly used method to analyze the feed horn blockage is to assume that the scattering from the feed aperture is the same as that from a conducting flat plate whose area is equal to the cross section of the feed. This approximation is justified in the forward region, where the feed blockage is generally most significant. Then the effect of the aperture radiation being blocked by the feed can be approximated by adding the pattern of the equivalent flat plate to that of the reflector. Since the feed aperture is relatively small compared with the antenna aperture and is located at the center, the aperture field can be assumed uniform over the flat plate. So

$$\mathbf{E}_{c}^{a} = -\hat{\mathbf{y}} \mathbf{e}^{-\mathbf{j}\mathbf{k}\mathbf{R}_{o}}$$
(78)

Figure 9. Flat plate models for the feed horn scattering.

for a feed with circular aperture of radius C (see Figure 9a), such as a circular feed horn. The far zone scattered field for small θ is given by

$$\overline{E}_{c} = -\hat{y}\frac{j}{\lambda}\frac{e^{-jkR}}{R}2\pi c^{2}\frac{J_{1}(kc\sin\theta)}{kc\sin\theta}e^{-jkR}$$
(79)

If the feed is a rectangular waveguide or horn, the scattered field is given by
$$\mathbf{E}_{R} = -\hat{\mathbf{y}} \mathbf{j} \frac{\mathbf{e}^{-\mathbf{j}\mathbf{k}R}}{\lambda R} \mathbf{ab} \begin{bmatrix} \frac{\sin(\frac{\pi a}{\lambda} \sin\theta \cos\phi)}{\frac{\pi a}{\lambda} \sin\theta \cos\phi} \end{bmatrix} \mathbf{x} \\ \frac{\sin(\frac{\pi b}{\lambda} \sin\theta \sin\phi)}{\frac{\pi b}{\lambda} \sin\theta \sin\phi} \end{bmatrix}$$
(80)

where a and b are the width and height of the flat plate model, respectively, (see Figure 9b). The scattered field components can be obtained in spherical coordinates by using Equations (39) and (40).

CHAPTER IV RESULTS AND DISCUSSION

Previous analyses [10,11,12] of feed support scattering have usually been limited to angles near the main beam region. However, the cylinder scattering approach developed in this report provides a model to treat the wide angle scattering of each strut. Therefore, in addition to the gain loss, this approach also gives the effect of strut scattering on the wide angle side lobes of the reflector.

According to the geometrical optics assumption, the forward scattering from a cylinder is identical to that from a strip with the same cross section provided that the diameter of the cylinder is large enough. Thus the field obtained from the two solutions should be nearly the same in the forward region. In Figure 10, the scattered pattern of a rectangular strip is compared with that of a vertical circular cylinder (β = 90°) with uniform incident field, whose E-field is parallel to the cylinder axis. As shown by the curves, the field near the forward axis in the H-plane (transverse to the cylinder axis) agrees within 1 dB for $ka_p = 7$, where a_p is the radius of the strut. For larger kap, the difference is even smaller since the geometrical optics approximation of the rectangular strip for the cylinder gets better. For wide angles ($\theta > 20^{\circ}$), the agreement becomes poorer, because the shadow aperture model is not valid there. Another comparison is made between the Induced Field Ratio (IFR) coefficients in the paper by Rusch et al [12], and those calculated from the equations in this report. The IFR coefficient is defined to be the ratio of the field forward scattered by the cylinder to that of a flat strip with the same physical cross section as the cylinder. Thus the IFR can be obtained from the ratio of Equation (51) with $E_{\parallel} = 1$, $\xi_{\parallel} = 0$ and $\xi_2 = L$ to Equation (80) with a = $2a_p$ and b = L. Values of the IFR obtained from this ratio are compared in Table 1 with those calculated by Rusch et al, where the IFR coefficients of [12] are taken from Figure 2 of that paper. The consistency of the two methods in the forward axis region is evident. Since the IFR as defined in [12] is restricted to forward scatter, the results of [12] cannot be used in this work, where the bistatic scattering from the cylindrical strut is required.

		Tab	le	1	
IFR	Coefficients	for	a	Circular	Cylinder
	Arc	n = 1	kas	sinß	

$x = Arg/\pi$	х	=	Arg/π
---------------	---	---	-------

		IFR (E-	IFR (H-PL	ANE)	
Arg	x	Eqs. (51),(80) Ref.[12] Eqs. (51),(80		Eqs. (51),(80)	Ref.[12]
2.54	0.81	1.34 <u>/-19.8°</u>	1.33 <u>/-20.3°</u>	0.78 <u>/22.9°</u>	0.79 <u>/21.9°</u>
4.62	1.47	1.22 <u>/-14.3°</u>	1.22 <u>/-15.0°</u>	0.85 <u>/15.7°</u>	0.85 <u>/16.4°</u>
6.74	2.15	1.16 <u>/-11.5°</u>	1.16 <u>/-12.1°</u>	0.88 <u>/12.4°</u>	0.89 <u>/11.5°</u>
7.02	2.24	1.16 <u>/-11.2°</u>	1.15 <u>/-11.7°</u>	0.89 <u>/11.5°</u>	0.90 <u>/11.0°</u>

Figure 11 shows the geometry of a practical reflector antenna system which contains three struts with diameter $2a_p = 0.37$ ", $\beta = 68^{\circ}$ and $\phi_s = 90^{\circ}$, 210°, and 330°, respectively. The diameter of the reflector aperture is 24", with F/D = 1/3. The rectangular feed horn is mounted in a circular flat plate with radius c = 1.2". The H-plane pattern of this antenna system for a frequency = 11 GHz is shown in Figure 12. The pattern for the principal total field corresponds to the principal polarization and consists of the total radiation, including that from the reflector, the direct feed pattern, the feed model scattering and the feed strut scattering. Also shown in Figure 12 is the pattern for the radiation from the reflector and the direct feed radiation, without the feed system scattering.

As seen from Figure 12, the scattering from the feed and feed struts causes little effect on the main beam. This is predictable since the radiation field from the reflector itself dominates in this region, as can be seen in Figure 13 which shows the feed scattering components separately. Beyond the main beam and the first few side lobes, the scattering from the struts and the feed dominates and substantially raises the side lobe levels for angles less than 35° . Figure 14 shows the results for the off-principal plane $\phi = -15^{\circ}$ in which the strut scattering is high for angles out to 80° . This occurs because the scattering cone (see Figure 15) of the strut at $\phi_s = 90^{\circ}$ has a maximum near $\theta = 65^{\circ}$ in the $\phi = -15^{\circ}$ plane, in addition to the maximum on the forward axis. The other two struts make less contribution to the scattered field in this plane since their scattering cones are located in different directions. Therefore the feed support scattering effect in the $\phi = -15^{\circ}$ plane comes mainly from the strut at $\phi_s = 90^{\circ}$. The scattered field patterns of the

Figure 14. Off-principal plane pattern (ϕ =-15°) of the reflector antenna.

Figure 15. Scattering cone of a cylinder.

struts and the feed horn are shown in Figure 16. Note that the total pattern is no longer symmetric with respect to the z-axis for most off-principal plane cuts as can be seen by comparing Figure 14 and Figure 17 for the $\phi = -15^{\circ}$ and $\phi = +165^{\circ}$ plane pattern. Even though the feed pattern (and thus the aperture field) is assumed to be symmetric, the strut geometry is not symmetric in this plane.

The antenna patterns in these figures correspond to the principal polarization, defined in terms of a Huygen's source. Thus the θ and ϕ components can be transformed to principal and cross polarized components by

 $E_{\text{princ}} = \sin\phi E_{\theta} + \cos\phi E_{\phi}$ (81)

 $E_{cross} = \cos\phi \ E_{\theta} - \sin\phi \ E_{\phi}$ (82)

The fields scattered from the feed and struts are shadowed by the reflector surface for much of the rear hemisphere. However, the shadow boundary for the feed support scattering is difficult to define since part of the scattered field is blocked by the reflector as θ approaches 90°, and this blocking keeps on increasing as θ passes 90° until the scattered field is totally blocked out at $\theta = \pi - \alpha$, the shadow boundary for direct feed radiation. For simplicity, the shadow boundary for the feed support and feed horn scattering is set at $\theta = 90^\circ$. This approximation should be reasonable since the scattered field from the struts is usually small at pattern angles $\theta > 90^\circ$. However, a slight discontinuity still exists in the pattern at $\theta = 90^\circ$

CHAPTER V CONCLUSIONS

In addition to the gain loss, which has been discussed in previously reported analyses of feed strut scattering referenced in Chapter IV, the cylinder scattering model developed in this report gives the effect of strut scattering on the wide angle side lobes of the reflector antenna. The scattering from the feed struts always has its greatest effect near the scattering cones for each strut. These scattering cones usually give rise to a maximum effect on the antenna sidelobes in certain off-principal plane patterns. For example, the maximum effect of one of the antenna struts in Figure 11 occurs in the off-principal plane with $\phi = -15^{\circ}$ as shown in Figures 14 and 16. When the other contributions to the radiated field are included, the analysis given here can be used to compute the complete pattern of any arbitrary plane cut for a practical reflector antenna system. The basic radiation pattern from the reflector itself is obtained by using GTD for most of the pattern and aperture integration for the main beam region.

Although only circularly symmetric reflector systems with focused feeds are discussed here, the approach can be extended to reflector antennas with arbitrary rim shapes and to off-set fed systems as well. Once the aperture field is known, the aperture integration can be carried out and the incident fields on the struts are available. Thus the scattering from each strut is readily obtained. The same idea can also be applied to the struts of rectangular or other cross sections; however, the diffraction coefficients are more difficult to calculate in these cases.

REFERENCES

- [1] S. Silver, "Microwave Antenna Theory and Design," MIT Rad. Lab. Series, Vol. 12, McGraw-Hill, 1949.
- [2] R. A. J. Ratnasiri, R. G. Kouyoumjian, and P. H. Pathak, "The Wide Angle Sidelobes of Reflector Antennas," Report 2183-1, 23 March 1970, The Ohio State University ElectroScience Laboratory, Department of Electrical Engineering; prepared under Contract AF 19(628)-5929 for Air Force Cambridge Research Laboratories. (AFCRL-69-0413) (AD 707 105).
- [3] J. B. Keller, "Geometrical Theory of Diffraction," <u>Journal of</u> the Optical Society of America, 52, February 1962, pp. 116-130.
- [4] R. G. Kouyoumjian and P. H. Pathak, "A Uniform Geometrical Theory of Diffraction for an Edge in a Perfectly Conducting Surface," Proc. IEEE, 62, November 1974, pp. 1448-1461.
- [5] R. G. Kouyoumjian, "The Geometrical Theory of Diffraction and Its Application," <u>Topics in Applied Physics</u>, Vol. 3: <u>Numerical</u> and <u>Asymptotic Techniques in Electromagnetics</u>, Edited by R. Mittra, Springer-Verlag, Berlin, Heidelberg, New Your, 1975.
- [6] T. Tuvinun, "Application of the GTD to the Analysis of Reflector Antennas," M.Sc. Thesis, The Ohio State University, Columbus, Ohio, 1975.
- [7] R. F. Harrington, <u>Time-Harmonic Electromagnetic Fields</u>, The McGraw-Hill Co., 1961, p. 116.
- [8] C. E. Ryan, Jr. and R. C. Rudduck, "Radiation Patterns of Rectangular Waveguides," IEEE Trans. Antennas and Propagation Comm., AP-16, July 1968, pp. 488-489.
- [9] G. L. James and V. Kerdemelidis, "Reflector Antenna Radiation Pattern Analysis by Equivalent Edge Currents," IEEE Trans., Vol. AP-21, No. 1, January 1973, pp. 19-24.
- [10] C. L. Gray, "Estimating the Effect of Feed Support Member Blocking on Antenna Gain and Side Lobe Level," Microwave Journal, Vol. 7, No. 3, March 1964, pp. 88-91.

- [11] J. Ruze, "Feed Support Blockage Loss in Parabolic Antennas," Microwave Journal, Vol. 11, No. 12, 1968, pp. 76-80.
- [12] W. V. T. Rusch et al, "Forward Scattering from Square Cylinders in the Resonance Region with Application to Aperture Blockage," IEEE Trans., Vol. AP-24, No. 2, March 1976, pp. 182-189.
- [13] R. G. Kouyoumjian, R. J. Luebbers, and R. C. Rudduck, "A GTD Analysis of the LAMPS Antenna Blocked by a Mast," Report 4508-3, The Ohio State University ElectroScience Laboratory, Department of Electrical Engineering; prepared under Contract NO0123-76-C-1371 for Naval Regional Procurement Office, Long Beach, California 90822. 31 March 1977.

PART II - USER'S MANUAL FOR COMPUTER PROGRAM "CIRCULAR REFLECTOR ANTENNA WITH FEED AND STRUT SCATTER" (OSUPATT)

A. Description of Computer Program

OSUPATT is a computer program which calculates the total field radiated by a circularly symmetric parabolic reflector including effects of scattering by a number of circularly cylindrical struts and blockage by the feed horn. The user is free to specify the geometry of the reflector, the size of the feed horn cross-section, both the E- and H-planes of the feed pattern, and the size and orientation of the struts. This brief user's document will indicate the methods used and the limitations of the program, and required formats for input data; details of the theory are given in Part I of this report.

The basic geometry used in the program is shown in Figure 1.

Figure 1. Geometry of Reflector.

The reflector points in the +z direction with the feed located at the focus of the parabola. The polarization of the feed is linear in the +y direction; thus E_{ϕ} is the principal polarization in the $\phi = 0$ plane and E_{θ} is the principal polarization in the $\phi = 90^{\circ}$ plane. The E-plane of the feed horn and the reflector is thus the yz plane and the H-plane is the xz plane. The struts must be oriented so that each strut projects through the z axis. At this time the principal plane feed patterns must be symmetric. These patterns are specified by listing field values for discrete values of ψ , the angle away from the -z axis (see Figure 2).

The following sections describe specific aspects of the problem.

DESCRIPTION OF INPUT PATTERN

As mentioned before, the feed pattern is described in its principal planes by supplying tabulated field values. The feed pattern is approximated by a piecewise linear function. A provision has been added so that the assumed field values past the last tabulated value will be 0. To be safe, one should be sure to specify the pattern explicitly from $\psi = 0$ to 180° .

Between principal planes, the field values are simply interpolated from the values in the principal planes. The E-plane values are weighted by $\sin^2\phi$ and the H-plane value by $\cos^2\phi$.

REFLECTOR PATTERN CALCULATION

The reflector's secondary pattern is calculated by two different methods over two different ranges of polar angle θ . For small θ ($\frac{kD}{2} \sin \theta < 24$), the aperture fields are integrated as specified by physical optics. Due to the symmetry of this problem, the integration is still one dimensional and thus relatively large apertures can be used without prohibitive computer costs. For θ angles past the limit, the Geometrical Theory of Diffraction (GTD) is used. The fields calculated by the program are all normalized by the peak field of the reflector by itself. Any direct field from the feed is also included in the total field.

FEED BLOCKAGE

The effect of blockage by a feed cross-section is very simply modeled in the forward direction by Kirchkoff's method. When a rectangular feed is specified, the scattered pattern has the familiar $\sin(x)/x$ shaped pattern in each principal direction while for a circular feed, the pattern has $J_1(x)/x$ variation.

STRUT BLOCKAGE

Scattering by circular cylindrical struts is calculated by first finding the equivalent currents on segments of the struts and then integrating the reradiated fields which are produced by these currents. The equivalent currents are calculated from the diffraction coefficients of the cylindrical strut cross-section and the incident aperture field. The diffraction coefficients are a summation of eigenmodes for the circular cylinder.

LIMITATIONS

Due to limitations in theory or the arrangement of the computer program, the following limits should be observed.

STRUTS

- STRUT must not extend past z axis, i.e., RLO2 must not exceed $\frac{RS22}{Sin\beta}$. The case of a strut passing through the axis can be done by using two separate struts that meet at the axis.
- STRUT diameter should not exceed four wavelengths. Maximum number of struts is 4. Beta should be in the range 0° to 90° .

For best results, strut angle BETA should be large enough so that sampling points are less

than a 1/4 wavelength apart, i.e., sin $\beta > \frac{2D/\lambda}{NAP}$.

FEED PATTERN

The maximum number of points to fit the pattern (N2) is 50.

REFLECTOR

Maximum diameter is 100 wavelengths.

INPUT FORMAT

GENERAL COMMENTS

All distance parameters required for input are in inches; all angles should be specified in degrees.

All decimal numbers may be anywhere within their specified field; all integers must be right adjusted. The decimal point must explicitly appear for all decimal numbers.

Comments may be typed on any card to the right of specified fields.

REFLECTOR GEOMETRY CARD

PURPOSE: To enter geometry of reflector

PARAMETERS: (I integer, F decimal number)

- D2 (F) -diameter of reflector
- FREQ (F) frequency in MHZ
- FDR (F) ratio of focal distance f to diameter D
- NAP (I) number of aperture integration points. If this parameter is less than 50, or if it is omitted, 50 will be used. If over 99 is used, 99 will be used.

NOTES:

The NAP parameter allows an increase of integration points over both the aperture and the strut for large sized reflectors, while allowing a smaller number of points and smaller computer costs for smaller problems. The value 99 may always be used if the computer cost is not objectionable.

FEED PATTERN CARD

PURPOSE: To provide data on number of points used to model primary feed pattern.

PARAMETERS: (I integer, F decimal number)

N2 (I) - number of data points used to determine pattern in piecewise linear function.

NOTES:

This card determines how many cards of the next format will be read.

FEED PATTERN DATA CARDS

PURPOSE: To provide tabulated values of primary pattern.

CARD:

[10	20		
(PSI		FIELD		
		The	numbers alon	g the top refer to the last column in each field.	

PARAMETERS: (I integer, F decimal number)

PSI (F) : Angle from axis of horn (-z axis of reflector, see figure 2) where tabulated value of field is to be supplied.

FIELD (F) : Field value of horn at that PSI angle.

NOTES:

• There should be 2 groups of cards of this format.

N2 {Tabulated values to be interpolated by piececards {wise linear function for E plane

N2 Tabulated values to be interpolated by piececards wise linear function for H plane

- For PSI larger than the last given value of PSI, a zero is assumed for the field value
- The maximum value of psi should subtend the edge of the reflector or erroneous results will occur.

NUMBER OF STRUT PROBLEMS CARD

PURPOSE: To indicate to the program how many problems will be done with the same reflector and feed pattern (above cards) but with different blockage parameters (below cards)

CARD:

PARAMETERS: (I integer, F decimal number)

NCASE (I) - number of different strut problems to be done with same reflector and feed pattern

NOTES:

- If NCASE is not 1, the entire group of cards to be described below must be repeated NCASE times
- If the NCASE field is left blank, NCASE will be assigned 1. However, this card must always be present even if it is blank.

FEED SCATTERING MODEL CARD

PURPOSE: To describe size of feed aperture for blockage purposes.

PARAMETERS: (I integer, F decimal number)

KG (I) - Code variable that indicates shape of feed aperture. The values are: 1 - feed is circular 2 - feed is rectangular
DIM (1) (F) - These parameters are dimensions DIM (2) (F) of feed (see figure 3) If KG = 1, DIM (1) is radius DIM (2) is ignored If KG = 2, DIM (1) is length of feed in x direction DIM (2) is length of feed in y direction

ali.

Figure 3. Parameters on Feed Scattering Model Card.

Figure 4. Strut Location Parameters.

COMMON STRUT DATA CARD

PURPOSE: To provide data that is common to all struts.

CARD:

NOTES:

This card causes NS cards of the next format to be read.

INDIVIDUAL STRUT DATA CARDS

PURPOSE: To describe data that may be different for each strut.

CARD:

	10	20	30	40	
RS22		2522	RL02	PHIS2	
	The	numbers a	long the to	op refer to	the last column in each field.

PARAMETERS: (I integer, F decimal number)

- RS22 (F) Radial distance of one end of the strut from z axis (see figure 4)
- ZS22 (F) z coordinate of this same end
- RL02 (F) length of strut

PHIS2 (F) - ϕ (phi) angle of projection of strut in the xy plane

NOTES:

- For good accuracy there is a relationship between NAP, diameter of reflector in wave lengths, and angle BETA. For a given NAP, and diameter, the more nearly parallel the struts are to the z axis, the farther apart are integration points along the strut. This is the reason for the size restriction discussed under "limitations."
- Due to the analytical modeling done, any part of a strut whose projection falls outside the aperture will be ignored.
- There must be NS of these cards.

PHI CONTROL CARD

PURPOSE: To allow the user to specify which pattern cuts he wants.

CARD:

	10	20	30	40	50	60	70	80
NP		ANP (1)	ANP(2)	ANP(3)				
	The	numbers al	ong the top	p refer to	the last o	column in ea	ich field.	

PARAMETERS: (I integer, F decimal number)

NP (I) - Absolute value is the number of phi cuts. If NP is positive, cuts will be evenly spaced. If NP is negative, cuts can be arbitrarily spaced.

ANP(1) (F)	- Information on phi cuts: if evenly
ANP (2)	spaced case, ANP (1) is starting
	phi value and ANP (2) is increment
:	between successive phi values. If
ANP (7)	arbitrary spaced case, the first
	NP values of ANP are the phi
	values.

NOTES:

- No comments are permitted on this one card since all possible fields are used.
- If arbitrary spaced phi's are used, limit is
 7 different values. This limitation does not apply to evenly spaced cases.

THETA CONTROL CARD

PURPOSE: To set spacing and limits of field values within a phi cut.

CARD:

į.

1	10	20	30	
NTHE	TA	THONE	DTHETA	
	The	numburg a	lang the ter	
	ine	numbers a	i i i	Ferer 13 the last column in each field.

PARAMETERS: (I integer, F decimal number) NTHETA (I) - number of theta values THONE (F) - first theta value DTHETA (F) - increment in theta values

NOTES:

THONE should be assigned 0 to obtain proper normalization of secondary pattern.

PLOTTING CONTROL CARDS

A special group of cards, with a different mode of operation are used to control the plotting of data. This input, consisting of the AXIS, TITLE, CURVE, and NEXTPHI cards, can be rearranged to provide a wide variety of plotting options. Much of the data read in by these cards has an assumed default value. If the user does not provide some of this data, the program will assume a useful value. Hence, the user has the option of using standard size plots by entering only several numbers, or else, choosing his own plot format by entering additional data. Once the user has entered this data, it becomes the new assumed values for the rest of the program and this data does not need to be entered a second time unless it is desired to be changed.

AXIS CARD

PURPOSE: To cause the plotter to draw a new coordinate axis for the patterns to be subsequently plotted.

CARD:

	10	20	30	4	10	50	60	
AXIS	1	XLENGTH	YLENGTH	VLOW		VHI	PHILAB	
	The							
	The	numbers a		p refer		ne last	Column in	each field.

PARAMETERS: (I integer, F decimal number)

AXIS 1	:	The word AXIS in columns 1 thru 4 and the number 1 in column 10 signifies which type of plotting card has been read.
XLENGTH (F)	:	length of the horizontal axis (theta angle) in inches
YLENGTH (F)	:	length of the vertical axis (field pattern) in inches
VLOW (F)	:	value of the field pattern in db to labeled on lower point of vertical axis.

AXIS CARD (cont.)

- PHILAB (F): decimal code that controls plotting of the phi values. The values are:
 - 1 = phi value for each individual curve will be plotted. Use this option when plotting different phi cuts on the same axis.
 - 0 = All the curves on a single axis are for the same phi cut and phi will be labeled only once for the graph.

NOTES:

• The default values for this card are:

XLENGTH = 9.VLOW = -72.YLENGTH = 6.VHI = 0.PHILAB = 0.

Thus the standard default plot has an axis 6" x 9" with the 6" vertical scale ranging from 0 down to -72 db. Only one phi cut angle label is provided.

 Labels on graphs make complete graph larger than just dimension of coordinate system.

CURVE CARD

PURPOSE: To cause the computer to plot a selected component of the most recently computed phi cut and label it.

CARD:

1	
COMP	
numbers alo	ng the top refer to the last column in each field.
	COMP numbers alo

PARAMETERS: (I integer, F decimal number)

- CURVE 2: The word CURVE in columns 1 thru 5 and the number 2 in column 10 signify which type of plotting card has been read.
- COMP (I) : Component of field that is to be plotted. These component numbers are the same order as the magnitude in the output printout. The values are: 1 = for strut scattering, principal component 2 = for strut scattering, cross-polarized component 3 = for feed scattering, principal component
 - 4 = for feed scattering, cross-polarized component

CURVE CARD (cont.)

- 7 = for total field, principal component
- 8 = for total field, cross-polarized component

NOTES:

 Any number of curves from the same phi cut can be plotted in the same graph by successive curve cards.

- Curves for strut scattering and feed scattering will be plotted only as far as $\theta \approx 90^{\circ}$ even if the maximum value of θ is larger. This is because these quantities are only calculated in this range. For $\theta > 90^{\circ}$, the reflector and direct feed and total fields are the same curves.
- Sections of curves that would go beneath the minimum plotted values VLOwspecified on the AXIS card are drawn as straight lines at the bottom of the graph. This situation occurs for very deep nulls and for cross-polarized curves.

AXIS card should precede the first CURVE card.

TITLE CARDS

PURPOSE: These two cards cause a user supplied title to be drawn beneath the coordinate axis.

PARAMETERS: (I integer, F decimal number)

TITLE	4 :	The word TITLE in columns 1 thru 5 and the number 4 in column 10 signify that this and the next card provide title information.
NC (I)	:	The number of characters in the title which will be given on 2nd card
SECOND ca	ard :	title: the first NC characters in this card will appear centered beneath the coordinate axis.

NOTES:

- If NC is specified as 80 the entire second card will be the plotted title. The variable has no default value.
- The size and shape of the reflector and the frequency are automatically plotted in the upper right corner by the AXIS card. The TITLE cards are useful to record the struts and feed details on the plot.

NEXTPHI CARD

PURPOSE: This card causes the next phi cut to be calculated after processing plot cards.

CARD:

PARAMETERS: (I integer, F decimal number)

NEXTPHI 3 : The word NEXTPHI in columns 1 thru 7 and the number 3 in column 10 signify what type of plot card this is. There are no other parameters on this card.
NEXTPHI CARD (cont.)

NOTES:

- This card is necessary to specify that the computer should calculate the next phi cut it has been previously given and not expect another plot command to plot a curve for the present phi cut.
- There should be as many NEXTPHI cards as there are phi cuts. Even if no plotting is desired the NEXTPHI card must appear. The program has been written so that if only NEXTPHI plot cards are used (no plotting is desired) then no calls to plot routines will be executed and no output plot file need be provided. The program is also written so that if plotting is never desired, only 1 card need be removed from the main program to eliminate reading NEXTPHI cards.
- After reading a NEXTPHI card, a new AXIS card needs to be read only if a new axis is desired. In this way, different phi cuts can be plotted on the same axis.

B. Example Computer Run

The input data for an example computer run are given in Table I. This example consists of three cases; the printed output data for the first case is given in Table II and the plotted output is given in Figures 5, 6 and 7. This example corresponds to a 24" diameter reflector with F/D = 1/3. For the first use there are three struts with diameter $2a_p=0.37$ ", $\beta=68^{\circ}$ and $\phi_S=90^{\circ}$, 210° , 330° , respectively. A circular flat plate with radius c=1.2" is used to model the feed. The pattern plane is $\phi=-15^{\circ}$ and the frequency is 11 GHz.

The printout of the first case, given in Table II, first echoes the input data, and then prints an interpolated input pattern that has been deduced from the arbitrarily spaced primary feed pattern data points. The printout of the coefficients of the scattered wave was used in the development of the program and can usually be ignored by the user. The bulk of the printout is the different contributions to the secondary field of the reflector. In the sample a theta spacing of 1/4° was used so that the corresponding plot would have very smooth curves; a wider spacing can be used with increased roughness of plotted curves. The principal and cross-polarized components of each contribution are referenced to the Huygen polarization reference. After 90°, only the reflector and direct feed, and total fields are computed and listed. The printout for the rest of the three cases is similar and has been omitted.

Three examples of the computer plotting subroutines are shown in Figures 5, 6 and 7. The example in Figure 5 demonstrates the capability to plot the individual scattered field components: the basic contribution from the reflector and direct feed radiation, the strut scattering, the feed horn model scattering, and the total field which includes the various scattered field components. In this example only the principal polarization components are shown. The antenna geometry, pattern plane, and frequency correspond to the example computer run listed above. In this plot, the standard size and scale have been used.

The NEXTPHI 3 card causes more computations to be performed. Since only one value of phi has been specified above and since NCASE was read as 3 the next card is read as specifying a new strut and blockage problem with the same reflector geometry and primary feed. A new strut configuration with a single strut at phi=90° has been set. The second case, Figure 6 shows the capability to plot different pattern plane cuts: ϕ =-15°, 0°, 90° are shown. In this example only the principally polarized component of the scattered field from the struts are shown. Again the antenna geometry and frequency corresponds to the above computer run. Each NEXTPHI 3 card causes the phi values defined on the phi value card to be executed.

The capability to calculate cross-polarized components is shown in Figure 7 where only the total field is shown in both principal and cross polarizations. The reflector geometry, the direct feed pattern and the frequency are the same as above. However, instead of tripod struts, there is only one strut located at $\phi_s=20^\circ$. The strut diameter is 2.0 inches (1.86 λ) and $\beta=68^\circ$. The strut length is the same as above. The strut angle $\phi_s=20^\circ$ and the large strut diameter was chosen to demonstrate a large cross polarized component of the strut scatter. This cross polarization effect dominates for $\phi>45^\circ$ in the $\phi=120^\circ$ plane which is near the scattering cone of the strut.

p

TABLE I - Continued

Feed Scattering Model Card Common Strut Data Card Individual Strut Data Card Phi Control Card Theta Control Card

Plotting Control Cards

The I

.

TABLE II COMPUTER OUTPUT LISTING

CIRCULAR RETLECT R ANTENNA FAR FICLD PATTERN WITH SCATTERING FROM FEED STRUTS AND FEED

INCHES RETERS WAVELENSTH				31	S			41	14	and a second sec	AI	31	For Law		E	Com	P	Y
LAMDA = 1.074 0.027	FEC.0 =																	
ER = 24.000 0.610 22.352	10 DIAMETLE RATIC 30.000 MIZ URE POINTS = 50	FLED VALUES = 14	R FEED INPUT	-	1.00000	0.11150	0.452.20	0.14130	0-09170	0.02114	R FEED INPUT		1.00000	0-44190	0.37720	0.18660	0-10521	0.05475
ANTENIA L'OMETRY APERTURE DIAMETI	FREQUENCY = 1100 FREQUENCY = 1100 NUMBER UF APERT	MIMAER CF INPUT	PIECEWISE LINEA	154	0.0	10.00	0.05	00.00	120.00	170.00	PIECENISE LINEA	154	0.0	20.00	20.03	10.00	00.00	132.00

71

	NR	F COPY	1					INCIPS ALTERS MAVILENGTH
BES	AVAILAD	ine int				STRUTS = 3		1 646714
						NUMBER OF		2 S -0-1251 -0-725
Енсь	000 000 000 000 000 000 000 000	10111111111111111111111111111111111111				FGREE S		RHUS 10-800 10-274 10-058
Ξ		0.1517	0.050 0.051 0.051 0.051 0.0101 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200000000		ts us Eructh	KTA = 69.0 D		DIGHEES
+ t DB	4	11111111111111111111111111111111111111	6 4 4 4 8 00 8 40 0 6 4 4 4 8 00 8 40 0 6 4 4 4 5 8 5 4 40 0 7 4 4 5 8 5 4 4 0 0 7 4 4 5 8 5 4 4 6 0 7 4 4 5 8 5 4 4 6 0 7 4 4 5 8 5 4 6 0 7 4 4 5 8 5 8 6 6 6 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8		INCH MF TE F	HE S ERS TI ENGTH		PHIS = 90.0
-		*:: *:: *:: *:: *:: *:: *:: *::	1222 2222 2222 2222 2222 2222 2222 222		Chace ER = 2.400 2.235	= 0.370 INC	UMHER 1	
LEE MATTERS	00000000000000000000000000000000000000			FEED SCATTERING MODEL	CIRCULAR FEED INCO	HEED STRUTS DIAMETER	STRUT M	

CTH CTH	245 INCHES 245 METERS 345 MAVILENGTH	GTH INCHES 295 NETERS 845 MAVELENGTH	
LEN	11.	11. 10.	
15	-0. 151 -0. 022 -0. 793	2 S -0. 951 -0. 173 -0. 173	
RHOS	10.800 0.274 10.058	RHOS 10.900 0.274	
PHIS = 210. 0 DECREES		PILIS =330.0 DEGREES	
STRUT NUMBER 2		STRUT NUMBER 3	

ARG= 1.0037

CREFFICIENTS IN THE SCATTERED WAVE FROM A CYLINDER M AMEMI

(W) WA

0 - 976 - 00	-0-5896-01	-0.1 22E+00	0-2156+00
	1 1 2 0 1 0 0	00+3501.0-	-0.3286.00
10+ 20+ 20 11			LO JOJA OT
20-3465-02	0.7011-01	20-101-02	
0 11 HE -04	10- 16 m -0	-0-121-04	-0.3631-02
		00-101 4 0-	-0-781 F-04
-0.5B (E-UB	- 1001 - O	00 101 0.0	
1- 1066 0	0.9955-06	11-101-0-	
1 75 FE -1 A	0.8516-08	-0.7326-16	-0-356E-0E
	0 5176-10	-0-1612-0-	-0.5195-10
0-100 ·· 0		-0 5 54 E - 3 5	-0.235E-12
17-37cc.0.	51_1007-0		1-3069 0-
-0.685E-30	0.82Ht-15	-0.08/E-30	
45-35-0	11-162-0	0-54.1-35	1-4662-0-
0.787F-40	0-5366-20	-0 -2 88E -40	-0.5365-20

BEST AVAILABLE COPY

DFGR 1-15.00 [Ped

SCAT CRC 25 S IRU 1 ELELO 016 * AL FX AXI 141

-155

C111

ILIAL DEG

10

HI CROSS

L.DIAFC.I

010

D. B. DEC

ILED SCAL

111

Si te

5 DBUILD PEINC 11+11 DE \$\$\$\$\$\$\$\$\$\$2038221412.0222732828283420 \$\$\$\$\$\$\$\$\$2038221412.0222732828283420 \$\$\$\$\$\$ 1.15 • 8 • FR9 8225535557552555555564873588555 53555555878355999999767675

EST AVAILABLE O

.

Figure 6.

76

C. Appendix - Computer Program Listing

The listing for the computer program described in this report is given below:

"Circular Reflector Antenna with Feed and Strut Scatter" (OSUPATT)

		nsu
****N?	NUMBER OF LINFAR FEED COEFFICIENTS	05U 05U
DS	SOFT DIFFRACTION COEFFICIENT	05U 05U
н	HARD DIFFRACTION COEFFICIENT	05U 05U
RL . WA . 11	LOP : REFER TO SUBROUTINE GTD	050
THENCE	ON 511001 H11001 7811001 - 7811001 DI 61501-DI H150	OSU OSU
F(100)	, DF(100), TP(100), TM(100), PXE(50), PXH(50), FFE(50	1. FFH(501. 05U
BJ(25)	J.CP.CP1.CP2.DS1.DS2.DH1.DH2.FP1.EP2.ET1.FT2.F	FT, EFP, EF, OSU
P4,05,1	DH, DSC, DHC, A1, A2, A3, B1, B2, B3, FY, ET, FP, CP3, AM(25)	HNK (25), OSU
FRY, EF	BT, EFRP, ESTT, ESTP, FPL, HPL	USU OSU
COMMON	X ZSTRZJ.CPO.AM.BM.PI.RK.MX.DEL.A.TF.DF.BETN	050
ORMAT	(3F10.4,15)	TERM UTTH OSU
SCATTER	ING FROM FEED STRUTS AND FEED .//IS, ANTENNA GE	OMETRY ,// OSU
10, AP	ERTURE DIAMETER = , F8.3, T50, LAMDA = , F8.3, T7 3. 157, F8.3, T75, METERS , /T29, F8.3, T75, WAVELENG	5, INCHES, /OSU
FOCAL	DISTANCE TO DIAMETER RATIO = + F8.3, //T10, FREQU	IENCY = , OSU
FORMAT	T23. STRUT SCAT. T50. FEED SCAT. T72. REF	L+DIRECT FEEDSU
· . T11	0, "INTAL FIFLD"/ 9X,4(6X, "PRINC",11X, "CROSS",2	2X)/ 0SU
94,01	4,, 08-, 3,, 066 -)	050
READ (5	,1, END=101) D2, FREQ, FDR, NAP	050
F INAP	LT.50) NAP=50	050
P1=3.14	1592653	nsu
RK=2. *P	I	050
1 A X = 0 .	• /	050
RLAM=300 FM=0.02	0.ZFREQ 54	050
RLAMI = RI	LAM/FM	050
)=01/RL	м А М	ns u
RTIE L	5,2) D2,RLAM1,D1,RLAM,D,FDR,FREQ,NAP	050
=FDR +D		nsu
1 = NAP + DEL = A/N.	AP	050
B=F-A+A.	/(4.*F)	nsu nsu
PO=CEX	P(-J*RK*RO)	USU
P=J+CP(P4=P1+	U 4*CFXP(J*(P1/4RK*RO))	050
AL PEATA	N2(A,B)	nsu osu
51NA=51	N(ALP)	OSU
05A=C0	S(ALP)	050
		050
	A LINEAD ECCO COEEICICNYS +	050

C 5 C

BEST AVAILABLE COPY

ç	******	050	640
	READ (5,10) N2	nsu	660
10	WRITE $(6+11)$ N2	050	680
11	CALL LNED(DLF, PXF, FFE, N2)	nsu	700
	CALL LNFD(DLH,PXH,FFH,N2) N3=N2-1	050	120
c	*************	050	730
C	* FEED PATTERN * ******	050	750
č	WRITE (6.13)	050	770
13	FORMAT (//T10, 'FED PATTERN',//T23, 'PSI', T37, 'FE', T51, 'FEDB', T66,	nsu nsu	790
	PSI=0.	nsu	810
	CALL LSUM(PSI, PXF, FFF, DLE, N3, FE)	nsu	830
	$IF (FE \cdot EQ \cdot 0 \cdot) FE UB = -500 \cdot$	050	850
	IF (FH.EQ.O.) FHUR=-500. IF (FE.NE.O.) FEUB=20.*ALOG10(ABS(FE))	050	870
	IF (FH.NE.O.) FHDB=20.*ALDG10(ABS(FH)) WRITE (6.16) PSI.FE.FEDB.FH.FHDB	050	880 890
16	FORMAT (118,F9.2,4F15.4) PS1=PS1+5.	050	900
17	CONTINUE	050	920
č	**************************************	nsu osu	940
č	* UTFRACTION COEFFICIENTS FOR REAR AND FIELD *	0SU 0SU	960
L	GAM=ATAN2(2.*F.A)	050	980
	CAMMA=GAM+180./P1 PHIP=180GAMMA-ALPHA	050	1000
	S=100.*R0**2 SL=R0	050	1020
	1 L OP = 4 WA=0.0	050	1030
	PH180=360GAMMA CALL GTD(PH180.PHIP.90S.RD.WA.SL.AS.ILOP.DS.DH)	050	1050
	AN I=180ALPHA AN 2=180GAMMA	0SU 0SU	1070
ç	************	nsu	1090
č	* FEED SCATTERING MODEL *	OSU OSU	1110
č		050	1130
	IF (NGASE .LT. 1) NCASE=1	nsu	1150
	WRITE (6,20)	CSU	1170
20	READ(5,21) KG, (DIM(1), $1=1$, KG)	OSU	1190
21	ECRMAT (110,2+10.5) DC1=D14(1)*+H	nsu	1210
	DC=DC1/RLAM C=DC/2.	050	1230
	IF (KG.EQ.1) GO TO 23 AX=DC	050	1240
	BY1=DIM(2)*FM BY=BY1/PLAM	050	1260
	CPP=AX*RY*CP*CFXP(-J*RK*R) WRITE (6.22) DIM(1).DIM(2).DC1.BY1.AX.BY	nsu	1280
25	FORMAT (T15, "RECTANGULAR FEED BLOCKAGE", //T30, WIDTH =".FR.3, T55, 1'HLIGHT = '.FR.3, T50, ' INCHES', /T37, FR.3, T63, FR.3, T80, ' METLRS', /	050	1300
		110	
	0) 7101	VY	
	- MANARIE CO	1 .1	
	DEGLAVAILAUL		
	PEDI		

	\$137,F8.3,T63,F8.3,180,* WAVELENGTH*,//) G0 T0 25	nsu	1320
23	WRITE (6,24) DIM(1),0C1.0C FORMA1 (115, CIRCULAR FEED BLOCKAGE',//IZ6, DIAMETER = ,FR.3,T55,	nsu	1340
25	<pre>> INCHES',/136,F8.3,155,* METEKS',/136,F8.3,155,* WAVELENGTH',//) CPP=2.*PI*C**2*CEXP(-J*RK*B)*CP CONTINUE</pre>	050	1370
ĉ	****************	nsu nsu	1390
C	* FEED STRUT LOCATIONS *	050	1410
21	READ (5,31) DP2, RETA, NS		1440
5.	DP1=DP2+FM OP=DP1/RLAM	050	1460
	AP=DP/2. WRITE (6,32) DP2, BETA, NS, DP1, DP	020	1490
32	\$'BETA = ', F6.1, ' DEGREES', T90, 'NUMBER OF STRUTS = ', 12,/T34,F8.3, \$'BETA = ', F6.1, ' DEGREES', T90, 'NUMBER OF STRUTS = ', 12,/T34,F8.3,	050	1510
	DO 35 I=1,NS READ (5,33) RS22,ZS22,RL02,PHIS2	050	1530
33	FORMAT (4F10.5) RS21=RS22*FM	050	1550
	2521=252200FM RL01=RL02+FM RS2171=RS217RLAM	050	1580
	Z S 2 (I) = Z S 2] / RL AM RL 0 (I) = RL 0 1 / RL AM	05U	1600
24	WRITE (6,34) 1,PHIS2,RS22,ZS22,RL02,RS21,ZS21,RL01,RS2(1),ZS2(1), #RL0(1)	050	1620
34	s'RHOS', T93, 'ZS', T103, 'LENGTH', //T73, 3F12.3, T115, 'INCHES', /T73, 'SF12.3, T115, 'MAYELENGTH', //T		1650
35	PHIS(I)=PHIS2*PI/180. CONTINUE	050	1670 1680
CCC		050	1700
C	* UUEFFICIENTS OF CTEINDER SCATTENING * *********	nsu	1720
	BEIN=BEIA+PI/180. SINB=SIN(BEIN)	nsu osu	1740
4.1	ARG=RK*AP*SINB WRITE (6,41) ARG FORMAT (//TIO ARGCT FR 6,77)	050	1770
-1	MX=ARG+11 D0 43 M=1.MX	050	1790
	L=M-1 CALL BESJ (ARG.L.BSJ.0.001,IFR)	050	1810
	$CALL BESY(ARG,L,NN,IFR) \\ BJ(M)=BSJ \\ UNK(M)=BSJ$	050	1840
	AM(M) = -BJ(M)/HNK(M) IF (M.GT.1) GC TO 42	0SU 0SU	1860 1870
	AM(1) = 0.5 * AM(1) G(1, T, 0, 43)	050	1880
42	В JP=В J L J = L L / A K G J # B J L M J H K P = H N K (L) = (L / A K G) # H N K (M) В M (M) = = B. I P / H P	OSU	1910
	IF (ARG.GT.1.) GO TO 43 RRA=RFAL(AM(M))/RFAL(AM(1))	050	1930 1940
	IF $(RRA.GT.1.0E-R)$ GO TO 43 RIA=AIMAG(AM(M))/AIMAG(AM(I))	050	1950
47	GO TO 44 CONTINUE	nsu	1980

BEST AVAILABLE COPY

44	MX=M	OSU 2000
	BM(1) = -0.5 * BJ(2) / HNK(2)	050 2010
	WRITE (6,45)	U2050 U2050
45	FORMATUZIS, COEFFICIENTS OF THE SCATTERED WAVE FROM A CYLINDER ,	0511 2030
	\$27120, 'M', 135, 'AM(M)', 165, 'BM(M)', 27)	050 2040
4.4.	$\begin{array}{c} WK J L C L O I O I O I I M I A M M I I M M M I I M M I M M I M M I M M I M M I M M I M M M I M M M I M M M I M M M I M M M M I M M M M I M M M M M M M M$	050 2050
20	FORMAT 111011314E13.37	0511 2020
č		0511 2080
C	READ(5,53) NP.(ANP(K),K=1,7)	050 2090
53	FORMAT (110,7F10.5)	OSU 2100
	READ(5.53) NTHETA, THONE, DTHETA	050 2110
	IEVEN=1	050 2120
	IF (NP .LT. 0) IEVEN=0	nsu 2130
	$NP = [A \oplus S(NP)]$	050 2140
		050 2150
	1F(1FVEN, EQ. 1) PHI=ANP(1)+(K-1)+ANP(2)	050 2170
	WRITE (6.55) PHI	050 2180
55	FORMAT (//,T10, PHI= +,F6.2, * DEGREES +,//)	050 2190
	PHI=PHI*PI/180.	050 2200
	SINPESIN(PHI)	050 2210
		050 2220
	SIN2P=SIN(2,*PHI)	0511 2240
	SIN4P = SIN(4.*PHI)	rsu 2250
	$\bar{C}OS4P=\bar{C}OS(4.*PHI)$	050 2260
	FAL=SQRT(1(SINA*SINP)**2)	NSU 2270
	FIA=COSA+SINP/FAL	0511 2280
C	+PA=CUSP/FAC	0511 2200
č	*********	0511 2310
č	* APERTURE FIELDS *	051 2320
č	********	OSU 2330
С		OSU 2340
	RHD=0.	OSU 2350
	DO = 61 1=1, M1	050 2360
	$BD = F - RHU \times (RHU / (4 + T))$	050 2370
	SI = ATAN2 (RHO, BB)	0511 2390
	PSI=SI + 1 + 0 - PI	OSU 2400
	coss=cos(si)	050 2410
	SINS=SIN(SI)	050 2420
	BET(1) = SQRT((1 - (SINS*SINP)**2))	nsu 2430
		0511 2440
	CALL I SUPPOST PYH. FEH. DI H. NJ. FHI	050 2450
	CALL LSUM(PSI.PXF.FFF.OLF.N3.FF)	INSU 2470
	CALL LSUM(PSI,PXH,FFH,DLH,N3,FH)	OSU 2480
	TF(1) = (FC + FH) + F/(2 + RP)	NSU 2490
	(F(1)=(FF-FH)*F/(2.*RP)	nsu 2500
4.1	CONTINUE	050 2510
01	TS=TE(MT)	0511 2530
	DL = DF(MI)	DSU 2540
	BP=TS-DL*COS2P	NSU 2550
	WRITE (6,4)	050 2560
ç		0511 2570
č		0511 2500
č		ISU 2600
č		DSU 2610
-	00 90 N=1.NTHETA	050 2620
	THETA=THOME + (N-1)+DTHETA	050 2630
	THE=THETA*PI/180.	050 2640
		050 2650
		0511 2620

X=RK+A+SINT JF (THETA.LT.90.) GO 10 62 IF (X.LT.2.5) GO 10 76 GO 10 70 IF (X.GT.24.) GO 10 70 05U 2680 05U 2690 05U 2700 05U 2710 05U 2710 05U 2710 05U 2710 05U 2770 05U 2790 05U 2790 05U 300 05U 3 RH0=0. D0 65 I=1.MI xp=Rk*RH0*SINI IF (XP.6T.4.0E-2) GO TO 63 y=(xp*xp)/4. BJ0=1.-Y+Y*Y/4. BJ2=Y/2. BJ4=0. GO TO 64 CALL BESJ(XP,0.BJ0.0.001.IER1) CALL BESJ(XP,2.BJ2.0.001.IER1) CALL BESJ(XP,4.BJ4.0.001.IER1) H(1)=-(SIN2P*IF(I)*BJ2*0.5*SIN4P*DF(I)*BJ4)*RH0*TM(I)/(2.*BET(I)) G(I)=-(TF(I)*BJ0+0F(I)*BJ2*COS2P)*RH0 RH0=RH0+DFL CONTINUE CALL QSF(DEL.H.7X.MI) CALL QSF(DEL.H.7X.MI) CALL QSF(DEL.H.7X.MI) CALL QSF(DEL.G.2Y.MI) Ex=CP*Rk*COSI*ZX(MI) Ey=C=*Rk*COSI*ZX(MI) Ey=C=*Rk*COSI*ZX(MI) Ey=C=*SINP*EY*COSP EI=FX*COSI*COSPEY*COST*SINP-EZ*SINT IF (THETA.NE.0.0) GO TO 77 MAX=20.*ALGGIC(CABS(EY)) WRITE (6.66) MAX FORMAT (//115,*AXIAL FIELD =*,F8.2,* DB*,//) GO TO 77

С

	************* * D1REC1 FEED * ***********
EF=0. $IF (TRETA.GT.A)$ $CALL LSUM (PSI, EF=((FE+FH)/2).$ $EF=EF+FF$ $IF (THETA.LE.9)$ $ET2=0.$ $ET2=0.$ $ET2=0.$ $ET2=EF+FF$ $GO TO 77$	N1) CO TO 74 PXF,FFE,DLE,N3,FE) PXH,FFH,DLH,N3,FH) -COS2P*(FE-FH)/2.)*F*CP3 0OR.THETA.GT.AN2) GO TO 75

$\begin{array}{l} CONTINUE\\ CALL & BESJ(X,0,\\ CALL & BESJ(X,2,\\ CALL & BESJ(X,4,\\ DSC=DS*COST\\ A1=TS*(DH-DSC)\\ A2=-TS*(DH-DSC)\\ A2=-TS*(DH+DSC)\\ B2=-TS*(DS-DHC)\\ B1=-TS*(DS-DHC)\\ B2=-TS*(DS+DHC)\\ B3=-DL*(DS+DHC)\\ E9L=-CP4*(A1*B)\\ EY=-EPL*SINP**\\ E1=-EY*SINP\\ E1=-EY*SINP\\ CONTINUE\\ \end{array}$	BJ0,0.002,IER) BJ2,0.001,IER) BJ4,0.001,IER) +DL*(DH+DSC)/2.)-DL*(DH-DSC) /2. -DL*(DS+DHC)/2.)+DL*(DS-DHC) /2. J0+A2*BJ2+A3*BJ4) 0+B2*BJ2+B3*BJ4) 2+HPL*COSP**2
	* FEED BLUCKAGE SCATTERING *
IF (THETA.LE.9 EFBY=0. ETT=ET ETP=EP GO TO 85 IF (KG.EQ.1) G XA=RK*AX*SINT* XB=RK*BY*SINT* IF (XA.GT.0.0) IF (XB.CT.0.0) IF (XB.CT.0.0) IF (XB.CT.0.0) IF (XB.CT.0.0)	0.) GO TO 80 0 TO 81 COSP/2. SINP/2. GA=SIN(XA)/XA GB=1. GB=SIN(XB)/XB A*GB
GONTINUE XC=RK+C+SINT CALL BESJ(XC,1	, BJ1,0.001, IER1)
IF (XC.GT.O.) CONTINUE EFEP=EFBY*COSP FEBT=EFBY*SINP	EFBY=CPP*CP3*8J1/XC

 (SU)
 3360

 (SU)
 3360

 (SU)
 3370

 (SU)
 3370

 (SU)
 3470

 (SU)
 3440

 (SU)
 3510

 (SU)
 3540

 (SU)
 3550

 (SU)
 3540

 (SU)
 3540

 (SU)
 3640

 (SU)
 3640

 (SU)
 3640

 (SU)
 3640

 (SU)
 3740

 (SU)
 3740

 (SU)
 3740

 (SU)</t

00000	**************************************		4040 4050 4060 4070 4080
	$E S I T = \{0, 0, 0\}$ $E S I P = \{0, 0\}$ D 0 = 84 = 1 I N S		4090 4100 4110
	PHS=PHIS(1) ZN2=ZS2(1) RN2=RS2(1) RN0=RLO(1)		4120 4130 4140 4150
87	CALL STRUT(PHI, THETA, PHS, ZN2, RN2, RNO, EST, ESP) ESTT=ESTT+FST ESTP=ESTP+ESP CONTINUE	020 020 020	4160 4170 4180 4190
04	ETT=FT+ESTT+EFBT ETP=EP+ESTP+EFBP CALL HUYSRC(EFBT,EFBP,COSP,SINP)		4200 4210 4220
	CALL DBPHS(EFBP,MAX) CALL DBPHS(EFBT,MAX) CALL HUYSRC(ESTP,ESTP,COSP,SINP) CALL DBPHS(ESTP,MAX)		4230 4240 4250 4260
	CALL DBPHS(EST1, MAX) PLOTST(1, N)=REAL(ESTT) PLOTST(2, N)=REAL(ESTP) PLOTST(3, N)=REAL(ESTP)		4270 4280 4290 4300
85	PLOTST(4,N)=REAL(EFBP) CONTINUE CALL HUYSRC(ET,EP,COSP,SINP)		4310 4320 4330
	CALL DEPHS(EP,MAX) CALL HUYSC(FT,FTP,COSP,SINP) CALL HUYSC(FTT,MAX)		4350 4360 4370
	CALL DBPHS(F1P,MAX) PLOTST(5,N)=RFAL(ET) PLOTST(6,N)=REAL(FP) PLOTST(7,N)=REAL(ETT)	050	4390 4400 4410
88	PLOTST(6,N)=REAL(F1P) IF (THETA.GT.90.) WRITE (6,88) THETA,ETT,ETP FORMAT (F9.2,T100,2(F8.2,F7.1)) IF (THETA.LE.90.) WRITE (6.89) THETA.ESTT.ESTP.EFBT.EFBP.ET.EP.E	050 050 050 11050	4420 4430 4440 4450
89 90	\$,ETP FORMAT (F9.2,8(F8.2,F7.1)) CONTINUE TMAY-THONE, (NTHETA-1) + DIMETA		4460 4470 4480 4490
95	CALL PLICK (TMAX, FDR, D2, PHI+180./PI, FREQ/1000., NTHETA, PLOTST, DTHE S) CONTINUE		4500 4510 4520
101			4540 4550 4560
	SUBROUTINE PLICK (IMAX,FOD,DIA,PHI,FREO,NTHETA,PLOTST,DT) DIMENSION DATA(5),ITITLE(20),PLOTST(8,180) DATA IFIRST/1/,NCOM/7/ DATA XAXIS/9./. YAXIS/6./. VL/-72./, VT/0./, PC/0./,HT/.14/		4570 4580 4590
	CW=1.* HT VS=2.* HT IX=10./0T+1 5.8640(5.11.NTYPE.04TA	050	4610 4620 4630 4640
с	1 FORMAT(8X,12,5F10.0) IF GO CASE RETURN IF (NTYPE ,EQ. 3) RETURN		4650 4660 4670
с	FIRST PLOTTING CALL INITIALIZE CALL PLOT($2.,1.,-3$) 2 IF (NIYPE .NE, 1) GO TO 3		4690 4700 4710

С	AXIS CASE	OSU	4720
	IF (IFIRST .FO. O.) CALL PLOT (XAXIS+3.,0.,-3)	050	4730
	IF $(DATA(1) .NE. 0.) XAXIS=DATA(1)$	050	4740
	IF (DATA(2) . NE 0.) YAXIS=DATA(2)	050	4150
	$ \begin{array}{c} \mathbf{I} \mathbf{F} & \mathbf{I} \mathbf{A} \mathbf{I} \mathbf{I} \mathbf{A} \mathbf{I} \mathbf{I} \mathbf{A} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{A} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{A} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$	050	4770
	$F = \left(\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	050	4780
	IF (DATA(5) . FQ. 0.) PC=0	osu	4790
3	PC IS REAL CODE VARIABLE 1. IS INDIVIDUAL PHI LABELS	OSU	4800
	DX=TMAX/XAXIS	nsu	4810
	DY = (VT - VL)/YAX1S	osu	4820
		050	4830
	CALL AXISIO, 0., THEIA (DEG), -11, XAXIS, 0., 0., DX, (.)	050	4840
r	DEAM EXD. DIA AND EDEO I ADELS	050	4860
C	XCOL = X X X S - 4 -	nsu	4870
	YCOL=YAX1525	nsu	4880
	XC=XC()L+5.*CW	OSU	4890
	CALL SYMBOL (XC,YCOL,HT, F/D= ,0.,4)	OSU	4900
	CALL NUMBER (XC + 6. *CW, YCOL, HT, FOD, 0., 3)	050	4910
		050	4420
	CALL SIMPOLIAL FLORENT UTA OF REFL $(10) = 40.5177$	050	4940
	Y CIL = YS	0511	4950
	CALL SYMBOL(XC.YCOL.HI.'FREQ (GHZ)='.011)	0511	4960
	CALL NUMBER (XC+12.+CW, YCNL, HT, FREQ, 0., 2)	OSU	4970
	YCOL=YCOL-VS	nsu	4980
	IF (PC .EQ.1.) GO TO 4	050	4990
C	DRAW COMMON PHI LABEL	050	5000
	CALL SYMBILIAC, YOU, HI, PHI COT (DEG)= 10, 14)	050	5010
		050	5020
		050	5040
	3 IF (NTYPE .NE. 4) GO ID 6	OSU	5050
С	PLOT TITLE	OSU	5060
	NC=DATA(1)	nsu	5070
	READ(5,7) ITITLE	0SU	5080
		050	5100
	A = (XAX) S = NC + (XI) / 2	050	5110
		050	5120
	6 LE (NTYPE NE. 2) GO TO 5	050	5130
С	PLOT CURVE	OSU	5140
	IF $(DATA(1) .NE . O.) NCOM=DATA(1)$	050	5150
	ICRV = ICRV + 1	050	5160
	NP=NTHETA	050	5170
	IF (NUM.LI. 5 AND. IMAX .GI. 90.) NP=90./01+1	050	5100
	IC=3	050	5200
	DO & I=1.NP	nsu	5210
	$\mathbf{x} = (1 - 1) * \mathbf{D} \mathbf{D} \mathbf{x}$	050	5220
	Y = (PLOTST(NCOM, I) - VL)/DY	OSU	5230
	IF(Y . LT. 0.) Y=0.	nsu	5240
	IF (Y .GT. YAXIS) Y=YAXIS	050	5250
		050	5270
	A IC -2	050	5280
C	LAREL CURVE	050	5290
0	CALL SYMADL(XC-1., YCOL+HT/2., 07, 1CRV, 0., -1)	OSU	5300
	CALL PLOT(XC2, YCOL +H1/2.,2)	OSU	5310
	CALL SYMBOL (XC-, 2, YCOL+HT/2,, 07, TCRV, 0, -1)	nsu	5320
	CALL LABELIXC, YCOL, HT, NCOM, 'PRINC STRUT SCAT ',	050	5330
	1 X-PUL SIRUI SCAT , PRINC FED SCAT , X-PUL FED SCAT ,	050	5340
	2 PRINC REFL + FEED', 'X-PUL RIFL + FEED', PRINC TUTAL FIELD',	0511	5360
		CSU	5370
C	LABEL INDIVIDUAL PHI CUT	OSU	5380
	CALL SYMBOL (XC+18.*CW.YCOL.HT.'PHI='.04)	nsu	5390

CALL NUMBER (XC+23.*CW,YCDL+HT,PH1,0.,-1)	OSU.	5400
9 YCOL=YCOL-VS	050	5410
CALL PLOTE2	0511	5420
4 IFIRST=0	0511	5430
	0511	5440
	050	5440
END	050	5450
SUBRIULTINE LABELIX, Y, H, N, CI, CZ, C3, C4, C5, C6, C7, C8)	050	5460
DIMENSION C1(1),C2(1),C3(1),C4(1),C5(1),C6(1),C7(1),C8(1)	050	5470
60 TO (1.2.3.4.5.6.7.8).N	OSU	5480
1 CALL SYMBOL(X, Y, H, (111), 0, -17)	1120	5490
co to 9	neu	5500
	0011	5510
2 CALL STMODULA, T, H, C2(1), 0., 17)	050	2210
60 10 9	USU	5520
3 CALL SYMBOL(X,Y,H,C3(1),0,,17)	050	5530
60 10 9	050	5540
4 CALL SYMBOL (X,Y,H,C4(1),0,.47)	OSU	5550
60 10 9	050	5560
5 CALL SYMBOL (X.Y.H.C5(1).017)	0511	5570
	0511	5590
	DELL	SE GO
CALL STABULIX, T, H, COLIT, O., 17)	050	22.40
60 10 9	050	2000
7 CALL SYMBOL(X,Y,H,C7(1),0.,17)	กรบ	5610
60 10 9	OSU	5620
8 CALL SYMBOL(X,Y,H,CB(1),0,-17)	050	5630
G GETHON	1120	5440
END STATES	0511	54.50
END	050	5650
SUBRUUTINE HUTSKUTETHETA, EPHI, CUSP, SINPI	1151	2000
	1120	5610
ROUTINE CONVERT ETHETA, EPHI TO E HUYGEN PRINCIPAL AND CROSS	OS U	5680
POLARIZARD COMPONENTS	OSU	5690
	0511	5700
FONDLEY ETUETA EPHI STOP	0511	5710
	001	6720
STURECUSPTETHETA-SINPTEPHI	050	2120
ETHETA=SINP*ETHETA+CUSP*EPHI	050	5/30
EPHJ=STOR	050	5740
RETURN	OSU	5750
END	050	5760
SUBPOUTINE STRUTEDHT, THETA, PHTS, 72, 852, 810, EST, ESPI	050	5770
Subkourine Statistic and the statistic and statistics and statisti	neu	5700
	050	5700
	050	5790
DIMENSION RSY(100), ASY(100), RZY(100), AZY(100), TF(100), DF(100)	020	5800
CUMPLEX J,CO,CQ1,CQ2,CP5,DS,DH,TEMP,TERMS,TERMH,AM(25),BM(25),QY,	OS U	5810
\$SUMY.EAT.EAP.EGT.EGP.EALP.EGAM.CPO.EST.ESP.OYD	nsu	5820
COMMON /STR/L-CPO.AM.BM.PT.RK.MX.DEL.A.TE.DE.BET	0511	5830
THE THETA PLIAN.	nsu	5840
	050	5950
	050	50.00
SIN(=SIN()HE)	050	2800
SINPS=SIN(PHIS)	020	5870
CO262=CO2(6H12)	0511	5880
SINB=SIN(BET)	OSU	5890
COSE=COS(EFT)	1120	5900
	nsu	5910
20-22.0024	ocu	5020
ZU-ZZTRSZTLUTD	050	5920
H21=H22~KUU#21NB	050	2930
IF (RS2.GT.A) RS2=A	rsu	5940
R1=RS1/SINB	OSU	5950
R2=R52/SIN8	OSU	5960
11=851/051+2	0SU	5970
17-067/06143	OSU	5980
	000	1000
NELZELI	050	5440
N1=N+1	11211	0000
DELS=DEL/SINB	nsu	6010
RL1 = DELS + (L1 - 1)	050	6020
812 = DFLS*(12-1)	OSU	6030
CP5 = CEXP(1*)P1/4 + RK*70*(COST-1-11)	OSIL	6.04.0
TI ND-FEYDI ISPIZE VZIPISCINA	neu	1050
	050	1010
	050	0000
	1.1.1.1	F. 1 1 1 1 1

CCCC

C

	SIND=SIN(PHID) CDSA=SINT*SINA*COSD=CDST*COSB ALP=ARCOS(COSA) SINA=SIN(ALP) SCG=-SINT*COSF*COSD=CDST*SINB GAM=ATAN2(SSG,SCG) SING=SIN(GAM) CDSG=CDS(GAM) ALPHA=ALP*180./PI DS=(0.,0.) DH=(0.,0.) DH=(0.,0.) DD=10 M=1,MX COSM=CDS((M=1)*(PI=GAM)) TERMS=2.*AM(M)*COSM	CSU CU CU	6080 6090 61100 6120 6130 6130 6140 6160 6160 6170 6180 6210 6220 6220 6220 6240
10	DS=DS+TERMS DH=DH+TERMH CONTINUE DS=TEMP*DS DH=TEMP*DH CAB=CDSA+CDSB RL=RL1 DO 12 J=1,N1 CQ=CEXP(J*RK*RL*CAH) K=I+L1-1 EI=-(TF(K)-DF(K)*COSPS) SUMY=EI*CO RSY(I)=REAL(SUMY) ASY(I)=AIMAG(SUMY)		6250 6260 6270 6280 6310 6330 6330 6330 63360 63360 6350 6350 6
12	RL=RL+DELS CONTINUE CALL QSF(DFLS,RSY,RZY,NI) CALL QSF(DFLS,ASY,AZY,NI) CQ1=CEXP(J*RK*(R]+RL1)*CAB/2.) CQ2=CEXP(J*RK*(R]+RL1)*CAB/2.) EN1=-(RL1-R1)*(IF(L1)+TF(L1-1)-(DF(L1)+DF(L1-1)))/2. EN2=-(R2-RL2)*(IF(L2)-DF(L2))/2.		6390 6400 6410 6420 6430 6440 6440 6440 6450 6460 6470
10	QY=QYO+EN1*C01+EN2*C02 EALP=-CP5*D5*SINA*QY*SINP5*CP0 EGAm=CP5*D5*SINA*QY*SINP5*CP0 FAT=-(C05A*C05G*C05B+SINA*SINB)*C05T*C05D+C05A*SING*C05T*SIND+SIN * (C05A*C05G*SINB-SINA*C05B) FAP=(SINA*SINB+C05A*C05G*C05R)*SIND+C05A*SING*C05D FGT=SING*(C05B*C05T*C05D-SINR*SINT)+C05G*C05T*SIN0 EAT=EALP*FAT EAT=EALP*FAT EAT=EALP*FAP EGT=EGAM*FGT EST=EAT+FGT EST=FAT+FGP RETURN END SUBROUTINE_LNFD(D5I.PX*FF*N)		64800 645520 65550 655500 6555000 6555000 655500000000
2	DIMENSION DSI(50),PX(50),FF(50) WRITE (6,2) FORMAT (ZZILO, 'PIECEWISE LINEAR FEED INPUT',ZZILR, 'PSI',T31,'F',Z	05U 05U	6660
	DO 20 1=1,N READ(5,10) PX(1),FF(1)	050	6690
10	FORMAT (F10.2,F10.5) FORMAT (T10.F10.2,F15.5) WRITE (6,15) PX(1),FF(1) IF (1.F0.1) GO TU CO		6700 6710 6720 6730
20	CONTINUE	nsu	6750

	RETURN	osu	6760
	END	nsu	6770
	SUBROUTINE LSUM(PSI,PX,FF,DSI,N3,FE)	050	6780
		050	6800
	IF (PSI,GT,PX(I+1)) GO TO 10	nsu	6810
	FE = FF(I) + OSI(I) * (PSI - PX(I))	050	6820
10		050	6840
	FF=0.	OSU	6850
	RETURN	OSU	6860
		0511	6880
	COMPLEX E	OSU	6890
	REAL DB, FASE, MAX	OSU	6900
	P1=3-141592653	050	6910
		nsu	6930
	DB=-500.	nsu	6940
	FASE=0.	020	6050
10	DB = 20, $*ALDG10(AE) - MAX$	OSU	6970
	FASE=ATAN2(AIMAG(E), REAL(E))*180./PT	nsu	6980
20	E=CMPLX(OB,FASE)	050	6990
		050	7010
	SUBROUTINE GTD (PHI, PHIP, BETAO, S , SP, WA, SL, AS, ILOP, OS, DH)	050	7020
ç		050	7030
č	PURPOSE - TO COMPUTE DIFERACTION COFFEICIENTS DS.DH	050	7050
č		050	7060
ç	PARAMETERS	050	7070
č	*** INPUT***	OSU.	7090
č		050	7100
ç	PHI = DIFFRACTED ANGLE	050	7120
č	BETAGE ANGLE BETWEEN THE INCLOENT RAY THE TANGENT TO THE EDGE	0SU	7130
č	S = DISTANCE FROM FIELD POINT TO THE FDGE ALONG THE	050	7140
C	CO - DISTANCE FROM THE SOURCE POINT TO THE SOCE ALONG THE	050	7150
č	SP = DISTANCE FROM THE SOURCE POINT TO THE EDGE ALONG THE	nsu	7170
Č	WA = WEDGE ANGLE	OSU	7180
ç	SL = DISTANCE PARAMETER WHEN EXTERNALLY PROVIDED (WHEN ILCP=	4050	7200
č	ILOP=1 : PLANE-WAVE INCIDENCE	กรม	7210
C	ILOP=2 : CYLINDRICAL WAVE INCIDENCE	050	1220
ç	1LOP-3 : SPHERICAL OR CONICAL-WAVE INCIDENCE	050	7230
č	TEUF-4 THE DISTANCE FARABETER E-SE IS FROVIDED EXTERNALLY	rsu	7250
C	***OUTPUT***	nsu	7260
č	AS = AMPLITUDE OF THE FIELD ALONG DIFFRACTED RAY (NOT APPLIC	AUZA	7280
č	DS = SOFT DIFFRACTION COFFEICIENT	050	7300
č	DH = HARD DIFFRACTION COEFFICIENT	050	7310
c	***UNITS***	050	7330
ç	ANCLE + DECREE	050	7340
č	LENGTH : WAVELINGTH	OSU	7360
C	REQUIRED FUNCTIONS : TRANSITION FUNCTION F(X) AND SIGN FUNCTION S	GOSU	7370
č	REFERENCE: A UNIFORM GEOMETRICAL THEORY OF DIFFRACTION FOR AN FOO	FOSU	7390
č	IN A PERFECTLY CONDUCTING SURFACE . BY R.G.KOUYOUMJIAN AND P.H.	050	7400
ç	PATHAK , PROC. OF TEFE , VOL 62 NOV. 1974	020	7410
2		0511	1430

	COMPLEX F,AJ,CO,C1,C2,C3,C4,DS,DH,FASE,O REAL L,K1,K2 A(T,WN,N)=2.0*CUS(3.14159265*WN*N-T/2.01**2	15 U 05 U 05 U	7440 7450 7460
C **	* COMPUTE NECESSARY CONSTANTS	050	7470
c	PI=3.14159265 PII=2.00PI PI4=PI/4.0 PI180=P1/180. AJ=CMPLX(0.,1.) EP5I=.0001 W=50. GS=1. GH=1. WG=360WA		7490 7500 7510 7520 7530 7540 7550 7560 7570 7580 7590
C	IF (PHIP.EQ.OOR.PHIP.EQ.WG) GS=0. IF (PHIP.EQ.OOK.PHIP.EQ.WG) GH=.5	nsu nsu	7610
C + 4	* COMPUTE ANGLES BETA-ZERO, BETA-POSITIVE, BETA-NEGATIVE	050	7630
L	WN=WG/180. 6ETAP=(PHI+PHIP)*PI180 8ETAN=(PHI-PHIP)*PI180		7660 7670 7680
C **	* CHOOSE DISTANCE PARAMETER FOR TYPE OF EGDE ILLUMINATION		7690
L	IF(ILOP.EQ.1) L=S*SIN(BETAO*PI180)**2 IF(ILOP.EQ.2) L=S*SP/(S+SP) IF(ILOP.EQ.3) L=S*SP/(S+SP)*SIN(BETAO*PI180)**2 IF(ILOP.EQ.4) L=SL		7720 7730 7740 7750
C **	* COMPUTE A(S,SP) THE AMPLITUDE OF THE FIELD ALONG THE DIFFRACTED	RAGSU	7760
6	IF(ILOP.EQ.1) AS=1.0/SORT(S) IF(ILOP.EQ.2) AS=1.0/SORT(S*SIN(BETAO*PI180)) IF(ILOP.EQ.3) AS=SORT(SP/(S*(S+SP))) IF(ILOP.EQ.4) AS=1.0		7790 7800 7810 7820
C **	* COMPUTE ANGULAR ARGUMENTS FOR COTANGENT FUNCTION	050	7840
c	ANG1=(PI+BETAN)/(2.0*WN) ANG2=(PI-BETAN)/(2.0*WN) ANG3=(PI+BETAP)/(2.0*WN) ANG4=(PI-BETAP)/(2.0*WN)		7860 7870 7880 7890
C **	* CALCULATE N+ AND N-	050	7910
	NPN=IFIX((PI+BETAN)/(PII*WN)+0.5) NNN=IFIX((-PI+BETAN)/(PII*WN)+0.5) NPP=IFIX((PI+BETAP)/(PII*WN)+0.5)		7930 7940 7950
C **	COMPUTE ARGUMENTS OF TRANSITION FUNCTION F(X) X=KLA ARG1=PII+L*A(BETAN,WN,NPN) ARG2=PII+L*A(BETAN,WN,NNN) ARG3=PII+L*A(BETAP,WN,NPP) ARG4=PII+L*A(BETAP,WN,NPP)		7970 7980 7990 8000 8010
C **	* OS AND OH CALCULATED BY KELLER'S FORM WHEN FIELD POINT IS NOT IN NNP=IFIX((-PI+BETAP)/(PII*WN)+0.5) TRANSITION REGIONS	N 050 050 050	8030 8040 8050
L	IF (ARG1.LF.W) GO TO 50 IF (ARG2.LF.W) GO TO 50 IF (ARG3.LE.W) GO TO 50 IF (ARG4.LF.W) GO TO 50 CO=SIN(PI/WN)*CEXP(-AJ*PI4)/(WN*PII*SIN(BETAO*PI180))	050 050 050 050	8070 8080 8090 8110

		$k_1 = 1 \cdot O / (COS (PI/WN) - COS (PETAN/WN))$ $k_2 = 1 \cdot O / (COS (PI/WN) - COS (BETAP/WN))$	nsu osu	8120
		0S=6S+C()+(K1-K2) DH=6H+C()+(K1+K2)	nsu nsu	8140 8150
C		RFTURN	nsu nsu	6170
ç		CALCULATE THE FOUR TERMS OF THE DIFFRACTION COEFFICIET	050	8190
C	50	CO=-CEXP(-AJ*P14)/(2.0*WN*P11*SIN(BETAO*P1180))	050	8210
		IF (AHS(ANG1-PI*NPN)*CI*FSI) GO IO 100EPS=(ANG1-PI*NPN)*2*WN	nsu	6230
		CI=Q(EPS,WA,L,PI) GO TU 150	050	8250
C	100	C1=C()TAN(ANG1) +F (ARG1)	050	8270
	150	IF (ABS(ANG2+PI*NNN).GT.EPSI) GO TO 200 EPS=(ANG2+PI*NNN)*2.*WN	nsu nsu	8280
		C2=Q(FPS+WN,L,PI) GO TO 250	nsu nsu	8300
С	200	C2=COTAN(ANG2)*F(ARG2)	050	8320
	250	IF (ABS(ANG3-PI*NPP).GT.EPSI) GO TO 300 EPS=(ANG3-PI*NPP)*2.*WN	nsu osu	8340 8350
		C3=Q(EPS,WN,L,PI) GO TO 350	050	8360
С	300	(3=COTAN(ANG3) *F (ARG3)	nsu nsu	83P0
	350	IF (ABS(ANG4+P1+NNP).GI.FPSI) GO TO 400	OSU OSU	6400
		C4=Q(EPS,WN,L,PI)	nsu	8420
с			nsu	8440
~	450	CONTINUE	nsu	8460
č	***	COMPUTE DS AND DH	osu	8480
c		DS=GS+CD+(C1+C2-C3-C4)	nsu	8500
		DH=GH+CU+(CI+(2+C3+C4) RETURN	nsu	8520
		FUNCTION SGN(X)	nsu	2540
C		IF (X) 1,2,3	nsu	8560
	1	SGN=-1. RETURN	osu	8580
	2	SGN=0. RETURN	050	8600
	3	SGN=1. RETURN	050	8620
		END COMPLEX FUNCTION F(X)	050	8630
ĉ		TRANSITION FUNCTION F(X) FOR DIFFRACTION COEFFICIENT	050	8650
č		F(X) IS COMPUTED BY FRESNEL INTEGRAL FOR X>8.,OR X).2, F(X) IS EVALUATED BY APPROXIMATION	050	8670
č		FRROK BY APPROXIMATION IS WITHIN 1(SUBROUTINE REQUIRED CSX(C,S,X)	050	8700
ĉ			050	8710
		COMPLEX ZX, Z REAL PI/3.1415926535/, PI4/.78539816/, PQ / 2.5066283/	050	8730
		COMPLEX CP14/(.70710678,.70710678)/ IF (X-8.) 20,20,10	nsu	8750
	10	X2=X+X X3=X2+X	050	8770
		X4=X2*X2	OSU	8790

		F =CMI	PL	xI	1.		. 75	1x2	+4.	6.6	75	/x	4.	.5/	x	-1.	875	/x	31								กรม	8	800
	20	RETURN	2				0	30																			0SU	8	10
	30	ZX=CMPI	X	10		x		30																			nsu	8	830
		CALL C	SX	(C	. 5	· • ×	()																				nsu	8	840
		51=.5-	š																								050	A	048
		F=SOR	Ť (X)	*(E	(P(2X)	+ PQ	+C	MP	LX	15	1,0	1)												nsu	8	870
	40	RETURN			× 1			VAC	014	- 2		-	× //			2											nsu	R	880
	-0	F =Z+(ÈE	XP	îċ	MI	ix	10.	, PI	44	x)	ĵ	~~~	.r.	-/												nsu	8	900
		RETURN																									osu	8	910
		SUBROU	11	NE	(:5)	110		X)																		nsu	R	930
C																											nsu	R	940
ç		PURI	PO	SE			IES	TH	6 F	DE	SN	FI	11	-	CP												nsu	8	950
č								•••	• •		314		•		UN		•										nsu	8	970
C		DES	CR	IP	11	ON	1.0	FP	ARA	ME	TE	RS															OSU	8	980
č				š	-		TH	ER	FSU	Ŀł	AN	ł	GUI	PU	Ť	DF	six	5									050	9	000
č			:	ĸ	-	-	AR	GUM	ENT	-																	nsu	9	010
C		FROM		•				NE		r .	c.	* 1	0		C D												050	9	020
c		Z=ABS()	x)	50	0.			inc	531		.,	~ '	0	-	51												osu	4	040
	2	IF (2-4	4.)	3.	3,	4																				osu	9	050
č		1F	17	-1	F.	4.	. 1																				050	9	070
č																											OSU	90	080
	3	C=SQRT	(Z)																							OSU	9	090
		2=14	2)	+ (4.	+2	1)																			1	nsu	9	110
		C=C+11	11	11	5	10	007	85F	-11	*Z	+5	:2	44	297	F-	9)*	7+5	:4	511	BZE	-7)	*Z.					nsu	9	120
		5=5+11	11	16	-	77	168	16-	104	7 +	5-	RA	31	SAF	-8	1+7	+5.	651	14	iF-	61*	7	-1	,			050	9	140
		1.2.441	81	6E	-4	. 3.4	17+	6.1	213	20	£-	31	*24	.8.	02	649	OF-	21				-					nsu	9	150
c		RETURN																										8	160
č		IF	12	• G	٦.	4.	. 1																				กรับ	9	180
С	,	0-1011																									OSU	9	190
	-	S=SIN(;;																								osu	9	210
		7=4.17																									nsu	9	220
		1+7-3.09	5		14	-4	125	7+5	447	21	51	69 F-	28	17-	1	+ 2 +	428	F-F	51 +		49	332	26	-21	+7	-31	050	9	240
		2-4.444	09	ÌÈ	- 3	,			• • •					-													osu	9	250
		8=(((("	-6	: :	33	92	6E -	4*2	+3	:4	01	409	9F-	31	*Z-	7.2	716	590	5-3) *2	:::	42	824	6E-	-31	0SU	9	260
		Z=SURT	ii	; ~	20			1-4			10	E	21.			201	440	c - t	,,-,				10	-1			nsu	9	280
		C= . 5+2	• (•	A 1	51	8)																				nsu	9	290
		RETURN	• (5.	A -	-1)-																					กรม	9	310
		END										_															nsu	9	320
		COMPLES	×	FU	NC	11	ON	01	FPS	• W	N , I	RL	, P]	()													050	9	330
		L=RL																									nsu	9	350
		Q=WN*CI	X	P (ĈM	IPL	X	9::	P1/	4 -))	+ (2.1	PI	* 51	DRT	(L)	* 50	SN(EPS)-4	.*P	1*	L+E	PS		0SU	9	360
		RETURN		L	~ (· · ·		1/4	• • •	,																	nsu	9	380
		END		-																							nsu	0	390
		SESTRE	IN	U	01	AN	i t X	,																			050	91	410
		1F (5	N	F .	0	.)	G	0 1	0 1																		nsu	9	420
		COTAN=		5	0																						050	9.	430
	1	COTAN=(0	51	X	15	5																				osu	9	450
		RETURN																									OSU OSU	94	460

•		neu	04.90
č	SUBRUUTINE DE SJ	050	9490
č		nsu	9500
č		OSU	9510
C		nsu	9520
C	PURPOSE	nsu	9530
ç	COMPUTE THE J BESSEL FUNCTION FOR A GIVEN ARGUMENT AND ORDER	nsu	9540
č		neu	9550
č	CALL RESJ(X-N-BJ-D-TER)	nsu.	9570
č		osu	9580
č	DESCRIPTION OF PARAMETERS	osu	9590
C	X -THE ARGUMENT OF THE J BESSEL FUNCTION DESIRED	osu	96.00
ç	N -THE ORDER OF THE J BESSEL FUNCTION DESTRED	050	9610
ć	BJ -THE RESULTANT J BESSEL FUNCTION	050	9620
č	TER-RESULTANT REROR CODE WHERE	050	9640
č	IFRED NO FRROR	osu	9650
C	IFR=1 N IS NEGATIVE	กรบ	9660
С	IER=2 X IS NEGATIVE OR ZERO	osu	9670
C	IFR=3 REQUIRED ACCURACY NOT OBTAINED	0SU	9680
č	TER=4 RANGE OF N COMPARED TO X NOT CORRECT (SEE REMARKS)	050	9090
č	REMARKS	nsii.	9710
č	N MUST BE GREATER THAN OR FOUAL TO ZERD. BUT IT MUST BE	osu	9720
č.	LESS THAN	OSU	9730
C	20+10+X-X++ 2/3 FOR X LESS THAN OR FOUAL TO 15	osu	9740
ç	90+X/2 FOR X GREATER THAN 15	nsu	9750
ç	CURRENTINES AND SUNCTION SUBDROCHAR REQUIRED	050	9760
č	NONE	neii	9780
č	hunt	กรับ	9790
č	METHOD	OSU	9800
C	RECURRENCE RELATION TECHNIQUE DESCRIBED BY H. GOLDSTEIN AND	osu	9810
C	R.M. THALER, RECURRENCE TECHNIQUES FOR THE CALCULATION OF	OSU	9820
ç	BESSEL FUNCTIONS, M.T.A.C., V.13, PP.102-10B AND I.A. STEGUN	0SU	9830
è	AND M. ARRAMUWITZ, "GENERATION OF BESSEL FUNCTIONS ON HIGH	nsu.	9840
č	SPEED COMPOTENS MILLINGCOVOLUTION CONTRACTOR	0SU	9860
č		OSU	9870
C		nsu	9880
~	SUBROUTINE BESJ(X,N,BJ,D,IER)	osu	9890
C		050	9900
		100 L	9920
	10 168=1	0SU	9930
	ŘETUŘN	nsu	9940
	20 1F(X)30,30,31	osu	9950
	30 1ER=2	<u>nsu</u>	9960
	RETURN 31 JE 132 32 34	050	9970
	$\frac{31}{32} \text{ MTFST} = 20 + 10.43 + 344 - 2/3$	nsu.	9990
		osu	10000
	34 NTEST=90.+X/2.	OSU	10010
	36 1F(N-NTEST)40,38,38	nsu	10020
	38 1FR=4	050	100 30
		050	10050
	N1=N+1	nsu	0000
	BPREV=.0	OSU:	10070
С		nsu	0080
ç	COMPUTE STARTING VALUE OF M	050	10090
C	TELY - E 160 47 40	050	0110
		nsii	10120
	60 10 70	nsu	10130
	60 MA=1.4+X+60./X	OSU	10140
	70 MB=NAIETY/Y1/442	1120	0150

		MZER()=MAXO(MA,MB)	osui	0160
ç		SET UPPER LIMIT OF M	nsui	0170
č			osui	0190
	100	MMAX=NTEST DO 196 M=M7FR0.MMAX.3	0501	0200
ç			nsui	0220
ć		2E1 F(M),F(M-1)	0501	0230
		FM1=1.0E-2H	0501	0250
		AL PHA = . O	osui	0270
	110	IF(M-(M/2)*2)I20,II0,I20	nsul	0280
		CO TO 130	osui	0300
	120	JT=1 M2=M-2	nsul	0310
		DO 160 K=1,M2	nsui	0330
		MK=M-K HMK=2.*FLOAT(MK)*FM1/X-FM	nsui	0350
		FM=FMI CMI=DMF	0SU1	0360
		1F(MK-N-1)150,140,150	nsui	0380
	140	BJ=BMK	nsu1	0390
	1.50	S=1+JT	osui	0410
	160	ALPHA=ALPHA+BMK#S BMK=2.#FM1/X-FM	0501	0420
		1F(N)180,170,180	osui	0440
	180	ALPHA=ALPHA+BMK	0501	0450
		BJ=BJ/ALPHA	osui	0470
	190	BPREV=BJ	osui	0490
	200		05UI	0500
		END	osui	0520
C			0501	0530
č			osui	0550
č		SUBROUTINE DE ST	nsui	0570
ç		PURPOSE THE Y BESSEL EUNCTION FOR A CIVEN ARCHMENT AND ORDER	asui	0580
č		COMPUTE THE T DESSEL FUNCTION FOR A STVEN ARGUMENT AND ORDER	nsui	0600
ĉ		USAGE CALL RESVIX-N-RY-TER)	nsul nsul	0610
č			osul	0630
č		X -THE ARGUMENT OF THE Y BESSEL FUNCTION DESIRED	nsui	0650
ç		N -THE ORDER OF THE Y BESSEL FUNCTION DESIRED	OSU1	0660
č		IER-RESULTANT ERROR CODE WHERE	osui	0680
ç		IER=O NO ERROR TER=1 N IS NEGATIVE	OSUI	0690
č		IFR=2 X IS NEGATIVE OR ZERO	osui	0710
č		IFR=3 BY HAS EXCEEDED MAGNITUDE OF 10##70	0501	0730
C		REMARKS	OSU1	0740
č		FUNCTION ALOG TO BE EXCEEDED	nsui	0760
č		X MUST BE GREATER THAN ZERO N MUST BE GREATER THAN OR FOUND TO ZERO	OSU1	0770
č			osui	0790
č		NONE	osui	0810
ç		METHOD	OSU1	0820

谭

i

	RECURRENCE RELATION AND POLYNOMIAL APPROXIMATION TECHNIQUE AS DESCRIBED BY ALLMANITCHCOCK POLYNOMIAL APPROXIMATIONS	05010
	TO BESSEL FUNCTIONS OF ORDER ZERO AND ONE AND TO RELATED	nsuid
	"A TREATISE ON THE THEORY OF BESSEL FUNCTIONS", CAMBRIDGE	05010
	UNIVERSITY PRESS, 1958, P. 62	05010
		.osuic
SUBR	OUTINE BESY(X,N,BY,JER)	osuic
CHEC	K FOR ERRORS IN N AND X	
TEIN	1180.10.10	05010
O ICR=		OSUIC
IFIX	1140,140,20	asuii
BRAN	CH JF X LESS THAN OR EQUAL 4	05011
O IF(X	-4.0140,40,30	05011
CC	MPUTE YO AND YI FOR X GREATER THAN 4	osuii
0 11=4	.0/X	nsull
T2=1 P0=0	1*T1 1 ((-,0000037043*T2+,0000173565)*T2-,0000487613)*T2	
1 +	000173431+120017530621+12+.3989423	05011
1	00008697911+12+.00045643241+1201246694	osuii
P]=(• 0000042414*T2- • 0000200920) *T2+ • 0000580759) *T2 000223203) *T2+ • 002921826) *T2+ • 3989423	nsul I
01=0	1110000036594*T2+.000016221*T200003987081*T2	05011
A=2.	0/SQRTIX)	osuii
B=A*	.7853982	05011
Y0=A	*PO*SIN(C)+B*QO*COS(C) A*PI*COS(C)+B*Q)*SIN(C)	05011
60 T	0 90	OSU11
cc	MPUTE YO AND YI FOR X LESS THAN OR EQUAL TO 4	osuli
0 XX=X	/2.	05011
X2=X	X*XX DG(XX)+_5772157	05011
SUM=	0.	nsul 1
Y0=1		OSUII
IFIL	0 L=1,15 -1)50,60,50	nsull
O SUM=	SUM+1./FLOAT(L-1)	05011
15=1		nsul I
O YO=Y	=(1ERM+1-X2)/FL++2)+(11./(FL+13)) 0+TERM	nsul i
TERM SUM=	= XX*(T5)	05011
Y1=1	ERM	OSUII
SUM=	SUM+1./FLOAT(L-1)	nsuii
FL =L	FL-1.	osuli
15=1	-SUM = (TERM# (-Y2) /(EL 1#EL))#((TS5/EL) /(TS+.5/EL1))	OSU11
0 Y1=Y	I+TERM	rsuit
Y0=P	.0300198 12*Y0	osuii
Y1=-	P12/X+P12*Y1	05011

```
05U11520
05U11520
05U11540
CCC
                                   CHECK IF ONLY YO OR YI IS DESIRED
                   90 1F (N-1)100,100,130
CCCC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        60
                                    RETURN EITHER YO OR YI AS REQUIRED
           100 1F (N)110,120,110
110 BY=Y1
GO TO 170
120 BY=Y0
GO TO 170
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        90
 PERFORM RECURRENCE OPERATIONS TO FIND YN(X)
            130 YA=YO
YB=Y1
                                  TH=Y1

K=1

T=FLNAT(2+K)/X

YC=T*YB-YA

IF(ABS(YC)-1.0E70)145,145,141

IFR=3

RETURN
             140
             141
                                 ŘETUŘN
K=K+1
1F(K-N)150,160,150
YA=YB
GD TO 140
BY=YC
RETURN
1ER=1
RETURN
1ER=2
RETURN
FEND
             145
             150
            160
170
180
             190
                                    END
CONSCIENCES CONSCI
                                                      SUBROUTINE QSF
                                                      PURPOSE
TO COMPUTE THE VECTOR OF INTEGRAL VALUES FOR A GIVEN
EQUIDISTANT TABLE OF FUNCTION VALUES.
                                                     USAGE CALL QSF (H,Y,Z,NDIM)
                                                      DESCRIPTION OF PARAMETERS

H - THE INCREMENT OF ARGUMENT VALUES.

Y - THE INPUT VECTOR OF FUNCTION VALUES.

Z - THE RESULTING VECTOR OF INTEGRAL VALUES. Z MAY BE

IDENTICAL WITH Y.

NDIM - THE DIMENSION OF VECTORS Y AND Z.
                                                                                                                                                                                                                                                                                                                                                                                                                                                     nsul 1990
nsul 2000
nsul 2000
                                                                                                                                                                                                                                                                                                                                                                                                                                                   05012010
05012020
05012030
05012050
05012060
05012060
05012070
05012070
                                                      REMARKS
NO ACTION IN CASE NOIM LESS THAN 3.
                                                      SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED NONE
                                                   METHOD

BEGINNING WITH Z(1)=0, EVALUATION OF VECTOR Z IS DONE BY

MEANS OF SIMPSONS RULE TOGFTHER WITH VEWTONS 3/8 RULE OR A

COMBINATION OF THESE TWO RULES. TRUNCATION ERROR IS OF

ORDER H#*5 (I.E. FOURH ORDER METHOD). ONLY IN CASE NDIM=3

TRUNCATION ERROR OF Z(2) IS OF ORDER H**4.

FOR REFERENCE, SEE

(I) F.B.HILDEBRAND, INTRODUCTION TO NUMERICAL ANALYSTS.
                                                                                                                                                                                                                                                                                                                                                                                                                                                  nsul 2150
nsul 2160
nsul 2160
nsul 2170
nsul 2180
nsul 2180
nsul 2190
```

 MCGRAW-HILL, NEW YORK/TORONTO/LONDON, 1956, PP.71-76.
 R.ZURMUEHL, PRAKTISCHE MATHEMATIK FUEP INGENIEURE UND PHYSIKER, SPRINGER, BERLIN/GOFTTINGEN/HEIDELAERG, 1963, PP.214-221. 05U12200 05U122200 05U122200 05U122200 05U122200 05U122200 05U122700 05U122700 05U122700 05U123200 05U12400 05U12400 05U12400 05U12400 05U12400 05U12400 05U12400 05U12400 05U12400 05U12500 05U12700 05U127 SUBROUTINE OSF (H,Y,Z,NOIM) c DIMENSION Y(1),Z(1) C HT = .3333333*H IF (NDIM-5)7.8.1 ĉ NDIM IS GREATER THAN 5. PREPARATIONS OF INTEGRATION LOOP SUMI=Y(2)+Y(2) SUMI=SUMI+SUMI SUMI=HT+(Y(1)+SUMI+Y(3)) 1 SUM1=HT*(Y(1)+SUM1+Y(3)) AUX1=XUX1+AUX1 AUX1=XUX1+AUX1 AUX1=SUM1+HT*(Y(3)+AUX1+Y(5)) AUX2=HT*(Y(1)+3.875*(Y(2)+Y(5))+2.625*(Y(3)+Y(4))+Y(6)) SUM2=SUM2+SUM2 SUM2=AUX2-HT*(Y(4)+SUM2+Y(6)) Z(1)=0. AUX=Y(3)+Y(3) AUX=AUX2-HT*(Y(2)+AUX+Y(6)) Z(2)=SUM2-HT*(Y(2)+AUX+Y(4)) Z(3)=SUM1 Z(4)=SUM2 IF(NDIM-6)5,5,2 If (NDIM-6)5,5,2 INTEGRATION LOOP 2 D0 4 1=7,N01M,2 SUM1=AUX1 SUM2=AUX2 AUX1=X(1-1)+Y(1-1) AUX1=AUX1+AUX1 AUX1=AUX1+AUX1 AUX1=SUM1+HT*(Y(1-2)+AUX1+Y(1)) 2(1-2)=SUM1 If (1-N01M)3,6,6 3 AUX2=X(1)+Y(11 AUX2=AUX2+AUX2 AUX2=SUM2+HT*(Y(1-1)+AUX2+Y(1+1)) 4 2(1-1)=SUM2 5 2(N01M-1)=AUX1 2 (N01M)=AUX2 RETURN 6 2(N01M-1)=SUM2 2 1(N01M)=AUX1 RETURN END OF INTEGRATION LOOP 7 IE(N01M=3)12-11-8 c ĉ 7 IF (NDIM-3)12,11,8 MDIM_IS_FOUAL_TO_4_OR_5
MDIM_IS_FOUAL_TO_4_OR_5
MJM12=1.125*HT*(Y(1)*Y(2)*Y(2)*Y(2)*Y(3)*Y(3)*Y(3)*Y(4))
SUM1=Y(2)*Y(2)
SUM1=HT*(Y(1)*SUM1*Y(3))
Z(1)=0
AUX1=Y(3)*Y(3)
AUX1=Y(3)*Y(3)
AUX1=Y(3)*Y(3)
If (NDIM-5)10.9.9
AUX1=Y(4)*Y(4) ĉ

* *

8

Ø

MISSION of

Rome Air Development Center

RADC plans and conducts research, exploratory and advanced development programs in command, control, and communications (C^3) activities, and in the C^3 areas of information sciences and intelligence. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.

RAKAKAKAKAKAKAKAKAKAKAKAKA

