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I
I. INTRODUCTIONI

S1.1 BACKGROUND

There is a continuing need to develop and apply new

methods for analyzing the stability and designing the control

systems of aircraft. This need is brought about by require-

ments for operating aircraft within expanded flight envelopes,

by airc'raft configurations with reduced inherent stability,

and by the need to meet safety, reliability, and cost

objectives.4
Recent research has extended stability and control

analysis techniques, and it has demonstrated the results of

analysis using mathematical models of two contemporary high-

performance aircraft. Fully coupled linear, time-invariant

equations of motion are derived in Ref. 1. The character-

istics of a small, supersonic fighter are investigated using

eigenvalues, eigenvectors, transfer functions, and time
histories of control response, and logic is developed for a

I departure-prevention stability augmentation system (DPSAS).

In Ref. 2, a mathematical model of the F-14A is analyzed in

similar manner, and several additional analysis methods are

investigated. These include evaluation of piloting effects

p on aircraft stability, evaluation of the effects of decelera-

tion on aircraft stability, and presentation of a new numer-

ical technique for analyzing limit cycles in nonlinear dynamic

models.

I The present work is a continuation of the types of

analysis established in Ref. 2. Using the same mathematical

model of the aircraft, new methods of predicting pilot-aircraft

!



stability boundaries are presented, and contours of equal

tracking performance and control effort are defined. Linear-

optimal control theory is employed to design logic for a

departure-prevention command augmentation system (DPCAS), and

the limit cycle analysis technique is investigated further.

A new mathematical model of the aircraft, which contains Mach-

dependent effects and simplified lateral-directional aero-

dynamics, is used to examine the effects of compressibility

on high angle-of-attack dynamics. Thus, the results presented

in this report expand on the earlier analyses, demonstrating

the relationship between modern control theory and the prac-

tical evaluation of aircraft stability and control.

1.2 SUMMARY OF RESULTS

The results obtained in this investigation fall into

four categories:

a Effects of Compressibility on Stability
and Control

* Prediction of Pilot-Aircraft Stability
Boundaries and Performance Contours

0 Design of Command Augmentation Systems
for Improved Flying Qualities

0 Analysis of Limit Cycles in Aircraft
Models with Multiple Nonlinearities

Numerical results are based upon comprehensive aero-

dynamic and inertial models of the F-14A aircraft. Extensive

use is made of linear, time-invariant dynamic models which

incorporate the major coupling effects that occur in asym-

metric flight. For example, stability derivatives are eval-

uated at non-zero sideslip and high angle-of-attack trim con-

ditions when appropriate. For analyses in the first three

2¶



categories cited above, the stability derivatives are based

on the aerodynamic slopes at the generalized trim condition.

For the fourth category, the "stability derivatives" are quasi-

linear, i.e., they represent amplitude-dependent nonlinear

effects in the vicinity of the generalized trim condition using

an extension of sinusoidal-input describing function theory.

The examination of compressibility effects highlighted

the importance of basing stability and control analyses on

the best, most consistent set of aerodynamic data available

for a particular aircraft configuration. As no comparison of

the two data sets with flight test data was intended or under-

taken, no comment can be made on the validity of either data

set; however, it is clear that the analytical results obtained

with the two sets are qualitatively different in their over-

lapping region (subsonic flight, with wings swept forward).

This does not impact the current research effort, which is

directed at new methodology development and the demonstration

of trends which depend on flight condition, but data validity

is a major concern in most applications.

The Mach-dependent data set indicates overall sta-

bility at subsonic and supersonic speeds, with sideslip and

speed divergences in the transonic regions for angles of attack

beyond 5 deg. Rapid roll rate couples these transonic insta-

bilities into a divergent speed-sideslip-angle of attack

oscillation. As known previously, constant roll rate can

have the effect of transferring damping from one axis to

another, and that effect is particularly noticeable in super-

sonic flight. Our earlier work with subsonic data (Refs. 1

and 2) suggested that sideslipping "into" a constant rolling

motion tends to destabilize an aircraft; that effect also

occurs in supersonic flight. In addition, sideslipping "out

of" the roll introduces a different mode-of instability in

3



the supersonic case studied here. The net effect i1 that

tight control of sideslip angle is indicated for supersonic

flight.

The highlight of the pilot-aircraft stability and

performance analysis is the definition of a minimum-control-

effort (MCE) adaptation model for the human pilot. As in our

earlier work, the pilot is characterized (mathematically) as

a stochastic optimal regulator which attempts to minimize a

weighted sum of state and control perturbations in flying the

aircraft. The potentially destabilizing effect which the

pilot could have if he adopts a fixed control strategy was
noted previously, and the current work endeavors to expand

upon this result by examining the effects of a set of mis-

matched pilot models on pilot-aircraft characteristics. In

addition, predictions of rms tracking accuracy and control

effort within the stable regions were investigated. It was
noted that optimal piloting did not necessarily correspond

with minimum control effort, and that if the pilot adapted

his control strategy to minimize his effort, he could be

directed to regions in which even small piloting errors could

lead to system instability. The MCE model further predicts

when a pilot who has more than one control at his disposal

(e.g., lateral stick and foot pedal deflections) is likely to

switch from one control mode to another. Limited validation

of the model is afforded by comparison of MCE model predictions

with the result of a manned simulation.

A departure-prevention command augmentation system
(DPCAS) design methodology is established in our third category

of work, and the method is applied to the design of an advanced

control system for the subsonic model of the F-14A aircraft.

The DPCAS design, Illustrated by Fig. 1, provides precision

response to pilot commands (normal acceleration, stability-

axis roll rate, and sideslip angle), with "Level 1" flying

4
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i [DE P'ART UnFE CONTROL

PILOT PnEVENTION COMMANDS
COMMANDS COMMAND AIRCRAFT

SYSTEM AUGMMNTATOON'
!

SFigure 1 Departure-Prevention Command Augmentation
System (DPCAS) for F-14A

qualities (as defined by military specification) at the 25

flight conditions used for design. The design points repre-
sent the following range of nominal flight conditions:

0 True Airspeed: 122 to 244 m/s
(400 to 800 fps)

0 Angle of Attack: 10 to 34 deg

0 Stability-Axis Roll Rate: 0 to 100 deg/sec

* Altitude: 6096 m (20,000 ft)

This DPCAS design technique is directly applicable to the

design of advanced active control laws, e.g., those associated

with control-configured vehicles (CCV), and an analysis of

the unmodified F-i4A's ability to be flown in various CCV

modes was conducted. It was found that separate-surface con-

trol deflections could provide independent fuselage pointing,

direct lift, and direct side force to a small degree; however,

I the major improvements which can be made to the unmodified

aircraft's maneuverability arise from the basic 3-commgnd

]DPCAS described above.

1 5



A unique feature of the DPCAS design approach, which

is based upon linear-optimal control theory, is that equivalent

"Type 0" and "Type 1" controllers can be designed concurrently.

(A T\'pe 1 controller has one pure integrator in each command

path; a Type u controller has no pure integration in thf for-

ward loop.) The two implementations have virtually identical

step response characteristics when the design model and the

actual aircraft are matched; however, their responses to turbu-

lence and state measurement errors are different, and steady-

state response is not the same when the design model and actual

aircraft are mismatched. The Type 0 implementation has superior

disturbance rejection, and the Type 1 controller guarantees zero

steady-state command error in the presence of model mismatch.

The multivariable limit cycle analysis technique

(MULCAT) investigated in the final category of our work is an

iterative process for identifying flight regimes in which

self-induced nonlinear oscillations in the aircraft's motions

are likely to occur. Beginning near a point of neutral

stability, as defined by the aircraft's-linear dynamic model,

a succession of neighboring quasi-linear models is analyzed.

The quasi-linear models are similar to the linear models,

except that potentially significant nonlinear terms (which are

approximated by slopes or "small signal" gains in the linear

case) are represented by dual-input describing functions.

These describing functions reflect the scaling changes and

trim shifts which occur when sinusoidal oscillations of varying

amplitude are present in the nonlinear system model (which

includes both aerodynamic and inertial effects). In general,

the eigenvalues and eigenvectors of the quasi-linear model

are decidedly different from those of the linear model if the

assumed amplitudes of oscillation are large. Using MULCAT,

potential limit cycles are identified by the combination of

state variable amplitudes and oscillation frequency which

forces the quasi-linear dynamic model to a point of neutral

stability (as defined by the quasi-linear eigenvalues).

6
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The results of the MULCAT investigation are promising,

I in that the procedure converged to limit cycle predictions in

several cases involving the subject aircraft. As expected,

the combination oi large-amplitude oscillations and nonline-

arities caused a significant shift in the aircraft's trim

I condition, as we)i as in the effective elgenvalues and

eigenvectors. Direct simulations of the corresponding non-

I linear dynamic equations confirmed the existence of persistent

oscillations with the predicted amplitudes and frequency.

The simulations could not confirm the long-term "locked-in"

nature of oscillation amplitude which is characteristic of

limit cycles, because there are also slow unstable modes

f present in the aircraft dynamics. The simulated initial con-

ditions always forced these additional modes of motion, and

Sthis led to eventual changes in the flight condition.

Nevertheless, MULCAT provided significant new insights re-

j garding nonlinear oscillations, and it should receive further

testing with alternate dynamic models.

1 The methods and results presented here can have sub-

stantial impact on the development and testing of future high-

performance aircraft, on the analysis and modification of

existing aircraft, and on the training of aviators. As a

Sconsequence of a better understanding of the dynamic coupling

which occurs duiing maneuvering flight and of the use of

modern control theory, stall/spin-related accidents can be

minimized, and operational effectiveness of aircraft can be

improved. The mathematical models of pilot-aircraft dynamics

can identify flight regimes which may be departure-prone, as

well as control procedures which must be used to avoid

difficulty. The net effect can be to enhance the safety,

reliability, and performance of flight operations, particularly

I' those involving high-performance aircraft.

!7



1.3 ORGANIZATION OF THE REPORT

This report presents analyses of coupled aircraft

dynamics (with emphasis on transonic and supersonic flight),
pilot-aircraft interactions, control system design, and non-

linear aerodynamic and inertial phenomena. Chapter 2 employs

a Mach-dependent aerodynamic model of the F-14A aircraft to

investigate the possibilities for departure and control diffi-

culty throughout the aircraft's flight regime. Chapter 3

develops the minimum-control-effort (MCE) adaptation model

for pilot behavior, illustrating the stability boundaries and

performance contours of the pilot-aircraft system. A depar-

ture-prevention command augmentation system (DPCAS) design

for the subsonic F-14A model is developed in Chapter 4.

Results of the multivariable limit cycle analysis technique

(MULCAT) are presented in Chapter 5, and conclusions and

recommendations are presented in Chapter 6. Symbols and

abbreviations are given in Appendix A. The Mach-dependent

aerodynamic model is summarized in Appendix B. Pilot command

modes for the DPCAS, including so-called "CCV Modes," are

presented in Appendix C, while the theory of proportional-

integral, linear-optimal regulators used in DPCAS design

appears in Appendix D.

8
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2. COMPRESSIBILITY EFFECTS ON FIGHTER AIRCRAFT
STABILITY AND CONTROL

2.1 OVERVIEW

Previous high angle-of-attack stability and control

developments have detailed many of the significant dynamic

characteristics of a mathematic., model of the F-14A (Ref. 2).

The model used in the previous study was restricted to subsonic

flight with wings fixed in the forward position. This chapter

presents stability boundary and control variation results for

an aircraft model which includes the effects of Mach number.

The aerodynamic model is described in Appendix B. All of these

results are for the "unaugmented airframe" model only, handling

qualities ol the aircraft as flown are greatly influenced by the

SAS, CAS, ARI, and other elements of the flight control system.

As in the previous work reported in Ref. 2, the

analysis approach is based on the formation of linear aircraft

models which include longitudinal-lateral-directional coupling.

SLinear, time-invariant models describe small perturbation sta-

bility in the vicinity of a single flight condition nd can

be useful for practical approximation of system dynamics, for

sensitivity analyses, and for control system design.

I The linearized aircraft model, derived as it is from

a Taylor series expansion of the complete nonlinear model

I about a reference flight condition, is valid for small pertur-

bations about that reference condition. Reference 1 compared

time histories generated by nonlinear and properly linearized

models in a highly dynamic trajectory (a rudder roll) and

found good agreement between the two types of models.

1!



In this chapter the linear system eigenvalues, eval-

uated alcng a series of flight conditions, are used to con-

struct stability boundaries as functions of the flight con-

dition variables. Other stability comparisons are made on

the basis of damping ratio or specific damping. Damping ratio,

defined only for oscillatory modes, is the ratio between the

actual damping and the critical damping (i.e., the damping

for which the mode no longer oscillates). Specific damping

is the real part of the eigenvalue, and it describes the rate

of convergence (or, if positive, divergence) of that mode.

Three different Mach-altitude regimes are examined

in this chapter; they have been chosen so that the dynamic

pressures at the subsonic, transonic, and supersonic flight

conditions are identical. Figure 2 illustrates the three

regimes and also indicates the wing sweep regions modeled.

To give an indication of the maneuverability involved, approxi-

mate 1-g and 8-g curves for 25-deg angle of attack (a) are

plotted. The subsonic and transonic regimes represent regions

in which air combat maneuvering (ACM) is likely to occur.

The supersonic regime could occur in a long-range, high-altitude

intercept. The variable-geometry aircraft adapts to each of

these regimes through wing sweep and glove vane extension.

This chapter examines the stability and control

characteristics of this airframe in these regimes. Even in

the subsonic regime, compressibility effects are shown to be

important. The stability decrease inherent in transonic flight

is examined, and stable (but lightly damped) modes appear in

the supersonic regime.

10
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1 2.2 SUBSONIC BASELINE CHARACTERISTICS

2.2.1 Description of the Subsonic Regime

The altitude (6,096 m (20,000 ft)), angle of attack,

and Mach number (0) ranges chosen for use in the subsonic

analysis are one.s where many air combat engagements occur,

I so the stability and control characteristics of the aircraft

in man'euvering flight are important. The subsonic regime

I
1 11



spans M•ach numbers from 0.4 (where compressibility has a

minor offect) to 0.8, where Mach effects are quite largo.

The variables describing straight-and-level trimmed

flight are plotted in Fig. 3. The wing sweep adapts to the

flight regime, r•maining fully forward for flight efficiency

over most of this regime and only beginning its rearward

sweep when compressibility becomes important. Trim throttle

and stabilator are small relative to the total control deflec-
tions available, and trim a in l-g flight is small. Trim a

decreases with increasing Mach number as dynamic presure

increases and the required lift coefficient for 1-g flight is

reduced.

The low subsonic Mach number (M=0.4) results pre-

sented here are somewhat different from the results derived
from the imcompressiblc-flow model used in Ref. 2. The high-a

unstable roll-spiral mode (shown in Fig. 4) is the same in
both models, but the Dutch roll instability near 20-deg a

in the incompressible-flow model is not exhibited by the com-
pressible-flow model at M=0.4.

2.2.2 Subsonic Stability Bour.daries of the Aircraft

The lateral mode damping variation with a for M=0.4
is illustrated in Fig. 4. Two major effects are apparent:

the roll mode slows dramatically in the a band associated
with outer wing panel stall (10-20 degrees), and the Dutch

roll damping consistently increases with angle of attack.
There is a mild roll-spiral oscillation at high a.

The same a sweep at higher Mach number (M=0.8)

exhibits significantly different mid-a characteristics, as

shown in Fig. 5. The roll mode slows at an even lower angle

12
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of attack, and the Dutch roll mode decomposes into two real

modes exhibiting large sideslip motions at about 16-deg a.

One of these modes is very unstable. In the same a range,

the roll-spiral decomposes to roll and spiral convergences.

At moderately high a, the roll mode and one of the sideslip

modes combine to form a rolling oscillation.

Mode shapes for the a range from 10 to 30 deg are

detailed by the eigenvectors illustrated in Fig. 6. The large

amount of sideslip in the roll mode at 10- and 20-deg a is

apparent, and it illustrates the difficulty of discerning be-

tween the roll and Dutch roll modes at 10-deg a. The sideslip

modes are apparent at 20 deg, and the rolling oscillation

appears above 24 deg. As a increases beyond 24 deg, the

rolling oscillation begins to approach the Dutch roll shape (as

indicated by the magnitudes and phase angles of the eigenvectors).

The sideslip divezxence appears in different angle-

of-attack regions for differeni. Mach numbers. Figure 7 illus-

trates this effect; increased Mach number tends to delay this

14
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effect to higher angles of attack. This trend follows, to

some extent, the increase in wing sweep angle which occurs in

the same Mach number range.

Time histories of the aircraft's lateral-directional

motion are shown in Figs. 8 and 9. The low-c roll response

is dominated by the fast roll convergence mode (Fig. 8), and
relatively small yaw-sideslip motions ensue. The directional

motion illustrates the low Dutch roll damping. At higher a

(Fig. 9), the roll mode dominates both the roll and yaw re-

sponses, but it is much Blower tb,.n at low angle of Dttack.

The well-damped Dutch roll oscillation appears in ýhe first

few seconds of the response.

Even at those flight conditions where the Dutch roll

mode is stable, its damping varies greatly. Figure 10 plots
contours of equal Dutch roll damping ratio in constant altitude
flight. There are a number of areas in this plot where rela-
tively small Mach number or angle of attack changes result
in significant changes in Dutch roll damping. Overlayed

on the plot are contours of constant maneuver load factor,

and it is instructive to trace the Dutch roll damping exhibited

by the aircraft as its load factor increases. At a constant

Mach number of 0.75, the Dutch roll damping increases up to a
load factor of 4, decreases up to a load factor of 6.5, and

then increases rapidly for load factors up to 8. The model

exhibits significantly different lateral-directional char-

acteristics as load factor varies in the high subsonic

regime.

In this analysis, the pitch rate effects of maneu-

vering flight have been deleted to concentrate on the angle

of attack effects. Steady pitch rate causes a redistribution

of the available damping among the lateral-directional modes

16
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without significantly changing the total specific damping.
Figure 11 illustrates that the roll mode is stabilized while 4

the Dutch roll mode becomes less well damped with increasing
pitch rate. This effect is mild and relatively independent

of flight condition, and the same result was observed in the

incompressible model (Ref. 2). In the longitudinal modes, I
there is a general increase in short period damping accom-

panied by a decrease in phugoid damping. Increasing pitch

rate can cause the phugoid mode to split into two real modes, I
one of which may become unstable.

118

!



:I

SUNSTABLE 

P-29010

0.5

R L (SIDESL!Pý

P SPITARAL dSPIRgAL

• STABLE

• •mad*• DUTCH ROLL

S.0 5 10 15 20

SPITCH/RATE (deg/sec)

Figure 11 Specific Damping of the Lateral Modes as a Function
of Pitch Rate (M-0.6, h-6,096 m, ao=10 deg)

2.2.3 Control Power Variations In the Subsonic Regime

The longitudinal control set of this aircraft con-

Ssists of throttle position, stabilator position, and maneuver-

ing flap position. The latter two controls provide both pitch

[ moments and normal forces, and they can be mixed (at least

conceptually) to illustrate the extent to which pitch and

angle of attack can be independently controlled. Figure 12

shows the normalized control ratio between stabilator and

maneuvering flap necessary to initiate a vertical translation

at constant pitch angle.

I "Normalized control ratio" indicates that the control

effectiveness derivatives used in this calculation have been

11| 19
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divided by the maximum control deflections. (Maneuver flap
can be deflected 10 degrees, and ±12 degrees is used as the

limit on stabilator available for maneuvering.) Hence, a

normalized ratio of 1.0 implies that thp controls deflect in

equal proportions of full deflection. These ratios are only
valid for the initial deflections; the actual control history
necessary to achieve constant pitch angle depends on the
vehicle response characteristics. Chapter 4 details a control
approach which can produce the complete desired response time

history.

2
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Figure 12 indicates that the stabilator is much more

powerful than the maneuvering flap, and there should be no

difficulty producing (at least initially) a pure normal force.

The magnitude of the normal force produced in this way is

limited by the fairly small normal force due to maneuvering

flap deflection and by the fact that the maneuvering flaps and

the stabilator both have effective centers of pressure behind

the center of gravity. As Mach number increases, the maneu-

vering flaps become less powerful relative to the stabilator.

An alternative longitudinal control interconnect is

one which produces a pitch moment (and hence a normal accel-

eration) at constant angle of attack. This combination is

referred to as direct lift control (Ref. 3), and Fig. 13

illustrates the normalized maneuver flap-to-stabilator ratio

that initiates this motion. The maneuver flap is not powerful

enough in normal force to enable full stabilator deflections

to be used in this mode.

These longitudinal control results indicate that

this aircraft's ability to operate as a control configured

vehicle (CCV) with existing control surfaces is limited, as

would be expected. The maneuver flap is powerful enough,

however, to have a significant beneficial effect on handling

qualities. This capability is examined in detail in Chapter 4,

where the design of an advanced command augmentation system

is illustrated.

The lateral control effectors of this aircraft are

conventional rudders and differential stabilator, with spoilers

used for additional roll control in the subsonic regime.

Figure 14 details the differential stabilator roll and yaw

specific moments over the angle of attack range from 0 to

30 deg. Adverse yaw from the differential stabilator above

21
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17-deg a can be expected to cause control difficulties in the

high-a regime (as is the case for most aircraft configurations).

Although the yaw moment is much smaller than the roll moment,

it still has an important effect due to the smaller magnitude

of most yawing motions.

The rudder creates a large, fairly constant yawing

moment and a highly variable roll moment, as shown in Fig. 15.

Combining differential stabilator and rudder to provide a
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rolling mor nt about the velocity vector (pw) results in the

normalized rudder-to-differential stabilator ratio shown in

Fig. 16. Above 19-deg a, it is no longer possible to produce

a pure velocity-vector rolling moment at full differential

stabilator deflection. This is due to the increased amount

of adverse wind-axis yaw moment from the differential stabi-

lator at high C,.

Figure 16 also indicates the differential stabilator-

to-rudder ratio which is needed for pure yaw moment. The

ratio varies by a factor of four fror, 5- to 15-deg a. This
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is significant, because any deflection error would produce

unwanted rolling, which, along an accelerated trajectory,

could result in large tracking errors.

Spoilers are used to augment the roll control moment

in the subsonic regime. Figure 17 compares the roll moment

due to spoiler with that of the differential stabilator. At
low a and low M, the spoilers create more roll moment than

the differential stabilator does, but spoiler effectiveness

drops to zero at about 16-deg a. Compressibility reduces

spoiler effectiveness significantly, and they are not used

at all in the transonic and supersonic regimes.
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2.3 TRANSONIC AIRCRAFT CHARACTERISTICS

2.3.1 Transonic Flight Regime Characteristics

Transonic characteri-tics are examined at an altitude

of 12,192 r, (40,000 ft). providing the same range of dynamic

pressures that is treated in Section 2.2. The dynamic pres-

sure at the central transonic flight condition (M=0.95,

h=12,192 m) is the same as at the central subsoni.c flight

condition (h=6,096 m, M=0.6).

The aircraft configuration goes through a substantial

transition in the transonic flight regime. The aircraft's

variable geometry feature matches the wing sweep to the flight

Mach number, as shown by the trim plot in Fig. 18. Signifi-

cant changes in aircraft stability and lift-curve characteris-

tics are evident in the shapes of the trim stabilator deflec-

tion and trim angle of attack, respectively. The large drag

increases associated with this regime lead to increased trim

throttle position.

2.3.2 Critical Transonic Stability Boundaries

Two aspects of transonic flight are of concern in

all modern fighter aircraft. A longitudinal instability

could result from the significant shift in aerodynamic center

which accompanies Mach number variations. The second concern

involves directional stability in the transonic regime, where

the destabilizing influence of the fuselage is larger than in

other regimes, and where the vertical fin effectiveness is

decreasing (especially at large c*).

2
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The dynamic model used in this chapter exhibits both

lateral and longitudinal transonic divergences at moderate to

high angles of attack, as s'hown in Fig. 7. The longitudinal

instability spans a larger Mach range at higher angles of

attack, and it takes the form of a pitch-speed instability.

Any change in Mach number in the regime leads to a change in

longitudinal force which increases the Mach variation. At

the same time, the aircraft pitches in such a way that the

Mach variation is enlarged. Both specific longitudinal force

due to speed variation (3u/2u) and specific pitch moment due

to speed variation (4/ýu) change sign above lO-deg a in the

transonic regime. The general shape of this motion involves

1-deg pitch change for every 3 m/s speed change, and the

27



doubling time can be as small as one-half second at high a.

As shown in Fig. 7, the speed divergence disappears at low

angle of attack.

The transonic lateral divergence is associated with

a loss of static directional stability. Inspection of the

dynamic model in high-a transonic flight reveals negative

(unstable) values of specific yaw moment due to sideslip

(0r/•v) at high a. Additionally, as observed in other modern,

supersonic, fuselage-heavy, fighter designs, the roll-sideslip

coupling is important. The 'ize of the specific roll moment

due to sideslip (0p/3v) is a major cause of this, with the

coriolis coupling of roll rate to lateral acceleration a con-

tributing factor. The decrease in roll mode speed at high-a

is not caused by a drop in roll damping (ap/ap is fairly

steady) but is due to the transfer of this damping to the

Dutch roll mode by the roll-sideslip coupling terms. As

shown in Fig. 7, the directional divergence disappears at

moderate angles of attack.

The lateral oscillation (the Dutch roll mode) is

stable in the transonic regime, although it exhibits large

variations in damping. Figure 19 illustrates these changes,

assuming constant dynamic pressure. (Altitude and Mach number

increase together to maintain this condition.) The Dutch

roll damping increases with maneuver load factor in a fairly

predictable manner over much of the a range, although large

damping changes can occur with small flight condition varia-

tions in the high-c region. It should be noted that the

Dutch roll damping at low a is very low.

The relling pull-up is a common maneuver in air com-

bat. This involves a combination of rapid rolling (to orient

the maneuver in the correct plane) and a hard pull-up (pro-

ducing large normal acceleration). This combination is of

28
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interest breause it combines the effects of lateral-longi-

tudinal coupling and high angle-of-attack aerodynamics.
Figure 20 shows the rolling pull-up stability boundaries for

the subsonic, transonic, and supersonic regimes. The sub-

sonic regime exhibits a mild roll-pitch angular instability,

while the supersonic regime shows unstable oscillations at

extreme rolling-pull up combinations.
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The transonic rolling pull-up stability boundary is

much more complex. At low roll rates, the sideslip and speed

divergences appear as before, but increasing roll rate causes

I these two modes to couple into an unstable a-e oscillation.

At about 20-deg a, the steady rolling stabilizes the longi-

tudinal oscillation. As observed before, steady angular rates

do not add damping to the aircraft but only redistribute it,

and this stabilized longitudinal oscillation is accompanied

by reduced damping in the short period mode.

The short period damping ratio variations in the

rolling pull-up are shown in Fig. 21. Below 26-deg a, short

period damping ratio drops as roll rate increases. At high

roll rates, the damping ratio is very low.

0.3 0-2 0'

(ioa

100~

.300 1 70 20 20

AWILE OF ATTACK, u0 (dto)

Figure 21 Short Period Damping Ratio in the Angle of Attack-
Roll Rate Plane (M-0.95, h-12,192 m)

The damping interchange due to roll rate is JIllustra-

tod in Fig. 22, which shows how the total specific damping is

'31
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allocated among the various modes. There is a drop in short

period damping and an increase in Dutch roll damping. The

unstable j-P oscillation (formed from the directional and

longitudinal divergences at 40 deg/sec roll rate) becomes

less unstable as roll rate increases. The total damping

(noted by the dotted line) is constant.

2.3.3 Transonic Control Power Variations

Symmetric stabilator and differential stabilator are

the major pitch and roll moment control surfaces in the tran-

sonic regime, and the rudders supply yaw control. The spoilers

and maneuver flaps are disengaged as the wing sweeps aft. The

trim plot (Fig. 18) shows that the stabilator retains signifi-

cant control power at transonic speeds.

The differential stabilator exerts large roll moments

throughout the angle of attack range, as shown by Fig. 23.

There is a significant amount of adverse yaw, which appears at

a = 14 deg. The small a range within which the differen-

tial stabilator switches from favorable to adverse yaw indi-

cates that a change in yaw-moment-neutralizing rudder deflec-

tion strategy is necessary in the low to mid-a range.

Rudder control power varies with angle of attack as

illustrated in Fig. 24. The yaw moment available decreases

steadily as a increases, ano the roll moment drops as lift

increases up to about 14-deg a. The effect reverses through

mid-a so that the roll moment due to rudder becomes large in

the 25-deg a region.

The interactions between control power and aircraft

stability lead to aircraft rudder responses which vary sig-

nificantly with flight condition. Figure 25 shows the linear
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aircraft model response to rudder deflection at three differ-

ent angles of attack in the transonic regime. At low a, the

Dutch roll damping is low, and the response is highly oscilla-

tory. The large amount of rolling motion in the Dutch roll

mode, which is typical of fuselage-heavy aircraft, is apparent.

At 15-deg a, the Dutch roll damping is much better,

and there is significantly less roll involved in the Dutch

roll mode. The damping interchange continues at higher angles

of attack, and a sideslip divergence appears. At 25 deg a,

the unstable mode dominates the aircraft response.

The control power variations in the transonic regime

are smooth, suggesting that stability augmentation logic can

readily account for the "open-loop" divergences exhibited by

this transonic model.

2.4 SUPERSONIC STABILITY AND CONTROL CHARACTERISTICS

2.4.1 The Supersonic Flight Regime

The central supersonic flight condition (M = 1,55,

h - 18,288 m (60,000 ft)) is chosen to have the same dynamic

pressure as the subsonic and transonic central flight condi-

tions. The aircraft trim conditions are shown in Fig. 26

for the supersonic regime. The relatively large trim angle

of attack reflects the reduced lift slope of the aircraft in

this flight regime, and the large trim stabilator angle re-

sults from the well-known aft shift of the center of pressure

at supersonic velocities. All of these trim effects have a

relatively minor effect on the aircraft flying qualities,

which are examined next.
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2.4.2 Supersonic Stability Boundaries

The supersonic regime is characterized by stable

(but lightly damped) natural modes. Variations wiih flight

condition (with the usual exception of roll rate effects) are

well-behaved and gradual. Figure 27 plots the specific damp-

ing (real part) of the lateral modes as a function of flight

condition, and the trends are similar to those found at low

Mach number. A drop in roll damping occurs in the 1O-to-20-

deg a region; this is accompanied by an increase in Dutch roll

damping. A roll-spiral oscillation is formed at about 18-deg

a, and the Dutch roll mode shape at high c exhibits in-phase

roll and yaw motion. Thus, the Dutch roll mode appears as a
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rolling oscillation rather than the roll-yaw interchange

typical of the low angle-of-attack Dutch roll mode.

Pitch rate has a destabilizing effect on the Dutch

roll mode, and this effect is especially large in the super-

sonic regime. Figure 28 describes this effect. As noted

before, large nominal angular rates do not change total air-

craft damping, but only reapportion it, and the low level of

damping in the supersonic regime accentuates this effect.

Relatively low pitch rates lead to a Dutch roll instability

in the supersonic regime. An actual pull-up combines both

high a and pitch rate, which have opposite effects on the

Dutch roll damping in this flight regime.

During a steady roll, it may be difficult to control

sideslip accurately. The effects of non-zero sideslip and

steady rolling on aircraft stability are of interest, and

Fig. 29 illustrates the aircraft stability regions as func-

tions of sideslip and roll rate. Any significant roll rate
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leads to a slow, unstable angular oscillation at zero sideslip

angle; sideslip out of the roll (roll rate and sideslip of

the same sign) causes a fast unstable a-E oscillation.

Sideslip into the roll leads to an instability only

at high roll rates or large sideslip angles, and the insta-

bility takes the form of a fast angular divergence. This

root is part of the short period mode, which is decomposed

and destabilized by roll rate. In all of these cases, the

coupled nominal motion and the complex shape of the insta-

bilities makes accurate control of these modes difficult.

2.4.3 Supersonic Control Capabilities

Reduced stabilator power in pitch is a characteristic

nf •upermonic flight. Figure 30 shows the trim stabilator

deflections for various angles of attack in the three Mach

regimes. The increased stabilator deflections necessary in

supersonic flight are due to the increased pitch stability in

this region, which underlines the basic conflict in the longi-

tudinal plane between stability and control effectiveness.

Available control moments tend to decrease with M.

The rudder roll and yaw specific moments (Fig. 31) decrease

as M increases (as is true in the transonic region), although

there is less rudder roll-moment variaticn with angle of

attack for supersonic M. The differential stabilator produces

lower rolling moments in the supersonic regime than at lower M

(Fig. 32). There is considerable variation in rolling moment

in the low-a area. The differential stabilator yaw moment is

as large in the supersonic regime as at low M, with the

transition to adverse yaw occurring at a higher a, about 19

degrees.
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The airframe response to differential stabilator

inputs changes with angle of attack, as shown in Fig. 33. The

differential stabilator roll moment relative to the roll damp-

ing determines the initial slope of !he roll rate response,

and the effect of reduced roll damping at 15-deg a relative

to 5-deg a) is apparent in the larger roll acceleration.

Adverse yaw (apparent i.n the direction of the yaw rate re-

sponse at a = 25 deg) excites the Dutch roll mode to such an

extent that the net roll effect is reversed; a differential

stabilator deflection that caused right-wing-up roll at low

u results in net right-wing-down roll at high a.
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The best inidicator of the spiral response is the

slow movement of the yaw rate remaining at the end of these

20-sec trajectories. At the two lower angles of attack, the

spiral mode is real and stable, as confirmed by the approxi-

mately exponential decrease in yaw rate. At 25-deg a, the

roll and spiral modes have combined into a roll-spiral (lateral

phugoid) mode. This very-long-perLod notion appears in yaw

rate as a response which will cross zero yaw-rate at about 23

seconds into this trajectory.

The Dutch roll mode dominates the sideslip (lateral-

velocity) response. The sideslip response is adverse at 15-

deg a, which is indicative of the adverse wind-axis yaw due

to differential stabilator that appears at very low a. The

large sideslip response due to differential stabilator at

high a is typical of high-performance aircraft. It is this

adverse sideslip which is directly tied to the roll reversal,

One desirable characteristic of Dutch roll at higher angles

of attack is the increased damping ratio, which improves

transient response at high a.

Supersonic control power is shown in this section to

be significantly reduced from that of the lower Mach numbers.

In the longitudinal plane, this combines with increased static

stability to result in reduced maximum trim angle of attack,

The reduction in lateral control power is generally accompanied

by reduced lateral mode damping, so achievable response rates

remain high.

2.5 CHAPTER SUMMARY

In this study, the effects of flight condition varia-

tion (lach nunmler, angle of attack and sideslip, and high

angular rates) on aircraft stability and control characteristics
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are examined. This is achieved by forming complete linear

dynamic models at a series of flight conditions and using well-

developed and efficient linear analysis techniques on these

models. These results depend on the validity of the nonlinear

aerodynamic model used in this study (Appendix B).

The Mach effects become important in the high-subsonic

regime, and they appear in the transonic area as speed and

directional instabilities. In the supersonic regime, longi-

tudinal stability is high and lateral mode damping is low. As
Mach number increases, control effectiveness is reduced.

Flight at higher angles of attack (above 15 degrees)

results in larger areas of transonic instability and a sig-

nificant reduction in roll damping, while the Dutch roll mode

damping generally improves.

High angular rates do not, in themselves, change the
total amount of aircraft specific damping, but simply reappor-

tion it. Steady pitch rate destabiliZes the Dutch roll mode,

especially in the supersonic regime. Steady rolling causes a

transfer of damping from the short period mode to the Dutch

roll mode, to the extent that an unstable a-$ divergence re-

sults at high roll rates. In the transonic regime, low roll

rates cause the longitudinal and lateral divergences to com-

bine into an unstable mode in some cases, and rolling can

actually stabilize these modes in somewhat different flight

conditions. Sideslip In either direction during a rolling

maneuver destabilizes this aircraft model.

Differential stabilator produces adverse yaw at mod-

erate to high angles of attack, which can lead to a net roll

in the direction opposite to that commanded. At high angles

of attack, full rudder deflection may be necessary to neu-

tralize stability-axis yaw due to differential stabilator.

'45



The extra controls available in subsonic flight (maneuvering

flaps and spoilers) produce a significant beneficial effect

on airframe control response.

46



I

3. MATHEMATICAL MODELING OF PILOTING EFFECTS
IN MANEUVERING FLIGHT

The research presented in this chapter is directed

at providing a better understanding of pilot-vehicle inter-

actions in rapid maneuers of a high-performance aircraft.

Two areas addressed are the identification of adaptation

strategies which experienced pilots may pursue in stabilizing

the lateral-directional dynamics of an aircraft and the effect

which pilot control adaptation has on aircraft tracking per-

formance. Lateral-directional piloting tasks are particularly

well-suited for studyirg stability and performance character-

istics of the pilot-air.'raft system because lateral-directional

motions ofen are the most difficult to control (Refs. 4 and

5).

An important objective of this study is to provide

insights regarding the design of future flight control sys-
tems. The control system can alleviate pilot workload by

increasing aircraft stability and commanding control surfaces

in response to pilot stick and pedal motions. The pilot

analysis procedure presented here identifies regions of high

pilot workload in a typical aircraft maneuver, thus indicating

where and what type of control compensation could best aid

the pilot. Furthermore, control system designs can be in-

corporated directly into the analysis procedure for a direct

verification of their beneficial effects on pilot-aircraft

stability.

The analysis of pilot-aircraft motions during maneu-

vers is accomplished by employing a control-theoretic pilot

model, which is introduced in the first part of this chapter,
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The pilot model can predict pilot behavior in realistic multi-
input, multi-output aircraft tasks. The pilot model assunip-

tions and the significance of pilot model parsmeters are dis-

cussed. The chapter continues by describing the construction
of pilot-aircraft stability and performance diagrams, which

are based upon the mathematical models of the pilot and the

aircraft. These diagrams are primary tools for expressing

results in this chapter.

The second part of the chapter presents these dia-

grams for a wind-up turn maneuver. The analysis proves to be
fruitful in predicting pilot-aircraft stability regions under

different control mechanization assumptions. The results

tend to substantiate high-a pilot-aircraft behavior known to

occur in high-performance aircraft. Such behavior includes

the detrimental effects of adverse yaw caused by differential

stabilators or ailerons, the stable nature of rudder control,
the improved tracking performance available when both stick
and pedals are used in a coordinated fashion, and the enhanced

capabilities afforded by an aileron-rudder interconnect (ARI)
system. The work is an extension of Ref. 2, which assumed
that the pilot fixed his strategy at a single flight condition.

3.1 OPTIMAL CONTROL PILOT MODEL

This section briefly reviews the important elements
of the optimal control model of the pilot. The model is
linear and time-invariant, and it easily represents multi-

input/multi-output control tasks, an important requirement
for the aircraft application. The optimal control pilot model

has been verified empirically (Refs. 6 to 11., and it has
been refined for application to demanding control tasks (Refs.

12 to 14). Reference 15 presents an applicaticn to air combat
maneuvering.
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The basic pilot model assumptions are shown in

Table 1. At a particular point along a maneuver, the aircraft

dynamics are represented as a linear, time-invariant system.

The n-vector, Ax(t), represents the perturbation aircraft

states in body axes. The aircraft's stick and pedal inputs

are represented by the m-vector, Au(t); raw(t) models the

aircraft's disturbance inputs (e.g., turbulence) as white

gaussian noise.

TABLE I PILOT MODEL ASSUMPTIONS
T-1083

AIRCRAFT PERTURBATION 1j(t - F Lx(t) + G Lu(t) + r•w(t)
STATE DYNAMICS

PILOT OBSERVATIONS I61(t) -H D -T)1 + LV(t-,)

tLk t-T)

PILOT COST FUNCTION 3 L i Jlm sLXTu ] Q j] + A RC6 dtT-o- 0(

PILOT NEUROMUSCULAR _16(t) -RLAU(t) * 6Ct) 6(t)
DYNAMICS

"[ n 0 o... o

PILOT NEUROMUSCULARLAG RL w 0 T
• • 2

1Tn m

The pilot is assumed to manipulate the aircraft con-
trols to counteract the disturbances, The pilot's observations

consist of rotational and translational perturbation positions,
velocities, and accelerations, represented as a linear combi-

nation of states and controls. Perceptual observation noise,
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AVy (t), is added to the observations, which are delayed by

the perceptual time delay, -. The pilot is assumed to formu-

late a control strategy (based on the observations) which

minimizes a quadratic cost function of general form. This

cost function weights combinations of perturbation state and

control positions as well as control rates. Weighting the

control rate causes the control solution to take the form

required to model neuromuscular dynamics. The (mxm) neuro-

muscular dynamics matrix, RL, is diagonal, with individual

elements representing the inverse of human limb neuromotor

time constants. The neuromuscular dynamics are driven by the

pilot's internal control commands, tuc (t), and by neuromotor

noise represented as the white gaussian m-vector, Lyu(t).

The solution of the optimal control pilot model is

shown in Table 2. The pilot's delayed observations are pro-

cessed by a Kalman filter which generates the pilot's best

estimate of the delayed states and controls. The pilot model

counteracts the perception delay by predicting the current

states and controls from the observations and estimates. The

predicted state estimate and the feedback gain matrix, C, are

used to formulate the internal control commands. The two

algebraic Riccati equations shown in Table 2 must be solved

to generate the pilot model gains. Each Riccati equation con-

tains design parameters (in the form of weighting matrices)

and must satisfy certain constraints. For the control Riccati

equation, the state weighting matrix, QC' and the neuromuscu-

lar lag matrix, RL, are known, while the control rate weight-

ing matrix, RC, must be adjusted to satisfy the neuromuscular

constraints. For the estimator Riccati equation, the dis-

turbance noise covariance, QE' is known, while the neuromotor

noise covariance, Vu, and the observation noise covariance,

Vy, must satisfy the requirements shown in Table 3. (

5
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TABLE 2 PILOT MODEL SOLUTION

T-1084

PILOT CONTROL (, t - C • (t)

S-r - - [ 1]
CONTROL GAIN MATRIX C * -1" 0 1

J

ALGEBRtAIC RICCATI GF 7 -F T 0 0 0
CEQUATION FOR OPTIMAL c;1 O PC-

comL ,' LO L

S- ( - [F G 1 L•(t-¶) .0
PILOT KALMAN FILTER OR i (t-1)

- i 1C

+ K t ) [H D)

ILJ

rlG G !-

FL (t) [ P^-LJ ! &-(-)Ljp(t) 'TL ,:x (t), 0 _ r " -

PILCT PP.Z)ICTOR ..1 D. ' *

-tI j' CC "R JLa' it)J L'

KALMAN FILTER I rH
GAIN MATRIX LP I D T

ALGEBRAIC RICCATI 1 F 1 F l i .T

EQUATION FOR ESTIMATION P£ T I 0 1, 1H D y
ERROR COVARIANCE MATRIX LG TR r. D 10 [

The pilot's observation noise scales with the co-

variance of the states and controls, while the neuromotor

noise scales with the covariance of the pilot's internal con-

trol commands. The scalar, PYi, is the pilot's noise-to-

signal ratio for the ith observation. Pu1 is the pilot's

noise-to-signal ratio for the ith control. The scaling

property has been validated for low-order systems and scalar

I
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TABLE 3 PILOT MODEL COVARIANCE EXPRESSIONS
T-1085

PILOT OBSERVATION E TLv --T
NOISE COVARIANCE

" P H D] X 1 )1 1 . k

PILOT NEUROMOTOR E {AV(t &(T(O) - u•t-c)
NOISE COVARIANCE I

I u) - 0) T' ) -]

Lx~ t) AX~ (t)

PILOT PRED:CoION ,I, -, oL- p
ERROR COVARIANCE [½ L(t) LL (t)

E t )I ) r Z 6Ct-c)

0 RL] 1 0 - T L R ~L E0  1 RLi,
-RL "j Lo fJ

Z - eL P e f e L e ids
t 0 vu
L/

COVARIANCE OF
PILOT PREDICTED El [4(t) - Ai 1 (0 6Y T t-c)
STATE .:.G t) P

feL C R] [0 -RLUP FH T V(H Dl PE [P RL d .RL

y Ls [ G 1 T] eL].ei

COVARIANCE OF t x~t) F T (t

PERTURBATION STATES E t) Lu - X l(t--)
AND CONTROLS t

X- Z ¥
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controls. Unfortunately, the use of the noise-to-signal ratio

destroys the separability property of the estimation and con-
trol processes. If the control law is unstable, the estimator
does not exist. The dependence of the estimator solution on
the control solution is advantageously exploited in examining

the pilot's adaptive behavior (Section 3.2.2). The closed-

form expressions for covariances used in formulating and
analyzing the pilot model are shown in Table 3.

A summary of key parameters of the pilot model is
shown in Table 4. To construct a model for a given aircraft

system, Py, Pu' T, RL' H, D, and QC must be specified. All
of these vaTiables except QC have been measured experimentally,
and ranges of their values can be found in the literature.
The pilot model solutions obtained in the present study are
not very sensitive to the choice of QC' and the values used

here are presented in Section 3.2.2.

If the pure time delay is replaced by a first-order
Pade approximation, the prediction equations in the pilot

model can be eliminated (Fig. 34). The pilot's observations
are degraded by noise, then passed through a lead-lag network

representing the Pad6 approximation. The resulting signal is
processed by a Kalman filter which generates a best estimate

of the states, controls, and lagged observation states. The

state estimates are multiplied by the feedback matrix, C, to

form the pilot's internal control command. The gain matrix,
C, in the pure time delay and Pade approximation pilot models

are the same.

The Riccati equations shown in Table 2 for the opti-
mal control pilot model can be solved using the closed-form
covarjance expressions in Table 3 and the pilot model control

gain expression in Table 2. The controller Riccati equation

5
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TABLE 4 DESCRIPTION OF THE ?PTIMAL CONTROL MODEL PARAMETERS

EQUATION PARAMETERS I RELATION TO PILOT PERFORMANCE

Lx Aircraft motion variables - P ulot mst observe this well enough to command air-
!craft and to provide stability.

tU Aircraft control variables iPlot must use this to command aircraft and to pro-
-vide stability. In soce Instances. he must b- able

to observe L.u as well.

F Aircraft dynamics (stability deriv- Aircraft oust be stable enough for pilot to control.
atives and inertial coupling) s*.b.c• to normal human capabilities.

O Aircraft control effects (sensi- Aircraft must respond to external comnands in a way
tivity to control deflections) which the Filot can understand.

H Motion variable display selection Motion cues must be sufficient for comoand and
and transformation stabilizati on.

D Control variable display selection Ac.eleation cues infer control observation.
and transformation

(t-T) A0(t-1) Delay motion and con- Estimbte., of motion variables must be accurate

enough to provide effective closed-loop control.
trol variables estimated by pilot

[i T t).tct)] Predicted motion and con-

trol variables estimated by pilot

GT 0 , Dynamic model assumed (i.e.. The better the ptlot's knowledge of the aircraft and
"learned") by the pilot, including 'his own capabilities, the better he can cope with

0 -RL neuromuscular lags noise measuremento.

K Estimation gain% which *eiglti the I-Ls knowledge of the aircraft as well as less noise
difference between the pilot'v In the pllot's observation of cues leads to higher K
observations and his prediction of and more reliance on observed miotions.
pilot-aircraft response. I

iv.(t) Pilot induced noise in observation Nolbe In observalonas has direct effect on estina-
""i trot. performance of the pilot.

C Control gaina which transform i Pilot attempts to tradeoff aircraft motions with
pilot's estimates of aircraft iavllable control "power." Improper control
motions to control actions Ptratecy could degrade coeatid response and de-

stabllize the system.

RL Neuromuscular Lags I Neuromuscular satew smootbs pilot outputs and could
prvvent pilot froe stabilizing a fast instability.

Pilot internal control commands Result of conscious .ffort to provide "best' control.

RC Weighting matrix for control I• must be varied to mtch neuroftctor dynamics (RL).

output rates Value of RC Is strontly affected by aircraft control

effects (G).

'In practice. RL abd G have a large effect on deter-
mining C.

QC Weighting matrix for motion and ,Allows relatlve importance (to the pilot) of proIcre
c,,ntril prturbations irarKing of individual Otio(,ns to be specified.

JAIIws effects of 'lImted control "throw- to bo
!npeclfied In practice. haq limited effect on C.
,due t(, re-trictinr.s on RC_

Cov'ariance -natrix of disturban-e 'Large values increase &=p-rtance of observationsinputs (e.g., turbuloncel and increasing K.
uncertainties in svstem dynamics i

%' Covariance matrix of observation 1Larg- values decrease accuracy of observations.
nolPe !decreasing K

ohstrvat ion noise to %scnal ratio, !Observat ion noise is proport ional to the covariance

V Covsriancr matrix (f neuromotor Laria values indicate pilot Is having difficulti-s
nolse , controlinr aircraft.

P Npuronwtor noise to signal ratio 4Neurorotor noise is prtpxrtional to the covariance
54,f B,_C
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Figure 34 Block Diagram of the Pilot Model Containing
the Pade Approximation to Pure Time Delay

and estimator Riccati equation algorithms were developed in

the previous year's work (Ref. 2).

3.2 FUNDAMENTAL ASPECTS OF PILOT-AIRCRAFT INTERACTIONS

This section describes the p-ocedure for analyzing

pilot-aircraft interactions using the optimal control pilot

model. In the first part, pilot-aircraft instabilities caused

by inherent physical limitations of the pilot are compared

with existence properties of the pilot model. These limita-

tions can arise either through an inability to estimate the

state properly or an inability to control the aircraft. For

the cases considered, the aircraft must be unstable for
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algorithm divergence to occur. The pilot also could actively

destablize a stable aircraft by failing to adapt his control

strategy to a changing flight condition.

3.2.1 Relationships Between the Critical Tracking Task
and Existence of the Pilot Model

Divergence of tne pilot model algorithms may be an

important indicator of a real pilot's ability to control his

aircraft during maneuvering flight. The results which follow

show that human pilots and optimal control pilot models have

difficulties controlling a system in similar situations, and

the pilot model parameters which cause the instability in

the model are plausible reasons for human instability during

actual flight. The optimal control pilot model fails to

exist when the Riccati equations do not have finite, positive-

definite solutions. An explicit example of Riccati equation

divergence for a scalar system is discussed in Ref. 2.

As mentioned above, the pilot--model may fail to exist

either because an estimation law cannot be defined or because

a control law cannot be formulated. In the first case, the

pilot could have inadequlate information on which to base his

estimate because his observation noise-to-signal ratio is too

high. In the second case, the pilot cannot maintain effective

control because the aircraft is unstable and his neuromuscular

lag is too great.

Pilot model estimator and controller divergence is

examined by using the results contained in Refs. 16 and 17

for comparison. One of the objectives in the two references

is to determine at what system time constant a human subject

could not cortrol an unstable first-order system. The dynamic

characteristics which cause the human subjeci to lose control
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define the experimental critical system. In Ref. 16, changes

in the experimental critical system of the human are investi-

gated by changing the display format. In Ref. 17, the display

format is not changed, but the system dynamics are made in-

creasingly complex bv placing integrators between the output

of the first-order system and the display.

Some of the critical systems that have been deter-

mined experimentally (Refs. 16 and 17) are shown in Table 5.

As the display format changed from aural to visual then to

aural and v 1 combined, the unstable critical system time

constant ases. Better displays make it easier for the

subjecL to exercise control; hence, they make it possible for

increasingly unstable systems to be stabilized by manual control.

TABLE 5 COMPARISON BETWEEN HUMAN AND PILOT MODEL
INSTABILITIES

T-1220
CONSTANT P AT

NEUROMOTOR NEUROMOTOR V
TIME T I ME NOISE ESTIMATOR

CRITICAL COINSTANT, DELAY, COVARIANCE, ALGORITHM
OBSErVATION SYSTEM In (sec) 7(sec) Vu (sec- 2 ) INSTABILITY

Aura' 1 0.08 ,. 0.15 0.01 0.00605 r
(Ref. 16) 1-O.222s (-22.2 dB)

Aura] 1 0.08 0.15 0.001 0.00605 -
(Ref. 1C) -077 =s (-22.2 dB)

Aural 1 0.08 0.15 0.0025 0.00605
(Ref. 16) 1-0.222s (-22.2 dB)

Aural 1 0.08 0.15 0 0025 0.00382 '.

(Hef. 16• T-0322 (-24.2 dB)

Vi sua I 1 0.0 0.15 0.0025 0.00223 1
(Ref. 16 1-0.164s (-26.5 dB)
and Rof, 17,

Vi.0ua I 1 0<0. 0.15 0.0025 0.00255'
(Rw.1 !7) ,(1-0 25,,) (-26 dB)

1isual " (08 0.15 0-0025 (System Is
an(: Aural 1-0.152s Un ntrol-
( a .J . 1,: lable)
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Pilot model critical systems occur when model algo-

rithm divergence is induced. The pilot model parameters at

the algorithm stability boundary can be called critical

parameters. The analogy of a changing display format for the

pilot is a changing observation noise-to-signal ratio, Py, for

the pilot model. The critical value of P at the algorithm

stability boundary must decrease as the experimental critical

system becomes more unstable. Furthermore, values of the

critical value of Py should be less than typical human values

(-20 dB). To see how the critical value of Py varies with
the experimental critical systems, the pilot model is con-

structed.

For a first-order system

AXt: 4L Ax(t) + g Au(t)
T S

with the pilot model cost function

I
SJ 0 OIqcAX2(t) + rctU2 (t) Idt

the optimal control pilot model takes the following form:

L 
+ Ap(t) + 

xVu(t)

Au(t) L -j0LAu(t 2gTL
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The equations are based on Table 2, with the subject observing

Ax(t) and Ak(t). The pilot model gain of -l/2gT 2 (taken from

Ref. 2) does not depend on the value of qc in the cost func-

tion. In the corresponding experiments, no external dis-

turbance noise purposely disturbed the system, so it is assumed

that residual neuromotor noise, - (t), is the signal source

in the equivalent pilot model. A constant value for neuromotor

noise covariance, Vu, is used in the analysis.

The impact of the constant V assumption is shown inIu
the first three rows of Table 5 using the aural display case.

Beginning with the critical system, the observation noise-to-

signal ratio, Py, is gradually increased until estimator

algorithm divergence occurs. The different values of V did



not change the critical value of Py at algorithmic instability,
indicating that the residual constant Vu assumption is valid.

The effect of increasing the time delay in the pilot model is

shown in the fourth row in Table 5. As expected, the noise-

to-signal ratio must decrease, i.e., the human must perceive

the signal more clearly, to produce the same critical system
with an increased time delay. The effect of decreasing the

critical system time constant with a visual display is shown
in the fifth row of Table 5. The decrease in the value of

Py for algorithm instability is exactly the result needed to
confirm the relationship between human critical systems and

pilot model critical parameters. Further confirmation is

shown in the sixth row, where adjoining an integrator changes
the pilot's critical system time constant considerably but
has little effect on the critical Py for the pilot model, as

expected. This also confirms a common optimal control pilot

model assumption that P is relatively insensitive to planty
variations.

In the first six rows of Table 5, the assumed neuro-

motor time constant of 0.08 sec is sufficient to control the

system, and the pilot model controller Riccati equation has a

solution. In the last row of Table 5, the value chosen for

Tn causes the controller algorithm to diverge. The divergence
is easily understood when the eigenvalues of closed-loop pilot

model matrix

1
[F Gi L s

LC -R 1 - 1

are examined. One eigenvalue is unstable for Ts equal to
-0.152 sec and Tn equal to 0.08 sec. The last row in Table 5

represents' a situation in which the human subject observation
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of the signal (visual and aural combined) is so clear that

the neuromuscular system instability boundary is reached be-

fore the visual instability limit.

Summary - The optimal control pilot model and pilot

model algorithm largely agree with experimental and mathe-

matical results under the extreme conditions of the critical

tracking task. When the pilot model algorithm predicts an
instability, the human may well have similar difficulties.

What is even more important is the converse of the above state-

ment: when the pilot model exists. then a well-trained human

should be able to control the system. If the pilot model

exists but the experienced pilot encounters stability problems

in contro''ing the aircraft, then alternate reasons for pilot

control difficulty must be explored. This is done in the

next section.

3.2.2 Adaptive Behavior of the Pilot During
Aircraft Maneuvering

This section presents an approach to analyzing pilot

adaptation to varying flight conditions using the optimal

control pilot model. High-performance aircraft are susceptible

to degraded flying qualities during maneuvering flight, and

the effect of piloting action plays a significant role in

determining overall system stability. The piloting task is

made difficult by the need to change control strategies if

stable regulation of the aircraft is to be maintained.

Stability of the pilot-aircraft system is evaluated

by eigenvalue analysis of the closed-loop system which is

formed when the pilot uses aircraft outputs to regulate air-

craft inputs. The pilot-aircraft system model is

E
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where ARp (t) is the pilot's predicted state estimate as shown

in Tables I and 2. The adaptation point of the pilot speci-

fies the pilot gain matrix, C, while the flight condition of

the aircraft specifies F and G. The eigenvalues of the closed-

loop regulator system are the roots of the determinant

det I .. R , (2N

Equation 2 is easily restructured to incorporate alternate

modes of the aircraft's control system. If the stability

augmentation system (SAS) is on, F is changed by feedback.

If lateral stick centering logic is employed, the column in G

corresponding to lateral stick deflections and the pilot

lateral stick feedback gains are eliminated. If the ARI is

on, G is modified by the interconnects. If a command augmen-

tation system (CAS) is on, both F and G are changed appro-

priately.

In the work of the previous year, the pilot gain

matrix, C, was fixed for adaptation at a 0 = 10 deg, B0 = 0 deg,

and the aircraft's angle of attack and sideslip were varied

with airspeed held constant (Ref. 2). It was shown that the in-

stability regions in the a - EO plane are formed primarily in

the lateral-directional axis, and these regions were not par-

ticularly affected by the sideslip angle. Building on this

work, the current analysis assumes zero sideslip conditions

(uncoupled dynamics), and the effects of the pilot fixing his

control strategy at various angles of attack are determined.
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The constant-altitude wind-up turn presented in Table 6

is an example of a maneuver which causes angle of attack to in-

crea~e. The flight condition sweep starts at straight-and-

level flight; the aircraft rolls into a turn and maneuvers to

a constant pitch rate with increasing angle of attack as the

velocity drops. The effects of changes in roll angle, pitch

angle, and height are neglected in constructing F and G. The

assumed constant height is 6,096 m (20,000 ft) at zero flight

path angle. The closed-loop pilot-aircraft eigenvalues are

determined at the points shown in Fig. 35 and Table 6. The

eigenvalue data is cross plotted to obtaLin stability regions.

Once a diagram is formed, any adaptation strategy can be chosen,

from perfect adaptation to no adaptation, and the effects on

pilot-aircraft stability can be observed. If a wind-up turn

time history is available, key points can be transferred to the

diagram for validation and comparison.

The optimal control pilot model gain matrix is deter-

mined at each point in the wind-up turn, The QC weighting

matrix used in these calculations performs a tradeoff between

the following state perturbations:

0 Roll Angle 5 deg

* Yaw Angle 1.4 deg

* Body Roll Rate 6 (eg/sec

* Body Yaw Rate 2 deg/sec

* Lateral Velocity 0.914 m/s (3 fps)
2

* Lateral Acceleration 1 83 m/s (0.167 g)

*The constant-altitude wind-up turn should be distinguished

from the constant-velocity wind-up turn for a thrust-limited
flight conditicn. In the latter, the aircraft must descend,
trading potential energy for kinetic energy to maintain speed.
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Figure 35 Pilot Model Diagram Construction for
Wind-Up Turn Trajectory

The weighting coefficient for each variable is the inverse of

the square of these values. Allowable control deflections
are large enough to effectively eliminate them from this
weighting matrix tradeoff.

Eigenvalues for the pilot-aircraft system (ARI off,
SAS off) using lateral stick alone for control are shown in
Table 7. As illustrated by the table, the pilot model pre-
dicts that the pilot can maintain tight control throughout the
maneuver, although the Dutch roll natural frequency becomes

low at the higher angles of attack.
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TABLE 6 WIND-UP TURN WORKING POINTS

T-1089

ANGLE OF NORMAL
POWER VELOCITY ATTACK, ACCELERATION, PITCH RATE,

SETTING, VN, rm/s a0, an Mr/s 2&' 0' n' qo
6T' (fps) deg (g's) deg/sec

40(Mil) 244 1.02 0.0 0.0
(800) (0.00)

30(A/B) 244 5.97 21.3 5.0
(800) (2.17)

100(A/B) 244 8.72 31.9 7.5
(800) (3.25)

100(A/B) 213 11.1 27.6 7.5
(700) (2.81)

100(A/B) 183 15.4 22.9 7.5
(600) (2.33)

100(A/B) 168 17.4 20.5 7.5
(550) (2.09)

100(A/B) 152 19.8 18.2 7.5
(500) (1.85)

100(A/B) 137 24.6 15.1 7.5
(450) (1.54)

100(A/B) 130 27.8 13.1 7.5
(425) (1.34)

100(A/B) 122 34.1 10.1 7.5

(400) (1.03)

*Military Thrust

**Afterburner

The nonadapting pilot model (introduced in Ref. 2)

is an example of mismatched internal model representation,

as also addressed in Ref. 18. The system dynamics which the

pilot model algorithms use to calculate the control gains,

6
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TABLE 7 PILOT-AIRCRAFT EIGENVALUES IN THE WIND-UP TURN
(LATERAL STICK ALONE, ARI OFF, SAS OFF)

T-1090

I PILOT LATERAL
MANEUVER CONDITION IjSTICK/SPIRAL DUTCH ROLL ROLL I YAWV •n, IVol aof qol Wn , T

m/s deg deg/sec rad/sec - rad/sec - sec i sec

244 1.02 0.0 7.38 0.740 2.40 10.468 0.892 16.9

244 5.97 5.0 7.42 0.726 2.12 0.426 0.849 i2.23

244 -8.72 7.5 7.00 0.679 1.62 0,614 0.781 11.72

213 11.1 7.5 6.69 0.655 1.11 0.683 0.642 .1.84

183 115.4 7.5 6.48 0.635 0.296 0.775 0.535 11.19

152 19.8 7.5 6.11 0.642 0.486 0.861 0.521 j2.39

1724.6 7.5 6.09 10.614 0.266 10.722 0.532 10.855

i.e., the pilot's internal model, are different from the actual

aircraft's dynamics. There are good reasons for examining

the effects of fixed piloting strategy in maneuvering flight,

even though the pilot is capable of adaptation. If the pilot

can get similar tracking performance without changing his

strategy, his conscious workload is reduced. If the pilot

does not know the aircraft's dynamics will change in the future,

his best approach may be to continue using a fixed strategy;

in any case, true pilot adaptation is likely to lag the

aircraft's actual state.

There is some evidence that pilot model adaptation

is more directly related to changing control effects than

changing stability characteristics of the aircraft. A simple

example is based on the first-order system discussed in

Section 3.2 for the critical tracking task. The pilot model

gain, -1/2gT2  in Eq. 1 is independent of the system time' n'

constant, T., and adapts only to changes in g. This result
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implies that modifications which affect G (such as an ARI) have

the most potential for altering pilot workload and affecting

piloting sty]e, while modifications which affect F (such as a

$ SAS) may have less direct effect on piloting strategy.

3.2.3 Tracking Error Analysis of the Pilot-Aircraft System

This section describes a procedure for examining the

effects of fixed piloting strategy on the net tracking effec-

tiveness of the pilot-aircraft system, as well as on the con-

trol effort required of the pilot. The approach is based on

the computation of steady-state covariances which accompany

the generation of the pilot model estimation law. The steady-

state covariance matrix, X, is showm in Table 3. Its diago-.

nal elements are the mean-square values of the tracking errors

and the control commands issued by the pilot model.

For analysis purposes, the pilot model control law

is fixed at an assumed adaptation point, but the pilot model

estimation law is adapted to the aircraft's flight condition.

This approach is Justified on the grounds that we are investi-

gating the independent effects of pilot control strategies

on tracking performance and that fixing the estimation law as

well would not allow an easy comparison with future evalua-

tions of independent estimation effects. Furthermore, the

assumption simplifies the computation of system covariances,

allowing direct use to be made of the Kalman filter computa-

tions, as mentioned above. The covariance matrix, X, of sys-

tem state and control variables is

E Ax T(t) Au T(t) =X = PE + E(t) Pv4) (t) dt + YLAx (t)L T

(3)
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where T is the pilot's perceptual time delay, and

y f ' c.(t) ¢E(T) p•j (T) (t)d

CE(t) = e
FF~ G1

F G It(4)

C(unadapted) -RLj

Wc(t) e

F HTl
P,= PEH T V- 1[HD]

Equation 3 can be derived from the expression for X in Table 3

when the control law is adapted. The only change that occurs

when the control law is not adapted is in Eq. 4. If the

nonadapted C causes an instability, the adapted steady state

tracking error does not exist (i.e., the tracking error goes

to infinity).

The assumed parameters for the human pilot are the

same as those used in the previous year's work (Ref. 2). The

pilot observes the perturbation angles and angular rates, the

human time delay is assumed to be 0.2 sec, and the longitudinal
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and lateral states are aasumcd ToLbc scanned with e~,al

attention. The ccrresporiding visual noise-to-signal ratio,

Py, is 0.0257, assuming attention allocation to the task

of flying the lateral-directional dynamics of the aircraft

is 40 percent. The neuromotor noise-to-signal ratio, Pul

is set at the nominal value of 0.003r for all controls.

The aircraft is assumed to be disturbed by atmo-

spheric turbulence. This is modeled as an exponentially-

correlated, gauss-markov process

ANv(t) t -- + LWy(t)
y

along the body y-axis for the lateral-directional dynamics.

The value of the time constant, Ty, is taken to be 0.314

rad/sec, and the variance of the gust is 1.52 m/s (5 fps).

The pilot model estimator is determined at the wind-

up turn working points. For each pilot model solution, the

state and control variances are determined by the diagonal

elements of the covariance matrix, X, By cross plotting the

variances, contours of system performance can be obtained.

The contours never cross the stability boundaries, which repre-

sent contours of infinite variance.

3.3 PREDICTION OF PILOT-AIRCRAFT STABILITY AND PERFORMANCE

This section presents st;.bility regions and state

and control variance contours for the F-14A aircraft in a

wind-up turn maneuver. The results concentrate on the lateral-

direct onal uncoupled dynamics of the aircraft, and they

illustrate the effect of an ARI feature on ilot-aircraft

interact ions.
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3.3.1 Stability Contours for the Pilot-Aircraft System
at High Angles of Attack

Stability contours for the pilot-aircraft system

demonstrate the effect of pilot adaptation point (represented

by angle of attack, ap) during the wind-up turn. In all cases,

if the pilot is properly adapted to the actual flight condi-

tion (represented by aA), the closed-loop system is stable;

however, if the pilot chooses a control strategy which is

optimal for a different point on the wind-up turn, he may

destabilize the overall system. (As mentioned earlier, his

adaptation could lag the actual flight condition, or he could

purposely choose a sub-optimal policy.) If the stability of

the pilot-aircraft system is evaluated at a number of points

representing matched and mismatched pilot adaptation, the

stability boundaries can be defined by interpolating between

stable and unstable points, producing results such as those

shown in Figs. 36 and 37.

Each of the figures has a band of stability in the

region of the line of perfect adaptation. In Fig. 36a, the

most striking feature is the stability "neck" which occurs

when aA equals 150 to 200. The pilot must be very careful

about choosing his control strategy in this region, as an

unstable spiral mode region is easily entered if the strategy

is not nearly optimal. The instability would be characterized

by a "departure" with increasing heading and roll angles.

If the pilot uses both lateral stick and pedals, the

stable regions are expanded, and the onset of the nonadapted

unstable spiral mode region occurs at higher aA, as shown in

Fig. 36b. The instability region for ap greater than aA is

eliminated, and active use of the rudder is seen to have a

stabilizing effect. If the pilot model controls with foot

pedals alone (not shown in the figure), there are no regions

of instability in the a A - OP plane, a result which is con-

sistent with flight experience.
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The regions of instability in the pilot-aircraft

diagrams can be linked with gain sign changes in the pilot

model feedback gain matrix, C. Tables 8 to 10 show optimal

pilot model gains with the ARI off. The sign changes on roll,
yaw, and yaw rate in Table 8 are considered to be the cause of

the spiral instability with lateral stick. The lack of sign

changes in Table 9 indicates the desirable characteristic of

rudder control, which produces no instabilities in the pilot-

aircraft diagrams. Rudder control uniformity carries over to

the dual-control pilot model gains in Table 10 where the roll,

yaw, and yaw rate gains for lateral stick do not change sign

up to 24.6-deg a0*

The effect of the ARI design discussed in Ref. 2 is

shown in Fig. 37. For control with the lateral stick alone,

the unstable spiral regions are eliminated, but regions of

Dutch roll instability occur instead. Failure of the pilot

model to adapt leads to "wing rock" tendencies, which could

result in divergent oscillations. As the aircraft angle of

attack further penetrates the region of Dutch roll instability

(with aP<aA), the rocking decreases in frequency and the amplitude

of the oscillation increases rapidly. If the pilot overadapts

(a P>aA) where aA is below 10 deg, the other Dutch roll insta-

bility region is entered. Above 10-deg aA, the pilot can

overadLpt significantly without encountering instabilities.

If the pilot uses both lateral stick and pedals with

the ARI on, the stability contours are presented by Fig. 3Ab.

If the pilo* does not adapt, a high frequency, lightly damped,

Instability region is entered. The instability stays lightly

damped ur the atrcraft angle of attack increases, causing the

i'rcraft tý rock -,-th a ,ioderately increasing amplitude. If

th•. pjlct ovcradaF.a ý signrflcLcntly before 15-deg CA, the other

i'fvi" highi frequfnc-, lightly damned unstable region is entered.



TABLE 8 PILOT MODEL LATERAL-STICK GAINS (SAS OFF, ARI OFF)

AIRCRAFT
ANGLE OF SIDE YAW ROLL ROLL YAW
ATTACK, VELOCITY, RATE, RATE, ANGLE, ANGLE,

deg 36/av ý6/Dr M6/ap m/a 36/

1.02 +0.522 -4.93 -0.123 -0.345 -1.68

8.72 -0.509 +1.74 -0.619 -0.582 -1.23

11.1 -0.544 +1.43 -1.02 -0.827 -1.62

15.4 -0.433 -2.98 -3.52 -3.40 -3.72

19.8 -0.417 +18.8 -3.26 +2.89 +3.74

24.6 -1.50 +18.07 -3.66 +1.80 +4.12

TABLE 9 PILOT MODEL PEDAL GAINS (SAS OFF, ARI OFF)

AIRCRAFT
ANGLE OF SIDE YAW ROLL ROLL YAW
ATTACK, VELOCITY, RATE, RATE, ANGLE, ANGLE,

deg 6/av '/ar M/ap a6/ao a p6/a

1.02 +0.0276 -1.049 -0.0281 -0.1(18 -0.339

8.72 +0.0574 -1.097 +0.0327 -0.1vI -0.324

11.1 +0.127 -1.449 +0.0526 -0.218 -0.440

15.4 +0.276 -2.01 +0.126 -0.269 -0.625

19.8 +0.503 -2.96 +0.294 -0.403 -0.987

24.6 +0.772 -4.33 +0.373 -0.729 -1.74
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TABLE 10 PILOT MODEL DUAL CONTROL GAINS (SAS OFF, ARI OFF)

T-1219

AIRCRAFT
ANG Lr OF SIDE YAW ROLL ROLL YAW
ATTACK, VELOCITY RATE RATE ANGLE ANGLE

CONTROL deg a6/av 6/Br •/ap 36ia•,

Laicral- 1.02 -0.645 -0.367 -0.386 -0.764 -2.08Stick

8.72 -0.0299 -0.0260 -0.559 -0.853 -2.19

11.1 +0.0302 -0.420 -0.947 -1.22 -3.29

15.4 +0.548 -2.84 -2.84 -2.98 -8.78

19.8 +0.884 -4.34 -3.31 -3.00 -9.16

24.6 +0.160 -3.88 -4.44 -3.48 -10.56

Pedals 1.02 +0.0342 -0.995 +0.0572 +0.109 +0.101

8.72 +0.0137 -1,074 +0.0387 -0.0901 -0.397

11.1 +0.0474 -1.48 40.0451 -0.169 -0.721

15.4 +0.154 -2.39 +0.073 -0.369 -1.57

19.8 +0.339 -3.90 +0.259 -0.625 -2.82

24.6 +0.454 -5.42 +0.119 -1.04 -4.66

The instabilities with the ARI on can also be related

to pilot model gain sign changes, as shown in Table 11. Unlike

results with the ARI off, the sign changes in Table 11 for

lateral stick with the ARI on occur for feedback of lateral

velocity and roll rate, which primarily affect stability of

the Dutch roll mode, as shown in Fig. 37. The ARI does sig-

nificantly reduce the magnitude of the ,:lot model gains at

high angle of attack, implying reduced pilot control effort.

Gain sign changes also occur in the dual-control pilot model

with the ARI on, as shown in Table 12. Lateral velocity, yaw

rate, and yaw angle gains for the pedal commands show the

most change with increasing angle of attack. The ARI does

not reduce gain magnitude with dual control, and it signifi-

cantly increases the gains for the pedals when compared with

Table 10.
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TABLE 11 PILOT MODEL LATERAL-STICK GAINS
(SAS OFF, ARI ON)

T-1221

AIRCRAFT
ANG-E OF SIDE YAW ROLL ROLL YAW
ATTACK, VELOCITY, RATE, RATE, ANGLE, ANGLE,

deg M/@v B61;r ;6/ar 96/1 •61/al;

1.02 +0.522 -4.93 -0.123 -0.345 -1.68

8.72 -0.509 +1.73 -0.620 -0.582 -1.23

11.1 -0.610 -6.16 -0.0702 -0.741 -3.08

15.4 +0.327 -2.42 +0.281 -0.178 -0.685

19.8 +0.352 -1.94 +0.284 -0.149 -0.589

24.6 +0.515 -2.74 +0.408 -0.280 -0.991

T.ABLE 12 PILOT MODEL DUAL CONTROL GAINS
(SAS OFF, ARI ON)

T-1218
AIRCRAFT
ANGLE OF SIDE YAW ROLL ROLL YAW
ATTACK, VELOCITY RATE RATE ANGLE ANGLE

CONTROL- deg 96/3v ;5/ r 361;P 6 / a 96 / aw

Lateral- 1.02 -0.645 -0.367 -0.386 -0.764 -2.08
Stick

8.72 -0.0300 -0.0260 -0.559 -0.853 -2.19

11.1 +0.0302 -0.421 -0.947 -1.22 -3.29

15.4 +0.581 -2.816 -2.63 -2.79 -8.16

19.8 +0.890 -4.33 -3.27 -2.97 -9.05

24.6 +0.816 -4 44 -4.49 -3.53 -9.44

Pedals 1.02 +0.0342 -0.995 +0.0572 +0.110 +0._01

8.72 +0.0137 -1.074 +0.0387 -0.0901 -0.397

11.1 +0.0418 -- 1.404 +0.223 +0.0589 -0.106

15.1 -0.362 +0.153 +2.47 +2.17 +5.88

19.8 -1.11 +3.1'7 +5.63 +4.24 +12.01

24.6 -0.755 +2.48 +8.09 +5.27 +12.8
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3.3.2 Effects of Nonadaptive Piloting Behavior on
Tracking Performance Contours

This section uses the covariance values obtained

from the pilot model to produce performance contours in the

aA - ap plane. The technique for obtaining the contours is

described in Section 3.2.3. The performance contours show

the effects of adapted and nonadapted control behavior on the

closed-loop motions of the aircraft which result from turbu-

lence inputs. The important feature in the contour plots Js

not the actual rms values of the motions and control usage

(which are disturbance-model-dependent) but the contour varia-

tions as the pilot model adaptation point is varied.

In each series of figures, the three variables shown

are the varian-es of the lateral stick and/or pedal commands,

the variance of the roll rate, and the variance of the lateral

velocity. The stick and pedal variances give indications of

the effort which the pilot must exert to achieve control.

Roll rate is a key variable for maneuvering flight, and its

variance is an important indicator of maneuvering precision.

The lateral velocity variance can be associated with pointing

precision, which is of obvious concern in air combat maneuver-

ing.

The rms performance contours, using a single control,

are shown in Fig. 38. The performance contours can portray

improved rms values in off-diagonal regions because the optimal

control pilot model is not separable, i.e., the optimal filter

design depends upon the control gains, For lateral stick

alone, the state rms values exhibit remaz~able uniformity

in performance, even very close to the stability boundary

where the state rms values have infinite variance. This

suggests that the pilot-aircraft stability boundary is en-

j countered abruptly if the pilot falls to adapt.

7.7 _h__
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For control with the pedals alone, the opposite tends

to be true up to an aircraft angle of attack of 20 deg. If

the pilot model does not adapt, tracking performance (particu-

larly lateral velocity) deteriorates. This is a further indi-

cation that the rudder is a favorable control surface for

high angle of attack regions, because motion cues aid the pilot

in adapting correctly with rudder control.

When the pilot model uses both the lateral stick and

pedals (with the ARI off), the tracking performance contours

are shown by Fig. 39. There is an improvement in performance,

as signified by the decrease in the rms values for the states

and control for low acA. Figure 39 shows that the adapting

pilot model must continually increase control effort as the

aircraft angle of attack increases. At the top of each dia-

gram in Fig. 39 is a region where the pilot model estimator

algorithin diverges with the chosen human parameters. The

neuromuscular noise-to-signal ratio, Pu' is found to be the

primary cause of the divergence, because the estimator algo-

rithm converges to a solution if Pu is decreased sufficiently.

Decreasing P y does not stop the algorithm divergence. The

divergence region does not ocqur when the pedals or lateral

stick are used separately, as shown in Fig. 38.

As pointed out in Section 3.2.1, algorithm divergence

suggests that the pilot could have control difficulties; how-

ever, it is not clear that the constant neuromotor noise-to-

signal scaling is an accurate representation of human response

when the signal level becomes very large, as in the region of

divergence. Ic is at least as likely that the neuromotor

noise would reach a maximum level, implicitly decreasing P

at large signal levels. This assumption is employed to gener-

ate results shown in Fig. 40b. In the two-control (stick plus

pedal) case, neuromotor noise forces estimator divergence for

8o
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all values of aA beyond about 16 deg. Consequently the two-

control -esults are obtained with V frozen at its single

control level. Even with fixed V dual-control rms values
U,

rapidly increase with a

In contrast, performance contours in Fig. 40a, with

lateral stick only and the ARI on, show good results. There

is a marked improvement in lateral-stick control effort with

the ARI on when compared to Fig. 39a, in which the ARI is off.

The conclusion is that dual control at high ao is

difficult because the ARI logic causes both the stick and

pedals to command rudder only. Improving performance with

itTerai t.ick alone, is the primary purpose of the ARI.

3.3.3 Predicted Tracking Performance in a Typical
Air Combat Maneuver

An interesting observation concerning the pilot's

control effort can be made using the results of the previous

section. Contours of minimum control effort do not necessarily

fall along the diagonal line of perfect adaptation because

the pilot model is nonseparable and because the weighted sum

of state and control variances does not guarantee minimum

values of control variance alone. Figures 38 and 39 illustrate

that minimum values of lateral stick and rudder variances

frequently occur at sub-optimal adaptation points. Further-

more, as will bp hown below, contours of minimum control

effort often imply less control strategy adaptation than is

required to maintain overall optimaltty. The combination of

reduced control effort and reduced variation in control

strategy strongly suggests the -ypothesis of minimuni-control-

effort (MCE) pilot model adaptation, which is discussed in

the remainder of this section.
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MCE pilot model adaptation presents a rationale for

how the pilot changes his control strategy, including the

selection of his c')ntro] outputs when more than one is avail-
able, as flight condition varies. Figure 41 illustrates the

MCE adaptation pattern which would be followed in the wind-up

turn, with the heavy line tracing out the corresponding MCE

0A - a relationship. For aA below 12 deg, there is no sig-

nificant lateral control effort reduction associated with

using the pedals as well as the stick (as seen with comparison

of Fig. 41 with Fig. 40), and the MCE pilot model is "content"

to use stick alone. The MCE strategy is slightly overadapted

at low aA, and slightly underadapted at aA = 12 deg; hence,

the net amount of adaptation is lower than that implied by

* fully optimal control.I
As aA continues to increase, Fig. 41 shows that the

stick-alone MCE strategy is headed for a stability boundary.
"The pilot can avoid the boundary by adapting to a more nearly

f optimal stick-alone control strategy, but this requires sub-

stantially increased control effort in the vicinity of the
stability neck. As alternatives, he can either blend in the

use of foot pedals (coordinated adaptation) or resort to the

use of pedals alone (stick-centered adaptation) for lateral-

I directional control. The advantage of the first approach is

that relatively good maneuvering precision can be maintained
with both controls without requiring counter-intuitive control

style (i.e., pilot model control gains in Table 11 do not
I change sign at high caA). However, the coordinated use of

stick and pedals at high angle of attack is a difficult task,

and the stick-centered adaptation is likely to be the prefer-

ab-le bulutiun Ioi this aircraft model with the ARI off. The

resulting increases in roll rate and lateral velocity variances

5 are modest using pedals alone for control.
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Experimental results indicate that the MCE pilot

model hypothesis does, in fact, describe a realistic pattern

of pilot adaptation. Figure 42 is a partial time history of

a wind-up turn maneuver in which a trained pilot is flying a

ground-based simulation of the subject aircraft. The aero-

J dynamic model of the aircraft is the same as that used in our

linear analysis, although the nonlinear, time-varying equations

f of motion drive the simulator. Below 18-deg angle of attack,

the pilot ccntrols with stick alone. As a A increases beyond

10 deg, stick motions and sideslip excursions buildup. At

CA = 18 deg, the pilot begins to use the rudder pedals
actively, while his use of the stick is substantiaily dimin-

ished. This result tends to confirm the MCE pilot model,

although further validation is warranted.

The potential instability that can occur for lateral

* stick alone can be understood by considering the pilot model

gain variations shown in Fig. 43. Near an aA of 17 deg, the

adapted roll ane yaw gains change sign almost instantaneously.

Figure 43 also shows that the minimum control effort pilot

gains have little variation and approach the nonadapted pilot

gains for aA - 11 deg. The roll and yaw adapted pilot model

gains do not change sign for lateral stick at 17-deg a0

when stick and pedals are used.

The sign change of the pilot model roll and yaw gains
is a characteristic of the unusual way control rate weighting

is incorporated in the pilot model and is not a characterJstic

of optimal regulators in gener• . The roll and yaw gains for

a DPSAS design using the same reference aircraft are 6hown iii

Ref. 2 and do not "Jump" near 17 deg ao The jump can be

understood by using the pilot model gain for a first-order

vsytem, shown in Eq. 1. If an important element, g, in

the control effect matrix, G, for the aircraft changes sign
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by going through zero, the "h/g" behavior of the pilot model

gain could occur. The specific control yaw moment due to
differential stabilator shown in Fig. 43 has such a sign

change near 17-deg a0 for the reference aircraft.

The control yaw moment is just one explanation for

the stability characteristics of the pilot-aircraft system.

The importance of the optimal control pilot model approach to
finding potential departure boundaries is that all character-
istics of the- aircraft model which could cause instability
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are included in the analysis. The analysis is not constrained

to a few parameters (Cn~dyn, LCDP, etc.) which have shown

correlation with stability boundaries in the past.

The MCE path for lateral stick control with the ARI
on is shown in Fig. 44, Minimum control effort predicts sta-

bility particularly at high angles of attack. On the other

hand, nonadaptive pilot model behavior fixed at a = 11 deg

predicts an unstable Dutch roll region for aA between 15 and

18 deg with a stable region between 20 and 29 deg.

Figure 44 constitutes a case where nonadaptation and

MCE predict markedly different pilot behavior at high angles

of attack. This is an indication that test results with the

ARI on may have variability from pilot to pilot and even from

run to run. For example, a pilot simply flying the wind-up

turn trajectory will have sufficient time to monitor the MCE

performance and remains reasonably adapted and stable. On

the other hand, a pilot vigorously tracking an opponent who

is performing a wind-up turn may not fully monitor his air-

craft's flight condition. If he remains unadapted, the un-

stable Dutch roll region will be encountered. ARI and CAS

designs other than that assumed here could eliminate the un-

stable Dutch roll region in Fig. 44, greatly improving the

reference aircraft's capabilities.

3.4 CHAPTER SUMMARY

The optimal control pilot model is used in a tech-

nique for predicting pilot-aircraft behavior at high angles

of attack. Using the pilot model algorithms developed in

Ref. 2, pilot-aircraft stability diagrams are constructed by

examining linear models of a fighter aircraft and pilot along

90



I

30 
M

I I DUTCH ROL'. -01

,MODE\ '

wS

JS UN DAPTED/
S•r•PILOT 0 611,-007

S"20 MODE3

S' "' •jil• % MN! M LM CONTROL

L• \UNSTABLE EFFORT PILOT

DUTCH ROLL MODEL
-MODE " I •

IUNSTABLE DUTCH ROLL MODE "

L1610tI 1 .0\\

0 10 20 30
PILOT MODEL ANGLE OF ATTACK (degi

Figure 44 Prediction of Pilot Behavior at High Angle of

Attack using Lateral Stick Only (ARI On)

a wind-up turn maneuver. The effects of pilot control stra-

tegies, from complete adaptation to no adaptation, can be

represented and analyzed as functions of the actual flight

condition and that which is assumed by the pilot in selecting

his control strategy. Differing piloting strategies can

result in pilot-aircraft instability. The unstable regions

indicate conditions under which the aircraft could depart

from controlled flight.

I
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In the stable regions of the stability diagrams,

performance contours of pilot model tracking are constructed.

The performance contours show the effect of nonadapted pilot

control strategy on the rms values of aircraft states and

controls. The importance of the results in this chapter are:

* A new method has been determined
for predicting departure boundaries
of high-performance aircraft.

* The method uses all information
available in a linear model of the
aircraft and is not restricted to
uncoupled flight conditions.

* The method incorporates pilot behavior
in predicting departure boundaries
through the use of the optimal control
pilot model. Instabilities caused
by pilot physical limitations and
control strategies are included in
the method.

* The effects of control implementation
on departure boundaries can be included
in the method. For the aircra.ft con-
sidered in this study, the beneficial
use of an ARI is extensively studied.

* When the method indicates an instability,
both the characteristics of the instability
(i.e., wing rock, nose slice), as
well as the relative severity, are
predicted.

* When the method indicates stability,
the performance of the pilot's tracking
ability inside the stability region
can be analyzed.
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THE ANALYTIC SCIENCES COIPO-ATION

SI
0 To predict the adaptation path a

pilot could take in flight, the mini-
mum control effort (MCE) strategy
can be used. An NICE strategy is
shown to be the path taken by a pilot
in the wind-up turn maneuver with
the aircraft under study.

In summary, the optimal control pilot model shows

considerable promise as a general effective approach for the

prejiction of pilot-airc--raft behavior in maneuvering flight.
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-. CO:,MAND AUGMENTATION SYSTEM DESIGN FOR
I .PROVEDi•• TVERA B I LI TY

This chapter presents the design of a departure-

prevention command augmentation system (DPCAS) for the subject

aircraft. The system is designed to augment aircraft stability

throughout the maneuvering envelope and to provide precise

response to pilot commands. The DPCAS design empl-ys new

techniques in coordinated control mechanization and propur-

tional-integral command system formulation.

This DPCAS design methodology is particularly useful

for defining the control systems of modern aircraft, which

may be expected to maneuver at high angles and with high

rates, which ma, be equipped with redundant control sur-

faces, and which may be designed as control-configured

vehicles (CCV). By and large, current control design practice

treats each aircraft axis separately in preliminary design,

using "prior art" to define control structures and "tuning"

the system (including the addition of selected nonlinearities

and crossfeeds) during a program of exhaustive testing. The
DPCAS design approach takes the opposite approach, first

defining the gain-scheduled, coupled-control structure which

is required to provide "Level 1" flying qualities (Ref. 20)

throughout the aircraft's mancuvering envelope and using the

testing phase to simplify the controller, as appropriate. The

advantage of Lhi-' approach is that control system reqlirrments

are visible at an early stage of system development. Testing

is required in either approach; however, DPCAS design relies

less on the designer's intuition and more on quantitative

measures of system performan-':.

9
95 " 'PEcEDI1O PAc• £IANL, N(•T 'Iuv.D

& -



This chapter's objective is to develop and demonstrat,.

flight control design technology which can improve the per-

formance and mission effectiveness of a fighter aircraft.

Antecedents can be found in the development of departure-

prevention stability augmentation systems (DPSAS) for fighter

aircraft (Refs. 1 and 2) and in the design of digital-adaptive

command augmentation controllers for a helicopter (Refs. 21,

22. and 23). Two versions of the DPCAS are designed using

linear-optimal control theory: they are -Type 0" and "Type 1'

controllers, in the parlance of control system design. The

two versions yield almost identical stpp response character-

istics for a given set of aircraft dynamics, since the Type 1

law is a linear transformation of the Type 0 law (and vice

versa), howoer, their responses are not identical when

there is measurement noise or turb lence and when the air-

craft's actual characteristics do not match the character-

istics used for design.

An outline of Type 0 and Type I DPCAS fundamentals

is presented in this chapter. The aircraft motions about a

reference flight path are assumed to be adequately defined by

a linear model which, when combined with a quadratic cost

function (to be minimized by control), leads to the DPCAS

design. Using a pilot command mode discussed in Appendix C,

the final part of the chapter presents control designs for a

wide range of dynamic pressure, angle of attack, and roll rate.

Variations in control gains caused by differing flight condi-

tions are demonstrated graphicallv. A summary of results is

presented at the end of the chapter, and details of Type 0/

Type I linear-optimal control system design are described in

Appendix D.
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4.1 FUNDAMENTALS FOR DPCAS DESIGN!
4.1.1 Type 0 and Type 1 Proportional-Integral ControllersI

A Type 0 DPCAS tracks constant commands without using

a pure integration in the forward loop. This means that if

aircraft characteristics differ from the design model or if

* constant disturbances affect the aircraft (e.g., wind), the

pilot must compensate to obtain the desired command response.

A Type I DPCAS tracks constant commands with zero steady-state

error using a pure integration in the forward loop. The Type 1

DPCAS performs the necessary measures needed to counteract

modeling errors and disturbances. A Type 0 DPCAS has approxi-

mate trim capability, while the Type 1 DPCAS has automatic trim

capabil ity.

The design of Type 0 and Type 1 DPCAS begins with

the definition of a coupled linear, time-invariant model of

the aircraft,

Lýx(t) = F Lx(t) + G Iii(t) (5)

where Au(t) is the m-vector of control command perturbations,

and Lx(t) represents the n-vector of the aircraft's dynamic

states. The purpose of the control vector in a DPCAS design

is to stabilize the aircraft and, at the same time, force a

desired output combination of states and controls, given by

"AL,(t) = Hx L_x(t) + Hu Au(t)

to attain an arbitrary, constant reference value, tLd, of

dimension t: that is,

ra LX(t) = d

I t-97



where H and H are constant (i×n) and (Zxm) matrices, respec-
x U

tively. The reference, A-d, represents the pilot's perturbation

command through the center stick, pedals, or other available

control input devices.

Both the Type 0 and Type 1 DPCAS minimize the same

scalar-valued cost functional of states and controls:

J = AxT AUT] Q I m X + AT R Au dt
J -( NIT Q 6 - )

The designer's freedom rests in the choice of the

matrices Q and R, which weight perturbations in state, control

displacement, and control rate. The design procedure consists

of the choice of Q and R, the computation of closed-loop per-

formance, and the adjustment of Q and R. as discussed in

Section 4.2.1.

The Type 0 DPCAS is shown in Fig. 45; its control

command takes the following form:

t

Au(t) Au(O) + f {-KIAx(i)- K2 Au(t) LA~d dT (6)

The matrix, K is the state feedback gain; the matrix, K2 ,

is the control "low-pass filter" gain, which reE;ults from

weighting Au_ in the cost functional; and the matrix, L, is

the steady-state decoupling gain.

I
The Type I DPCAS is shown in Fig. 46, and its controt

command can be expresued as

Au(t) - -C 1  -(t) - C2 f {AX(t) - ýddt - C2AAd(0) (7)
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Figure 45 Type 0 DPCAS with Control-Rate Weighting
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Figure 46 Type 1 DPCAS with Control-Rate Weighting

C is the state feedback gain, and C2 is the gain of the

integral of the command error. The relationship between the

gains in Eq. 6 and Eq. 7 is

[cl C2][ U H ~ 2  
(8)
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The Type 1 control gains (C 1, C 2 ) and the gain L can be obtained

from the Type 0 control gains (K 1 and K 2 ) if the composite ma-

trix in Eq. 8 cnn be inverted. This requires that the matrix

be square, which is not the case if the dimension of the con-

trol vector (in) and the dimension of the command vector (Z) are

different. In such case, we can take the Penrose pseudo-

inverse (Ref. 24) of the ((n+Z) (n+m)) composite matrix,

[F Gi S 11i s121 9

UX HuJ [ 21 s22j

Then, the Type 1 control gains and the gain L are readily ex-

pressed as

C1 aK 1 S11 + K2 S21

C2 w K 1 S1 2 + K2 S2 2

L = C 2

The derivation of these gain reiationships and the "total

value" version of the control laws (for Implementation on-

board the actual aircraft) are discussed in Appendix D.

The pseudoinverse in Eq. 9 determines a best possible

alignment among the gains in Eq. S. Different pseudoin'ePrses

obtained using a weighted-least-squares approach produce dif-

ferent steady-state control position values as discussed in

Appendix D. When the composite matrix in Eq. 9 is square and

invertible, C 1, C 2, L, and control steady-state values are

unique. The reason for the nonsquare composite matrix for

the DPCAS design presented here is that there are more con-

trols than commands, as shown in the next section.
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4.1.2 Command Mode Selected for Study

The study aircraft is assumed to have six controls

effectors which can be commanded by the control system:

throttle, A6T, stabilator, 1-s and main flap, L6mf (for

the longitudinal axis); spoiler, L6sp, differential stabilator,

56 ds and rudder, L6r (for the lateral-directional axes).

Appendix C discusses the candidate command modes which could

be executed with this control set. Each command mode can

have (at most) six independent commands. As shown in Appendix

C, a perturbation command vector set which is suited to air-

craft maneuvering (as distinguished from precision pointing and

tracking) is: true airspeed, LV, normal acceleration, Aan'

angle of attack, La, sideslip angle, A6, stability-axis roll

rate, Lp w, and lateral acceleration, a y. The command vector

set is similar to the direct lift/direct sideforce mode used

in Ref. 3.

The total-value command vector set is related to the

body-axis aircraft states as follows:

arctan v/Vu2 + w

a arctan (w/u)

Pw - p cos a cos 6 + q sin E + r sin a cos

t
B + (10)
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Only the last two rows in Eq. 10 are needed, as V is not a
command variable. HB(cB) is the body-to-wind-axis transfor-

mation matrix, and WI is the matrix equivalent of the vector
B

cross-product, where

W B =r 0 -

-q P

By linearizing the relationships between the commands and

aircraft states about the nominal flight condition, the per-

turbation commands can be written as

LXd= [6V Aca &an LB Aay AB]T = Hx. x + H_ AU_ (11)

where H and H are constant matrices depending on the nominalx u

conditions. A controllability rank test of the composite

matrix, Eq. 9, is presented in Appendix C; this demonstrates

that the six commands can be accommodated. Unfortunately,

many of the control effectors readily saturate due to control

surface displacement limits for the 6-dimensional command

vector. To form a more desirable control-command situation

within the constraints, some commands must be eliminated. In

rapid maneuvering, throttle is usually at full power, hence,

LV can be treated as a separate control problem. A lateral

acceleratioi command would enable the aircraft to perform a

flat turn (or "side step"), but lateral acceleration is diffi-

cult to accommodate without auxiliary control surfaces (e.g.,

"chin fins") and is eliminated. The more common turning pro-

cedure is to bank the aircraft with Lpw and to command normal

acceleration, Lan, at zero sideslip angle. Keepinr these three

commands, .a, p W, and LAc, angle of attack must be eliminated

because main flap and stabilator have difficulty providing j
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direct lift vith act held constant. Femoving _'V, La, and ZAa

from the com:nand vector, and LT from the active control vector,
the perturbation commands and controls reduce to the following

j sets for this study:

I~d [Aa IT

T

Lu LAs mf' L6sp' 5 ds' ~T]

The pilot is assumed to command normal acceleration

and stability-axis roll rate with conventional center-stick

motions, and sideslip angle is commanded by the foot pedals.
The five control surfaces (throttle has been eliminated)

receive coordinated commands from the pilot and the feedback

loops. Rows and columns in H and H in Eq. 11 are eliminatedx u

as appropriate to match the reduced control-command set.

4.1.3 Flight Conditions for Point Design

The optimal control gains derived for a single flight

condition would stabilize the aircraft for some range of

nominal variations because linear-optimal regulators are

"robust" (Ref. 25); however, changes in the aircraft dynamics

would lead to less-than-optimal regulation. To understand

how the control gains should change to maintain best performance
during maneuvering flight, the DPCAS is redesigned at each

of 25 flight conditions. As will be shown in the remainder

of the chapter, it is found that many gains are relatively

invariant with flight condition, some could be neglected

entirely, and others must be scheduled to maintain near-
optimal stability and command response.

Two separate maneuvering condition sweeps have been

conducted, with the reference aircraft flying at an altitude
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of 6,096 m (20,000 ft). Angle of attack and dynamic pressure

are varied in the longitudinal sweep, and angle of attack

and stability-axis roll rate are varied in the lateral sweep.

The aircraft is trimmed at each flight condition in each

sweep, because the perturbation command transformation matrix

[H xI l requires knowledge of the nominal states.

A range of angles of attack and dynamic pressures is

considered in the longitudinal sweep, as shown in Fig. 47a. The

aircraft dynamics remain uncouples in the longitudinal sweep.

Changes in dynamic pressure, q, are accomplished by changes

in true airspeed, V
o'

q 1 2
2 0

where p is the air density. Changes in trim angle of attack

are performed by increasing the nominal pitch rate. The

solid points in Fig. 47 represent the two primary design

points used to obtain the nominal DPCAS cost function weight-

ings.

The lateral sweep, shown in Fig. 47b, varies angle of

attack and stability-axis roll rate at a velocity of 144 m/s

(600 fps). For non-zero roll rates, the aircraft is fully

coupled about all three axes. Pitzh rate is varied in the

lateral sweep to maintain trim conditions.

4.2 DPCAS PERFORMANCE IN MANEUVERING FLIGHT

4.2.1 Control Design Procedure

The design procedure for the linear-optimal DPCAS

design involves specifying elements in Q and R until the shapes

of the step responses of the command variables and associated
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Figure 47 Flight Conditions for DPCAS Point Design

control motions meet design objectives. In addition, the

closed-loop eigenvalues of the system should be located in

preferred regions of the left-half complex plane.

The elements in Q and R are specified as the inverses

of the maximum mean-squýre values of the weighted variables,

i.e.,

qi =1/Ax2
i

max

i = 1/Aui

max
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TABLr 13 DPCAS WEIGHTS AT DESIGN POINT 1

T-1091

MATRIX MAX IMUM
MATRIX TYPE MATRIX ELEMENT MEAN VALUE

Q State Axial Velocity, Lu 12.2 m/s
Position (40 fps)

Lateral Velocit', 6v 3.05 m/s
(10 fps)

Normal Velocity, Aw 3.66 m/s
(12 fps)

Body Angular Rates 20 deg/sec

Q State Lateral Acceleration, Av 3.66 m/s 2

Rate (12 fps2 )

Normal Acceleration, Lw 1.53 mrs 2

(5 fps )

Q Pilot Stability-Axis Normal 0.533 m/s 2

Command Acceleration Command, Aan (1.75 fps2 )

Sideslip Command, Aý 0.9 deg

Stability-Axis
Roll Rate Command, Apw 2.5 deg/sec

Q Control Stabilator Deflection, A6s 10 deg
Position Main Flap Deflection, A6Mf 5 deg

Spoiler Deflection, 63sp 27 deg

Differential Stabilator
Deflection, A6ds 6 deg

Rudder Deflection, A6 r 15 deg

R Control Stabilator Rate, A6s 3 deg/sec
Rate Main Flap Rate, A6gf 4 deg/sec

Spoiler Rate, L6 4 deg/secsp
Differe tial Stabilator
Rate, Nds 3 deg/sec

Rudder Rate, A6 4 deg/sec
r
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Q is composed of weighting factors for state positions, state

rates, commands, and cnntrol positions. The elements of Q

combine as

[ 1 ITa I
TX + 0[TF I][..QF__ G] +LT

3. 1 G 1 [ tý H AY ]

0I max J uJA maxL ,Amax

Q generally is full, positive definite, and has cross-weighting

between state and control positions. R is diagonal and

positive definite.

The Q and R elements used as the baseline design at

Design Point 1 in Fig. 47 have the values shown in Table 13

for both the Type 0 and Type 1 DPCAS. The weighting on control

position is chosen as one-half the maximum travel of the control

surface. The weighting on control rate is chosen as one-tenth

the maximum rate of the control surface actuator. The state,

state rate, and command weightings are found by observing

command step response time histories at the two design points

in Fig. 47.

Experience has determined that five weighting elements

in Q are instrumental in shaping the step response of the

system:

* Increasing the lateral velocity weight
(i.e., decreasing the allowable lateral
velocity) decreases the sideslip rise

r time

* Increasing the roll rate commaind weight
decreases the roll rate rise time

a Increasing the normal acceleration command
weight decreases the normal acceleration

j rise time
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* Increasing the lateral and normal acclera-
tion weights reduces command overshoot and
moves complex pairs to higher frequencies
at higher damping ratios.

These primary weights have to be adjusted carefully, because

large weights induce large gains, making the system more and

more sensitive to feedback noise and increasing the possi-

bility of limit cycles.

The DPCAS is designed to the flying qualities speci-

fication for Class IV aircraft, defined by MIL-F-8785B(ASG)

(Ref. 20). Level 1 flying qualities in the Category A flight

phase provide the design goal. The use of linear-optimal

control theory causes the closed-loop system to meet the

majority of the flying qualities specifications readily. Two

criteri.a that require monitoring during the determination of

Q and R are the short-period frequency specifications and the

requirement to roll through 90 degrees in one second. The

latter could not always be met at low dynamic pressure.

Table 14 shows the effect of the Type 0 and Type 1

DPCAS designs at Design Point 2 of Fig. 47. The Type 0 and

Type 1 DPCAS introduce new modes, as identified in Table 14.

The dynamic modes of the open-loop aircraft are classical,

and they include the effects of the roll and pitch angles.

As discussed in Appendix C, the roll and pitch Euler angles

are not considered in the DPCAS design model. When ýa andn
Ap are commanded, pitch and roll angle reach unreasonable

steady state values (>360 deg); hence, they become meaningless

as feedback variables for regulation. Table 14 demonstrates

that loop closure increases short period and Dutch roll damp-

ing and couples the roll mode with the roll command integrator

state.
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Although the number of closed-loop eigenvalues is

different for the Type 0 and Type 1 systems, the DPCAS

design approach provides interesting similarities between
the two systems. The Type 0 closed-loop eigenvalues are

given by the roots of

det I [K 1-_K 2 ] 0 (12)

while the Type 1 eigenvalues are the roots of

det XI - 1  -GC 2  0 (13)-XHuC _H u c2j )1

The number of eigenvalues in Eq. 12 is n+m (states plus

controls), while the number of eigenvalues in Eq. 13 is n+£
(states plus commands). If Z and m are equal the eigenvalues

are the same in both cases. If £ is less than m, some eigen-
values are eliminated and others are perturbed, as shown in
Table 14. In transforming from the Type 0 DPCAS to the Type 1

"DPCAS, the longitudinal control and spoiler eigenvalues are

eliminated.

The effect of the DPCAS design on the eigenvectors at
Design Point 2 is shown in Tables 15 and 16 (only the normalized

magnitudes are shown). The eigenvectors for the states change
little when transforming from the Type 0 to Type 1 DPCAS. The
eigenvectors for the longitudinal secondary control (main flap)
actively couple into the longitudinal modes, while the
lateral-directional secondary control (spoiler) is virtually
separated from the other lateral-directional modes at the

flight condition. This secondary control coupling behavior
prevails for most of the design flight conditions considered

here.
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TABLE 15 EIGENTVECTOR MAGNITUDES FOR THE LONGITUDINAL DYNAMICS
AT DESIGN POINT 2 (V 122 m/s (400 fps), a 15.3 deg,
qo=2.5 deg/sec) 0 0
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The Type 0 and Type 1 DPCAS gain matrices at Design

Point 2 are shown in Tables 17 and 18. The gain matrices

illustrate why damping is increased in the closed-loop system:

rate feedback gains are large. The gains can be lowered by

decreasing the elements of Q at the cost of possibly deter-

iorated (though stable) performance. Large gains for the

Type 0 DPCAS may not be particularly adverse because control

surface commands are passed through low-pass filters. For

example, the break frequency of the low-pass filter element

in Table 17 is approximately 0.58 Hz (obtained from the

diagonal elements of the gain K2 ). High-frequency noise

effects and the potential for limit cycles are greatly reduced

in the Type 0 DPCAS design.

The gains in Table 17 and 18 indicate that the

stabilators and main flap equally share control requirements

while rudder, particularly in the Type 1 DPCAS, is the primary

contrcller for the lateral-directional controls. As pre-

viously noted, the spoiler has small gains and little inter-

action with the system states.

Command response time histories of the DPCAS design

are demonstrated by separately stepping each command to unity

(in English units) and simulating the contro' law with the

linear, time-invariant aircraft model. The model is not

changed as the command drives the system away from the nominal

conditions. Figure 48 illustrates the smooth control movement

for a normal acceleration cormand of 0.305 m/s2 (1 fps 2) at

Design Point 1. The steady-state main flap value indicates

that the main flap will saturate for a command of 3.4 mr/s2

(0.35 g). After main, flap saturates, the stabilator will

accommodate the command until it saturates as well. In an

operational system, provisions must be made for control

saturation effects. FI)r the Type 0 system, this could require
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TABLE 17 TYPE 0 DPCAS GAINS AT DESIGN POINT 2

T-1093

I FEEDBACK GAIN, K1

I AXIAL PITCH NORMAL LATERAL 1AW' ROLL
CONTROLLER !VELOCITY, RATE, VELOCIT, VELOCITY, RATE, RATE,

AU, Aq, AL', tv, 4r, Lp,
m/sec deg/see m/sec m/see deg/sec I deg/sec

! t t
Stabilator, t -0,177 1 -2.65 -0.466 0.o 0.0 0.0
deg

Main Flaps. Almf, 1.01 -1.61 1.62 0.0 0.0 0.0
deg

Spoilers, 'Lg 0.0 0.0 0.0 -0.135 0.140 = .0502deg p

Differential 0.0 0.0 0.0 1.64 -0.469 -0.939
Stabilator, Lt 0.0 0.

Rudder0.0 C.0 0.0 0.994 -4.51 0.534

LOW-PASS GAIN, K2

K MAIN (DIFFERENTIAL
CONTROLLER STABILATOR, (FLAPS. SPOILERS, STABILATORS, RUDDER,

Ad ' 6 nmf'' •"sp' ads' r

deg_______ drk I deg degde

Stabilator, Lt., 3.64 1.23 J 0.0 0.0 0.0
deg I

Main Flaps, Ltmf 2.18 2.99 0,0 0,0 0.0
deg

Spoilers, L6 0.0 0.0 0.158 -0.198 -0.058
deg

DIfferential 0.0 0.0 -0.112 3.34 -0.168
Stabilator, L6ds,
deg

Rudder, Ldr, 0.0 0.0 -0.058 -0.30 3.16
11eg
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TABLE 18 TYPE 1 DPCAS GAINS AT DESIGN POINT 2

T-1094

FEEDBACK GAIN, C 1

AXIAL PITCH NORMAL T LATERAL YAW ROLL
CONTROLLER VELOCITY, RATE, VELOCITY, VELOCITY, RATE, RATE,

u, q, Aw, a v, Ar, Ap,
,_n/sec deg/sec r/sec m/sec deg/sec deg/sec

Stabilator. ý. 3.97 -1.47 -0.686 0.0 0.0 0.0
deg ' I
Main Flaps, 6f 9.64 -0.585 1.65 I 0.0 0.0 0.0
deg ,I

Spoilers, L6,,, 0.0 0.0 0.0 -0.0531 0.0624 0.0342
deg I

Differential 0.0 0.0 0.0 j -0.0653 0.0273 -0.580
Stabilator, L6- I
deg

Rudder, A6 0.0 0.0 0.0 2.43 -2.82 0.109
deg

INTEGRATOR GAIN, C2

NORMAL
ACCELERATION SIDESLIP ROLL RATE

CONTROLLER COMMAND COMMAND COMMAND
INTEGRATOR, INTEGRATOR, INTEGRATOR,

"A an, 6&6 , A&pw ,

m/sec deg/sec deg

Stabilator, A56. -3.74 0,0 0.0
deg

Main Flaps, L6 4.92 0.0 0.0
deg mf'

Spoilers, a6, 0.0 -0.00734 0.109
deg

Differential 0.0 -1.88 -1.33
Stabilator, A4
deg

Rudder, 66 r' 0.0 4.72 -0.931
deg
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a gain shift at flap saturation and acceptance of the "g" limit
associated 0ith stabilator saturation. For the Type I system,

"integrator runaway" (Ref. 26) also is a concern; this must be

handled by "anti-windup" measures, as in Ref. 2-7.

The qsideF)lip stp reTEpons and stability-axis roll

rate step response at Design Point 1 using the Type 1 DPCAS

are shown in Figs. 49 and 50, respactivelp. The sideslip

asAso simulations for tIPCAS o n this report start at 0.1 sec

into the simulation.
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response has no overshoot, spoiler and differential stabilator

smoothly reach negative values to cause zero stability-axis

roll rate, and rudder oscillates to dampen the Dutch roll

mode while accommodating the nonzero sideslip command. The

stability-axis roll rate response is obtained from rapid dif-

ferential stabilator and spoiler motions to their required

steady-state values, while sideslip excursions are damped by

rudder. The step responses in Figs. 48 to 50 and all remain-

ing simulations in this chapter are computed using the Type 1

DPCAS. As indicated by the eigenvalues and eigenvectors

shown in Tables 14 to 16, the state (and, therefore, the

control) time histories are nearly identical for the Type 0

and Type 1 DPCAS.

4.2.2 Combined Effects of Dynamic Pressure and
Angle of Attack

This section presents the effects of angle of attack

and dynamic pressure on closed-loop eigenvalues, DPCAS control

gains, and aircraft response. The fifteen flight points used

in the sweep are shown in Fig. 47. The sweep covers much of

the normal angle of attack, pitch rate, and dynamic pressure

(represented as changes in velocity) range for the aircraft.

As pointed out in the previous section, there are a

few key weighting elements in the cost function which appar-

ently can be used to modify the step response of the command

variables as desired. This feature is advantageously used as

the angle of attack is varied to maintain approximate system

uniformity. Exact system uniformity, such as might be avail-

able through pole placement algorithms, is not necessarily

desirable from the pilot's point of view, because system

variability can provide the pilot with useful information

regarding flight condition.
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The four weight: ng elements that are changed with

flight condition are shown in Table 19. The general trend

is to increase the weight by decreasing the maximum mean value

as the angle of attack increases. Increasing the weights

generally offsets the loss in rise time encountered as the

angle of attack increases.

The effects of the weighting matrices on the response

characteristics are shown in Table 20. Table 20 lists the

rise time, overshoot, and settling time for each command at

each flight condition. The rise time is the time it takes

the response to reich 90 percent of the commanded value. The

overshoot is the maximum peak of the response expressed as a

percentage of the command. The settling time is the time

required for the response to settle within 5 percent of the

commanded value. The step response characteristics in Table

20 show little overshoot and acceptable rise times. The roll

rate and sideslip results show gradual increases in rise time

as the angle of attack increases. The rise time increases

occur because the rudder and differential stabilator are

less effective at the higher angles of attack.

Closed-loop stability at the 15 flight conditions

for the longitudinal sweep are shown in Tables 21 and 22 for

the Type 0 DPCAS and Type 1 DPCAS, respectively. There is

little eigenvalue variation among those modes that remain in

transforming from the Type 0 to Type 1 DPCAS0 The most varia-

tion occurs for the normal velocity mode, which becomesr faster (i.e., more stable). The three complex roots have

increased natural frequency with dynamic pressure, and the

damping ratios remain fairly constant under all variations.

I The increase in short period natural frequency is a require-

ment of MIL-F-8785B (Ref. 20), since the incremental change in
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TABLE 19 WEIGHTING MATPRX ELEMENT VARIATIONS FOR THE

LONGITUDINAL SWEEP

T-1095

MANEUVER CC.DITIONS I MAXIM•{, MEAN VALUE WEIGHTING .ATRIX ELEME:TS

BODY-AXIS ISTABILITY-AXISIODY'A, ISTASILITY-V° Po NRMA NOMAL LATERAL !AXIS
0/o qo ACCELERATION ACCELERATION IVELOCITY :ROLL RATE

(fpr) deg/sec deg ldeg.'sec rm/s2 (fps2) I/s2 (fps 2) rn/s (fps) deg/sec

122 .C- 11.3 1.25 2.45 0.61 3.05 2.C,,400)1 .8 0 2 0) (I0.0)

15.3 j 2.50 1.98 0.61 3.05 2.O
(6.5) (2.0) (10.0)

22.0 5.0 1.98 0.53 2.29 1.6
(6.5) (1.75) (7.5)

26.7 6.25 i 1.98 0.457 2.13 1.2
(6.5) (1 .5) (7.0)

34.1 7.5 1.98 0.396 2.13 1.0
(6.5) (1.3) (7.0)

183 0.0 9.s 5.0 1.52 0.53 3.05 2.5
(600) (5.0) (1.75) (10.0)

15.4 7.5 1.52 0.53 2.74 2.1
(5.0) (1.75) (9.0)

:19.4 1 10.0 1.52 0.61 2 .44 1.8
(5.0) (2.0) (8.3)

125.0 12.5 1.52 0.61 1.98 1.4
(5.0) (2.0) (6.5)

33.4 15.0 . 1.52 0.61 1 .52 1.0
(5.0) (2.0) (5.0)

244 0.0 8,73 7.5 2.44 0.61 3.05 3.0(800) i(8.0) (2.0) (10.0)

16.4 12.5 1.83 0.9.4 3.05 2.5
(6.0) (3.0) (10.0)

19.3 15,0 1.83 0.914 2.74 2.6
(6.0) (3.0) (9.0)

23.4 17.5 1.83 1.22 2.05 2.5
(6.0) (4.0) (10.0)

28.1 20.0 1.83 1.22 2 .44 2.6
(6.0) (4.0) (8.01,
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normal acceleration divided by the incremental change in angle

of attack increases with dynamic pressure.

The effects of varying dynamic pressure on the step

response of the commanded variables are shown in Figs. 51 to

53 The main flap and stabilator controls have decreased

steady-state values as the rise in dynamic pressure increases

control effectiveness, as shown in Fig. 51. The rudder, dif-

ferential stabilator, and spoiler controls have approximately

the same steady-state requirements for sideslip and roll rate

responses in Figs. 52 and 53, with more rudder movement needed

at the lower velocities to dampen the Dutch roll mode-

As indicated in Table 20, the step response time

histories for the commanded variables do not change signifi-

cantly from Figs. 51 to 53 as the angle of attack increases.

On the other hand, the necessary control motions, particularly

for the lateral-directional dynamics, can have significant

changes at higher angles of attack, as shown in Fig. 54. To

satisfy a one-deg/sec roll rate command at a = 32.4 deg,

spoiler motion changes sign, differential stabilator initially

moves in a positive direction to counteract the adverse yaw

effect at high a and a considerable amount of rudder is

needed to return a slow sideslip mode back to zero.

There are 36 non-trivial Type 0 DPCAS gains and 23

non-trivial Type 1 DPCAS generated for the angle of attack-

dynamic pressurP sweep. Plotting some of these gains as

functions of the flight condition brings out the basic re-

lationships that could be used to form a gain schedule.

Longitudinal Gains - The gains in Figs. 55 to.58 show

a fairly orderly progres~ion with _vel]ocity, and the varia-

tion with )L shows a distinct change at 20-deg a . As the
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velocity increases, the _' -to-A6 gains in Fig. 55 and
t gainS S

mf- gains in Fig. 57 increase to enlarge the band-
width of the low-pass filter for the Type 0 DPCAS. The

velocity feedback gains for the Type 1 DPCAS (Figs. 56 and

58) tend to be large at low angles of attack, Some reduc-

tion in normal acceleration command performance at low

would be required to reduce the velocity gains.

Lateral Gains - Spoiler gains show a general trend

of approaching zero as the angle of attack increases (Figs.

59 and 60). Changes with velocity in spoiler and differential

stabilator gains are evident in Figs. 59 to 62, primarily at

low angles of attack. Many of the spoiler and differential

stabilator gains show sign changes just before u = 15 deg.

In the transformation from Type 0 DPCAS to Type 1 DPCAS, the

state feedback gains undergo a reduction in magnitude. The

reduction compensates for the fact that the Type 1 DPCAS

feeds back all frequency components in the state equally

without the low-pass filter effect. Increased yaw moment

effectiveness of the differential stabilator relative to the

rudder is apparent in the increase in yaw rate and sideslip

integrator gains as the angle of attack increases (Figs. 61

and 62).

Directional Gains - The rudder gains shown in Figs.

63 and 64 reflect variations with increasing u as the fuse-o

lage blocks the flow over the aircraft tail. The rudder de-

creases its sideslip control and increases its roll rate

control as the angle of attack increases. This is demon-

strated by the integrator gains in Fig. 64. The gain varia-

tions for rudder reflect the aerodynamic changes that occur

after ao = 20 deg. The rudder gains show a fairly orderly

progression as the dynamic pressure increases. The most
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significant change is in the sideslip integrator gain, which

drops considerably for high dynamic pressure and increasing

angle of attack.

4.2.3 Combined Effects of Roll Rate and Angle of Attack

This section presents the effect of varying stability-

axis roll rate and angle of attack on Type 0 and Type 1 DPCAS

closed-loop eigenvalues, control gains, and aircraft response.

The velocity is held at 183 m/s (600 fps), and the aircraft

is trimmed using increasing pitch rate at roll rates of 0

deg/sec, 50 deg/sec, and 100 deg/sec, as shown in Fig. 47 for

a constant altitude of 6,096 m (20,000 ft).

Table 23 shows the variations for the four primary

weighting matrix elements in Q. The weighting element

variations are kept to a minimum and are similar to values

in Table 19. The step response characteristics are shown

in Table 24. Even though the aircraft has significantly

coupled modes, the step response characteristics are only

slightly changed from Table 20 (where the aircraft is un-

coupled) because of the nonzero crossfeed gains. The same

can be said for the closed-loop eigenvalues, shown in Tables

25 and 26. The one noticeable change is that the longitudi-

nal normal velocity mode forms a complex pair with the lateral

spoiler mode at the extreme conditions (pwo wiO deg/sec,

'Mo 26.6 deg) for the Type 0 DPCAS in Table 25. The spoiler

mode is eliminated in the Type 1 DPCAS, There is a propen-

sity for coiiplex pair formation at the high angles of attack,

as evidenced by the conditions pw°= 50 deg/sec, A 30.9 deg

in Tables 25 and 26.
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TABLE 23 WEIGHTING MATRIX ELEMENT VARIATIONS FOR
THE LATERAL SWEEP (V,=183 m/s (600 fps))

T-1099

MANELTER CONDITIONS MAXIMUM MEAN VALUE WEIGHTING MATRIX ELEMENTS
BODY-AXIS ;STABILITY"AXISI BODY-AXIS STABILITY-

P a q NORMAL NORMAL LATERAL AXIS
0 0 0 ACCELERATION :ACCELERATION IVELOCITY ROLL RATE

deg/sec deg deg/sec l/s (fps) nm/a (fps) rm/s (fps) deg/sec

50.0 10.4 5.0 1.52 0.53 3.05 2.0
(5.0) (1.75) (10.0)

15.2 7.5 1.52 0.53 3.05 2.0
(5.0) (1.75) (10.0)

19.0 10.0 1.52 0.61 3.05 2.0
(5.0) (2.0) (10.0)

24.4 12.5 1.52 0.53 2.44 1.8
(5.0) (1.75) (8.0)

30.9 15.0 1.22 0.914 1.83 2.0
(4.0) (3.0) (6.0)

100.0 0.6 5.0 1.52 0.53 3.05 2.5
(5.0) (1.75) (10.0)

13.9 7.5 1.52 0.53 3.05 2.5
(5.0) (1.75) (10.0)

17.6 10.0 1.52 0.61 3.05 2.0
(5.0) (2.0) (10.0)

21.3 12.5 1.22 0.914 3.05 2.0
(4.0) (3.0) (10.0)

26.6 15.0 1.22 0.914 3.05 2.0
(4.0) (3.0) (10.0)
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In contrast to the similarities between the eigen-

values of the roll rate sweep and the dynamic pressure sweep,

the control motions necessary to produce the command step

responses are strikingly different. The sideslip command

response at a = 19.0 deg and a = 30.9 deg for Pwo 50 deg/sec
00

are shown' in Fig. 65, along with control movement. There is

a large amount of coupling between the longitudinal controls

and the sideslip dynamics, as shown in Fig. 65. The high

frequency normal acceleration response is excited and returned

to zero primarily by the main flap. The steady-state require-

ment for the rudder has shifted sign from the low angle-of-

attack conditions in Fig. 52. The large amounts of rudder

needed at the high angle of attack are indicative of the loss

in rudder effectiveness that occurs between 20- and ";0-deg

angle of attack.

Examples of the Type 1 DPCAS crossfeed gain varia-

tions with roll rate and angle of attack are plotted in

Figs. 66 and 67. There is a large amount of gain variation

with angle of attack and numerous changes of sign, particu-

larly for the differential stabilator. The large sideslip

integrator gainb for the longitudinal controls indicate that

a significant amount of cross-axis control motion is needed

to maintain z.?ro sideslip in rolling situations. All of the

gains shown in Figs. 66 and 67 are zero at zero sideslip

angle and rcll rate.

4.3 CHAPTER SUMMARY

This chapter uses a new design approach for obtaining

a Departure Prevention Command Augmentation System (DPCAS);

the DPCAS uses Type 0 and Type 1 proportional-integral con-

trol obtained from quadratic synthesi,, and linear-optimal

regulator methods. The Type 0 and Type 1 DPCAS offer
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interesting alternatives for control system implementation.

The Type 0 DPCAS has a low-pass filter between pilot inputs

and control outputs. The pilot must compensate for dis-

turbances and off-nominal conditions in the Type 0 DPCAS,

and this provides the pilot with indirect indications of

changes in flight condition. The Type 1 DPCAS is easily

implemented, and it has fewer gains than the Type 0 DPCAS.

Integrator compensation in the Type 1 DPCAS relieves pilot

workload allowing the pilot to concentrate on other tasks,

but the system must be protected against control saturation

effects.

The commands for the DPCAS design consist of normal

acceleration, sideslip angle, and stability-axis roll rate.

The three commands affect five of the available control

effectors, taking advantage of most of the aircraft's capa-

bilities through optimal blending of control surface motions.

The gain calculation method is based on tradeoffs

between perturbation states, accelerations, commands, and the

control motions and rates used to achieve desirable step

response characteristics. The majority of the Lost function

tradeoffs (represented as weighting elements in the cost

function) are held constant during the flight condition

sweeps. The sweeps indicate that the DPCAS stabilizes the

aircraft and exhibits uniform step response characteristics

over the entire investigated flight envelope.

In summary, a scheduled-gain DPCAS can be designed to

Level I flying qualities specifications for maneuvering flight.

The DPCAS design methodology uses modern control theory to

satisfy practical stability and response objectives for high-

performance aircraft.
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5, LIMIT-CYCLE ANALYSIS FOR NONLINEAR AIRCRAFT MIODLLS

5.1 INTRODUCTION

In a realistic system model that represents the

dynamics of a high-performance aircraft at moderate and high

angle of attack, the analyst is confronted with a large num-

ber of nonlinearities. These nonlinearities arise in the

characterization of both the empirical aerodynamic data for
the specific aircraft (aerodynamic coefficients and stability

derivatives), and dynamic and kinematic effects. The com-

bined nonlinear equations for the aircraft motion (Appendix

D) can be written as shown in Eq. 14 if the very small off-

diagonal moment-of-inertia terms and non-axial thrust com-

ponents are neglected.

qcos -r sin a.

u+ rv - qw - g sin e

w, Zlm÷+ qu - pv + g Cos € Cos e

v Y/m + pw - ru + g sin 0 cos e

S~+

LýJ p+ qsin € tan e + r cos t tan ei (14)

Most of the dynamic and kinematic nonlinearities are expressed

explicitly in Eq. 14, with terms that include products of

states, states times trigonometric functions of states, and
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products of trigonometric functions of states. The aircraft
data and response characteristics are associated with the

force and moment components, X, Y, Z, L, M, N; these contri-

butions are expressed in terms of non-dimensional aerodynamic

force and moment coefficients as

X = jPV2 SCxT

Y = ioV 2 SCY

z = i Sv2 SCz

L - pV 2SbC9 T

M - ýOV 2 SEC m

N = ipV 2 SbCnT

A realistic formulation of these highly nonlinear terms in

the state-vector differential equation, Ea. 14, is provided

in Appendix B of Ref. 2 (Eqs. B-I through B-6).

The classical. Taylor series or "small-signal" linear-

ization technique can be used to good advantage in studying
the perturbed response characteristics of a complicatea non-

linear system model. such as that given in Eq. 14. However,

such analyses capture only a part of the overall aircraft
flying qualities. This is especially true in flight con-

ditions near the small-signal linear system stability

boundaries, e.g., for a0 near 20 and 30 deg, as shown in

Section 4.3.1 of Ref. 2. When the small-signal eigenvalues

are neutrally stable, the response properties (stability or
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instability) are completely determined by the higher-order

terms in the Taylor series expansion, which are truncated.

* For this reason, itis of consiaerable importance that non-

linear effects be investigated for flight conditions corre-

sponding to angle of attack in the range 20 to 30 deg for

the aircraft under consideration.

A nonlinear phenomenon that can have significant

impact on aircraft handling qualities is the existence of

limit cycle conditions. A number of different limit cycle

effects are possible. The simplest case is illustrated in

Fig. 68 where a hypothel-,al single limit cycle exists. Two

possibilities are showr. he limit cycle is stable, in an

orbital sense, if trajectories that start near the limit

cycle converge toward the limit cycle, or unstable if near-by

trajectories diverge from it. The region inside an unstable

limit cycle is a region of stability, since trajectories in

this area converge to the reference flight condition. Observe

that if a0 and B0 correspond to the "trim" or reference flight

condition without oscillation determined by a reference con-

trol setting, u-, then for fixed controls the center of the

limit cycle, denoted (a, •) in Fig. 68, may be displaced

from (a 0 , e.) due to rectification effects inherent in a

nonlinear system.

The amplitude and stability properties of a limit
cycle are both important factors in assessing its impact on

aircraft performance. A small, stable limit cycle may be

permissible, while a larger stable limit cycle would be un-

acceptable. An unstable limit cycle, on the other hand,

should be large if it is not to be adverse, since such a

limit cycle is the boundary of a region of stability. Per-

turbations that force the aircraft trajectory outside the

unstable limit cycle result in trajectory divergence.
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The above comments establish the importance of non-

licear effects, especially limit cycle phenomena, in the

study of aircraft performance. The remainder of this chapter

deals with'quasi-linear or describing function techniques

for analyzing systems of the complexity illustrated in Eq. 14

which may exhibit limit cycles in their response. Of

particular importance is a new methodology, called the

w1Ultivariable Limit Cycle Analysis Technique (MULCAT) which

was originated at TASC during the first year of the current

contract

5.2 A NEW APPROACH TO LIMIT CYCLE ANALYSIS

A new describing function (DF) technique has been

devised for problems of the complexity exhibited in Eq. 14.

The need for a fresh approach was discussed in Ref. 2; ii,

summary, the eAisting or "c]assical" DF methodology based on

frequency domain considerations cannot handle system models

which realistically represent aerodynamic effects, having a
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number of multiple-input nonlinearities. The remainder of

this section outlines the MULCAT methodology of limit cycle

analysis.

5.2.1 Background

The context for the discussion that follows is the

problem of analyzinig high angle-of-attack flight character-

istics, although a more 7eneral mathematical formulation is

used. It is assumed the problem is open loop, in the

sense that the conti .,ector (rudder, spoiler, differential

stabilator deflectioii, etc.) is fixed (u(t) : 10).

In a preliminary investigation of aircraft stability

for a given flight regime, the small-signal linearization

technique described in Section 3.1 of Ref. 2 is useful. As

a first step, consistent input data is specified such that

an iterative technique may be used to obtain the complete

equilibrium or trim condition. (Assume, for example, that

this input data includes a steady-state value of a, denoted

CLcO.) The values of ýOand u0that Bat isfy ýQO ILO - 0.

then are determined, according to the fully nonlinear state-

vector differential equation given by Eq. 14. Based on the

trim condition, the (nxn) matrix, F0 , defined by

F0 = fij (16)

x2W?c.O, U.

determines the dynamic properties of the perturbation equa-

tion :orresponding to Eq. 14. The small-signal eigenvalues,

or solutiono XO,k' k - 1,2,... ,n, to the small-signal charac-

tcripti: equation
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det(XOI - Fr) 0 C (17)

govern the transient response of the aircraft to small per-

turbations. A typical concern in studying the high angle-

of-attack flight characteristics of an aircraft using the

above analysis is to determine the value of a., denoted 3,

such that all small-signal eigenvalues are in the open left-

half plane (LHP) for 0 < a0 < a; for ao , some pair of

eigenvalues is on the imaginary axis. Stability boundaries

can be established in the state-space, with results like

those illustrated in Section 4.3.1 of Ref. 2.

For small a, the eigenvalues given by small-signal

linearization (defined in Eq. 16) are generally moderately

well damped, and nonlinear effects may not be important. As

a approaches or exceeds a, however, the nonlinear effects

become critical in determining the behavior of the aircraft.

The MULCAT methodology presented in this chapter provides a

general approach for analyzing the effect of nonlinearity --

as typified by the possible existence of stable or unstable

limit cycles -- on aircraft handling qualities. The next

section treats this new methodology in some depth.

5.2.2 Outline of the Multivariable Limit Cycle
Analysis Technique

As in all describing function analyses for limit

cycle conditions, the first step is to assume that an oscil-

lation exists in the system. For the present problem, it

may be natural to assume that th3 steady-state angle-of-attack

satisfies

a u a 0 (1 + K sin 6t) (18)
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where a0 is large (near 9, as determined by -mall-signal

linearization) and K is generally less than unity* The

assumed frequency, w, is initia3ll the imaginary part of the

most lightly damped elgenvalue given by small-signal lineari-

zation; w will be adjusted in the subsequent iterations.

The goal of the limit cycle investigation is to determine

either that some K (or several values of K) exists such that

Eq. 18 is a valid assumption (limit cycles probably are

present), or that no value of K can be found for which Eq.

18 is consistent with the quasi-linear system dynamic equa-

tions (limit cycles probably are not present). The describing

function analysis technique developed for such a determina-

tion is iterative, and includes the following steps, which

are portrayed in Fig. 69:

Step 1: Choose an initial trial value of K, e.g., K = 0.1.

Step 2: Based on the assumed oscillation, Eq. 18, and the
current quasi-linear system dynamics matrix, Fi,

determine the amplitudes of oscillation throughout
the system model by finding 2., and bi in the steady-
state solution A

? i xi + ai sin(wit) + b, cos(wic) (19)

Determining ai and bi in Eq. 19 is an important

step, since quasi-linear models of nonlinearities
require knowing the nonlinearity input amplitudes,
as is demonstrated in the next section, and it is
desired to be able to treat aU nonlinearity which
is a function of any state varlable(s).

Step 3: Usinz the quasi-linear system model, determine the
adjusted trim (denoted xi+l(K) to stress its depen-

dence on K and to indicate that it is the result of
i+1 iterations), which reflects the change in trim
caused by the postulated sinusoidal component ofI

*Choosing the sinusoidal component amplitude to be Kao often
leads to a convenient normalization. For limit cycle analy-
sis about a zero center value, it would not be appropriate.
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the state vector, In the same procedure, one ob-
tains the adjusted quasi-linear system dynamics
matrix FE+ 1I(K), which contains the sinusoidal-
component describing function gains for all non-
linearities. Reset i - i+l.

Step 4: Calculate the adjusted frequency, wi' which is the

imaginary part of the most lightly damped of the
adjusted quasi-linear eigenvalues, Xi k(K),
k = 1,2,...,n, that satisfy

det(XI - Fi (K)) = 0 (20)

Step 5: Check to see if the iterative trim-determination
procedure has converged;* if not, return to Step 2;
if so, continue to Step 6.

Step 6: Compare Xik(() with the eigenvalues obtained for

the previous value of K, denoted KLAST (in thp first

trial KLAST ' 0, i.e., the eigenvalues are as ob-

tained by small-signal linearization -- see Eq. 17):

0 If the pair of eigenvalues near the
imaginary axis has crossed the axis,
then some value of K exists in the
range (KLAST, K) such that one pair of
the adjusted quasi-linepr eigenvalues
X i,k() are on the imaginary axis --

a limit cycle probably exists. The
value of K, denoted K0 , can be found
by iteration on K.

a If the pair of eigenvalues near the
imaginary axis remains on the same
side of the axis, increment K (for
example, by adding AK=0.1) and repeat
Steps 1 to 6.

*Steps 2 to 5 represent an iterative solution of the steady-
state conditions for the bias component or "center" (Fig.
68) in the presence of an assumed oscillation.
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If for a representative set of values of K (such as,

0= , 0.1, 0.2, .... , 1.0) the lightly damped eigenvalue pair

obtained by solving Eq. 20 does not cross the imaginary axis,

then it is probable that limit cycles cannot exist for the

particular fixed control setting specified by the original

input data (including the value of a0 under consideration).

Otherwise, the above procedure will iterate to find the value

or values of K which are probable limit cycle amplitudes.

The procedures involved in the MULCAT approach, especially

Step 2, are discussed in some detail in Ref. 2.

5.3 NONLINEAR MODEL FOR AIRCRAFT LIMIT CYCLE STUDIES

The nonlinearities in Eq. 14 which have been singled

out in the first application of MULCAT are given as follows

(identified by the state differential equation in %hich they

occur):

pitch: -r sin 0

pitch rate: (I z-I x)pr/Iy

z-axis velocity: Z/m (21)

yaw rate: N/Iz
roll rate: L/Ix

These five nonlinear terms are potentially of importance in

studying lateral-mode oscillations, including possible "wing

rock" mechanisms, so they have been chosen for describing
function treatment; the remaining terms in Eq. 14 continue to

be handled by small-signal linearization. Combining Eqs. 14, 15

and B-1 through B-6 of Ref. 2 leads to the general formulation

1
I
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z 1 •V2S C (a,) + ACZ s(C' s + L (a '6 '6)
r Z' sp 55 z 5 s

+ C (Z(a))

qf

N 21-=- CYT2 X ÷ Cn (L S)6d
. oV2 Sb SCn(a,,6s) - CY x

I z 21Tds

+ C ()6 + C n (,6)6r (22)

sp r

+ b [CnL)7* .+ Cn (Ox)p]

n2V sCp r n

L 1 i V2 S+Za + CZ.~ ()2I, '6 'f -I (a'E,)6ds + CZ ans()sx x ds osp

+ C£. (a,E)5r Lr + C (c)p
Cr r p

The nonlinearities given in Eq. 22 are supplied in

the form of empirically determined values of the aerodynamic

coefficients and stability derivatives at various flight con-

ditions. Based on this information, the following representa-

tions have been developed by curve fitting:

C z a-k la(l-k 2 a 2 )

ACZ'sp = k3 (1-k 4 * 2 ) (23)

S-k 5 (l+k 6 a )6s

CZq k7a
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Cr1

xcg0

Cn~ds -kj0 (-kjja2

C ~p k12 (1-k1 3a) (24)

Cn6r a k 1 4C1-k 1 5 a)

Cnr Z-kl6 (1+kl7cx)

Cnp~ -k,8 (1+k1 9ci+k20 ''
2)

C k -k21 (I+k2 2cz+k 23ci
2 )e

Ckd -k2 4(1+k28ci+k 2 6a 2

TIPM 1 (25)

Ck6 r k30 (1-k3 Ia~)

Ck p -k34 (1+k 35 -1+k3 6 a 
2

To complete the nonlinear state-vector differential equation

given in Eq. 14, the approximations

a tan- (-w/u) aW/u (26)

si-1 (%/V) % v/u
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are used in most instances. The resulting model still retains
the highly nonlinear nature of the aircraft dynamics, and for
ki suitably evaluated, is realistic for the aircraft considered

in this report at angles of attack between 15 and 30 deg.

The nonlinearities defined by Eqs. 21 through 26
required the derivation of the following new describing func-

tion representations

x1 sin x sin x 2 , + r 2 cos x

+ X cIi Cos x2,i (a2,i sin it + b2,i cos.it)

+ sin x2 ,(al i sinw t + b 1 1 coswit) (27)
i 1

X1X2 ; xl,iX2,i 2 r 1 2 ]

+ xI,-(a2,i sin,-'. t + b 2 A cos wit)

+ x 2 , (al isinf it + blIi cosw it) (28)

t" x 3, + 2 x ji r1l

L 1 1 r11 ]

+ 23Xli + • r 11 , (a1 i sin ,t + bl, cos wit (29)

*The state variable numbering is arbitrary. The general format
n

is: fs f0 (xiaibi)+ j ni(xiaib±)'(aj'isinw it+bj'icoswit)

where f 0 and ni, i=l,n are the describing function gains.
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i 3 3 2 3 x( ,ir 2 2  ' x 2 ,ir 2  + r r22

+ 2 , *.),ir 2  (a1  sin t+ b Cos W t

x12 ×li2 , 1 422,1ii I~

+ [3x 1 i x 2+ r 2 2 + r 2  r2 ]ir

a (2,i sin wt o b 2,i COS wit (30)

2
-I 1 (x r 2 +

X 3 x3,iLxl,i . 2 , + 22) 2 i 12]

3 j

-2, 1(xlir 2 3 + 2 x2,irl 3 ) - , (r2 2r13 ^2r1 2r2 3 )

•r22r+L r2,) 122 3ir2 3

( (a j sin w t + b1 ] COS t

+ 2x3 ( ,ix 2  r 1 2 - x r 2 3 - r x 2 r 3

U (•2,1 sin wit c b 2 os it)

- [xl,i x, + r 2 2  2 irl2

(a 3 , sin Lt + b3 1 cos t)(31)

where

rjk a aj,i aki " b jbk,i ; j,k-l,2,3
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Results for x and x /x can be obtained from Eqs. 28 and 31,

respectively, by setting x 1  x2 .

The result given in Eq. 29 is from Ref. 28; the others

are original with this effort. To the best of our knowledge,

multi-state nonlinearities such as those in Eqs. 27, 28, 30,

and 31 have never been dealt with using sinusoid-plus-bias

describing functions.

The aerodynamic data curve fits obtained by adjusting

the coefficients kI through k3 6 in Eqs. 23 to 25 were tested

by plotting the Dutch roll eigenvalue real part, obtained by

small-signal linearization, versus the trim value of angle of

attack. The curve, shown in Fig. 70, quite faithfully re-

flects the observation that the Dutch roll mode stability

boundary is very close to 20 deg (J 19.6 deg). To achieve

this degree of agreement, the number of terms used in Eqs. 23

to 25 was increased from the previous effort (26 coefficients

in Ref. 2 versus 36 coefficients here).

0.10

4 -

= i

Flgure 70 Dutch Roll Eigenvalue Real Part as Deterrnined1
by Trim Angle of Attack I
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5.4 LIMIT CYCLE ANALYSIS RESULTS AND VERIFICATION

The nonlinear model described in the previous section

provided the basis for the first application of MULCAT. The

value of trim angle of attack chosen for study, a0, is 19.6

deg. The corresponding eigenvalues associated with the Dutch

roll mode are

XDR = 0.0366 t 1.52j

which for small perturbations predicts an unstable response.

It should be observed that there is a much slower unstable

lateral mode ("lateral.phugoid"), with eigenvalues

X, = 0.0187 t 0.131j

In most instances, a mode which is as slow as the lateral

phugoid in the present case is not a concern, so attention is

generally.restricted hereafter to the behavior of the Dutch

roll mode. The values of the state variables at trim are

given in Table 27.

TABLE 27. INITIAL TRIM CONDITION IN THE ABSENCE OF OSCILLATION

STATE VARIABLE ... .
(ELEMENT OF VALU

e 0  17.46 deg

u0 81.7 m/sec

CIO 0.296 deg/sec

w w0 29.1 m/sec

V0 6.04 m/sec

r 0 -0.033 deg/sec

PO -0.011 deg/sec

€0 -5.303 deg
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The first search for possible limit cycles was con-
ducted by assuming that the velocity along the body y-axis is

given by

v - Vo[i + K sl3..AuDRt)]

,ihere wDR is the imaginary part of tne lightly damped Dutch

roll mode. The parameter K was varied from 0 to 3 in steps

of 0.5; the resulting change in XDR(K) given by MULCAT is

shown in Fig. 71. Based on these results, limit cycles for K

between 1 and 1.5 and for K between 2.5 and 3.0 are predicted.

-K 0.5

~-1.21.50 Y' . -1.0

~1.45

1.40
i' ° I
- I - .4 I

1.35

.0.04 C2 0.02

RFAL PART OF ). -l * 1

Figure 71 Variation of the Dutch To 1 . r. 1, 1.with
A:..sumed Oscillation A, - -
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The MULCAT program was then permitted to iterate to

find the exact limit cycle condition. It was found that XDR

is virtually on the imaginary axis,

XDR ' 4x10- 5 ± 1.4954j

for K equal to 1.20. Corresponding to this value of K, the
"center" value, xj, and oscillation components, ai and bi,

for the state vector are given in Table 28. Since decreasing

K moves XDR into the right half plane, and increasing < moves

XDR into the left half plane, the predicted limit cycle for
K - 1.2 should be stable.

'ABLE 28 TRIM CONDITION AND PREDICTED LIMIT CYCLE
AMPLITUDE FOR THE STABLE LIMIT CYCLE

SIATE VARIABLE CENTER
(ELEMENT OF x,) UNITS

ei 18.35 0.259 -0.234 deg

u i 80.25 -0.177 0.165 m/sec

qi 0.174 0.219 0.182 deg/sec

W 28.80 -0.810 -0.718 m/sec

Vi 6.14 7.38 0.0 m/sec

rj 0.792 -1.79 -1.89 deg/sec

Pi -0.310 -7.35 14.90 deg/sec

i 8.55 9.55 5.295 deg

A verification of the limit cycle prediction requires

that nonlinear simulat ons of the dynamics specified in Eqs.

24, 22, and 23 to 25 be pt-rformfd. To do this, the original

state equation, 1q. 14, is formulated es



-r sin €

0

(I z-Ix )pr/l y

Flxy + Z/m + G1 u

0

N/I I

L/I x

0

- F1X + fl(X,u) + Glu (32)

where F1 and G, are constant matrices which capture effects
other than those chosen for study via quasi-linearization,

and f,(x,u) is the vector of nonlinearities selected for

treatment using KULCAT. Equation 32 can then be directly

integrated to yield the desired time histories.

Choice of the initial condition for this procedure

is critical. This is due to the presence of an unstable mode,

a slow spiral mode which for K - 1.2 is governed by

XS = O.0618

If this mode is excited appreciably, its growth will completely

obscure the fast limit cycle that is sought. One of the bene-
fits of MULCAT is that the eigenvector for the predicted limit.

cycle is proportional to a1i + Jb 1 , in the standard phasor

niotation; therefore, if we choose the initial value of x by
x(O) - aiI

only .i-e limit cycl! in the Dutch roll mode should be excited.



The stable limit cycle prediction shown in Table 28

was verified by choosing x(0) = 0.8a.i. The resulting time

histories of pitch angle, e, y body-axis velocity, v, and

z body-axis velocity, w, are portrayed in Fig. 72 The

plot of e shows that the solutions do very slowly diverge,

due to a small unavoidable excitation of the spiral mode.

The time histories of v and w show that the dominant Dutch

roll mode is very slowly growing for the first 25 sec of the

simulation, as would be expected for an initial condition

that is slightly interior to the predicted stable limit cycle.

The predicted center value of v is nearly exact, while that

for w is in error by about -0.5 m/sec, or about -1.4 percent.

Finally, the predicted limit cycle frequency is 1.495 rad/sec,

while the observed frequency is 1.497 rad/sec; the agreement

is excellent. After 25 sec of simulation, the slow divergence

begins to alter the limit cycle shown to have developed in

the first part of the simulation.

Further analysis of the simulation results was under-

taken to attempt to separate out the effect of the slow

divergence. The time history depicted in Fig. 72b was pro-

cessed to determine the exponential growth component (cleC2t);

then the predicted limit cycle envelope is given by the

relation

c 2 t
eLC vcle a a 5

Y-here c5 is the amplitude of the predicted limit cycle in u

(s.Lat'. 5). This envelope is portrayed in Fig. 72b; within

the i3mits of the simulation accuracy, convergence of the

tjflm.: S•joy to •h- envelope is Shown.

* The -:)ozs sqow ' be perturbation of ea-h variable about the
predictod vw .er valuie, ji; i.e., Ax L N - x is the

, in Fic. 72. --



The effort to verify MULCAT limit cycle conditions

by direct simulation has pointed up the difficulty of using

the latter technique as an exploratory tool to locate limit

cycles, without recourse to describing function analysis.

Realistic aerodynamic models such as those used here often

have slow modes that are unstable or that are very lightly

damped. Direct simulation initial conditions must be chosen

very carefully to avoid exciting these modes. In a linear

system, it is not difficult to use eigenvector information to

obtain initial conditions that selectively excite a desired

mode. However, eigenvectors are not rigorously defined for

nonlinear systems.

A concept which can be used with some success may be

called the quasi-linear eigenvector; in essence, the complex
*

vector a , given by ai + Jbi as in Table 28, is in a sense an

amplitude-dependent eigenvector, which specifies an initial

condition that excites the assumed oscillation. The fact

that the quasi-linear eigenvector a is amplitude-dependent is

illustrated in Fig. 73, which shows a for various values of

K, corresponding to the study depicted in Figs. 71 and 72'.

For K - 1.0 and 1.5, the eigenvector components for e and q

are too small to be shown; the differences between the remaining

components (which are normalized to make the length of the v

component equal in each plot) are rather small. For K = 2.5

and 3.0, the changes in a* are quil:,. substantial. For example,

the e and q components of a* are much larger than for small

K, and can be seen to rotate nearly 45 deg for K increased

from 2.5 to 3.0.

tThe eigenvectors correspond to the variables e, u, q. w, v/1O,
r, p/5, ý/5; this scaling was performed to permit all com-
ponents of a* to be shown on the plots for ,'-2.5 and 3.0.S~i
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finally, validity of the quasi-linear eigenvector

can be bolstered by comparing Fig. 73a with Fig. 74. The

latter is the eigenvector for Dutch roll, obtained from the

more conventional eigenvalue/eigenvector analysis used in

other sections of the report. The agreement is quite good,

especially considering that Fig. 74 is based on the empirical

aerodynamic data, rather than the analytic nonlinearity approx-

imations shown in Eqs. 23 to 25.

R-27056

P/5

rr1

w

Figure 74. Exact Dutch Roll Eigenvector Diagram Corresponding
to Empirical Aerodynamic Data

5.5 CHAPTER SUMMARY AND OBSERVATIONS

I The Multivariable Limit Cycle Analysis Technique 4s

fully developed in conceptuaJ terms, as outlined in Section
S~5.2; it is discussed in more detail in Ref. 2. The analytic

and quasi-linear models for the subject aircraft are similar
I to those developed in the first phase of the study (Ref. 2),



a number of terms were added, and coefficients were re-

calculated to achieve a better match between the analytic

model and the empirical aerodynamic data used in other inves-

tigations described in this report. The limit cycle analysis

procedures involved in MULCAT are incorporated in ALPHA-2, the

general high-a study program developed under this contract.

The benefits of this technique are

$
* An iterative algorithmic approach to

limit cycle analysis is much more
suitable for mechanization on a digi-
tal computer than classica.l frequency-
domain techniques, which are typically
graphical in nature;

* Any number of nonlinear effects can
be investigated, singly or in any
combination, without coDtinually I
manipulating the system model into
the appropriate "linear plant with
nonlinear feedback" formulation re-
quired in the frequency-domain approach
(Ref. 2);

* The amount of computer time required
to determine the existence of limit
cycles by a MULCAT analysis is signifi-
cantly less than the computer time
expenditure that would be needed using
direct simulation alone.

The last observation is based on the difficulty of choosing

the direct simulation initial condition correctly to excite j
only the desired nearly oscillatory mode, as discussed in

the preceding section.

The study presented in Section 5.4 illustrates the

effectiveness of MULCAT in limit cycle prediction. The limit

cycle frequency and "center" value (Fig. 68) given by MULCAT

are in good agreement with the simulation results; the

accuracy of the amplitude prediction is more difficult to
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assess quantitatively due to the simulation problems men-

tioned previously (see Fig. 72b). In general, these results

bolster the expectation that the MULCAT iterative technique

will be found to converge to locate limit cycle conditions,

provided that

* The input trim condition specification
leads to a pair of small-signal linear
eigenvalues that are lightly damped,

"* The nonlinearities are well-behaved
(e.g., realistically modeled by low-
order power series expansions or pro-
ducts thereof); and

"* Limit cycles indeed exist (as verified
by simulating solutions to the original
nonlinear state-vector differential
equation, with suitable initial con-
ditions).

Considerable further research could be performed in

conclusively proving the power and accuracy of MULCAT. As a

first step, it would be valuable to exercise MULCAT upon a

simpler model (fewer states and nonlinearities), particularly
one that does not contain system variables that are slowly

divergent. The existence of unstable modes, or even of modes

that are slowly decaying oscillations, makes limit cycle

verification by direct simulation very difficult, since it

is impossible not to excite them in the simulation.

An area of MULCAT application that would be of great

interest is the study of limit cycle conditions when a human

pilot model is incorporated to "close the loop" in the air-

craft dynamic model. While it may be useful to examine fixed

control settings that give rise to limit cycles, as in the

present study, the ability of the pilot to correct the

problem -- or to create limit cycle conditions when they do

.
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not exist for fixed controls -- would be a subject of con-

siderable significance. Such an analysis using MULCAT pre-

sents no foreseeable difficulties.
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6. CONCLUSIONS AND RECOMMENDATIONS

New methodologies and results in the study of aircraft

stability and control, including detailed consideration of

piloting effects, have been presented. These lead to the

conclusions and recommendations given below.

6.1 CONCLUSIONS

0 Aircraft Dynamic Models - This report has
demonstrated that the first-order effects
of aerodynamic and inertial coupling can
be considered in linear, time-invariant
dynamic models for maneuvering flight and
that such analysis can be extended into the
transonic and supersonic flight regimes.
Two data sets are used during the study,
and their differences in an overlapping
region (subsonic flight, with wings swept
forward) highlight the importance of basing
stability and control analyses of actual
aircraft on the best, most consistent data
available.

Mach-Dependent Effects - The general trends
in aircraft stability which arise at sub-
sonic speed for asymmetric flight conditions
(e.g., the transfer of damping from one axis
to another, the appearance of longitudinal
variables in characteristically lateral-
directional modes, and so on) also occur at
higher Mach numbers. Previously understood
potential problem areas, including low con-
"trol power in transonic flight and the need
to maintain small sideslip angle in unaug-
mented supersonic flight, are evidenced in
the present analysis. The aircraft dynamic
model studied here is relatively stable
throughout the Mach range in low-a, straight-
and-level flight. Maneuvering at high a with
high angular rates can lead to a requirement
for stability augmentation.
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* Pilot-Aircraft Interactions - Whether or not
a pilot experiences difficulties in maneuvering
flight depends upon. how he adapts his control
strategy to changing flight conditions.
Stability boundaries plotted as functions
of the aircraft's actual a and the a assumed
by the pilot in forming his control strategy
illustrate that the pilot's adaptation must
be very nearly optimal to maintain stability
in certain flight conditions. Consideration
of statistical tracking error and control
usage within stable boundaries leads to the
concept of minimum-control-effort (MCE) adap-
tation in the pilot model. The MCE model
provides a rationale for noa-optimal adap-
tatiou which accounts for fundamental changes
in the control modes selected by the pilot,
such as the decision to use stick and pedals
in a coordinated fashion rather than stick
alone.

* Departure-Prevention Command Augmentation
ystem(DPCASL -. Precision response to pilot

commands (normal acceleration, stability-
axis roll rate, and sideslip angle) is
afforded by using modern control theory in
flight control system design. Proportional-
integral compensation provides "Level 1"
flying qualities throughout an expanded
maneuvering envelope in two candidate imple-
mentations of the DPCAS: a "Type 0" version,
which is especially insensitive to disturbance
inputs and feedback measurement noise, and a
"Type I" version, which assures proper steady-
state command response for wide variations i.n
the aircraft's parameters. The two versions
have virtually identical step response when
the design model and the actual aircraft are
matched. Although the DPCAS design method- !
ology is illustrated with an advanced (but
conventional) 3-axis command vector, it can
be applied to "CCV" control modes with equal
facility.

* Nonlinear Wing Rock Analysis - The possible
existence of limit cycles in nonlinear dynamic I
models of the aircraft can be investigated
using the multivariable limit cycle analysis
technique (MULCAT) originated and developed in I
this study. Dual-input describing functionswhich reflect the scaling changes and trim shifts
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in the presence of oscillation that occur in
nonlinear terms of the equations are combined
with eigenvalue analysis to predict the ampli-
tude and frequency of limit cycle oscillations.
The MULCAT algorithm converged to limit cycle
predictions in several cases involving the
subject aircraft, and direct simulation of the
dynamic equations confirmed the existence of
persistent oscillations. Because the initial
conditions also forced divergent modes of
motion (in addition to the limit cycle modes),
the numerical simulations did not conclusively
show the "locked-in" nature that is normally
associated with limit cycles, so it is felt
that MULCAT should be investigated further
using simpler nonlinear dynamic models.

6.2 RECOMMENDATIONS

It is recommended that the following studies be under-

taken to extend and demonstrate the utility of the work de-

scribed in this report.

"* Evaluate the DPCAS Using Nonlinear Aircraft
Simulation

After a digitally implemented DPCAS is
synthesized, including both controller and
gain adaptation logic, the study would then
evaluate type 0 and type 1 structures by
numerical simulation.

"" Compare Pilot Model Predictions with Flight
Test Records

This study would evaluate pilot modelling --

jas supported by nonlinear simulation, actual
flight test, and hypothesis testing methods --

as an aid to understanding and defiring air
combat maneuver requirements.

* Evaluate the Sensitivity of Controller Gain
Schedules to the Aircraft Model
This study would evaluate the robustness of
the gain schedule with respect to aircraft
parameter or trajectory variations. Type 0
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and Type 1 DPCAS control laws should be
further compared with respect to their
sensitivity properties.

0 Investigate the Effectiveness and

Generality of MULCAT

Confidence in the use of the MULCAT
approach should be developed in the
context of simpler nonlinear dynamic
models.

0 Investigate the Effects of Partial State
Feedback

The sensor suite and associated noise and
estimator required to recover the unmeasured
states all. play an important role in the
overall aircraft performance. This important
function should be addressed before DPCAS is
evaluated on an actual aircraft.
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APPENDIX A

LIST OF SYMBOLS

In general matrices are represented by capital

letters and vectors ar- underscored; exceptions to these

rules are only made when they are contradicted by standard

aerodynamic notation. Capital script letters are used to

denote scalars in some cases.

Variable Description
a In-phase component of state-vector limit cycle

amplitude

a Total state-vector limit cycle amplitude in
phasor notation (a* = a + ib)

a Normal acceleration

a Lateral acceleration

b Wing span

b Quadrature component of state-vector limit
cycle amplitude

C Pilot control-strategy feedback matrix
Type I DPCAS gain

Partial derivative of the nondimensional
coefficient of force or moment 1 with respect
to the nondimensional variable 2 (scalar)

Cn, Stability-axis derivative, corrected to
""dyn principal axes

Mean aerodynamic chord

D Pilot control-observation matrix

e :,aiural logarithm base (2.7183 ..

F System dynamics matrix
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LIST OF SYMWjOLS (Continued)

Variable Description

f Ve-ctor-valued nonlinear function

G Control input allocation matrix

g Magnitude of gravitational acceleration vector
Control effect scalar

H Pilot aircraft-state observation matrix
Command variable transformation matrix

H Euler angle transformation from Frame 1
axes to Frame 2 axes

h Altitude

I Identity matrix

i Index integer

J Cost functional

K Gain matrix
Type 0 DPCAS gain matrix
Pilot Kalman-filter gain matrix

k Scalar gain

L Type 0 DPCAS perturbation command gain (matrix)
Aerodynamic moment about the x-axis (scalar)

Number of pilot observations
Number of commands

1t Tail center of pressure location

M Aerodynamic moment about the y-axis (scalar)
Cross weighting matrix between states and controls
Mach number (scalar)

m Mass of the vehicle
Number of controls
Meters

N Aerodynamic moment about the z-axis (scalar)
Newtons (kg m sec-2)
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LIST OF SYMBOLS (Continued)

Variable Description

j n Number of states

P Riccati matrix in the optimal regulator problem

PC Pilot model regulator Riccati matrix

P E Estimation error covariance matrix of
system states and pilot controls

P Pilot noise-to-signal ratio for neuromotor noiseu

Pv Covariance matrix in Riccati Equation

P Pilot noise-to-signal ratio for observation noise
V

p Rotational rate about the body x-axis

PW Stability-axis roll rate

Q QC State weighting matrix

QE Disturbance noise covariance matrix

q Rotational rate about the body y-axis
Weighting matrix element

q Free stream dynamic pressure (=JPV )

0
RC Control or control-rate weighting matrix

RE Measurement noise covariance matrix

R L Matrix with diagonal elements consisting of the
inverse of human neuromuscular time constants

r Rotational rate about the body z-axis
I Control weighting element

S Reference area (usually wing area)
Steady-state matrix inverse
Control rate weighting matrix

t Time

u Body x-axis velocity component
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LIST OF SYMBOLS (Continued)

Variable Description

u Control vector

u Pilot model control command I
V Inertial velocity magnitude

V u Pilot neuromotor noise covariance matrix

Vx Aircraft state covariance matrix I
V Pilot observation noise covariance matrix

v Body y-axis velocity component

N Wind velocity y-component

vu Pilot neuromotor noise vector

vy Pilot ils2rvation noise vector I
w Body z-axis velocity component

W Aircraft disturbance vector

wy Wind gust noise

X Aerodynamic force along the x-axis (scalar) I
Covariance matrix of system states and
pilot controls

x Position along the x-axis

x State vector

Xcg Normalized longitudinal distance between actual I
e.g. location and point used for aerodynamic
moment measurements expressed in body axes)

x, Inertial position vector I
Y Aerodynamic force along the y-axis (zcalar)

Covariance matrix of predicted system states
and pilot controls

1
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LIST OF SYMBOLS (Continued)

Variable Description

y Position along the N-axis

v Delayed pilot observation vector

Ld Command vector

Z Aerodynamic force along the z-axis (scalar)
Pilot predicted error covariance matrix of
system states and controls

z Position along the z-axis

Variable
(Greek) Description

Oi Wind-body pitch Euler angle (angle of attack)

aA Angle of attack of aircraft

01P Angle of attack perceived by pilot

Negative of wind-body yaw Euler angle
(sideslip angle)

Noise effect matrix

"Control variable

5(t) Delta function

{ds Differential stabilator deflection

•mf Maneuvering flap deflection

ped Rudder pedal deflection

I Rudder delection1 r

Symmetric or collective stabilator deflection

I. Spoiler deflection

•T Thrust command

Damping ratio

Inertial-body pitch Euler angle
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LIST OF SYMBOLS (Continued)

Va ri ab 1 e
(Greek) Description

Wing sweep angle

Eigenvalue

C Integrator state

Air density
Correlation coefficient j

-1
Real part of an eigenvalue in sec
Alternate time variable

Human time delay

Human neuromuscular time constant
n. t1

Wind gust time constant

neyrtial-body axis roll Euler angle

Inertial-body axis yaw Euler angle

Frequency in sec-: imaginary part of an
eigenvalue

2 Rotational rate vector of Reference Frame 2
1 with respect to Reference Frame 1 and expressed in

2 ,1 1 1 i etFrame 1 cooldinates. (=22 so 2 left-

handed. Thus, Frame I and Frame 2 are not
interchangeable.)

Variable
(Subscript or
Superscript) Description

B Body axes

I Inertial axes

IC Interconnect gain
Initial condition
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LIST OF SY.BOLS (Continued)

Variable
(Subscript or
Superscript) Description

Aerodynamic moment about the x-axis

m Aerodynamic moment about the y-axis

max Maximum value

n Aerodynamic moment about the z-axis

p Predicted value

S Stability axes

s Scalar system

u Control vector

W Wind axes (same as stability axes for :0=ý0--0)

X Aerodynamic force along the x-axis

y Aerodynamic force along the y-axis

Z Aerodynamic force along the z-axis

I x State vector

SOperator Definition

Time derivative

C) Matri;x equivalent to vector cross product.
Specifically, if x is the three-dimensional9 vector

-x 0 x]

and the cross product of x and f is equal
to the product of the matrix x and the
vector f,

I x , f = kf
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1
LIST OF SYMBOLS (Crntinued)

Operator Definition

)T Transpose of a vector or matrix

-(). Inverse of a matrix I
( ) Steady state value

0 Reference or nominal value of a variable 1
.L( ) Perturbation about the nominal value of a

variable I
E( ) Expected value of

det( ) Determinant of a matrix 1
)max Maximum value, usually due to displacement

~max limit of an actuator.

(TOT Total value, usua-ly of an aerodynamic
coefficient

Acronym Corresponding Phrase

ACM Air Combat Maneuvering

ARI Aileron-Rudder Interconnect j
"CAS Command Augmentation System

c.g. Center of Gravity

c.p. Center of Pressure (
DPCAS Departure Prevention CAS

DPSAS Departure Prevention SAS I
DR Dutch Roll

dB Decibels

IAS Indicated Air Speed t
LCDP Lateral control departure parameter
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LIST OF SYMBOLS (Continued)

Acronym Corresponding Phrase

LP Lateral Phugoid

MCE Minimum-control-ef fort

PTO Pilot-Induced Oscillation

S Spiral

SAS Stability Augmentation System
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APPENDIX B

AIRCRAFT AERODYNAMIC MODEL
t

The reference aircraft is a supersonic fighter

designed for air superiority missions. Mass, dimensional,

and inertial characteristics are listed in Table B-I.

TABLE B-1. CHARACTERISTICS OF THE REFERENCE AIRCRAFT

Mass, Ir 1512.7 slugs 22076 kg

Reference Area. S 565.0 ft 2  55.28 m2

Mean Aerodynamic Chord, E 9.8 ft 3.0 m

Wing Span, b 64.1 ft 19.5 m

Length 62.0 ft 18.9 m

Center of Gravity Location, Xcg 0.09

The control variables are symmetric stabilator (6),

maneuvering flaps (6mf), differential stabilator ( 6 ds), spoiler

(6 sp), and rudder (6 r). The ranges of these variables are

listed in Table B-2.

TABLE B-2. CONTROL VARIABLE RANGES

6 s +10 to -33 deg

6 mf +10 to 0 deg ?7?"CgD'r- PAG N.•: I.- . PAGE BLt•N0W'

6ds +12 to -12 deg •D > ......-

6sp +55 to -55 deg

6 r +30 to -30 deg
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Two aerodynamic models are used in this study. One

of them (the subsonic model) includes very few Mach number

effects and assumes a fixed wing sweep of 22 deg. The effects

of sideslip on the static forces and moments are given by

tabular data, and the maximum stored angle of attack is fairly

high (55 deg). This model is described in Appendix B of Ref.

2, and it will not be discussed further here.

The second model used in this study includes very

complete Mach number effects and is referred to as the Mach-

dependent model. Wing sweep is programmed as a function of

Mach number up to the full flight sweep angle (68 deg), This

model includes only linear sideslip effects, and it has a lower max- I
imum angle of attack (30 deg).

The Mach-dependent model also differs from the sub- r
sonic model in that it expresses the angular rates and the

forces and moments in stability axes. (The stability axis

x-z plane lies in the body x-z plane, but with the x-stability

axis along the x-z plane projection of the velocity vector.) j
The velocity relations are given in Eq. B-i, and the angular

rates in Eq. B-2.

[ arctan v/ (B-1)

arctan (w/u)

p [cosc a sin CLi'B
qs 0 1 0 qB (B-2)

ri LSsin a 0 cos a jrBJ
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The equations for the force and moment coefficients

(in stability axes) are given in Eqs. B-3 to B-i7. The

independent variables, besides those listed above, are Mach

number (M), altitude (h) and angle of attack rate(c)

rIL ,( , ) 4SIM-n)6s10 -' 15

i 1, A (m. h)[CL6  (M. )(M-I") *CL 6  (I ) +1)]-15 3

(B-3)

n,, (M. h) C M6 ,1 (M. a) 6 10 -6 F; -15

(1 4A(, h)l Cmn6,(M. 0)(-15) * M6 R2 na)(694 1-,)] I - 6S R -3

(B-4)

Cm 6  r A U h Cm6 dI(U,' 6S) (B- 5)

CLAd -n,,M h) AC' 6d(U, Ct 6 (11) - g 0.262]]-6

JCL~p - "LSp~t; h) LCL 5 P(.M, a) (B- 7)

Iýs Cr M "P(M, h) LCMOM 3)(B8

I' P i p M h) 2,C~i S (M a)(13-9 )
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C~m~ h) B- 10

c m rfI..f(Ml. h) (Cf(.B-l 11

C'LTOT CI13AS!C(M. h. ti) c1 Cl (rnf 6Mf 4 I, 'r 'AX I
+(7:7/2V CLq(M. (i t, M B-2

CYTOT -Cyr(M. h, ni) P + CIyFi( W. q)6,P/SWX

* 6 r (Wi, a)e 4 (b/2V) [Cy(M. 11) p,4 Cyr(M. ai) T](B-13)g

CD~TO CDBAS:C(M, CLBASTC) + 6CDmf (M, m)6flmMX + ACDsp(M, d)5a/9HX

(B-14)

ra
Cj- ~ C ,(kl., h. a) - 1,C ., (V, a) L &r.f.C- o o)(&t. /em

'~sr sp sft) Pd ds'. 6 Jr1  'd.. .

Fc (k C. c,' L15

4C ,P. ?. ' r (t/2%')C p l
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ýMT0SF CMBASIC( Sp Sp . . "'AX

- • •" d SREF " s c) "

C LcgLCt - 0.162' (B- 16

C (1E , h, Q) # r'r,C , ( . a) 65 .Cn h (W- a)( ,fle). E

LL

r *i. .+ C (M., 0 ,- ~ ~ MY I,~ V L), /d+Cncs

ds• ds(. 's'jcds

r 1 7
* (b,'2T)YCnr(V. o) p, * C~r(I a) (D-17)

The resulting stability-axis force and moment

coefficients are transformed into body-axis force and moment

coefficients by Eqs. B-18 and 1-19.

CXTOT -cos CL 0 sin ao

CYTOT CYTOT (B-18)

CZTOT L-sin a0  0 -cos ao CLToT
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"CcTOTB cOS C° 0 -s'.n ao0 1CTOTs
C*TOTB 0 1 0 CmTOTS (B-19)

CnTOTB- sin cc 0 cos C0 CnTOTS

The total force and moment coefficie.nts can be used directly

to calculate the forces and moments on the aircraft for trim

analysis or for nonlinear time history generation. However,

a linear analysis requires the partial derivatives of the
six coefficients with respect to all of the independent

variables. For example, the derivative of the x-axis force

coefficient (CXTOT) with respect to non-dimensional x-axis J
velocity (u/V ) is given in Eq. B-20.

- CXTT acDDMT +CLTZe-1 F ;a
= Ui- L - - •° C os a 0 do 0 -4M (J

0 (Mo, (MO 4CX )o + am VIV )

4 0aZM (B-20)

A partial derivative with respect to an angular rate is

illustrated in Eq. B-21.

II
Cir • C-os C I0 C.osoLr °L Irs•, j 1 "j

L J L L

sin ,- - s•r I F• 0 (B-21)

L1. L ~
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I
Many of these derivatives contain the partial

derivatives of the nondimensional wind-axis translational

velocities (V/Vo, B, a) with respect to the nondimensional

body-axis translational velocities (u/Vo, v/V 0 , w/Vo).

This matrix of derivatives, evaluated at the nominal

flight condition, is

)7 cos o cos E0 sir E, Sic r. n0 cos fo i
-cor/ $o sin :50 coss r0 -sin 00 Bi± 0•

•'(ulVo), %-/VO, 'R/Vo)T
L-En ao/coF E0 0 cos ao/cos £0'

V0. 00, ýc

Dimensional stability derivatives are formed by

taking the derivatives of the dimensional aerodynamic

forces and moments with respect to the dimensional state

variables. These dimensional derivatives contain the

nondimensional derivatives; T-X and y- are examples of these

derivatives:

a- L - pV2s CxT]

P(0 u S CXT Mo 1ho 0 o1a0Px 6s0,6mfo,6spo.6dso, 2V 0

+ jPoV2S CXu V 1

"g7 [2 •v~s C1"rTl

2 b

-ip0V 2S C

The complete dimensional stability derivative

matrices are essentially as presented in Ref. 2.
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APPFNDIX C

COMMAND AUGMENTATION MODES

i

The primary control channels in most present-day

aircraft consist of direct connections between the pilot's

controls and the main control surface actuators. Additional

control channels, often computer implemented, provide limited

control surface movement by augmentation actuators. This

appendix examines the command-to-control connections that

are desirable in advanced command augmentation systems.

The first section illustrates an aileron-rudder inter-

connect (ARI) design method that can provide invariant steady-

state response to control deflections over a range of flight

conditions. The tradeoffs between various command modes are

discussed, and the specific linearized command mode equations

are derived for use in Chapter 4. A steady-state analysis of

this command vector concludes the appendix.

C.1 AILERON-RUDDER INTERCONNECT DESIGN

The steady-state (algebraic trim) design of a control

interconnect system is discussed in the context of ARI system

design. The new technique is general, creating invariant

steady-state response to pilot control surface commands over

a wide range of angles of attack.

The steady-state solution of the linear dynamic model
I --.

Sx(t) F Lx(t) + G Au(t) t-

-2- - P• BL-- ',NOT F
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is

0 =F .x* + G Lu*

Thus, desired values of ýx* specify values of Au*. For direct

connections between pilot commands, A6, and control surface

commands, Au ( Lu), the steady-state control setting which

provides a given Ax* changes as the dynamics and control

effectiveness matrices change. The adjustments required for I
Iu* become complicated at high angles of attack and can even

be counter-intuitive. The aileron-rudder interconnect (ARI)

used in many aircraft provides one solution to this particular

problem. The ARI phases out the lateral stick-to-aileron

channel and phases in a lateral stick-to-rudder channel as a0
increases, minimizing the adverse yaw effects of lateral con-

trol surfaces. The relationship between pilot and control I
surface commands is KIC • 1 , where KIC is an interconnect

"gain" matrix.

The interconnect design problem can be generalized I
as follows: find the interconnect matrix, KIC, which compen-

sates for dynamic variations such that the relationship be-

tween L6* and Lx* is invariant in the steady-state solution,

0 = Fx* + GKIc L6* (C-1) I

KIC is assumed to vary with flight condition, i.e., KIC

K IC(xo). The solution is discussed using the reduced state

vector f

Lx = [lu Aq Lw tv Ar Lp]T (C-2)

which preserves the aircraft's essential dynamic characteristics,

and F and G are defined accordingly.
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Assuming that the steady-state relationship between

L.x and -'" is acceptable at some nominal flight condition

(e.g., low-0 straight-and-level flight), no interconnect

is needed (i.e., K C=1), and, from Eq. C-i,

LX F-1 G L6*
- 1 1-

To preserve the same x*-L6* relationship at a different

flight condition, the interconnect must be used:

tAX* = -F2 1 G K L5*
- 2 2IC -

These two equations define the interconnect matrix as

KC = G2F2 F 1 G1  (C-3)

where the pseudoinverse of G2 is taken (since G2 is, in

general, not square) and F1 is assumed invertible (virtually

always the case when the state variable is defined by Eq. C-2).

KIC must change with flight condition, and it can be scheduled

accordingly (as in Chapter 4).

As an example, consider the pseudoinverse ARI design

for a reference flight condition specified by trimmed flight

at a velocity of 244 m/s (800 fps) and an altitude of 6,096 m

(20,000 ft). Two pilot controls (lateral stick and pedals)

command two control surfaces (differential stabilator and

rudders). The four control. interconnect gains obtained from

Eq. C-3 vary with a as shown by the solid lines in Fig. C-I.

"The existing ARI characteristics are illustrated by the

dashed lines for comparative purposes. The lateral stick-to-

differential stabilator gain is close to unity in Fig. C-i

until the design angle of attack is reached (denoted by Q ),

then rapidly drops. The reduction in the lateral stick to
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differential stabilator interconnect with increasing angle

of attack is typical in ARI designs, as the existing ARI (the

dotted curves in Fig. C-1) illustrates. The pedal-to-rudder

gain remains close to unity throughout the angle of attack
range studied, with some dropoff at low angles of attack

because of increased rudder effectiveness. The lateral

stick-to-rudder gain remains near zero for low angles of

attack and rapidly increases as the lateral stick-to-

differential stabilator gain decreases.
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The general agreement between the control inter-

connect gains calculated according to Eq. C-3 and the inter-

connect gains actually implemented lends credence to the

algebraic design procedure presented here, while suggesting

possible modifications for study in the present ARI.

One difference between the pseudoinverse ARI design

presented here and the actual ARM is in the pedals-to-

differential stabilator gain; it is not insignificant and in

fact increases in magnitude rapidly with angle of attack.

Judging from the smooth behavior of the pedals-to-differential

stabilator term, the use of such an interconnect gain would

enable the differential stabilator to be used to improve

maneuverability in high angle-of-attack flight.

C.2 AIRCRAFT COMMAND VECTOR ALTERNATIVES

The pilot command vector i. 'ed not consist of the air-

craft states alone; it can be formed from any reasonable combi-
nation of aircraft states and controls. This section dis-

cusses some command vector elements that are desirable from

a piloting point of view, and the mathematical state-to-

command transformations are derived. Linearized versions of

these transformations are used in Appendix D and Chapter 4 to

construct a command augmentation system.

The form of the command transformation is given by

L-d = h(x,u)
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where Ld is the command vector, and h is a vector-valued

nonlinear transformation of the states, x, and the controls,
u. In general, the command vector can only contain as many

degrees of freedom as the number of independent controlsI

which is, at most, six. 1
The four basic commanded motions are longitudinal,

lateral, normal, and directional motions. Longitudinal motion

results in a velocity magnitude change and can be commnanded

by V or V. Lateral (rolling) motion is used to orient the

maneuver plane and can be commanded by p, p,, or I.. Normal I
and directional plane motions are two degree-of-freedom motions,
and, in genera], require two commands. In the normal plane,i

acceleration (an or q) and/or attitudes (e, a, or y) can be

commanded, with the two-element directional command vector J
chosen in an analogous way. All of these commands are

desirable in one situation or another. In ground attack, I
both fligh: path control (y) and independent fuselage pointing
(u) might be desirable. In air combat maneuvering, normal

acceleration (an) is certainly a useful command, as is sta-

bility-axis roll rate (PW)- I

Complete six-element command vectors are assembled
next. The first example command vector is the attilude ,

command vector,

T

L V,= [V' -T

This vector obtains flight-path control from the flight path

ang2e, , and the volocity vector heading, ý. Independent

fuselage pointing is available from body pitch angle, e; body

I
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yaw angle, ', is available for crosswind correction or gun

aiming. For a fighter pilot requiring rapid sustained orien-

tation changes, an acceleration-oriented maneuvering set,

-d ' I[V, anI a, 2 , ay, PW I

could be useful. The maneuvering set gives the pilot direct

control over normal acceleration, an, and roll rate about the

velocity vector, pW" Independent fuselage pointing is pro-

vided about the velocity .ector using angle of attack, a, and

sideslip, 6, commands. The air-relative velocity magnitude,

V, is commanded, and the aircraft can be directed to make a

flat turn (no bank angle) with the lateral acceleration, ay

command.I
The nonlinear relations between the elements of the

maneuvering command vector and the aircraft body states are

given next. Some of the maneuvering commands are used in the

DPCAS design in Chapter 4 and could be determined in flight

using the nonlinear relations. The aircraft velocity in wind

axes is

.•ta- (tOan+ f

01 L tan- I(w/u) j

The accelerations are the second and third components of the

earth-relative accelerption expressed In wind axes:

I
1 2.11
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= HN=

where

F cos a co! 6 sin S sin a cos S I
H =Zx; -cos (j sin I cos S-sin c i

L-sin a 0 COS a j

The wind-axis roll rate is the first component of the b:ody I
angular velocity expressed in wind axes. which is

I

qW HB(a,6) WB

These nonlinear equations serve to relate the maneuvering
command vector to the state and state rates involved in the R
actual aircraft dynamics, and -they represent the total command
values which drive the nonlinear model of the aircraft. Their

linearized equivalents must be defined for control system

design, as presented in the following section.
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C.3 LINEARIZED MANEUVERING COMMAND VECTOR

The command augmentation system design methods

of Chapter 4 require linearized versions of the maneuvering

command vector equations given in Section C.2. The command

vector is a function of both aircraft states and controls,

so the following perturbation command vector equation results:

ld - H,(x-o'-u) Lx + Hu(xou) Lu

The individual rows of H and Hu depend on the chosen

elements of the cow.and vector, and the following equations

are used to derive the linear maneuvering command vector. The

perturbation wind-axis velocity vector is related to the per-
turbation body-axis velocity vector as

Le J 1w (V Is ) H W(c1opp ) LVB (C-4)

JW is a diagonal matrix which has elements 1, Vo, and V0 cos o'

The perturbation wind-axis roll rate depends on both

the perturbation body-axis angular rate and on the perturtation

body-axis velocity, which affects the body-to-wind-axis trans-

formation matrix. The desired result is the first row of the

vector equation,

I - HW(QoIso) o LW(uo) J .6(V .0) ( B) A-E 0 0 -B 8  o o W 0 o &V a-5
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where '
Lw(a) = 0 1

[0 -cos a Oj

Equations C-4 and C-5 are easily evaluated using general compu-

ter routines that have been developed for this type of analysis. I
The third necessary vector equation gives the rela-

tionship between the body-axis state variables and the

perturbation wind-axis accelerations:

W( Co' 8o )IB+• og B V o

lay ý a HB(ao , o) _ -

'ýL a -
an]

0 0
(C-6) !

This equation requires both the nominal and perturbation body-

axis velocity derivatives, iBo and LB" XBo is part of the

nominal flight condition specification, while LvB consists of

three rows of the linear system differential equation. Intro-

ducing these three rows causes the accelerations to be func-

tions of the perturbation Euler angles, body-axis translational

and angular rates, and the perturbation control deflections.

Evaluation of Eq. C-6 is straightforward using available com-

puter subroutines.

The perturbation maneuvering command vector is related

to the perturbation states and controls by assembling the Tx

and Tu matrices as indicated by Table C-i.
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TABLE C-1

PERTURBATION MANEUVERING COMMAND VECTOR

COMMAND
VECTOR

ELEMENT TRANSFORMATION EQUATION

LV I st row of Eq. C-4

aa n 3 rd row of Eq. C-6n

La 3rd row of Eq. C-4

"_!6 2 nd row of Eq. C-4

ay 22nd row of Eq. C-6

APw Ist" row of Eq. C-5

C.4 STEADY-STATE ANALYSIS OF THE MANEUVERING COMMAND VECTOR

The maneuvering command vector contains six command

variables tc be accommodated by six aircraft controls. It

must be determined whether or not this command vector has

practical significance for the subject aircraft -- is the

system controllable, and does the aircraft possess sufficient

control power to execute all six commands? These questions

are easily answered using the theory contained in Appendix D.

The question of controllability can be answered by

f rank tests of two compound matrices:

rank[F, F 2 G, ... Fn-1G] W n (C-7)

rank i{n + Z (C-8)
LHX HU_
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Equation C-7 is the familiar definition of controllability

for a linear svstem, and Eq. C-8 determines whether or not I
the commands can be accommodated by the available controls

(see Eq. D-32). Using a typical flight condition (aO = 8 deg, I
00V°0 = 122 m/s (400 fps), h = 6,096 m (20,000 ft), qo = 1.25

deg/sec) and computing the transformation matrix [Hx, Hu] I
from Eq. C-6, both rank tests are satisfied, i.e., the

system is controllable if the controls are allowed tc have

unlimited movement.

As shown in Appendix D, steady-state values of the I
system are obtained by taking the inverse (or pseudoinverse)

of the composite matrix, I

F G -I l S12-

= SII11x jiu_ L S21 $ 22_

and using the inverse partitions as follows: I

Lx* - S12 .d* I

_* S $ 2 2 AZd*

Elements in S1 2 and S2 2 indicate how controls and states

change positions as the commands are varied. Large values

in S indicate that the controls may reach their limits

before the command is accommodated. Values for SI2 and S22
obtained from the rank test at the flight condition chosen

are shown in Eqs. C-9 and C-10. The units of the states and j
commands in Eq. C-9 remain the same for the rest of this sec-

tion. Control output is in degrees.
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F (,d .06 75 In6 -2.45 0.0 0.( 0.01

'P 0'• O..q•1 -0 0. 4186 1 I0.0 ft. 0 0.0 0.0
.q dk.' 0.0 U. 139 U. 0 0 . 0 I 0 . V.V fp,

0 I .. 141 (.-77 6.91 n 0.n 0.0 "an IP -;

I 0" fp' 0.0 0 n 0 0 ; 9R ..4 0.0 Ai d-"<

tr) dPj/sec- 0.0 0.0 n.0 0.0 -0.291 0. 142 AR de?

Ap deg/.pc 0.0 0.0n 0. 0 t?. --. 04 -0.0202 'pW dPg,/•r'
I' dgR,'Pr 0 0 0.0 0. 0 0.70 0 I n IP2 .. aj fp 2

(r_.q)

'ý'T [-0.00582 -1.23(104) _0.185 0.0 0.0 0.0 AV

116 0.167 -3.01(104) 2.29 0.0 0.0 0.0 Aan

nd -0.301 3.19(104) -5.47 0.0 0.0 0.0 Ac

n6.p 0.0 0.0 0.0 2.08 106 1.26 AS (C- )10

66de 0.0 0.0 0.0 -1.48 106 -0.296 6pW
S Ir 0'.0 0.0 0.0 1.16 105 -0.0106
L j L .J ayj

The pitch and roll Euler angles are included in F and G and,
as expected, exhibit very large values when either Lan or LPw

is commanded. The large (though finite) values for Le and t¢

also cause the controls to saturate. The Euler angles are

almost pure integrations (they couple into the other states

because of the gravity vector) and have meaningless steady-

state interpretations when Lan or APw is commanded. The

Euler angles are removed from F and G, and the composite

matrix is inverted again producing the steady-state matrices

sbown next.

Au' '0 990 0.0 -0.983 0.0 0 0 0.0 - V

6q 0.0 0.143 0.0 0.0 0.0 0.0 Aan
S/W 0.141 0.0 6.91 0.0 0 0 0.0 AQ

Av 0.0 0.0 0.0 6.9R 0.0 0.0 A8
br 0.0 0.0 0.0 0.0 0.141 0.142 ApW

L~p 0.0 0.0 0.0 0.0 0.990 -0.0201 Any
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"TA -f 0 ()02 N.0 A ,q 0 0U 0.0 (0.0 0 1' '

I ; I

A *1A ~ -6 00 0.0 0. ;10

0, 0 0 0.0 0.0 -34.8 -O.On3 -9-1 A P

Ad] 0. 0.0 0.0 7. -n. 25 23 [35 I
i

The steady-state values are meaningful but indicate that any

significant Lay command causes the lateral controls to reach I
their control limits. The lateral controls have poor lateral

acceleration command power, requiring La y to be eliminated as I
a command. Throttle is considered to be a fixed control, and

L-6 T and LV are removed from F and G. I

To continue the steady-state analysis, the steady-state

matrices are obtained using the pseudoinverse (Eq. D-9) of

the composite matrix, since the number of controls now exceed

the commands. The rank test given by Eq. C-8 is still satis- I
fied, producing I

Lu 42.15 85.4 0.0 0.0 6an

,q 0.143 0.0 0.0 0.0

6w 5.99 19.2 0.0 0.0 La

NV 0.0 0.0 6.98 0.0 L

0.r O.0 0.0 -0.052 0.142

Lp J 0.0 0.0 0.0074 0.99 Lpwj

a6 s 6.54 18.5 0.0 0.0 Aa n

66 mf -11.48 -33.5 0.0 0.0 Lc

6sp= 0.0 0.0 -0.313 -0.116 I
A

6 ds 0.0 0.0 -0,914 -0.258

L6 r 0.0 0.0 1.14 0.020 LPwj
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I A sideslip command produces reasonable settings of

three lateral-directional controls, and a roll rate command

primarily affects the lateral controls. In the loi:citudinal

states, problems still exist because of the large changes in

velocity and the large longitudinal control values needed to

accommodate both Lan and La commands. Using La as the moren n
desirable longitudinal command and eliminating La, the steady-

state values reduce to

F Lu] 2.67 0.0 0.0 1 a
L4q 0.143 0.0 0.0

LW - -2.88 0.0 0.0

L v 0.0 6.98 0.0

Lr 0.0 -0.052 0.142

Lp 0.0 0.0074 0.99 LLPWJ

L6s -2.41 0.0 0.0 Aan

L6 mf 4.66 0.0 0.0

L6sp 0.0 -0.313 -0.116 A8

L6ds 0.0 -0.914 -0.258

Lr 0.0 1..14 0.020

I The results are reasonable, and the controls and commands in

Eq. C-11 represent a controllable situation.I
In summary, this appendix has investigated command

vector sets ranging from direct pilot-to-control surface

linkage to aircraft state-oriented maneuvering command sets.

A lateral-directional control interc-nnect design procedure

which results in invariant aircraft steady-state response

to the pilot's stick and pedal deflections is developed. The
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pseudoinverse interconnect design is similar to conventional
ARI design philosophy, and a comparison demonstrates they

produce remarkably similar gain variations. I
Pilot-oriented command vector sets are discussed, and

the necessary mathematical transformations are derived. The

maneuvering command vector set is subjected to controllabiliiy

and steady-state tests at a typical flight condition, taking I
into account control power and command practicality. The

controls and state commands are subsequently reduced until

reasonable results are obtained. The resulting control vector

[u A15 LSmf A sp 16ds ' r ]

I
and command vector

are employed in the DPCAS designs in Chapter 4.

2
I
I
I

I
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APPENDIX D

DESIGN OF PROPORTIONAL-INTEGRAL CONTROLLERS
BY LINEAR-OPTIMAL CONTROL THEORY

Extending the results in Ref. 2, a continuous-time

linear-optimal regulator combined with forward-loop dynamic

compensation is applied to the design of a Departure-Prevention

Command Augmentation System (DPCAS). This appendix summarizes

DPCAS theory and design principles and expands on Type I con-

trol results reported in Refs. 29 and 22.

A command system attempts to stabilize a dynamical

system and drive the states and controls to desired nonzero

steady-state values. Steady-state analysis ot a dynamical
system plays a major role in DPCAS design and is discussed in

the following section. The rest of the appendix presents

Type 0 and Type 1 control laws. The Type 0 and Type 1 con-

trollers with control-rate-weighting are the DPCAS mechani-

zations used in this report.

t
D.1 STEADY-STATE ANALYSISI

A linear, time-invariant system, given by

LAx(t) - F Lx(t) + G Lu(t)

Swhere Ax(t) is an (nxl) state vector and ýu(t) is an (mxl)

control vector, is in steady state when the state rates,

Sx(t), are zero. In steady state, the states and controls

reach the equilibrium points Ax* and !au*, which must satisfy
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0 = F 3x* + G Au* (D-1)

If the (nyn) system matrix, F, is invertible, then the

equilibrium state values for fixed controls are: I

AX* = -F- 1 G Lu (D-2)

Consider the situation where combinations of states g
and controls must reach values specified by the (Zl) vector,

ýyd' which is a linear function of the states and controls:

Ld = H Ax* + H u H xH *1 (D-3)
x - u L xJL Au nJ

H and H are constant (Zxn) and (£xm) matrices, rcspectively.x u

Equation D--3 can be combined with Eq. D-1 to prodc~-e the

simultaneous set of equations,

FF G] 6 x* 1 F01
L H H Lu .I -I

If the number of desired values, £, and the number of controls, I
m, are equal, and if the composite matrix is invertible,

H1  Hu S L1s: 12 (D-4) I
then L"x* and Au* are uniquely given by

= SI 2 Ld (D-5)
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"_ = S22 (D-6)
22 Ld

Equation D-4 is the most general method for obtaining

the steady-state matrices,S 1 2 and S 2 2 ,when the commands and con-

trols are equal. If F is invertible, then the solution for

these matrices can be expressed directly. Substituting for

Ix* in Eq. D-3 using Eq. D-2 and solving for -u* leads to

u + Hu ) d (D-7)

With this result, Eq. D-2 can be rewritten

"ýx* = -F-1 G\ F(-IFG +H u) d (D-8)

Comparing Eqs. D-5 and D-6 with Eqs. D-7 and D-8 we obtain,

S12 F-F-1G(-H xF-G + Hu

I
Difficulty arises when the composite matrix in

Eq. D-4 can not be inverted. There are two reasons why the

composite matrix may not be invertiole. The first reason is

J that it is singular, i.e., that it contains linearly dependent

(or null) rows or columns. The second possible reason is that

the composite matrix is not square. This is always the case

when the dimensions of býd and Au are not equal. All of these

cases can arise in the aircraft control problem and are dis-

cussed below.

Consider first the case of the singular composite

matrix. This coull occur, for example, if 'Ld contains body-

axis yaw rate, r d, and the aircraft's dynamic model includes
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the yaw Euler angle, A'. In this case, F and H contain the
same zero column (since A% has no direct dynamic effect), and

the composite matrix is singular. The physical meaning of

this result is that the yaw angle is continually changing as

the aircraft turns and does not reach a steady-state constant

value. i.e., elements in S1 2 are infinite. In Chapter 4, Aý,

is eliminated from the state vector to avoid a singular com-

posite matrix (,S• and !A can introduce singularity for certain g
non-straight-and-level flight conditions and also are elimi-

nated from 'x; see Eq. C-9). I

The second case can occur when there are more con-

trols than commands, i.e., the steady-state problem is under- I
constrained. There are many steady-state control positions.

iu*, (actually, an infinite number) which correspond to the

desired final v'a]ue, Av In practice, the deflection limits

on control effector motions restrict the allowable Au*, and

this information can be put to good use in control system

design. The DPCAS is an underconstrained system, because

five control effectors are used to achieve desired steady-

state values of three commands. g
There are at least three techniques for defining

.1u* in the underconstrained case. The first approach is to I
make commands to the "extra" control effectors linear combi-

nations of the commands to the primary control effectors, 9
essentially making i and m equal. For example, spoiler com-

mands can be proportional to aileron (o- differential stabi-

lator) commands , and flap commands can be key: d to elevator

(or symmetric stabilator) commands:

6 sp =1k6 a

6 mf k f2 e
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k1 and k2 can be specified by requiring that the two related

controls reach their respective deflection limits at the same

time. (The scale factors can vary with flight condition,

I blending controls in and out, as appropriate.)

I .The second method for handling the underconstrained

case is to increase the number of desired values until k and

f m are eqval. For example, some control deflections may have

desired values (e.g., flap setting during landing approach);

g then Eq. D-3 can be written as

i LLJu*

Using this technique, the (Zxl) vector, u* 1 accommodates

LYdl and compensates for Lu* Lu* can be placed at any

position desired.

I The tbird technique, and the one used in the DPCAS

design, makes use of the pseudoinverse (Ref. 24) to invert a

I non-square matrix. In the underconstrained case, the pseudo-

inverse matrix is defined as

[F G y$ A [F G]-T F[ G] [H G IH Hx H u_ 1 Hx H u H x 1Iu _ H x H u

I
Steady-state values of Lx and Lu are computed as

I L F2-
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where the pseudoinverse composite matrix is of dimension I
(n+m) x (n+?.). As in Eq. D-4, there are four partitions in

the pseudoinverse composite matrix:

[F :]_ [S11  S 12 ( -0S S
L H u - 21 221

The physical interpretation is that the mairices S12 and S2 2  I
provide a least-squares solution of minimum !ength for Lu*,

given ivd. This property of the pseudoinverse is appealing

because it allows tvd to be accommodated using minimum changes

in the control positions. I

Steady-state analysis indicates the trim state of I
the aircraft. For nonlinear dynamic models, the trim condi-

tion is defined by functional minimization, as in Ref. 1.

For linear dynamic models, the trim condition is specified

by Eq. D-9. If the linear system actually is an approxima-

tion to a nonlinear system (always the case for aircraft

models), S 1 2 and $22 represent the sensitivity of the non-

linear trim condition to small perturbations in the desired 1
states and controls. Consider a system obtained by linear-

izing the aircraft's nonlinear dynamic model about some

nominal trajectory. The desired command value is a nonlinear

function of the nominal states and controls,

= h (x (D-11)

as shown in Appendix C. For changes in Xdo' represented as

Lyd, Eq. D-11 becomes

Yd " -d + ~Ay*d i h(x*,U*) 4 H Ax* + Hu Au*

I
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and the new trim values are approximately given by

X" X- + Ax* = X* + S 2 LVd (D-12)- -o - 0 12o --

u* + _ u* = U* + S2 2 d (D-13)

A graphical depiction of Eqs. D-12 and D-13 is shown in
Fig. D-1. Combining trim and linear steady-state values in

a control law is shown in Section D.5.

R-2S99 1

Idyd Yd LINEAR STEADY.STATE APPROXIMATION.xlA~ Yd Zd h(10, yO) + HxA%" .I, S Y

w NEW POSITION, h(x,y) a Yd
, POINT OF LINEARIZATION, h~x 0, u0 ) a Yd0

I iACTUAL NONLINEAR TRAJECTORY

TIME. t

Figure D-1 Linear Projection of Steady-State Values

Steady-state analysis shows how to instantaneously

change the controls to achieve the desired command. The next

task is to maneuver from one steady-state condition to another

I using a smooth, stable, state trajectory and modest control

motions. The maneuvering can be accomplished by combining

steady-state analysis with optimal control design techniques

to develop a control law which drives the command error to

zero as time increases:
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iim(ýýV(t) - •d) = 0

where -%(t) is the system output,

Ly(t) = H Ax(t) + HuaU(t)

The two control structures used in this report to drive the

command error to zero -- the Type 0 DPCAS and the Type 1 5
DPCAS -- are derived in the following sections.

I
D.2 TYPE 0 DPCAS WITH CONTROL-RATE WEIGHTING

A Type 0 controller is a feedback regulator which

asymptotically stabilizes a system and drives the command

error to zero without using pure integral compensation. A

multi-input/multi-output Type 0 controller which implicitly

limits commanded control rates can be designed using linear-

optimal control theory, as in Ref. 30. The Type 0 DPCAS

presented in Chapter 4 is designed using this approach, and

its derivation is summarized below. g

A linear-optimal regulator for the system

A'x() Fax(t) + GAu(t) (D-14)

takes the form

Au(t) = -KAx(t) (D-15)

where the gain matrix, K, minimizes the quadratic cost func-

t io n f

- -.XTuJLM RJTLR -J d11 (D- 16) 1
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The state-weighting matrix, Q, is required to be non-negative

definite and symmetric, while the control-weighting matrix, R,

must be positive definite and symmetric. Th e cross-weighting

matrix, M, arises when limitations on state rates are to be

considered in the cost function. The design parameters for

the linear-optimal regulator are contained in Q, R, and M.

f The gain matrix in Eq. D-15 is defined by

$ K = R 1 (GTP ÷ M+ )

where P is a symmetric, positive semi-definite matrix and

is the steady-state solution of a matrix Riccati equation:

=PFFT P Q + (PG+M)R-
1 (PG+M)T

Given the initial conditions on the state, P has the interesting

property that value of the minimum cost is given by

J 6XT (O)P•x(O) (D-17)

The linear-optimal regulator can be modified for

non-zero command regulation by shifting the coordinates of

the system to the desired steady-state values. Using the

steady-state variables defined in Eqs. D-5 and D-6, the

I shifted variables are

( A(t) = L2E(t) - Ax*

Modifying the system dynamics to include coordinate shifting

and the weighting of Au(t) in the quadratic cost functional,

Eq. D-12 becomes
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(t F rG ( t 0
"" 0 L ] L + Ii t J

I
The (mxl) vector, Lý_(t) is the new control variable, and it g
is equivalent to the control rate, _`(t).

Weighting the shifted variables and the control rate I
leads to the cost function I

f { [ T T(t) A T(t) I AT(t)Rt'(t)}dt I
0 N Q2LýIi(t)

(D-18)

Using the results for the linear-optimal regulator, the con-

trol law which minimizes the cost function is

At•(t) = -K 1 A.R(t) - K2 6ii(t) (D-19) j
This control law is similar to the basic optimal regulator,

except that control rate is commanded, K2 Au introduces a low-

pass filtering effect, and the feedback law operates on the

shifted variables. The control gains are computed from the

Riccati equation solution by

EKI K2]J - [0 1) ij [ 12]
I

where the algebraic Riccati equation is

,, ,12 ]G]. [F I, ] P,, 1 ,:12].[Q) ] [, ,P2 ' (11] :lr,, ,1.223"1 ' 21 J[ "22 n 0 r L" n , "1 '2% "2, MTJL Q- JL = 2 " 2 2 P22
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The control law given by Eq. D-19 can be expressed

in terms of the unshifted variables by using Eqs. D-5 and

D-6:

Lu(t) = -K1 Lx(t) - K2 Lu(t) + L L~d

where

SL = K1 S12 + K2S22

The control law is implemented by integrating Lu(t)

to provide a signal which is compatible with the linear

( dynamic system, as shown in Fig. 45. Thus, the control

command takes the form

t

A ;U(t) - Au(O) + ft F-KIAx() - K2.£(r)÷LAd(7)1d -

which can be rewritten as

I Au(t) e K2tu(O) + f e-KK1 tT()) + l'ý+LAd(T) dT

j The Type 0 control law follows the command for the

linear system given by Eq. D-14 as long as S 1 2 and $22 faith-

j fully represent steady-state conditions for the system matrices
(F and G) and there are no biases in the control loop. The

initial value of control, Au(O), still must be found; Section

D-4 illustrates how an optimal value can be determined.

I If it is desirable to track the command, Ald, with

zero steady-state error, allowing for variations in F and G

as well as biases, then a Type 1 controller may be preferable.

There are at least two procedures for obtaining a Type 1

control law using linear optimal control theory -- integrator-
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state weighting (Refs. 31 and 32) or transformation of a con-

trol-rate weighting structure; the latter is used in the

Type 1 DPCAS design and is described below. I
D.3 A TYPE 1 DPCAS WITH CONTROL-RATE WEIGHTING

This section presents the derivation of the Type 1

DPCAS. The Type 1 linear-optimal controller with control-rate

weighting has been derived in Ref. 29 for the case in which

the controls and commands are equal. In this section, we

present a derivation which does not require equal commands

and controls and illustrate how the proper choice of Lu(O) I
eliminates the possibility of a feedforward element in the

Type 1 DPCAS structure. I

When m and ;Y are equal, the derivation proceeds as

in Section D.2 up to Eq. D-19, which presents the Type 0

controller with control-rate commands using the shifted

variables. Our objective is to convert this result to a

Type 1 control law with shifted variables, i.e., one without

the "low-pass" feedback of 6u. The desired form of the

control law is,

al(t) = -C I (t) - C2 6z(t) (D-21)

1Lý(t) = fH x 114R) + H u~ tdT (D-22)

The variable, tJ(t), is the shifted integrator state that

provides the Type 1 property. Comparing Eq. D-21 with Eq. D-19,

we have m(n+i) unknowns in C1 and C2 and m(n+m) knowns in

K1 and K2 . Since t and m are equal, we have as many knowns

as unknowns,and the problem should have a unique solution.
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The derivation proceeds by performing muthematical

and algebraic operations on Eq. D-21 until we obtain a form

similar to the Type 0 DPCAS. Taking the derivatives of

tEqs. D-21 and D-22. we have,

Aiiu(t) -C la(t) - C2 Aq(t) (D-23)

H •Z(t) x x(t) + Hu Ai(t) (D-24)

The shifted system dynamics,

t= FL(t) + GAii(t)

and integrator state dynamics (Eq. D-25) are substituted into

Eq. D-23, producing,

A t) - _C[,i~ 6ý t C+H~~

SThe components are regrouped as follows:

1 •] - HL x Hu L a(t)

Comparing Eq. D-25 with the shifted Type 0 DPCAS, Eq. D-19,

we observe that they are equivalent if the following relation-

ship holds between the two gain sets:F GJ
[1 C2] [ ] =[ 1 K2](-6

I The composite matrix in Eq. D-26 is the one used in steady-

state analysis (Eq. D-4); when m and £ are equal, the composite

I
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matrix is invertible. Post-multiplying both sides of Eq. D-26

by the composite matrix inverse produces,

S-1
[C C] [K K] [F ] -l (D-27)I

I
Given the Type 0 DPCAS gains from the Riccati equation solution

and the composite matrix, the Type 1 DPCAS gains can be

expre*"ed as

C1 K IS11 + K2S21

C 2 K IS12 + K2S22

Substituting C1 and C2 into Eq. D-22 produces the Type 1

DPCAS with control-rate restraint. Rewriting the Type I

DPCAS in terms of the original coordinates yields

Lu(t) = -C 1 AX(t) - C2 ((t) - )+ (C 1  + S22)d

C(t) = Av(t) - Av

where the equilibrium value of the integrator state,Ar I
remains to be specified. I

The steady-state value of the Jntegrator state

specifies the required value of Au(O). To find Lý*, we

assume that the system is in steady state prior to t=0 for

some Lxd(-). At t=0, AYd changes instantaneously and remains

constant thereafter:

I
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A I

ýUO_ -C Lx(O-)-C !,UOh( 1+ 12+

"I u(O+)h -C I XO+)C2&O) CIS12+ 2L-(+)C2i(

(D-28)

The values for Ax and Aý cannot change in going from 0- to 0,

I Lx(0+) Ax(0 ) Sl 2 LXd(0-)

I AL(O+) L r(O-) = L*(0

but their steady-state values do change:

I Ax*(O- L X*(1+ 0 SI 2 6Vd(O+)

g Au*(O- L)u*(0+) S2 2Axd(O )

The question to be answered is whether or not .Au(0) can change
instantaneously at t-0.!

The answer is "no," because if Lu(O) changes instan-
taneously, then Au(O) is a delta function. The cost function

(Eq. D-18) contains the integral of the square of Au, i.e.,
(in this case) the integral of a delta function-squared.
Although the integral of a delta function is unity, the inte-
gral of a delta function-squared is infinite (Ref. 33); there-
fore, an instantaneous change in Lu is not admissible as an
optimizing control. Since Au(O ) cannot be different from

u(0 ), the value of AL* must be chosen to enforce this con-
straint on Au, i.e., A\* must satisfy,

I
I
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I
L•*(O2 ) = CS12 + $22] L'd() I

Z.*(O ) = -C&1 [C] 1 2 + S22 ]'vd(O) (D-29)L I
for any change in L'd. Substituting Eq. D-29 into Eq. D-28

demonstrates the Type 1 DPC..S with control-rate restraint

does not have a feedforward of the command and takes the

following form: I
.u(t) = -C•(t) - C2  LaV(-) - Ply d - C2 (0)

I

A block diagram of the control law is shown in Fig. 46. The

low-pass filtering effect of the gain K2 , which destroys the I
integrating property in the Type 0 DPCAS, is eliminated when

the Type 1 structure is used.

It can be shown that ýu(0) should be the same for j
the Type 0 and Type 1 structures; hence u(O+ ) cannot be

different than Au(O ) in either case. Another way of inter-

preting this result is that when the control law is initialized,

the starting value of the control command must be equal to the

current positions of the control actuators, independent of what

the initial commanded value may be. Then, the control law will

transfer the system from the current steady-state condition I
to the next desired steady-state condition in an optimal

fashion. I

For the case in which there are fewer commands than

controls, the Type 1 derivation must be altered, beginning at

Eq. D-26. Equation D-26 cannot be written because the number

of unknowns in C and C2 is less than the number of knowns in

I
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K I and K The standard approach for obtaining reasonable

values in this underconstrained case is to use the pseudo-

inverse:

1 2EI C 2j [Ki K2]2[

IThe gains C and C2 have the best possible alignment in a

least squares sense. For the pseudoinverse to exist, we

I require that,

Srank r F n (D-30)

IL H

j which is the same controllability condition derived in Refs.

34 and 35 but is more general than results in Ref. 31, which

I require Hu to be zero.

To determine the Type 1 DPCAS for £ less than m,
C and C2 are calculated using the Riccati equation solution,

K1 and K2 , and the composite matrix pseudoinverse. The

steady-state value for Ai*(O ) in Eq. D-29 is solved using

the pseudoinverse of C2 . Eigenvalue and eigenvector analysis

(Tables 15 to 18) demonstrate that the time history differ-

ences between the Type 1 and Type 0 DPCAS for R less than m

I are small.

D.5 IMPLEMENTATION OF THE DPCAS IN THE AIRCRAFT

i Care must be exercised in controlling an actual air-

craft, whose dynamics are described by a nonlinear model,
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with control laws that are based upon a linear model of the

aircraft. The subject of how big the "small perturbations" 1
(which are assumed in control systtem development) are allowed

to become always is a potential problem. A related problem

is accounting for the nominal states and controls which have

been assumed in the control design process. The steady-state

analysis presented in Section D.l introduces this topic in

the context of trimming the linear d,rnamic model, but trimming

the nonlinear model is the problem ;hich must be solved in i
actual implementation. I

The problem is to define values of x* and u* which

correspond to the command, vd. There is a nonlinear relation- 1
ship of the form I

Yd ')(x*,U*) (D-31)

which can be expanded (using Taylor series) to become I

i* (Xro ,Uo) u* H Lx* + H Au*-d 4' ýv -- '1 0--X

It is assumed that the nomi.nal (nonlinekr) and perturbai.:Or I
('.inear) parts of the ecqration can be satibfied independently,
giving 1

= h(X ' -U'o) I

and

Av d Hx*U + .I{ u

T'he former must be "inve-ted" (loocly spt'aking) to provide

an operation of the form

I
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0] = Li 1 (Ldo) (D-32)

while the latter can be expressed asI

F12]Ay

Lu I =L5S22J

Then the total values of the states and controls which

correspond to the total command, [d' can be approximated as

[c]0 + (D-33)
I

I
Conceptually, vdo represents the pilot's "trim button" (or

5 thumbwheel) output, and x* and u* are derived as nonlinear

functions of the pilot's input. These functions can be written

I explicitly or they can be realized as curves fitted to flight

condition. The values of S12 and S22 essentially appear as

gain matrices, which are either scheduled along with the

other gains or are derived from the partial derivatives of

h(x,u).

The total-value Type 0 control law can be expressed

as

U (t) u1 + ft K ()-x*()] - K2 [u(T u*(T)-( di

239



i
i

where x*(i) and u*(T) are defined either by Eq. D-32 or D-33,

and the integrator initial condition, uI' is set to current 1
actuator positions (when this DPCAS control mode is switched
"on") to eliminate the possibility of mode-switching transients.

The total-value Type 0 DPCAS is illustrated by Fig. D-2,

depicting the proper adjustment of trim settings provided by

u* and x* 0 the command "shaping" provided by S 1 2, and the

Ifeedforward of control set point provided by S 2 2 .

Similarly, the total-value Type 1 control law is

described by I
u(t) = -C X(t) - C2 ftV(T) - d(T)d - C2  i

as shown in Fig. D-3. The integrator initial condition, •

is chosen so that the initial control command, u(O), is the
same as the actuator's starting position to eliminate mode

switching transients. The Type 1 implementation is seen to

be significantly different from the Type 0 version, in that

there is no explicit shaping of pilot commands prior to the

feedback summing point. Furthermore, it is desirable to

form the command error in command coordinates, implying

that the aircraft measurements should be processed by the

nonlinear relationship between x, u, and y (Eq. D--31). (This
is not a particular problem for the command vector -- an, PW,

and B -- used here, as an can be measured directly and the

computation of p. and i from p, r, w, and TAS is straight-

forward and shown in Appendix C.) i

I
I
I
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I Figure D-2 Total±-Value Type 0 DPCAS Structure
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Figure D-3 Total-Value Type 0 DPCAS Structure
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