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OBJECTIVE

Since nonradiative processes affect such critical parameters in solid state laser operations
as linewidth of optical transitions and energy level exchange, an understanding of the coupling
between radiative and nonradiative processes is important. This technical report investigates
one aspect of this interaction by developing an internal phonon theory for the thermal depen-
dence of linewidth in Nd*3 YAG.

RESULTS

A simple, compact phonon mode theory predicting the shape of linewidth as a function
of temperature has been developed. Only normalization to room temperature (determining a
single multiplicative parameter) and determination of a low-temperature intercept (dependent
upon sample quality) are necessary. The quality of the fit to the experiment is generally good
and within the experimental accuracy. The sources of error (especially at elevated temperatures)
are discussed and are consistent with that predicted, ie, second order anharmonic effects are
expected to degrade the agreement at high temperatures since the phonon theory employed is
completely first order. Also, a breakdown of one of the approximations does occur due to the
simplification made for the effective phonon spectra, wherein one set of energy levels exhibits
an extraordinarily large direct phonon coefficient. This is not considered critical as inclusion
of the neglected mechanism achieved very good agreement. Possible limits to the validity of the
approximations made were indicated, and the trade-off of simplicity, predictivity, and consis-
tency is significant.

RECOMMENDATIONS

Expand this work to include other trivalent rare earths in other crystalline hosts.
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INTRODUCTION

The physics of solid-state laser materials is well understood. Both time-independent
and time-dependent problems, such as line positions and rate equations, have been investigated
thoroughly. Interactions of the crystal lattice with an impurity ion is also fairly well under-
stood, although not nearly as well as atomic phenomena. What is investigated much less freq-
uently is the quantum electronics of the nonradiative processes, especially as it applies to the
dynamic operation of solid-state lasers. Since nonradiative processes affect such critical para-
meters as linewidth and energy-level exchange, an understanding of the coupling between radia-
tive and nonradiative processes is very important. The purpose of this report will be to inves-
tigate one aspect of this interaction by developing an internal dependence of linewidth of
trivalent Neodymium (Nd+3) in Yttrium Aluminum Garnet (YAG).

The system to be studied is simply an example of the general system of a rare earth 1on
replacing a constituent ion in a perfect crystal (Nd"'3 replacing Y*3in YAG). What is inves-
tigated about this system is the interaction between the impurity ion and the rest of the lattice
and, in particular, how the radiative transitions are affected by nonradiative processes. The
formulation of the coupling between the active ion and the surrounding lattice will determine
how the lattice (ie, phonons) affects the rare earth ion. It is this interaction that broadens
energy levels and spectrally broadens optical transitions. When the temperature dependence
for the phonon occupation is included, the thermal dependence of linewidth may be derived

In order to find the dominant broadening mechanism as well as the functional form of
these interactions, the spectrum of those phonons affecting the active ion must be determined
In previous treatments, best illustrated by Yen, Scott and Schawlow'+?:34_the Debye approxi-
mation was used, which considers only acoustic modes. This “external™ mode theory i1s a poor
approximation to what actually occurs, since fattice vibrations within the unit cells are ignored
The theory presented here departs from the previous treatments by considering only those
optical phonons which couple strongly to the impurity ion: ie, those internal phonons result-
ing from nearest-neighbor interactions. This leads to a theory much different in intent as well
as in functional form. The objective of the Debye-type theories is not to predict the shape of
the linewidth-vs-temperature curve, nor even to formulate analytic expressions for the broad-
ening mechanisms vs temperature, but rather to check the validity of the proposed broadening
mechanisms themselves. The intent was never the formulation of a simple theory able to
predict the shape of the linewidth-vs-temperature curves in trivalent, rare<arth doped crystals.
This is the intent of this technical report: establish the internal mode formalism necessary to
model the interactions: determine an approximation for the “effective™ phonon spectra:
using this approximation, derive compact expressions tor the broadening mechanisms that
do not require numerical integration nor the determination of nonmultiplicative parameters:
employ approximations to simplity the formalisin and determine the dominant broadening
mechanism: and. finally. to attempt to predict the shape of the linewidth-vs-temperature
curves for the transitions on which data arc available. The comparison to experimental results
will be found to be within experimental accuracy of the data, and sources of error are to be
examined.

The approach to the problem begins by first reviewing the energy levels and wave
functions of rare-carth ions in crystalline hosts. This establishes notation and defines the

"W Smith and P Sorokin. The Laser. McGraw-Hill Book Company . 1966
WM Yen, WC Scott, and AC Schawlow. Physical Review, 126, A271. (964
'DE McCumber and MD Sturge . Journal of Applied Physics, 36, 1682, 1963
* A Kiel. Physical Review . 126, 1292, 1962
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wave functions which will be used later in nonradiative transition-rate calculations. The
allowed radiative transitions are then briefly considered, primarily to introduce radiative
selection rules which will be used later to determine the allowed lattice-assisted vibronic trans-
itions (which will determine not only the spectral range but also the validity of internal-mode
interactions). The rigorous theory of phonons within a complicated crystal is then developed
group-theoretically, analyzing the entire vibrational system. The coupling between the lattice
and the active ion is subsequently considered with the single-phonon process investigated
rigorously. A nearest-neighbor approximation is then presented and the internal-mode
formalism is developed. ilcre the parameters which determine the internal phonon interac-
tions with the rare-earth ion are explicitly formulated and the number of interacting modes
is predicted. 1t is the prediction of the number of interacting modes which will make the
internal-mode approximation valid (via the vibronic spectra).

After completing the formal derivation of the direct phonon transition rate, the two-
phonon Raman transition rate is derived and the expression is simplified where possible. The
internal mode appreximation is then considered in detail and the vibronic transition rate is
derived to determine the range of interacting phonons in the spectrum. A uniform phonon
approximation for the “effective™ modes is then proposed which will determine not only
the range of interacting modes but also the dommant broadening mechanism. Before apply-
ing this approximation to the broadening mechanisms, the Debye linewidth theory as pre-
sented by Yen, et al, is reviewed.? This is done primarily to place the proposed theory in
proper perspective. Also. this furnishes a theoretical and historical base for the effective-mode
theory to be presented. Derivation of the equations which will determine the functional form
of the thermal variation of linewidth is now pursued. Here the effects of all coupled modes

are summed and analvtic expressions are derived for each of the broadening mechanisms. Also.

by employing the effective phonon spectrum, a dominant broadening mechanism can now be
predicted and the linewidth expressions greatly simplified. With the formalism developed. the
comparison of the predicted linewidth shape with the experimental data is investigated. Only
normalization to room temperature (determining a single multiplicative parameter) and
determination of a 'ow temperature intercept (dependent on sample quality) are necessary.
The quality of the fit to the experiment is generally good and within the experimental
accuracy. The sources of error (especially at elevated temperatures) are discussed and are
consistent with those predicted. ie. second-order anharmonic effects are expected to

degrade the agreement at high temperatures since the phonon theory employed is com-
pletely first order. Also. a breakdown of one of the approximations does occur due to the
simplification made for the effective phonon spectra wherein one set of energy levels
exhibits an extraordinarily large direct phonon coefficient. This is not considered critical

as inclusion of the neglected mechanism achieved very good agreement. Possible limits to

the validity to the approximations made were indicated. and the trade-off of simplicity.
predictivity, and consistency is significant.

SUMMARY OF BROADENING MECHANISMS

It one is to formulate the effects of the phonon interactions and derive the phonon-
photon equations, one must first understand non-radiative interactions. This will lead to an
understanding of the thermal dependence of linewidth. Let us now briefly review some of
the physics involved. The width of a transition (linewidth) is affected by four mechanisms,
cach having a different temperature dependence.® First is the mechanism of random micro-
scopic strain within the host. Since the statistical variation in a crystal field on the impurity




ton results in a variation ot the Stark splitting, we expect a Gaussian broadened line that
should be temperature independent.?*

The widths of radiative transitions (although ions vibrate rapidly) exhibit no Doppler
broadening because the amplitude of vibration is so small If ions have very short lifetimes in
a particular state, then Heisenberg broadening will give rise to homogeneous Lorentzian lines
having widths proportional to the total transition rates of cach level. Consider the typical
energy level scheme encountered with a rare-earth ion in a crystal (figure 1). Here we find
groups of crystal field split Stark levels for each spin-orbit multiplet which are characterized
by 2S+1 Lj (energy levels in rare earths will be examined later). Consider the state [¥;>. The
total transition rate, W, both radiative and nonradiative, upward or downward to Stark
levels within the J manifold or to other J manitolds, determines the homogeneous linewidth
(tull width, halt maximum)

Wlot

Ay = ——.

Since the radiative litetimes are typically on the order of 102 to 1076 second. we can be
sure that this is negligible with regard to the observed linewidths. An understanding of the
mechanisms of nonradiative energy level interactions will thus lead to the thermal variation
of linewidth and to an understanding of the energy level exchange during the operation of
a laser.
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Figure 1. A typical caergy tevel diagram for a rare<carth impurity 1on in
acrystal. showing both radiative and nonradiative transitions




If there are phonons in the lattice resonant with the spacing of two ionic energy
levels, then the lattice may couple with the ionic states and a direct, single phonon, non-
radiation transition may occur either by phonon absorption or emission (figure 2). We will
show later that Wd and Wu (the downward and upward direct transition rates) behave like:

wga [n(w) + 11D (w)
(1)
WEOK n(w) D' (w),

where n(w) is the occupation number for phonons of frequency w, the thermal occupation
number is

n(w) = [exp(hw/kT) - l]‘l,

and D{(w) is the effective density of states for the ion-lattice system. The energy level spacing
of the system of Stark levels is typically 101 to 103 cm=! which results in transition rates
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Figure 2. Hlustrations of the phonon broadening mechanisms involving nonradiative transitions.




from h,'/i> of about 10=11 second which results in levels ~3 em™! wide. Theretore. if the
transition rates are summed for interactions with all the other levels, the total transition rate
from Il,l/i> can be determined and, hence, the width of \l,'/i>‘ If the same is done for [y~
then the width of the optical transition from > to [Y,> may be determined. The phonon
dependence, and therefore the temperature dependence. of that linewidth 1s then known

If the level spacing is such that hw > hwpmax. Where w18 the largest trequency
phonon supported by the lattice, then a higher-order process must be invoked. one which
involves the emission and absorption of many phonons. In general. the multiphonon relax-
ation rate goes down as the order of the process, so in the energy conservation equation
A X p = Eg/h, we try to minimize p and still have A contained in the phonon spectrum
where p is the number of phonons (order of the process), E, is the energy gap. and A is the
phonon frequency (figure 2). Thus, we would expect a sim;;lc expression of the form

wl‘l“’ « [(n(A)+ 1)D(A)|P

2)

Wﬁlp « [n(A)D'(A)]P  (5,6,7.8)

for the downward and upward multi phonon transition rates. The probability of a more com-
plicated process requiring phonons of many frequencies could also occur because of the
shape of D'(w), selection rules, and so on. Since WP is a function of the occupation number
n for phonons A, it has a temperature dependence and is in contradiction to the article by
Yen.? Approximate temperature independence is achieved only when n is small compared
to 1 in equation (2). Because A is large. n is small at all but the highest temperatures. It is
important to note that it is this process which empties the thermal level to the ground

state in Nd*3 YAG. The emission of two ~600-cm=! phoenons account for the 0.5-us decay
time from the thermal state. Therefore, while the multiphonon process contributes little to
the linewidth broadening. it is very important in the exchange of energy levels (especially

the thermal level depopulation).

TI remaining broadening mechanism involves a second-order process which pre-
dominates at higher temperatures, the Raman-like scatteric g of phonons from impurity ions
(eg. a Ndt3 jon replacing the Y*3 ion in YAG). This can be thought of as an absorption ol
one phonon and the emission of another with the difference frequency corresponding to
the energy gap of the transition.” For a decay process we find the transition rate between
levels separated by AE (w> - w = AL/h) is just

R
\\(li @ Ditwpntw ) X D'tws)ntwy) + 11, (3)

where @ and @y are the frequencies of the phonons (figure 2). We can see that, while at
low temperatures n = 0 and so does W™ at high-temperatures wR can become the predom-
inant effect: the n’s increase and many more phonons can contribute since all that i< required

WD Portlow and HW Moos. Physical Review, 157,252, 1967

“CA Riseberg, WB Handrud . and HW Moos, Physical Review ., 139,202, 1967

"CA Riseberg and HW Moos, Physical Review Letters, 19, 1423, 1967

*CA Ri cherg, HW Moos. and WD Portlow. Journal of Quantum Electronics. QE<4, 609, 1968




is that wy - w; = AE/h. Therefore, the total transition rate is summed for all interacting
phonons in the spectrum.

Even from this brief description, the importance of knowing the detailed density of
states, D'(w), is obvious. For example, we know that the phonons which cause Raman-like
relaxations are those where the difference between two peaks in D '(w) corresponds to the
transition energy. D(w) is also important in determining the order of the multiphonon pro-
cess, and so on. The use of the Debye acoustic-phonon model is common in deriving line-
width expressions but is actually a very poor approximation to what occurs. In the follow-
ing sections a more correct expression will be used which limits the phonon spectrum to
only those optical phonons which couple strongly to the impurity ion. This results in a
reduction in the importance of the direct process and simplifies the Raman expression.
Finally, a linewidth expression is derived which fits the experimental results to within a few
per cent, within the stated experimental accuracy.

TRIVALENT RARE EARTHS IN CRYSTALLINE HOSTS
ENERGY LEVELS AND WAVE FUNCTIONS

The treatment of a rare-earth impurity ion located in a crystalline host is very com-
plicated. In order to begin to understand the quantum electronics of selection rules, phonon
transitions, and ion-lattice effects in general, a good understanding of ionic-energy levels
and wave functions is required. This section reviews the necessary physics and establishes
notation to be used later. The system of a Nd*3 ion located in a Y3 site in YAG is used 4as
an example: the formalism necessary to handle general ion-host combinations is similar.

Atomic Nd is number 60 in the periodic table and has a configuration of XENON
+ (4% (5d0)0 (6S)2. The normal oxidation state of rare earths is the trivalent state which
results in a ground-state configuration for Nd*3 of XENON + (41)3 (5d)0. This is not the
only possible configuration but merely the lowest-energy one. Other possible configurations
are (412 (5d)!, (412 (68)!. both having even parity. The importance of higher-energy
configurations becomes clearer if parity-forbidden electric-dipole transitions are investigated.

Yttrium Aluminum Garnet has a chemical composition Y3 Aly (Al Og4)3 which is
composed of body-centered cubic cells. The arrangement of the 80 ions which compose the
unit cell is described by the space group symmetry. The local field (or that which is seen
by the Nd*3 ion) is described by the point group symmetry: in this case, D5 (or 222 in
international notation). D> symmetry is that of three mutually perpendicular rotations of
7 (note figure 3). Notice that the crystal does not have inversion symmetry and. therefore,
parity will not be a good quantum number. When this ion-host combination is used as a
laser material, the Nd*3 jons are substituted into Y*3 sites at approximately one atomic
per cent. Larger doping levels reduce the validity of a single-impurity ion approximation in
the lattice (physically we get ion-ion effects which have macroscopic effects such as reducing
the radiative quantum efficiency and inducing crystal strain).

The Hamiltonian of the Nd*3 ion in the crystalline site may be written as
N pl N N
! I)_ ! 7 ‘: .:
= 5 A F = § = (4)
k=1 ™ k= IR i o
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Figure 3. Character table of the irreducible representations for the crystal double group
D> and the stereographic projection of the D5 point group.
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attraction, the third the electron-electron coulomb repulsion, the fourth the spin-orbit
interaction, and the last the static effect of the lattice. Here, we also have Ty as the
position of the kth electron, £(r)) as the spin-orbit coefficient, and N = 57, Z = 60. Since
direct determination of the cigenvalues of H is impossible . viiccessive applications of first-
order degenerate perturbation theory is used. In very simple terms, we divide up the ionic
parts of H as follows:

|
\
\
1
|
\
The first term is the kinetic energy of the N electrons, the second the electron-nuclear I
1
.
1

N

Zans)
HO = S L v+ v
k2 2m
N N L‘: N /\:
Hog=- ) Vi) + > — - ¥
k=1 =1 i =Tl =y Tk
N -
Ho = 2. i) - & () |
= |




H(©) (in the central field approximation) determines the electronic configuration, (4t')3. and
thc starting wave functions. This configuration is 364-fold degenerate with respect to mg and

The electrostatic perturbation H, has the effect of adding the individual ¢’s and s’s and

es
rcsultx in wave functions described as |§ L S ML MS > with L =
N ] N
> . S= > 5§, and £ designating all the other quantum numbers of the
k=1 k=1

configuration such as the n and ¢ designation of (4f). Formally, the procedure is to find a
vector space of functions composed of linear combinations of the old symmetrized wave
functions [n, ¢, mQa msa > Imy 4, me mab >« -« which diagonalize H,. Thus, H.g
splits the 364 degenerate levels into different levels depending upon L and S (the terms).
Each term is still (2L + 1) (2S + 1) fold-degenerate with respect to My and Mg.

The application of the spin-orbit perturbation Hg results in the vector addition of

L and S where formally we say that the terms are diagonalized in the space [§ L SJ Mj >
N
with] = Y (§ +5;). Now the wave functions are only (2J + 1) degenerate with
k=1
respect to Mj.

The validity of applying the perturbations in this order (the LS couphng scheme) is
confirmed spectroscopically (figure 4), where we find that H,g ~10,000 em~™', H,j ~1.000
em™~! and ”Lryst qf =~ 100 em~!. Thus, we expect a given term labelled by -SH L to be split
by spin-orbit coupling into a close group of levels which are still characterized by L and S (to
a good approximation) and distinguished by different values of J. noted by 25+l Ly. The

reduction of the (2J + 1) degeneracy is accomplished by the static Stark-effect term, H_. ¢(41-

The fact that the ion interacts only weakly with the crystal lattice is due to the small spatial
extension of the (4f) wave functions. Likewise, this will be responsible for narrow spectra
from transitions lying wholly within the (4f)3 configuration (whereas interconfigurational
(41)3 = (41)2 5d transitions are characteristically much broader).

The application of the H . 4 Perturbation term turns out to be much more diffi-
cult. Although a brute-force diagonalization within the (2J + 1) ionic manifold is certainly
possible, mathematical inconveniences render it impractical. Instead, by using the essential
property of the crystal, namely symmetry, and the group theory, the determination of the

qualitative splitting due to the crystal potential is greatly simplified. More important though,

the transformation properties of the wave functions are determined which allow phonon
selection rules, ion-lattice effects, and the like to be systematically studied.

In YAG. with the Ndt3 ion located in the low site symmetry D5, all except the
residual two-fold Kramer degeneracy is removed. The character table of the crystal double
group derived for the nonintegral Us is given by figure 3.°

Since the purely ionic H is spherically symmetric, we find that the symmetry of the
total H is that of ”crys(;ll' In this group theoretical notation, it is determined that all wave
functions are described by a two-dimensional E representation within the cry«tal double
group D5. For example, the main laser line is the transition (4f3/5)5 E= (41} /5)3 E (the
2 means the second Stark level from the bottom). It is only because of the low-point group

"W Chang. Principles of Quantum Electronics. Addison-Wesley Publishing Company, Reading, MA, 1969
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Figure 4. Observed energy levels of the trivalent rare<arth ions.*
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symmetry that we have all energy levels transtorming the same: in general, different wave
functions corresponding to different states will transform differently under operations of

the group and retain degeneracies.

Although group theory is very powerful, it cannot give the amount of Stark split-
ting (matrix elements must still be found). The techniques for calculating quantitative
splitting are not discussed here.® The energy levels of Ndt3 YAG are given in figures S and

6.

ALLOWED RADIATIVE TRANSITIONS

Transitions between these levels are responsible for the operation of these materials

as laseis. While the calculation of radiative transition rates for rare carths is actively pursued

30

| 10 .11

9GS Ofelt, Journal of Chemistry and Physics, 37,511, 1962
HWE Krupke. Journal of Quantum Electronics, QE-7, 1953, 1971
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only a brief review will be presented here. The observed spectra of RE ions consist mainly of
electric dipole transitions':'® which are governed by matrix elements of the type <f | -e ¥ | i>.
If the initial and final states |i> and | f> have the same parity (as with crystals having inversion
symmetry and for transitions taking place wholly within the 4f shell) the electric dipole transition
is rigorously forbidden. Only if there are odd parity terms in the static crystal potential or if there
are odd parity vibrations to admix opposite parity states (eg, wave functions derived from the
excited (41)-5d configuration) can electric dipole transitions occur.'®%!'>'3 We will assume here
that only the odd terms of the crystalline potential can cause mixing of parity states and that
the vibrational contribution is small (later we will use the weak vibronic emission and absorp-
tion spectra to determine the range of interacting phonons).

As stated before, the total electronic Hamiltonian is H,| = Heve ion T Hes ¥ilh

Ho=-e 2; Vg (5,00,
V. (r;. 0}, ¢;) being the crystal field potential at the i-th (4f) electron (in our example the sum-
mation extends over the three (4f) electrons of Nd+3). It is often convenient to expand H .
in spherical harmonics

==
I
SpA

n
) 3 AT YT 05,0y, (6)
m=-n

where the Arr? coefficients are constants determined by the position of the neighboring ions
around the central RE ion (ie, point-group symmetry), r? refers to the radius of the i-th (4f)
electron and the er? (8;, ¢;) are spherical harmonics. This potential may be separated into

even and odd parity parts (with n even and odd respectively) and written as

”c = H, (even) + Hc (odd).

In the calculation of line positions, only the even terms of H_ are important and. therefore.
the odd spherical harmonics are ignored. Since the Stark splitting involves matrix elements such
a8 < VYgree ion | He | Yiree jon -~ We need only consider terms in H, with n < 6 (since the f
electrons with ¢ = 3 cannot connect states withn >3+ 3=6)."

Analogous results are obtained when calculating transition rates. Here we will require
matrix elements between admixed states such as <f | -e T | x >. with

28 <BIH (odd) [i>]8>

x> =1i> + (7)

Il — l'_a

where the summation extends over all excited opposite parity states 8. These states are

derived from higher energy configurations than 4", such as 4f"~'sd (note figure 7). Since

HC is limited to terms with n << 6, this imposes a selection rule which tends to decrease the

line intensity with increasing AJ up to AJ = 6."%""12 This is one reason why the 41y 5 — 455

3/2
transition (AJ = 6) is approximately two orders of magnitude less intense than 4!"; 5 = 4'1 1/2-

2)D Judd. Physical Review. 127,760, 1962

"BC Wybourne, Journal of Chemistry and Physics. 72,639, 1960
"IA Koningstein and JC Geusic. Physical Review, 136, A711. 1964
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configuration of trivalent rare-carth 1ons

Here again, while the perturbative treatment gives quantitative results, the group theor-
etical approach is used to determine simple selection rules (this method only finds forbidden
transitions, not allowed ones). Since the direct product of I ¢/t =) X ' ¢/ £ >) when reduced
in the site symmetry I): contains n‘r:‘«hmhlc X'L‘H‘I\‘\\‘HIJIIHH\ of the transition moment r (odd
parity crystal terms arising from Y=, Yz =. Y7 spherical harmonics), no electric dipole transi-
tions are forbidden (ie, no distinction. at least from group theory. as to m and o electric dipole




radiation).'*>'® It is again only the very low site symmetry of D, that prevents selection rules:
in general, different selection rules are obtained for transitions between states characterized by
irreducible representations.

SINGLE PHONON INTERACTIONS
PHONONS IN YAG

Consider the system of a single rare-earth (RE) ion replacing an ion in a perfect crystal.
The Hamiltonian for this system is

H = Hep + Hyy + H, (8)

where Hy, is the elecironic Hamiltonian of the RE ion in the perturbing crystal field of the
other ions situated at their equilibrium positions:

He) +H

= Hfree jon * He
H_ is the crystal potential energy, Hp is the phonon Hamiltonian, and H,, describes the inter-
action between the electronic state and the lattice phonons. The zero-order wave functions

| ¥ >, which are solutions of the equation
He ly>=Ely>,

are characterized by the free-ion quantum numbers {LSJ, an irreducible representation of the
RE ion site symmetry group Gg (ie, the point group symmetry in the vicinity of the RE ion).
and a row of this representation (to specify each wave function within a degenerate represen-
tation).

Consider now the second two terms in H contained in equation (8). The phonon
Hamiltonian HJ is invariant under the operation of the entire space group G. The vibrational
wave functions are characterized by irreducible representations of this group. If a crystal has
N unit cells and n ions per unit cell, we expect 3Nn possible modes of vibration. The size of
the matrix to be diagonalized is reduced from a 3Nn X 3Nn matrix to a 3n X 3n matrix by
considering translational symmetry: all possible values of k being contained within a Brillouin
zone (BZ). There now remain 3n branches of the phonon spectrum to be obtained with each
branch being defined by an irreducible representation of G. By convention, the 3n - 3 modes
which dc not have zero frequency at k = 0 are called optical modes and those with w(k =0)=0
are acoustical modes. It should be noted that the degeneracy of particular branches may he
lifted along directions of lower symmetry of vector k than k = 0. In the case of Y3 Al5 (Al Oy)3.
the space group is la 3d (Oh)w. a body centered cubic Bravas lattice. There are 80 transla-
tionally invariant sites (n = 80) in YAG, and by reducing the reducible representation of ionic

"SJC Prather, Atomic Energy Levels in Crystals, National Bureau of Standards Monograph 19, February 1961,
US Government Printing Office, Washington. DC
"M Tinkham. Group Theory and Quantum Mechanics. McGraw-Hill Book Company, New York. 1964




displacements in each of the four types of sites (Y transforms like D5, O like C; and the two
types of Al sites like S4 and 56) the symmetry of all possible phonons at k ~ 0 can be found
(figure 8):

SApy*3Apg+ SAy + SAg, + 10, + 8E, + 14T,

+‘8Tlu+l4T2g+l6T2u (9)
c, S D, Sg
o, TYPICAL OPERATION 48072 12 A1%3 12v*3 ga1t3
E {e 10} 144 36 36 24
6C, {542 T (n} 0 0 0 0
ac; a7} 0 4 4 0
8Cy {53“1 0 } 0 0 0 0
6C, {”2xv Ir (3)} 0 0 -4 0
I {i10} 0 0 0 -24
65, {'541”‘”} 0 -4 0 0
30, {65,172} 0 0 0 0
85g {i835y210} 0 0 0 0
60, {.azxy 7(3)} 0 0 0 0
53y REPRESENTS A ROTATION OF 2/37 ABOUT [111) 5,  REPRESENTS A

ROTATION OF # ABOUT [110] ; 622 AND 6, REPRESENT ROTATIONS OF m AND
n/2 RESPECTIVELY ABOUT [001]);7(1)=1/4a(3,1,3);7(2)=1/2a(1,0,1);
T3)=1/4a(1,1,1).

Figure 8. The character table of the reducible representations
generated by arbitrary displacements & within YAG.

The above constitutes a total of 240 modes (ie, 3 X 80 branches of the w(k) dispersion curve).
By assuming the harmonic approximation, the phonon Hamiltonian H_ becomes the
sum of the harmonic-oscillator Hamiltonians for each normal coordinate:

0 z badel o 4l 2 g o e
= ~ } 18 r =4 5
P& |77 Yy 2 “ky “ky “ky

The normal coordinate ri is characterized by a wave k, a small representation vy, and a row
r of this representation (eg. to account for all polarizations within a T] three fold degenerate.
vibration). The Schroedinger equation for a particular normal Loordmate Qk

| W, S, 1 7 )
[-7 h \_'QL7+-:-wk.y Qk.ry Qk'y le; nk7> (1

|
=(gy +5) hwk'y ‘Qk; Ny >




where wy. and ny, contain no subscript r since different rows within a representation indicate
degeneracies. Therefore, the wave function of the whole system of phonons is the product

H l Qk; "k;> (12)
kyr

and the corresponding enerzy is

> (Mjy +3) N ey, (13)
kyr a8

The three components of the displacement x;(n:a),i=1, 2, 3, of the oM ion in the n™ unit
cell are related to the normal coordinates by the linear transformation

xj(n;a) = kz (N ma)'”: Ciyr(lz:a)exp(ilz' f{n)QkI/ (12)
yr

th unit cell and C.. . (k: ) is a measure of how much a normal

iya
mode Qk; affects the particular displacement Xj(n:a). In terms of boson operators,

r h ¥
Qky = m Agyr Y A gyr -

There are two orthonormality relations for the Cm,‘s given by

where R is the position of the n

* »> >
Za Ciyr‘klo‘)ciy'r' (k:a) = 67r.—7'r'
i

>

E e S M ,
iy (l.yr“\.a)(ryr“\a )—6U 6010,.

¥r

Let V be the total interaction Hamiltonian between the RE ion and the rest of the
ions in the crystal. It can be expanded in terms of the displacements x;(n:a):

—y

V = VO+ ' Xj(nia) vi(n;a)Vl0+. ey (14)
nai=1,2,3

The first term Vy is the electrostatic (Stark) term which is incorporated in Hgpas Ho. Inthe
second term, the derivatives are evaluated at the equilibrium positions of all the ions. with the
RE ion considered to be at the origin. By using equation (12) we can write the interaction
Hamiltonian between the RE ion and the lattice vibration as

WL e IR e
Vep = z Xj(nia) ¢; (nia) V |0 = - (Nmg)™ = iy (Kia)
nai kyr nai

»

exp(iﬁ-Rn)vi(n:a)V] -Qk;= Z VL‘yer;' (15)
kyr

i




The potential gradient terms Vl;,yr defined above operate only on the RE-ion electronic state

while ri (containing a and aT terms) operate on phonon states only. This separation in V,
is valid under the assumptions stated before, namely: Ve <<V, and Ve << Vvib» ie, the
mixing of electronic and vibrational states is small. Since we have assumeg only a single RE ion
interacting with the lattice phonons, this implies that V,, is not invariant under the full space-
group symmetry operations, but is invariant only under t%e operations of the ion-site symmetry
G. Therefore, the phonon wave functions which transform according to the irreducible repre-
sentations of G are combined into linear combinations which form a basis for the irreducible
representation of G¢. In practice, this means that the representations arrived at by using the
full space-group G are no longer irreducible in the less symmetric point group Gg and may be
further reduced, analogous to splitting of residual degeneracy due to a lower symmetry distor-
tion. If this is applied to the lattice normal coordinates Qk; , the following expression for
ch is obtained:

Vep - Z V’kl‘r Qk{" (16)

kI'r

The sum extends over all distinct stars of k in the BZ, over all irreducible representations
I" of G¢ which appear in the reduction G = G, and over all rows of the representation. The

electronic operator VkFr now belongs to the same I" as Qkf‘ for a real representation and to I'*

for a complex one. Knowing the transformation properties of the vkrr‘s will lead to the selec-
tion rules for phonon transitions (whether a phonon can interact with the RE ion).

For YAG, the reduction of the Oy, representations in the site symmetry group D>
results in the following:'S

AI - A

A: = Bl

Tz—’f\l +Bz+B:

T]"B}*‘B:"‘Bl.” (N
Thus. the 98 branches shown in Equation (9) become 240 non-degenerate vibrations

D 3

28 Ag * 31 Ay + _7B]g+ 33 By, + 28 B:g +34 By,

+2883g+3483u (18)

(the designation of parity above has no real meaning in a crystal without inversion symmetn

and is left merely as a reminder of approximate parity).

NONRADIATIVE TRANSITION RATE

With the above specification of normal modes of the crystal, one can look at the
quantum mechanics of a direct phonon transition. The transition probability per unit time
1s (implicitly averaging over direction and polarization of the phonons)




W =22 D I<TVo i> 12 9
j=f = 3 DIDIST IV 1i> 1, (19)

where D(f) is the density of states defined such that D(f) dE¢ is the number of such states in
the energy range dE;. Under the assumption of a low mixing of vibrational and electronic wave
functions, one can write the initial state

1> =1 ;> Hypy | Qgp nyp > (20)

and separate the matrix element into two parts. If we assume a phonon is absorbed and the
electronic states go from [ y; > = [ Y¢ >, then we can write

£ =1 9> lpe |Qp mip > X 1 Qe (e = 1)> ERD

where the absorbed phonon in mode Q" had an energy of h Wy = Hop 1f>~-H 11>
The matrix element < f | Vep | i > becomes

< Vgp1i>= zkl‘ {< e vt | 9>
| i

nk;rorr | Qk:;‘: ny e > X | rirll‘-\u (nkuru =t *
r r ' hlal
(ri> nklrlrl lel[wV nk'l—" > } (__)
As indicated before, Qki‘ can be written in terms of boson annihilation-creation operators as
- 1/2 4
(‘)l\l‘ i (e (akrr+ll_k[‘r) ‘ (23)

wkr

so that equation (22) can be reduced to (from orthogonalization)

7 h nkr 1/2
<V li>=<yglv, & 14;> (5 (24)
('p l\l ! e u)k[‘
(omitting the primes on k. I'. and r). The transition probability per unit time becomes.
n(wyr) x 3 .
\Vi**": ﬂl)(le-)w—kr— | < vy \kl‘ Ly~ 1 . (25)

The motivation for obtaining exact normal modes and for determining precisely the
transformation characteristics for the \'Ll."s is now clear. If the direct product of the irreducible
representation for Y and ¢ does not contain the irreducible representation of vi\l.r (hence,

; r s ; B
the irreducible representation of Qy p in the pomnt group Gy) then the transition is not allowed
Thus. by knowing the transformation properties of the initial and final electronic wave tunc-
tions, and the transformation properties of the normal modes of vibration, one can. via group
theory. determine whether a particular phonon can interact with the RE ion:eg, whether it can
cause broadening.




With the case of Nd*3 in low symmetry YAG, the formal approach proves discon-
certing. In the D5 point group symmetry of the Y site, it was determined that all electronic
wave functions transform as E-type irreducible representations. Thus, one must reduce
E X E in D5, which yields, recalling figure 4,

EXE-_‘A‘*‘B:;"'B:*‘B].” (:6)

So. for the low site symmetry of D+, it is clear from equation (26) that all 240 nondegenerate
modes may couple to the Ndt3 ion and, in theory, all 240 may stimulate nonradiative decays.
Group theory does not specify the magnitude of the interaction, however. Obviously, the
approximate odd parity modes will, in general, have smaller values for <f | Vi([‘r | 1> than

modes with approximately even parity. Also, the nearest neighbors of the Nd*3 ion will inter-
act the most, ie, the V’k[‘r are different for various normal modes. With the formalism well

established. one may begin to analyze the specific example of Nd*3 in YAG using various degrees
of approximation.

INTERNAL PHONONS

First, it is expedient to assume that the lowest order interactions are those with the
eight nearest neighbor oxygen ions. The XY8 type molecule is assumed isolated from the
lattice in that the molecule has its own set of normal modes of vibration. With ionic radii for
02 Nd*t3 Y3 and AI*3 being 1.40 A, 1.23 A, 0.93 A and 0.50 A respectively,!? this is
casy to accept. What is planned is to consider the eight 072 ions coordinated around the Ng*3
ion to be in cubic Oh symmetry. find the modes of vibration of this isolated complex and then
reduce the internal modes of vibration in D5 symmetry : retaining the approximate state of
parity. &

These internal normal modes of vibration are not lattice waves, though. The Q's
arrived at in equation (25) will stimulate the localized modes to oscillate and the localized
modes will affect the transition (in our approximation). Thus, if Q is the KM normal mode
of the molecular complex, one can write the electron-phonon interaction as

Vep = “\‘l\\[‘ Q- (27)

where the approximation symbol is intended as a reminder that only nearest neighbors are
interacting and that we have assumed the XYg type Amoleculc to be isolated. Since the lattice
vibrations are complete, the internal normal mode Qy can be expanded linearly in terms

of lattice vibrations:

A o . r T
Qk = > ag krr &krs
|




where the ag |y s are the mixing factors. This results in a minor complication of equation
(24), in that the lattice normal modes must mix to give an internal mode: one no longer has
the simple orthogonalization. The result is

n (W) - )
“i—*t‘z"TD(wkr)T | EKHK'krr<Vf |VKIL,’/i>| . (28)
r

The above expression, for the transition rate of the direct-phonon absorption, can be
interpreted as follows: A lattice phonon in mode KI'r, and energy h wy . interacts with the
molecular complex XYg. This causes displacement of the nearest neighbors to the RE ion which
have been described in terms of internal normal modes of the complex (the amount of inter-
action being given in terms of the ag | p, coefficients). This variation in the crystalline field
induces the transition of the electronic state and the annihilation of a phonon in mode kI'r.

The mixing coefficients ag will thus become very mode- (ie, frequency) dependent.
Not only will D(wg ) and n(wy ) measure how many phonons are present to induce transi-
tions, but the a’s will measure how much those particular lattice vibrations affect the nearest
neighbors of the RE ion, while the \A/'K’s determine how much the nearest neighbors affect the
RE ion (induce transitions). Therefore, the a coefficients conceal peaks in the W(w) curve: a
large peak is expected whenever a lattice phonon highly couples into the internal mode (and
this is when the a coefficient, and thus the Qg is large). This is another reason for the concern
over internal modes. Besides requiring the transformation properties of QK to tind phonon
selection rules, the number of possible internal modes affecting the RE ion will be an indica-
tion of the complexity of the W(w) curve.

Fven more concealed is the added frequency dependence in W(w) due to the potential
gradient term \AI'K. The origin of this dependence is seen if one recalls that the Stark splitting
of each J manifold arises from matrix elements of the crystalline potential encrgy H.. Since
the coefficients of H. determine the Stark splitting. and the amount of splitting determines
the phonon frequency w, there is a relation between Hc (and thus the derivatives Q’K) and w.
A generalization about the frequency dependence of < Yy | \Ak | Y>> is very difficult.

The first step in this nearest-neighbor solution is to find the modes of vibration of this
isolated XY ¢ molecular-like system.'” The nine ions have a total of 27 degrees of freedom
and, by reducing the reducible representation of ionic displacements in the Oy, point group.

we find the following symmetries:"'®
y ) o T 4 . 3 K
\|g+lg+11ﬁ+'llg A:ll+l’ll+3T]U*1:U' (29)

If one Ty, and one T, representation is removed to account for translational and rotational
degrees of freedom., the internal, localized modes remain:

0. i 2) : 200 « 3
’\Ig it ot -[35_' A P EGH 2T + Ty (30)
In a similar manner by which equation (15) was derived. the above representations can be
reduced in the actual point group Dy, The irreducible representations of Oy reduced in the
manner shown in equation 17 so that the following internal modes are possible:

o

4./\?_, e Blg A7 :H: 4 :l‘\zg ay 3.'\” - B]ll i ‘“;_jll + "‘B3ll' (31)

"7JH Van Vieck, Journal of Chemistry and Physics. 7. 72,1939

23




The distinction with respect to parity is used only as an approximation (formally we can say
that we are reducing in the D5y group and consider the D5 site symmetry as a slight distortion
to D5y). Thus, there are 21 powhle vibrations of the XYx complex:; 9 even and 12 odd. So
in the matrix elements of < (vl\ [ ¢ >, one may expect 9 large values corresponding to the
9 approximately even parity nondege ncml; modes.

RAMAN-LIKE INTERACTIONS

The formal derivation of the direct-phonon transition rate illustrates the complexities
which result in a crystal of low-site symmetry. This detailed derivation will not be followed
in the even more complicated derivation of the Raman broadening term. This is done for two
reasons. First, the inherent formalism of a second-order process introduces complications
which obscure the desired result by requiring the determination of parameters impossible to
measure and extremely difficult to calculate. Second, a formal derivation of the Raman
broadening mechanism is not necessary to determine the parameters in which we are inter-
ested. In the final conclusion we will have to rely upon experiment anyway to normalize the
result and this implicitly calculates all matrix elements and makes all the necessary summations.

Just as in the direct process, we desire to find a transition rate: this time for the two-
phonon process exchanging states between two energy levels of a single RE ion situated in a
perfect crystal. Schematically, we have the situation shown in figure 9. For an upward transi-
tion, a phonon of frequency w is absorbed and a phonon of frequency w, is emitted. Since
the transition occurs very fast (via the virtual intermediate state), Heisenberg broadening
results. As before, the transition is described by an interaction Hamiltonian: which means we
must expand the crystalline potential as seen by the RE ion in displacements of the surrounding
ions, this time to second order.

R
UPWARD RAMAN TRANSITION W/, DOWNWARD RAMAN TRANSITION W)
& ,
. w2 wy
‘ “1 P Y 0
AE
o 0

PR, S— PO ——
Kl “err et S A
AT - AE N A P . V-

0 0

‘VIRTUAL OR INTERMEDIATE STATE

Figure 9. Two schematic representations of the upward and downward Raman non-
radiative energy level exchange mechanisms
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- D4 v(2)
Vo= Vo r Vsl (32)

VO is still the static Stark term and Vg})) is the first-order term used to calculate wD (direct),

vl = z Xj(nia) & (na) V|, (33)
D]

where x; (n:«) is the ith Qirection of the displacement of the oM jon in the n™ unit cell.
A (n; a)V is the ith component of the derivative of V taken at the oM ion of the nth unit cell
d[l(l it is evaluated at the RE ion (since this is where the effect happens). The second-order

expression for V( ) is

Vgp) 7 —;- Z z §xi (n:a)x_i_(gzg)lvi(n;a) v_i_(g:g)lv los (34)
nai 110!1

where the last expression is the two-component derivative of V, namely

v
9x; (n: o) 9x; (n: o) ’

3
Therefore, in the same way equation (14) was derived, we can write V(ef)) as

E z [ka ky Qky Qkfy] (35)

kyr kyr

where

’ | -
iy =TE z | Nmg)™! €y (K

nai  nai

('i,yr(E:a)cxp(ilz : (R +R V) v (g a)vlm Vgl (30)

th

Again, R, is the position of the n™" unit cell and the F- (k‘c\ ) coefficients measure how

much a nornml mode Qk7 affects the particular dnsplau‘mmn x; (n; o).

Therefore, we may get Raman-like transitions two ways: first order in v ‘ Y or second

order VC],) . It is here that the formalism becomes cumbersome and it is here that the deriva-
tion will be streamlined. From equation (18) we have (neglecting multiplicative constan g

wR o | <1 1vE3) i> 12 Do,
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Here D(v) is the total density of final states. For an upward Raman transition we expect
initial and final states which look like

i>=1 ;> e | Okl Mk > (37)

’
N

t >= > s v r\ ~ vr~‘ - il url
| [ ¥y ”k[r‘(‘)k[ Niq >!le: (ny oy H')'QI\ pr (npepe + 1)>
tfor the process shown in figure 9. When the Qk{‘ ‘s are written in terms of boson annihila-
tion-creation operators, we get terms like
+
uk"["'r" . ukl["r’

which “connect™ | 1> and | { >. Therefore, Raman transition rates are derived which look like

“'R - n(wk[*)[n(wk'[vh* 1] L r ’ 5
u < Vi | VI kT | Vf> = D(ri) D(Qk'l"). (38)
WK WK

rearranging primes.

As stated earlier, the purpose of this calculation is to find the temperature dependence
of the linewidth. In order to accomplish this rigorously, one must go through the same internal-
model analysis as that done for WD As will be shown later, the nature of the crystal reduces
the practicality of carrying out such calculations. Instead, a simple approximation is to be used
to obtain a good fit to the experimental curve, with enough versatility retained in the formalism
to allow prediction of other ion-host combinations. As was emphasized in the direct case. the
detailed structure of the D(w) curve tends to smooth out when sums are taken and the real
density of states is used and especially if lattice anharmonicity is considered. In the Raman
case, the integration over all phonon modes inducing transitions will introduce even more
smoothing. For this reason we can consider the Raman transition rate as simply

WX = Cntw)) Intwy) + 11 Diw ) Diws)
WX = €y + D1 n(ws) Diw)) Dwy), (39)

where in equilibrium W, = Wy e BEKT g single multiplicative parameter taking into
account all matrix elements, summations, internal mode mixing, and the like. In practice.
this will be determined experimentally by normalizing the linewidth to experimental resufts
at one temperature.

The use of V)" in second order results in a similar expression (with different matrix
elements). Here we use

A e s 1w Cl) r €L} 2
<t Vel m=<m 'V i >4
wR o 2 Z Z L AR, D(Eg - E,) (40)
m kI'r K'Tr (I‘.m—lzi\
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where m is a member of the complete set of wave functions comprising the intermediate
states. Since the difference between this expression and the one used in first order only

changes C in equation (39), we will still use (39) as the expression for the Raman transition
rate.

INTERACTING PHONONS

INTERNAL MODES

In order to find the thermal dependence of linewidth, the spectrum of those phonons
affecting the active ion must be determined. As was shown, the existence of a lattice phonon
is not a guarantee it will couple into and affect the active ion, inducing a non-radiative transi-
tion. Acoustic phonons have high densities of states and large occupation numbers, yet they
correspond to movement of the entire unit cell and, therefore. small relative motion to the
active ion to induce transitions. The determination of a tractable model for interacting phonons
is what is sought in this section. If the range of strongly interacting internal modes is deter-
mined, the predominant broadening mechanism can be found (whether direct or Raman). the
transition rate can be summed for all effective modes, and a simple, compact linewidth formalism
can be found. The degree of experimental fit of the final linewidth theory will justity the
approximations made.

The Debye theory for acoustic phonons, when applied to the system of a rare-carth
impurity ion located in a simple crystal, results in a linewidth theory well illustrated in articles
such as Yen. Scott and Schawlow.? This approximation allows all lattice phonons to couple
into the active ion, gives no clues as to which broadening mechanisms predominate and results
in non-analytical solutions. In addition, use of the Debye theory requires many curve fitting
parameters to fit experimental data. both a multiplicative parameter as well as a special Debye
cut-off frequency (unrelated to simple bulk thermodynamic quantities) for each set of levels.
This theory then does not predict the functional dependence of linewidth with temperature, it
merely can be made to fit the experiment. This is often at the expense of absurd implications
with respect to physicai parameters such as bulk modulus, thermal conductivity, heat capacity .
and the like."®  As will be shown later, only the insensitivity of the thermal dependence of line-
width with the structure of the density of states accounts for the success in fitting the theor-
etical model to the experimental results.

Let us look at another approach to the linewidth problem, employing localized modes.
Consider again the results of equation (25) employing internal modes in the single phonon case.

A . <
Here all have three parameters. D(wy ). ag gy and <yyg [ vgr [y, > =all of which measure
the effect of a fattice phonon of frequency wy p on the active ion. Recall that D(wp ) is the
density of states of the lattice phonon of frequency “"I\ “ AK Ky is a measure of how much
the lattice phonon affects the localized mode K, and w]\' determines how much the internal
mode affects the RE jon and induces nonradiative transitions). Here, for simplicity. all three
parameters are combined and called the effective density of states. We have merely

w(ll) = D' (w) (n(w) + 1)
D ’
\\llI = D' (w)n(w),




with similar results for the Raman case (equation (39)). D' (w) is the spectrum of the effective
internal phonons and is an average over all lattice phonons reflecting how the lattice phonons
at frequency w affect the rare-earth ion. Now the non-radiative transition rate is sensitive to
only these active internal modes rather than all lattice phonons.

What does D' (w) look like? Certainly it will not be a continuum like the Debye
theory. In first order, it will most closely resemble the Einstein theory, discrete normal freq-
uencies for each internal normal mode coupling into the active ion. Figure 10 illustrates the
difference. Fundamentally, the continuum described by the Debye theory is replaced by a
spectrum reflecting the active internal normal modes; exhibiting a minimum as well as a maxi-
mum frequency of vibration of the RE ion, nearest-neighbor complex. This will have imme-
diate impact on the direct phonon transition rate, as low frequency phonons resonant with
energy level separations may not exist in D’ (w). One can also predict that there is width to
the lines in D’ (w) due primarily to anharmonic effects which will cause overlap of peaks.
Therefore, all that is to be determined to find linewidth thermal variations are the frequencies
of the normal modes and the relative magnitude. As will be seen later, more important than
the precise values of the vibration frequencies will be the range of active interacting phonons in
D' (w). With D' (w) modeled, the thermal variations of the linewidth can be solved, in this
case, analytically.

DEBYE THEORY EINSTEIN THEORY FOR INTERNAL
MODES
Dl(w) D' (w)
i ll l.| \ 1 l
w “DEBYE “min “max
EINSTEIN THEORY INCLUDING EFFECTIVE PHONON
ANHARMONICS APPROXIMATION
D' (w) D'(w)
3 3y
“min “max “min “max

Figure 10. Four models for the density of Jattice and internal phonons.

18T Kushida, Physical Review, 185,500, 1969




VIBRONIC TRANSITIONS

One method of obtaining insights as to the structure of the effective phonon spectra
is to look at the vibrational sidebands accompanying the electric dipole transitions in RE-doped
crystals. Since direct vibrational data are difficult or impossible to obtain, this is extremely
valuable. Here the vibronic data will reflect the range of interacting modes affecting the impurity
RE ion and will establish the degree to which these modes are indeed “internal.”” By examining
the structure and number of phonon-assisted sidebands, and by recognizing that vibronics
are also a nearest-neighbor phenomena, one should be able to establish, at least, the frequencies
of the internal highly coupled modes in the crystal. Since these data are usually taken at low
temperatures and with high dopant impurity concentrations to facilitate the experiment, the ap-
plication of these results to the nonradiative energy-level exchange problem will not give the
exact shape of D' (w).

Let us find a simple expression for the intensity of the vibronic emission or absorption.
As before, for the static lattice transition in a crystal with inversion symmetry, electric-dipole
transitions are allowed only if there is an odd parity component of the interaction Hamiltonian
to admix opposite parity states. The odd parity lattice vibrations will now cause the admixing.
Consider the ¢lectric-dipole transition matrix element

<Yy l-erlyg>

between the upper state | ¢, > and the lower state | Yg >. If no perturbation of these states
exist, the matrix element will be zero since both levels are derived from the same 4™ config-
uration and have the same parity. The application of the electron-phonon interaction Hamil-
tonian V,,; to the wave functions will cause admixing with excited opposite-parity wave
functions ?rom the 41154 configuration, say, and permit transitions. Consider the unper-
turbed upper state

A
| ¥y > Mypr 1 Qkr nkr >
Since we know that V. in first order cannot connect states separated by more than one

quantum number, we can write the perturbed upper state — containing the admixed state
| g'/ﬁ > due to one phonon

r
Ixu>= 1y > e 1 Qg o >+
i :'ﬁ {l ! \»’/B > ”i\l‘r l Qki‘ nkl‘ = ]Qk"[:l nk/l‘v - ]>l* ch

|9y > Mg | Qgpr g > £ E ¢
T Eg-E, v > Wi | Qg > | Qe e = 1>}

; ; ‘ r |l
- 2g {( 19> Mipl Qg mip > [ Qerpr ey + 1> 1% Vi

' - ' r
[y > Mgpe Qg ngp > |
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Here, |y ,> and I\bg> are purely electronic wave functions with the sum 8 extending over
all excited, opposite-parity electronic states. Again, the lower state becomes

- ' I l"
ng> = N’g> nkFr 1Q ngr > | Qk'F' (nypr - 1>
r
- {llyg> Mypr 1Qup 1% Vep

: r r
[10g>Myp 1Qup Ayp > 1 Qe (M - D>1

r 2]

Here a simplification is made. Since most vibronic data are taken at low tempera-
tures (to avoid second order effects such as anharmonics) the limit of T = 0°K is assumed.
Thus, the occupation numbers for ail modes tend to zero. Therefore, using the first order
expression for V, given in eq uation (14), orthogonalization of the wave functions, and

retaining only first order terms, we obtain

<xu|-eF|xg>=

<w51v'k;|¢g><wl,|-eF|¢B> o VA
g
§ <¢B1vk}|¢l,><w5|-eF|wg> n \2 o)
=g Eg-E, 2] .

This corresponds to a transition of the RE ion from state g to state u plus the creation of one
phonon in mode (kI'r). Here we see that | ¢/6> must indeed be derived from an opposite
parity configuration to remain non-zero.

The transition probability per unit time is given by the familiar relation

W =(:—f;’r—><xu;—cﬂxg> o(E) .

where p(E) is the density of final states composed of the product of the lattice phonon den-
sity of states D(w) and the electronic states g(E - h). Since the energy spread of the elec-
tronic states is much smaller than the range of the phonon states, g(E - hw) = §(E - hw -

wy ) and the vibronic spectrum reflects the structure of D(w) (figure 11). The precise
structure of D(w) is difficult to determine, though, because of the electronic matrix elements
in equation (43) and because of the difference in the matrix elements involving v{(r . For
example, since the ""ﬁ is opposite parity to v, and wg, only the odd parity vibrations can
have non-zero matrix elements. Recall that the expression for the single phonon nonradiative
transition depends on the even parity normal modes. The group theoretical selection rules
are also similar to those for phonon nonradiative transitions. This states that
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Figure 11. Vibronic spectra at low temperatures for Yb3 Al, (Al04)3
indicating effective phonons.*s
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does not contain an irreducible representation of the transition moment r when reduced in
the site symmetry G (where I ;mdrl‘g are the irreducible representations of the upper and
ground staces respectively, and I‘ri is the irreducible representation of the normal mode
Ok{“ of Gy). In crystals such as YAG, which do not contain inversion symmetry, parity is
not a good quantum number and normal modes are composed of both even and odd parity
parts. Also, the low D5 site symmetry does not exclude any transitions due to the selection
rules and all modes can cause sidebands. What is significant is that now the range of inter-
acting phonons can be determined by examining the vibronic spectra. By counting the
number of sidebands and comparing this to the number predicted from the internal-mode
approximation, the degree of isolation of the internal modes can also be investigated.

PRESUMED INTERACTING EFFECTIVE MODES

In order to find the effective phonons of the system of Nd*2 in YAG. the vibronic
spectra at low temperatures can be examined. The data available!™ are for Yby Aly (A104)3

" RA Buchanan, Physical Review, 159, 345, 1967
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Since the difference in atomic weight between Yb+3 and Nd+3 is 173 vs 144, this data is
assumed to be adequate, though not precise. Also, Buchanan states that using Yb Al G

instead of Y13 doped YAG results in larger absorption coefficients without seriously per-
turbing the symmetries and so facilitates the experiment. The results are shown in figure 11.
Here we find approximately 20 large sidebands occurring between 250 em™! and 570 em™!

and a small group of approximately nine smaller ones from 75 em~! to 225 em-1. Recalling
the results of the group theoretical reduction of the XYg complex, we expect the internal
normal modes to consist of nine approximately even-parity and 12 approximately odd-parity
vibrations, a total of 21 close-coupled modes corresponding to the XYg molecular system of
Nd*3 and 0=2. The conventional normal-mode analysis of the 80 ions in the unit cell predicts
240 possible modes seen by the Nd*3 ion in D5 site symmetry. The data using Yb Al G fit
well with the predicted results. The range of internal vibrations then, is confined to a region
approximately 300 em~! wide containing narrow peaks corresponding to highly coupled modes
(contrasting sharply with the Debye prediction). The small peaks on the low frequency side
are thought to be next nearest-neighbor interactions of low energy between the RE ion and

the AI*3 ion. Since the atomic weight of Al is 27 and that for 0-2 is 16, we should expect a
lower vibration spectrum. Also, the larger inter-atomic spacing to the AI*3 jon will result in
lower frequency modes as well as smaller coupling (as seen by the amplitude of the sidebands).
Therefore, let us choose to model the complicated effective phonon spectrum by a simple
uniform density of modes ranging from approximately 250 em~! to 570 em=! (note figure 12):

D 250 cm~! <hw < 570 cm™!

D
D(w) = - (44)

0 otherwise

D 250 em™! <hw <570 cm'1
Diw) Dlw) =
0 OTHERWISE
Y -
| | | | | 1
0 100 200 300 400 500 600 700

i EFFECTIVE PHONON ENERGY (em™) iy

Figure 12. Uniform density model for the effective modes in Nd*3 YAG.




(with D a constant). Since incorporation of the precise shape (if it could be extracted from
the data available) would result in another numerical result, let us try the above approxima-
tion and examine the quality of fit to the experiment. After the next section we will examine
the prediction of thermal, linewidth variation incorporating the above approximation.

DEBYE LINEWIDTH THEORY

What is presented in this section is a brief overview of the Debye theory for the
thermal dependence of linewidth, best presented by Yen, Scott and Schawlow.? This is done
primarily to place in proper perspective the theory to be presented. Also, this furnishes a
theoretical basc to the effective-mode theory to be presented later. Assuming a completely
Debye model for the crystal, Yen, et al, begin by writing the Hamiltonian of the impurity
ion in a host crystal as

Hyoy = Hp Hp *5y ,
where Hg describes the ion in the presence of a crystalline field, Hp describes the phonon
system

and H‘ describes the interactions between the ion and the lattice vibrations

1 A v i
H, = X C “(ap, —ap) t
I 3 pows, wg (A -ay)
. h A %) E +
“‘kl\' ’Mv: D Wy Wy’ (ilk —le )(uk' ~ A Vi

= Hy + H} +...

+ T . ; . th
Here, ay and 4 are annihilation and creation operators of acoustic phonons in the k' mode.
wy 1s their frequency, and Cand D are the linear and quadratic crystal field coupling opera-
tors respectively (which operate on clectronic states of the 1on only), M is the mass of the

crystal, and v is an average sound velocity in the crystal. Since this assumes the Debye approx-

imation, v is assumed independent of kand k = w_/v. For the typical energy level configura-
tion, the relaxation transition probability for the ith level, due to the direct, single phonon

process (W?) is (using Yen's notation)

d n

- \ . 5 | < . . - :
W, = wii plw;) v\l’( \.\I |
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[polwip) + 11 + 2> wjj p(wij)|<Aj|C1Ai>13po(wij)%
=1

= ¥ >. Bjj [pglwy) + 1] + E B Do(wij)s .
J<i J=>a
Here, plw) is the detailed Debye density of states at Wij and polwij) is the phonon occu-
pation number for phonons of energy h(wij) at temperature T.
The contribution to the relaxation process due to Raman scattering of phonons by
the impurity ion is calculated using HY in second crder and HY in first order. This results in
an expression for the ith level given by
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where 0y is the Debye temperature (which turns out to be unrelated to the values consis-
tent with bulk data such as specific heat). The integral 56(0Dr’T) has been tabulated by
Ziman and is proportional to (ODJ’/T)S at high temperatures.

The treatment of inhomogeneous strain broadening and homogeneous multiphonon
relaxation broadening is essentially identical with that presented earlier. For the ith jevel,
the total contribution to the linewidth due to H] is, therefore, given by Yen to be

AVi = }.. Kii + 7 .\.. B” 'pn“‘)ii) i
j<i " [T B :
ra
+r D B polwi) + L (T/0py) £, (0py/T)
b e R n (1/8p)" & (Op/
i>i
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where K" is the (essentially) temperature independent multiphonon contribution. For a given
optical transition, the Lorentzian contributions from each level add

:AVI+Api'

I'he contributions from the Gaussian shaped strain broadening are then added to Avj;.
I'he fit of this theory to experiment is difficult. Since only Avi‘ is actually measured.

the linewid th-vs-temperature curve must be measured for all optical transitions to separate out

; from 2w, and, hence, the various multiplicative coefficients (i, ;. and K;; for each level).
In addition to this, an elaborate fitting technique must be used to determine d]t‘ proper value
for #py. In general, a multiparameter fit requiring various §'s and s as variables is employed
and these mmnuu rs are adjusted until a good fit is obtained. For example, in the case of the
‘l,, *("Hg )y 5 3 transition of P’ *3in La F3, Yen was able to reduce the number of coef-
ficients from 6 to 3. before heg.mm 1g the parametric fit (which depends on the dramatically
ditterent temperature dependencies of the direct and Raman processes). The fit to experiment
1s excellent

I'he objective of the Debye theory is not to predict the shape of linewidth-vs-temperature

urve tor RY 1ons in crystals, nor is it to formulate an analytic expression for linewidth-vs-
temperature, but rather to check the validity of the proposed broadening mechanisms them-
selves (direct phonon, Raman, etc). The success of demonstrating this has been excellent.
I'he tradeott is that the theory has four constraints relating to its utility of being a means of
predicting the shape of the linewidth-vs-temperature curve with only a few measured points:
the theory of Yen uses the Debye theory which is not valid for most hosts (where optical
phonons interact strongly with the impurity ion) and requires complicated curve fits to deter-
mine an etfective Oy different from the results of bulk measurements: the functional expression
for the Raman contribution is an integral form resulting in a nonanalytic expression: the Yen
theory requires the measurement of many points on many linewidth-vs-temperature curves to
enable the complicated parametric fit to be completed: and finally, the theory just does not
“predict™ the slope of the curves. The theory to be presented will address the prediction of
the shape of the linewidth-vs-temperature curve for rare-carth impurity ions residing in he nd
crystals. Since data are available, and because of its wide appludtmn as a laser medium. Nd*
Y AG will be investigated specifically. The regime of 300 I\ Io 400°K is of special interest as
this is the typical operating temperature of high-power Ndt 3y AG lasers and amplifiers. The
practical utility of a simple expression for the thermal dependence of linewidth requiring only
the measurement of the 300°K linewidth and the low-temperature intercept for each optical
transition desired is obvious.

EFFECTIVE MODE LINEWIDTH THEORY
RAMAN EFFECT OVER ALL MODES

I'he incorporation of all the preceding quantum electronic formalism into a theory to
determine the thermal variation ot the homogencously broadened radiative transitions used in
the operation of RE lasers requires the determination of the nonradiative encrey level exchanee
rate between all sets of levels via all mechanisms. This requires that the fundamental depen-
dence of linewidth-vs-temperature incorporating all effective modes for each mechanism must
be tound. the detailed set of energy levels must be examined to find all groups of interacting
Jevels. and those mechanisms which can be neglected must be determined. By utilizing

‘v
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the new dppl’O\lmdlth for interacting modes, for example, the predominant broadening
mechanism (in Nd*3 YAG) will be shown to be the Raman type and an expression will be
derived for the total nonradiative transition rate due to the summation of all effective modes.
This will also set a practical limit for the maximum separation of energy levels connected via
the Raman process. An expression will then be derived for the elastic Raman scattering

process which homogeneously broadens an individual level independent of all others. This

will turn out to be a very important mechanism and will greatly simplify the analytic expression
used for the thermal variation of linewidth.

It is very important, though, to remember that the results to be presented are not
applicable to ion-host laser systems in general. In fact, even the same rare-arth ion in another
crystal may fall into regimes not accurately described by these approximations (neither quali-
tatively nor quantitatively). The system of Nd*3 YAG when used as a laser medium assumes.
among other things, a RE ion (of small spatial extension causing low mixing of electronic and
vibrational wave functions) located in small quantities (reducing ion-ion interactions) in a
single crystal (low impurity levels to form perturbation centers) with a large unit cell (elimina-
ting acoustic mode effects) in a “hard ™ crystal (allowing large-frequency phonons to mteract
with the ion). Also, the extremely low site symmetry without inversion relaxes most selec-
tion rules and a system with the impurity ion having an atomic weight much larger than its
neighboring ions simplifies the vibrational structure. So, while the theory to be presented here
can probably be modified to satisfy the general case of an ion-host combination. rederivation
from fundamentals may be necessary.

First, the functional expressions must be found for the Raman broadening term. sum-
ming the effects for all active modes. The upward and downward Raman nonradiative tran-
sition rates between two energy levels separated by AE are given by the tamiliar relations (in-
elastic phonon scattering)

W = Cntey) [n(wy) + 11 D) D'iwy)
with

WX = Cntws) Inlew)) + 11 D@ )) Dy,
with w} - w5 = AE (note figure 9). It all processes within the operation of this system as a

laser occur with much larger time constants than the nonradiative exchange rate (~107 1 sec),
then it may be assumed that the lewlfs{drc dl\hl\\ in thermodynamic equilibrium and described
by Boltzman statistics. Therefore, W tand “ are not independent. Notice that this approx-
imation breaks down when laser mode locking occurs (with pulse widths 1012 sec) and when
the level separation becomes large and the nonradiative exchanges are no longer described by a
first-order effect: eg, by multiphonon effects. The equilibrium of the 41 /5 thermal level

and the 4lq /5 ground state is - *wo-phonon process with a relaxation tim2 of approximately

0.5 X 1079 second and, thereforz. in the dynamic operation of a Q-switched laser (7 ~ 1077 sec),
these levels are far from remaining in thermodynarnic equilibrium. But for all the first-order
broadening mechanisms

wd - CA': AL Wu' (45)
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where AE is the energy level separation between the upper and lower states at T. If the equili-
brium occupation numbers are substituted into the Raman relations above, the following is
obtained (noting that n(w) + 1 = n(w) efew/KT).

W(l]{ = C&_}—l a;'i l D'(wy) D'vwsy +%)
with
w= O o HARIKT (46)
wi=c (T'_—] ag‘jl D'(w ) D'l —%)
with
a=e VKT g BE/KT (47)

Theretore. all that remains is to integrate the above expressions over all interacting modes to
determine the contribution from all modes. If a detailed, highly structured expression for
the effective density of states was used, it is clear that the above expressions would be sensi-
tive tc peaks in D'(w) separated by AE. It is also clear that, for many such peaks in D'(c).
the results would tend to average to those obtained by employing a uniform effective density
of states (the approximation to be used).

Before integrating the above, let us find the maximum energy-level separation. AL,
connected by the Raman mechanism employing the uniform-density-of-states approximation.
Here we normalize equation (44)

|
D'(w) =
0 otherwise,

<w<w

“min max

where in this case wy, i, = 250 em™! and R em~L. Note that D'(w) is not inte-
grable over all w’s 1o give three times the number of ions per unit cell, since these are onh
the effective modes. The Debye approximation normalizes in this manner and therefore
considers all modes equally effective. Since it is always true that w| - wy = AE, for Wd i
must be that w)H Z Wipin M that wy -
example of Nd*t3 YAG,

Wimax OF W3 < Wiy = AE. Therefore, for the

AE < 320 em™! 250 em™! < w, <570 - AE. (48)

Therefore., at least to first order in our approximations, levels separated by over 320 em™ ! are

not connected via the Raman mechanism and as AE = 320 cm™! the quantity of effective modes

interacting with the levels tends towards zero. For upward Raman transitions, again w| - w> =
‘ ¢ 1 o = 3 bl - N + < g < srof s -
AE and since wy > wyin. @ > @pyip Y AE and w ) < w4 therefore

AE < 320 cm'l + 250 cm'l < W) < 570 cm‘IA (49)

“miin
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The range of values for w> and w | in equations (48) and (49) now specify the limits of inte-
gration in equations (46) and (47) for W(l} and WR

As an example of how the structure of D' (w) is used, consider the Stark doublet
forming the upper lasing level in Nd*3 YAG - the 4F3/a(“) and 4F3/w(l)(note figure 5).
Since the closest set of levels are the 4F5/2 (higher in energy by approximately 870 cm™" ),
these two levels can be considered isolated and the nonradiative relaxation rates between them
will determine the width of each level (neglcutm% elastic scattering for the moment). Since,
from our approximation we find that D'(88 cm™") = 0, the direct single-phonon transition
rate is zero. Realistically, wD is considered small and may be neglected (this will be dis-
cussed later). Therefore, the Raman expression alone defines the broadening of these levels.
Using equations (48) and (49) the width of the 4F3/2(2) level is given by

i
M ~
A"[4[:3/3(")] = = + AV gtrain

all
effective
modes

where Equation (46) is summed for 250 em™! < wy <482 em~!. Likewise,

Wy
Av[4F 3/5(1 )] = T + AV gtrain

all
effective
modes

where equation (47) is summed for 338 em~! < w1 <570 em™ ! AVgtrain 1s the inhomo-

geneous residual linewidth due to microscopic strain within the crystal. Properly, the Lorentzian

shaped. Raman broadened line should not be added to the Gaussian strain line as linewidth is

defined differently for each. The error will become more pronounced at low temperatures

where WR = 0. Also. it should be noted that the two residual strain widths need not be equal.
The integration of equation 44 and 45 is straightforward. Using equations (48) and

(49), the following is obtained:

Wmax ~OF
WR= ('f e |l
- d
! “min L e

(45 [
R max | o g
e = f — a——ﬁ—-ﬁ,_l dw

mm + Al

where o = h‘“ kT pB= ‘+M kT B = 'A[ kT Now all information on densities of states s

incorpnr.nul into the limits. Since \\d is rcl‘md to W, by the Boltzman equation (equation
45), let us just integrate Wu
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If

_ hw/kT _ah
a=e then da KT dw,

e “max
W -SRI f i) S S
CAE @1 af- 1

SO

“min

with primes eliminated and § = eDE/KT, This expression becomes

Wi
WR _ CkTg max dox (50)

Gel) Ja + 1

3

+ AE Ba3+2[_

“min

which is in the form

f dx
A+ 2Bx +Cx2’

with

|t
R

The following results depend upon

]
AC<B2, or 5<(f;f1—) .

T L e ¥ N . - + N
This is seen to always hold as the above reduces to 8= > 23 - 1 and since 0 <3< | (AE > 0).
this condition is always satisfied. Therefore the integration results in

| o [Cx+B ~/B® - AC
2VB2-AC  |Cx +B +y/B? - AC]

So substituting for A, B and C in equation (50) and simplifying, the above expression becomes

“max
R _CRES Ba -3 .
Wll —B—l l”[ﬁa—l ’ (51)
Wiin +AE
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If the limits are included and the expressions for a and 8 substituted, the following final
result is obtained:

. (Womay ~AEVKT _ - AE/KT

WR = £t In
u 1 - AE/KT : (hwpyax = AE)KT i
?‘"min/kT =l e
. D)
L‘“"xnin/kT -e ~AE/KT (
Wé{, when integrated over the proper limits, is given by eDE/KT times WE
(hw,, . —AE)KT -AE/KT
R _ C kT | Tinos / -e /
d E—AL/I\T 2 e(h(dmax -AE)/KT _ 1
Z‘wmln/"T -1 o
: (53)
?wmm/kT 2 -AE/KT

Expressions (52) and (53) are analytic expressions requiring only the determination of the
multiplicative parameter C (through fit to a single temperature) to determine the functional
dependence of the Raman transition rate with temperature.

RAMAN ELASTIC PHONON SCATTERING APPROXIMATION

The elastic scattering of phonons from the impurity RE ion also induces a homogeneous
broadening of that level. Rather than being an independent broadening mechanism, this process
may be thought of as lifetime broadening due to the nonradiative transition rate between two
levels whose energy separation is zero. In fact, since all levels in Nd+3 Y AG are twofold Kramer
degenerate, elastic scattering may be thought of as inelastic scattering between levels whose
separation approaches zero. The expressions derived in equations (54) and (55) may be used to
determine the individual width of a single level by looking at the limit as AE = 0. Contribu-
tions to the Raman component of linewidth broadening will come from AE = 0 as well as from
AE equal to energy level separations to adjacent Stark levels. Employing equation (S1). it is
seen that

“max
lim wR = im 2 In fo - 6

AE=0 " AE-of -1 Pl
“min

l
oo

+ Ak
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Therefore, I' Hospital’s rule is employed and

“max
kT
lim WS = '—CT—(J—l)
AE =0 ! T
“min

. g S R R . .
Since elastic scattering involves only one level, Wu and Wd are replaced by a single rate of
very simple functional form

wRr) = EKT : & : . (54)

h t,h“’min/kT 13 ehcumux/kT 1

Notice that this can be written very simply in terms of phonon occupation numbers as

R,y o CKI
WH(T) = — [nleosin) = 0o )]

and that, at high temperatures, wR o TZ. which agrees with the limit obtained using the Debyve
approximation.

Rather than requiring both forms of the Raman transition rate, an approximation will
be employed which will greatly simplify the actual determination of linewidth-vs-temperature
for a general set of Stark levels. This approximation is to employ only W WR for the Raman
broadening component of a level. Consider figure [, the energy level dmg_rdm for a general Rl
ion in a crystal. If the Raman contribution to the broadening of the i ith jevel is desired. s 1y,
the following is found:

R_ R < Ry R
/\Vl [y W 1) + 2 Yo Wu+"rﬂiﬁ“d

' |
= s
where Yi is a multiplicative factor related to the magnitude of the contribution from elastic
scattering (related to matrix elements), \\l is the upward Raman transition rate from the ith

: : . N R
level to the ath level with a magnitude y;  (thisis related to Cin Equation ¢50)). and W | the
downward transition rate trom the im level to the ,3”‘ level with a magnmitude Yig I'he sums

-th le

extend over all levels above (WI ) and all levels below the i vel with v, = vj3 = 0 for

AE > 320 em™!. Since the quantitative factors Yia - and Yig are impossible to determine without

precise knowledge of the matrix elements, and since their value is not L\kalkd to vary drast-

ically with the wave functions used within a multiplet, all the v, sand vz ‘s are assumed equal
=

It this is assumed, a curve of WE:{ vs AE is plotted (for a particular T) and an estimate ol the
relative contributions ot each mechamsm can be obtained. Figure 13 shows \\ R SAL for
T=300'K and T = 100"K. Both show substantial reductions in the umlnl‘utmn ot \\ }

wR o typical values of AE - say, AE ~ 100 ¢m -1, Also. for AE < 130 em™ ! plots n' \\ " s

T and Wl'f vs T difter by less than 10 percent. Therefore, for AE < about 150 cm™! the dit-
ference of Aw vs T using the two methods is lower than experimental accuracy and tor Al

150 em=! the contribution of interlevel Raman broadening is considered small. The expression for
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Figure 13. The upward Raman nonradiative transition rate (WS) vs energy-level
separation AE for temperatures of 100°K and 300°K.

clastic Raman scattering wR given in equation (54) will be used to determine the temperature
dependence of the Raman two-phonon contribution to linewidth. Again, as with most ap-
proximations made, the quality of the predicted fit to the experimental results will indicate
the validity of the approximations made. In addition to this recent assumption, many approx-
imations and assumptions were made to derive the expressions for the Raman transition rate:
complete local thermodynamic equilibrium: a uniform density of states described by the inter-
nal mode approximation with limited ranges (ie, equation (44)): and a completely first-order
description of lattice phonons which neglects anharmonics and other higher-order effects which
obscure crystalline wave functions and induce mixing of electronic and lattice wave functions.
induce an appreciable phonon mode broadening, and generally destroy first-order theories as
ionic displacements become large due to elevated temperatures.

DIRECT TRANSITION

Since the width of a typical energy level is much smaller than D'(w) (approximately
3em~!vs 300 em™1)., the expressions for the direct phonon mechanisms are governed by
resonant transitions,

C'n(w) D'(w) 8(hw ~ AE)

=
I

=
il

C'[n(w) + 1] D'(w) §(hw ~ AE).




Therefore,
D C'1 .
A T8 R 55
Wu T BEAT_, D(AEM, (33)
+ ARJRT
p . S D'(AE/h), (56)

d ~ JAE/KT

with D'(AE/h) given by the normalized equation (44). For AE < w.i,, and AE > w0y
WL) = Wh) = 0 (more properly, WD becomes negligible). This greatly reduces the contribution

ot WP {0 level broadening since the expressions are governed by phonon occupation numbers
n(w) which are large for small AE/KT, consequently, D'(AE/h) tends to render the upward direct

phonon process (Wfl)) ineffective for the regions of maximum effect — low energy spacings
with large n(w)’s. Also, since most Stark levels are separated by less than 250 cm']. few levels
even fall in the range of D'(w) (and can couple with the effective phonon via the direct mech-
anism). If AE> wpin and AE < wpp oy W is allowed, but n(w) tends to be small at all but
the highest temperatures and W, remains relatively ineffective in broadening the levels. Notice
also that for large lcmpcraturcs:thc Raman mechanism increases much more rapidly than the
direct (WR & T2 a5 compared to W{l) o T).

wl

C

other mechanisms) as n{w) becomes small and therefore contributes little to the thermal
variation of the linewidth, and could be lumped together with the temperature independent.
strain induced linewidth. This temperature independent contribution to linewidth is then
determined independently. For the above reasons, the temperature dependence of the direct
phonon, nonradiative transition broadening mechanism is considered to be small when com-
pared to the Raman process when determining the thermal variation of linewidth in a system
of Ndt3 YAG. Since the multiphonon process is also small, the thermal broadening of two
energy levels is assumed to be due to residual strain and the Raman process only. This becomes
another assumption to be redeemed by the quality of fit to the experimental data (and docs
indeed breuk down).

In passing, one should note two important points. First, for large T's (above 400 K
say). this approximation will begin to fail as modes between 250 and 570 em™! will become
significantly populated. Therefore, in addition to the effects of anharmonics and other higher
order effects, the high temperature fit is expected to degrade due to the assumption of small
functional dependence of WD Second and most important, for some intermediate energy
fevel spacings, the assumption of a single, unitorm density of states, with limits of 250 em™!
and 570 em™! becomes important. Here it was assumed that the next nearest-neighbor modes
(approximately one order of magnitude smaller) from 75 em~! to 225 em~! were neghgible
This assumption may prove invalid if very large matrix elements (reflected in C') occur. Un-
fortunately, prediction when extraordinarily large values of

l)‘ on the other hand, tends toward a constant (of unknown magnitude relative to

A

Ak kppor < vy VY

oceur s extremely difficult. Therefore, the approximation will be used with the possibility
that large errors may result when o breakdown of that approximation occurs.
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COMPARISONS TO EXPERIMENTAL DATA

Since the quantity of experimental data on linewidth-vs-temperature is limited. only
a few lines will be considered here. It is important to recall that a line shape will be predicted
here and checked with the experimental results. Only normalization to room temperature
and determination of the low temperature intercept are necessary. Using the tools developed
above, consider first the transition in Nd*3 YAG of 4F3/2(2) > 41y  j2(1) — the Ry > Y
transition. Referring to figure 5 showing the partial energy level diagram for Nd+t3 YAG, the
following is found for the general expression, before simplification, for the linewidth ot the
R> = Y transition:

5
- = LR Ry i1 wR S wR
Sy 3Rl = C D S T o RO S W (001
=D 2
Wiy (R)+ 5 W I(Y)]+ Winp * A¢(R7)
=72
+ M (Y )), (57)

where WE and W$ are the elastic Raman broadening terms for the Ry and Y levels

rL\pLgtWt‘l) Wll{,](R) is the downward Raman transition from R4 to Ry, R“(Y ) is the

upward Raman transition from Y| to Y; (i=2 - 5), de 1 R) is the downward direct-phonon

transition rate from Rw to R VD (Y) is the upward direct-phonon transition rate from
1= Wuli p p

Y oY, i+ Wiyp 18 any multiphonon transition rate, Av(R5) is the inhomogeneous random

strain- mdmul broadening for the Ry level and Av (Y, ) is the strain broadening for the Y 1

level. By using the approximations discussed above, combining the WR and WR terms into

wR terms, neglecting the direct \\I and wh terms, and neglecting all multl \hunun terms.,
& £ d £ I

the following is used as the expression for Av(Ry = Y ):

ARy =Y ) = L WR 4w 1+ DRy + LoV ),

. - . ’ e R R : ;

Furthermore, since the functional dependence with temperature of WR and W\ is identical
1

(independent of E), and since Av((R5) and Av (Y ) are constants, the dbOVL expressions can

be further reduced to the extre md\ simple C\prcwon

MRy = Y )= =WRR Y = Y )+ aw(Ry. Y. (58)

Now all that is required is the magnitude of W Ry Ry = Y ) (related to the constant “C™ in
equation (54)) and Av (R5, Y )i rather than seventeen difficult to measure, coupled
parameters necessary in equation (57). The number of unknowns has been reduced as low as
possible without detailed determination of crystalline wave functions and matrix elements.
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Since

him WR=0. (59)
T-0

the measurement of Aw(R5 = Y ) at low temperatures determines the residual strain
broadening

AV(R:“’Y]) EAVS(Rz.YI). (60)

r-0

Theretore, by requiring measurement at another temperature and implicitly assuming that Avg
is independent of temperature (obviously violated at very high temperatures causing large ionic
displacements) the linewidth-vs-temperature curve for the Ry~ Y line in Nd*3 YAG is pre-
dicted. For convenience, 300°K is presumed as a reference temperature and W™ in equation
(58) is “normalized™ to 300°K. Formally, a coefficient, say a, is introduced and fixed by
requiring that

E wR300°K) = 1, (61)

or if the 7 is absorbed into the wR term, then normalization to 300°K results in
wR (1) = wReTywR300°K).

where W,R(T) is given by Equation (54). Therefore,
Av(Ry =Y )= aWR(T) + Ay

with

dlx.\v(R:'-'Yl)' —AVS. (62)
300°K

For the Ry=Y | curve, the low temperature intercept is measured by Kushida®® to be
0.8 cm™! and the 300°K linewidth to be 5.3 em™!. Therefore, the following is predicted for
the tunctional dependence with temperature of the R:—’Yl radiative transition:

ARy =Y )=45 cm'l WR('I') +0.8 cm'l y (63)
2 ]

When Equation (63) is plotted and the experimental points given by Kushida®® are included

on the curve, this results in figure 14, The agreement is good and within the stated expermmental
accuracy of 1077, The fact that good agreement is achieved with such a simple expression
(Equation (63) was plotted with a desk calculator) and after so many approximations. 1s
eratifying. 1t is observed that the fit begins to degrade at about 4007K and almost 1077 errors
are seen at 470°K . As stated carlier, errors at high temperatures are not unexpected. Since

most higher order effects are dependent on the particular wavetfunctions involved (eg. eftects
ot anharmonics will naturally be very dependent on the spatial form of 1onic wavefunctions),

a prediction of when high-temperature errors are large is very ditficult. It will be observed




later that better agreement at high temperatures is achieved with some levels than with
others. Also, since the quality of the fit over the entire curve is particularly sensitive to the
experimental accuracy of the measurement of linewidth at 300°K (and somewhat sensitive
to the determination near 0°K), if a large error occurs experimentally with the determina-
tion of the linewidth at 300°K, the shape of the entire curve is affected. In conclusion. it
can be said that the agreement between the theoretically predicted curve and the experi-
ment was achieved to over 177°C higher than most Nd+3 YAG lasers operate).

Consider now the R} = Y transition. Proceeding in the same manner as used for
the R1 = Y transition, the low temperature intercept is measured to be 0.6 cm -1 and the
300°K point is 4.0 cm =l . Theretore, using equation (60),

MR~ Y =34 em™ WR(T) +0.6 em™1. (64)

This result is plotted along with experimental points in figure 15 and again good agreement is
realized. The maximum error — occurring at 445°K — is nine percent.

Another transition, for which data are available, is the primary laser line in Nd*3 YAG.
This line is composed primarily of the Ry = Y3 line but also has overlapped from the Ry =Y,
(note figure 15). The width of this composite line-vs-temperature was measured by Bell
Laboratories'” and is used as the experimental data with which to determine the quality of
fit to the theory. If no consideration is given to the fact that the laser line is actually composed
of two Lorentzian lines, but the two measured parameters of the laser are used with equation
(60), a remarkably good fit is obtained. From this data, the room temperature width is measured
to be 8.0 cm™! and the low temperature width is 0.5 em™!. The prediction according to
equation (58) is plotted, along with the data point, in figure 16

Av(laser line) = 7.5 em~! WR(T)+ 0.5 em™!. (65)

20

18 |-
ARy Yq) =45 cm ' WR(T) + 0.8 em™!

16 f—
0O EXPERIMENTAL POINT

12 —

10 -

LINEWIDTH (CM™)

1 I | 18 ] | -

50 100 150 200 250 300 350 400 450

TEMPERATURE ( K)

Figure 14. The theoretically predicted curve for the thermal dependence of the linewidth
of the Ry = Y radiative transition, showing experimental points given by Kushida "
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18
a av(Ry -~ Yq) =34 cm ' WR(T) + 0.6 cm™!

16 bt [J EXPERIMENTAL POINT

14 —

12

LINEWIDTH (cm™ )

| | J | " 1
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Figure 15. The linewidth-vs-temperature curve predicted for the R =Y, transition."® 1

Avllaser line) = 7.6 cm~ ! WR(T) + 0.5 cm™!

LINEWIDTH (cm~ 1)

e
[ i | |
50 100 150 200 250 300 350 400 450

TEMPERATURE ( K)

Figure 16. The linewidth-vs-temperature curve predicted for the composite laser line '
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Here. while good agreement is observed, a noticeable deviation ()ccurx‘ at about 1507K as well
as the expected high-temperature error. The deviation around 150K is attributed to the
nature of the measurement ot & “linewidth™ composed of two Lorentzian lines of different
magnitudes separated in wavelength added to a constant strain-broadened Gaussian line.
Agreement becomes better at larger temperatures when the Lorentzian lines become much
larger than the Gaussian lines.

In order to determine the transition cross-section and branching ratio tor the laser
line. Kushida, Marcos. and Geusic?? decomposed the laser line into components of Ry — Y3
and R} = Y5 (note figure 17). At “room temperature” (presumed to be 300°K) the mm\urcd

values were determined :

Av(Ry = Y3) I = 5.2 cm!
T 7 300°K
and
M(Ry = Y5) = 4.2 cm™]
T 300K

Notice that this correlates extremely well with the data tor the Ry = Y and Ry — Y| trans-
ition where linewidths of 5.3 em™! and 4.0 em™! were observed (the difference of 4.2 cm”
t04.0 cm™!is 5 percent and within experimental accuracy). This implies. then. that the
transitions from the R levels to the Y. Y, and Y3 levels are broadened almost entirely by
the R levels alone, and the contribution to the hro.idunmg due to the Y levels via any mech-
anism is small. This deduced fact is curious though unexplainable within the present scope.
An attempt to explain why the 41/ 5 levels are not significantly thermally broadened. using
the present development will not be attempted here. Therefore, the temperature dependence
of the width of both the R5 and R levels has been explicitly determined and can be used in
the R “ransitions to the Z levels. to be presented next. In passing, one might expect a similar
correlation to be performed on the residual hroadmmu at low temperatures. This would be
meaningless, though, because different samples of Nd*3 YAG were used to perform the ex-
periment and residual strain is a function of sample quality and can exhibit large deviations
sample to sample.

The next radiative transition to be considered departs from the R = Y multiplets and
is the transition from the 4F 3 /5(1) level to the highest 4lq 5 level. the Z5. Since the Ry
linewidth is already determined, all that is needed to dete rmine the linewidth of the Rl > Ls
transition is the temperature dependence of the Zg level. In practice, measurement of the
width of a single level is not practical so the same procedure using equation (60) will be used
with the preceding data from just Ry used to establish the self-consistency of the theory. Here.
the 300°K linewidth is found to be 9.25 em~! and the low-temperature intercept is 6.0 cm™
This results in

MRy~ Z5)=3.25 em™ WR(T) + 6.0 cm™!. (60)

which is plotted in figure 18 along with the experimental poim\ The agreement is generally
good with deviation again being observed at high temperatures: 10-percent errors are

207 Kushida, H Marcos. and J Geusic. Physical Review. 167, 289, 1968
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Figure 17. The emission spectium of the 1.064u “laser line™ at room temperature
showing the decomposition into Ry = Y5 and R; =Y components.'®
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18 L Ar(Ry —~ Zg) =3.25cm™! wR(T) + 6.0 cm™!
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Figure 18, The linewidth-vs-temperature curve predicted tor the Rl + 7 transition. 2!

1 Solid-State Maser Research (Optical) Final Report. Bell Telephone Laboratories, US Army Electronics
Material Agency. 30 August 19653
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observed at 470°K. Again, considering the approximations made to simplify the expression
used in equation (60), and taking into account that this shape is “predicted ™ rather than
least-square fit to the data, this fit is considered good. If the magnitude of the Raman term
in the Ry — Zg transition (3.25 em™1) is compared with the previously determined value

for just the Ry level, 3.4 em™ =1 it is seen that here the width of the R} = Zg transition is
composed of the tcmpualun-dgpundcm Raman-broadened Ry level and the temperature-
independent Zs level. Actually, there is a contribution of the strain broadening from the

R level but it is small compared to 6.0 em™! (from cquation (64) it is guaranteed less than
0.6 cm™!). The self-consistency of this data is gratitying (the S-percent discrepancy between
the two values is within the experimental accuracy).

In the preceding section it was stated that the downward direct-phonon contribution
to broadening was combined with the temperature-independent strain broadening because
for most cases when D'(w) is non-zero. n(w) + 1 = 1 and is independent of temperature.
Since it is really unimportant to the determination of the linewidth-vs-temperature curve
what mechanism causes the residual broadening, all temperature-independent terms were
combined. For the Z¢ level, an order of magnitude increase in the residual broadening is
observed and some explanation is due. Here, the Zg level resides 537 cm™" above the Zy
level (figure 5) and is resonant with effective phonons contained in the [attice (within D'(w)).
Since n(537 em™!) << 1 at even 450°K. this results in an estimate of what the coefficient for
direct phonon transitions might be within the 41g /> multiplet (note that Zg — Z 3 is out-
side D'(w)): '" T

D

\\’ (/- —: /4) >~ 6.0 cm A [n(S53 '] /kT) + 1] D'(537 cm'I ). 67)

The coefticient of 6.0 em~! s of the same order as typical coefficients of the Raman ex-
pression — namely ~ 4 em™!. This direct-phonon coefficient is very large compared to the
R — Y levels already examined since no large residual broadenings were observed. It will
be shown later that the 4lq /5 levels do indeed e >xhibit extraordinarily large direct-phonon
transition coefticients which result in a partial breakdown of the approximations used to
derive equation (60).

The final curve for which data are available is the Ry~ Z) transition. If the low teinp-
erature intercept is measured to be 0.5 em~ ! and the 300°K linewidth is measured to be
122 em™! the following curve is derived using equation (60):

Av( R| = /.] )=11.7 cm'l \\'R(T) +0.5 cm"]_ (6S)

If equation (68) is plotted, and data points entered, the curve in figure 19 s found. The fit

is bad. At temperatures of about 1507K. errors of 60 percent are observed and although data
points are taken only to 320K, the slopes are seen to be radically different. This poor fit
represents an obvious breakdown of certain approximations which were made. Tt will turn
out that the source of error results because of the approximation as to the \h;l{\\‘ of D'(w).
wherein the low density of state phonons observed from 75 em™! 10 250 em~! were ignored.
The approximation was made to greatly simplify the analytic expression for WR hut becomes
invalid when very large direct-phonon transition coefficients occur which more than offset the
reduced magnitude of D'(w) for w < 250 cm'l. The quantum mechanics which explains why
the 41/~ multiplets have an extraordinarily large coefficient is not understood and is beyond
the prcw—n( scope (e, group theory will predict only qualitative effects: quantitative results
require determimation of matrix elements).




Incorporation of the direct phonon mechanism will now be pursued. As stated earlier,
the Ry level broadening is already determined and in fact, since the residual broadening of the
R level is almost identical to that of both the Ry and Z levels, all that is to be deiermined
is the temperature-dependent level broadening of the Z level. This level then will be both
Raman and upward, direct phonon broadened. If the Raman broadening of the Z level is

assumed negligible, the upward phonon absorption mechanism remuains, and the following can
be deduced:

Mw(Rp)=3.5 em™ WR(T) + 0.5 em™!
Av(Zy)=8.2 em™! W:z) (all levels),

wherein

D
WU (all levels) =1.
300°K
20 }—
18 k=
Av(Ry = Z24) = 11 7em T WR(T) + 0.5 cm™!
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Figure 19, The hinewidth-vs-temperature curve predicted tor the Rl * 74 transition,
1t
without the direct mechanism




If all multiplicative coefficients for the upward transition to each Stark level are assumed the
same (there is no reason to assume this except for convenience), and if D'(w) is assumed the
same for all upward transitions (this is required because the detailed shape of D'(w) fluctuates
greatly), the following can be written for the linewidth of Ry = Z:

AV(RI = Z] )= 3.5 cm"} WR(Ti + 8.2 cm'] {[n(134 cm_] S+

+n(197 em™1:T) + n(311 cm":T) + n(848 cm‘l;T)l

(134 em~':300°K) + n(197 em™!: 300°K) +

+n(311 em™1:3007K) + n(848 em™!: 300°K)I}, (69)

where n(w: T) is the occupation number of a phonon of frequency w at temperature T. The
plot of equation (68) and the data points is shown in figure 20 and excellent agreement is
found. Again, the partial breakdown of the theory is not considered critical as the possible
limits to the validity of the approximations were indicated, and also the tradeoff of simplicity.
predictivity, and consistency is significant.
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CONCLUSIONS

As stated in the Introduction, the objective of this technical report was to dn\\h)p a
simple compact theory to predict the shape of the linewidth-vs-temperature curves for Nd*
YAG. This was to be done by accomplishing the following: establish the internal effective
mode formalism necessary to model the ion-lattice interactions; determine a suitable approx-
imation for the “effective’ phonon spectra; by employing this approximation. derive compact.
analytic, single multiplicative parameter expressions for the broadening mechanisms: deter- '
mine the dominant broadening mechanism; and compare the predicted results with the experi-
mental data. The previous theories had, as their objective, the venfication of the vahlidity
of the proposed broadening mechanisms themselves (direct, Raman, strain, etc). The success
at demonstrating this alone has been excellent. The constraints prohibiting the use of a
Debye-based theory as a means of predicting the thermal vaniation of linewidth are four-fold
the theory of Yen employs the Debye theory for phonons which is not valid in most hosts
(where the predominant ion-lattice interaction is via optical phonons) and requires 4 com-
plicated curve-fit procedure to determine an effective iy (different from the results ot bulk
measurements): the functional expression for the Raman contribution is nonanalytic: it
requires tfe measurement of many points on many linewidth-vs-temperature curves to enable
the complicated parametric fit to be accomplished: and finally., and most significant, the
theory of Yen does not “predict™ the shape of the curve.

The internal mode theory presented here alleviates the above constraints. Here, an
extremely simple expression, equation (58) is used to determine llu thermal variations of
linewidth for several optical transitions between multiplets of Nd*3 YAG (for which data
were available). The R> = Yy and Ry = Y transitions fit well with the predictions: the
expected high temperature degradation beginning at about 400 K. This again is attributed
to second-order lattice effects, experimental inaccuracies in the determination of the linewidth
at 300°K and near 0°K used to determine the shape of the curve, and increasing thermal oc-
cupation of low energy modes resulting in small errors due to the approximation used for
D'(w) (ie, small contributions from the direct mechanism). Without even decomposition of the
“laser line.™ the fit of this transition using equation (60) was excellent. In addition to the
expected errors at high temperatures, the deviation around 150 K was attributed to errors
resulting from adding two Lorentzian lines of different magnitude separated in wavelength
added to a Gaussian line. The Ry = Zg transition also fits well with equation (58) but it
was clear that the extraordinarily large residual broadening of 6 cm =1 due to direct. spon-
tancous emission of phonons, since the energy gap to lower fevels is within D'(w). This is
the tirst indication of extraordinarily large direct phonon coefficients for nonradiative tran-
sitions within the 41g/» multiplet. When the same procedure, using equation (601, was
attempted for the Ry - Z, transition, very poor results were obtamed. It is clear that, in this
case, the direct phonon contribution cannot be neglected. When included, excellent agree-
ment is again achieved. As stated betore, the partial breakdown of some of the approximations

is not considered critical, and indeed they were anticipated.

It can be stated that the objective of this theoretical analysis has been satistied: a
simple. compact internal mode theory predicting the shape of linewidth-vs-temperature curves
for Nd*3 YAG has been developed.
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