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INTRODUCTION

Semantic modeling provides a set of tools for designing a language
in a formal and systematic manner. It provides a rigorous definition of
the features of a language that is free of the details of implementation.
The model is therefore able to present a high level description of the
language which can be of benefit to a wide range of users. The user who
is unfamiliar with the language may use the model as a general, yet ac-
curate description of the language, whereas the more experienced user
may find it useful as a template for showing how new features might in-
teract within the existing language. The costs involved in making such

changes are made clear by the model.

To support these contentions, a family of models will be presented
in this paper. The language being modeled is SIMPL-T, a procedure-or-
iented, structured programming language. The semantic facility chosen
is the Hierarchical Graph Language (HGL) [1]. It provides a sufficiently
general set of primitives which makes it possible to construct a model
that will reflect SIMPL-T as closely as possible. The model must not be
so restrictive as to preclude the possibility of being extended for new
language features, but at the same time must not be so general as to lose
its usefulness as a gulde to the specific language in question. The mod-
el described in Chapter II of thie paper presents a reflection of SIMPL-T
which is extended in Chapter III to include escape mechanisms, and in
Chapters IV and V to reflect the inclusions of string data in SIMPL-T.
Either one, or both of the extensions can be added without compromising

the integrity of the original model.




CHAPTER I

HIERARCHICAL GRAPH LANGUAGE (HGL)

At its most basic level, HGL consists of a set of primitives which
are defined as a set of nodes and a set of transition functions that
change.the complexion of these nodes. Each node may be thought of as re-
representing a unit of information about the language. Associated with
the node may be some atomic data value, some further substructure of in-
formation, and some set of attributes. The atomic value (v) can be
thought of as representing some program data which may change during ex-
ecution; the structurgd value (h) as representing program or data struc-
tures; and the attributes (a) as representing some compile-time properties
of that node which remain static during execution. These can be defined
more formally as mappings. Let

N be a set of nodes

D be a set of atoms

A be a set of attributes and

G be a set of graphs
defined over elements of N . An attributed hierarchical graph (h-graph)
over (N,D,A,G) 1is a 4-tuple (N,v,h,a) where N CN, v: N+ D,

h: N+ G, and a: N x I: + A where I: denotes the first k positive
integers.

The execution of a program in the model is defined as a sequence of
states. Each state is represented by an h-graph which in turn repre-
sents the program and its data structures at some point in the execution.

An actual state transition is caused by some change in one of the three




mappings v, h, or a on the node, or the inclusion or removal of a node
¥ from the set N of nodes. The functions responsible for these changes
are:

setv which assigns an atomic value to a node

seth which assigns a graph value to a node

seta which assigns an attribute to a node

define which adds a new node to the nodeset of the h-graph

delete which removes a node from the nodeset of the h-graph.

These functions are more formally defined in Table 1.

It is now the responsibility of the user to define the structures
and functions that can be used in conjunction with the HGL primitives to
build a model for his language. The data structure is specified by the
definition of some particular graph structure over the nodes (e.g., sets,
lists, trees, directed graphs) along with a set of construction and ac-
cessing primitives that permit the building and traversing of that graph
structure. The control structure is specified by the definition of a
meta-control language defined over the HGL primitive transition functions
and the graph accessing and construction primitives. These basic primi-

tives and structures can now be used as building blocks in the construc-

tion of the abstract syntax and semantic functions for the language be-

ing modeled.

Before discussing the details of the particular model presented in
this paper, a glance at the following figure may help put the various
elements of the model into their proper perspective. Each block is built

using the definitions of the ones below in conjunction with its adjacent

block.

PR e PR
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Two data structures have been chosen for the modeling of SIMPL-T:

the directed graph and the list. The directed graph structure is de-
‘ fined as a 4-tuple (N ,E ,n ,e where
: P (g * 0 g)
! Ng is a set of nodes (nodes (g)),

Eg is a set of edges (denoted by arcs (g)),

r ng is a distinguished node called the entry node (denoted by entry
(8)),

eg is the edge label mapping.

The directed graph is used in the compile time environment to cre-
ate a model which is able to represent the ordering of statements that
is implicit in a SIMPL-T program. Its set of arcs, along with its corre-
sponding edge mapping, enable the model to follow a program's flow of

control. Once compilation is complete and all statements have been in- i
terpreted, the directed graph structure is available for traversal and

access. No alteration to these graphs is necessary from this point on.

Inasmuch as this paper presents a model that is to be used in the run-

time environment when graph construction is already complete, only those

primitives that are needed to traverse the graph will be described below:

padj - returns the set of nodes that terminate an outgoing arc from

a specified node in the graph

R
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nadj - returns the set of nodes that begin an incoming arc to a
% specified node in the graph.

Data storage can be handled in a strictly linear fashion, A simpli-
fied version of the directed graph which allows each item to point only
to its immediate neighbor has therefore been chosen: the list structure.
The algorithms generated at execution time follow a strictly linear order-
ing, and so they too can be handled by this same data structure.

X 1ist is defined by the 4-tuple ON,E,n°,n")

where N 1s a set of nodes
E 1is a set of edges defined by the node pairs (n,m),
n,m € N such that each node in N (except for the
first node) appears as the first element of a node
pair defining an edge exactly once, and each node in
N (except for the last node) appears as the second
element of a node pair defining an edge exactly once

nf is the first node (denoted by entry ( £))

nE is the last node.
Lists are both generated and accessed during execution and so the
following primitives are defined:
(a) 1list construction primitives
push which adds a node to the beginning of a list
pop which removes the first node of a list
append which adds a node to the end of a list
list which builds a list from a single node
(b) 1list accessing primitives

last returns the last node of a list

next returns the next node of a list
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item returns a designated node of a list.

A more formal definition of the graph primitives is to be found in

TABLE 2, and that of list primitives in TABLE 3, TABLE 4.

.

The control structures chosen for the modeling of SIMPL-T consist

of set expressions, recursive functions, and conditional expressions.
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TABLE 1.

HGL STATE TRANSITION PRIMITIVES

Let Si = (Ni‘vi’hi’ai) be the h-graph representation of the pro-

gram in state S and (N h ) be the h-graph representa-

i

tion of the program in state Si+l . The primitives associated with the

141 V141221413141

state transition from Si to Si+1 are defined below:

setv : N, x D+ N

a i
The execution of setv(n,d) for n C Ni and d € D returns the
node n and generates the state S, whose only new component is

a1
Vie1 defined by
_fv,(m), m €N , m#n
Vi+l(m) { id 3 W= n1+1

(assigns an atomic value to a node and returns the node)

seth : N, x G > N,
e i i

The execution of seth(n,g) for n € N, and g € G returns the

i
node n and generates the state Si+1 whose only new component is
hi+1 defined by
h,(m), m € N , m ¥ n
= +
hi+1(m) { ig i ni 1

(assigns a graph structure to a node and returns the node)
seta : N I+ A > N
seta : N, x I, x i
+
The execution of seta(n,j,p) for n € Nyoo € I, , and p €A

returns the node n and generates the state Si+l whose only new com-

ponent is a1 defined by

«JPy m=n, & = j
ai+1(m,i) {ai(m,z) otherwise

(seta assigns an attribute to a node and returns the node) (1]




Note: The parameters of the primitive operations setv, seth, seta are
evaluated in random order,

define : N - N

i
The execution of define returns a node n € N - Ni and generates
the state Si+l which is defined in terms of Si as follows:

Ni+1 = Ni U {n}

vi(m) , m € Ni

v-{
++l undefined, m = n

fh@ , m €N

hi+1 undefined, m = n
+
a > a(m,j),mENi,j GIk
3 i 1 undefined, m = n

(define adds a new node to the nodeset of the h-graph)
In addition to this version of the function which appears with no
parameters, the following version can be used
define (n | v(n) = d, h(n) = g, a(n,l) = al,...,a(n,r) = ar)
which combines the addition of the new node to the h~graph along with its

associated v, h, a mappings.

delete : Ni P Ni

The execution of delete(n) returns a node n € Ni and generates

the state Si+1 which is defined in terms of S1 as follows:

N =N, - {n}

Vi+1(m) = vi(m), VmeE¢ Ni+1

hyyg@ =h (@, Ym €N

syt 1

a;,,(mk) = a (mk), Vo€ N1

(delete removes a node from the nodeset of the h-graph)




TABLE 2

GRAPH ACCESSING PRIMITIVES

padj : N x G » 2N
The execution of padj(n,g) returns the set of nodes that terminates
an outgoing arc from node n in graph g defined by

{m € nodes(g) | (n,m) € arcs(g)!
nadj : N x G » 2N

The execution of nadj(n,g) returns the set of nodes that begins

an incoming arc to node n in graph g defined by

{m € nodes(g) | (m,n) € arcs(g)}

TABLE 3

LIST CONSTRUCTION PRIMITIVES

push : L x N » L
The execution of push(2,n) returns the list ¢' which is defined
by

nodes (&') = nodes (£) U {n}

arcs (') = arcs () U {n,nf(i)}
nf(i') = n
nf @) = a Y
(push adds a node and its associated arc to the beginning of the

list and returns the list)

The execution of push(f,n) where ¢ 1is the empty list, returns

the list o' which is defined by

P - - p—
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nodes (') = n
arcs (L') = ¢
 GPE
n (L") =n
atah - n
pop & L~ L

The execution of pop(2) returns the list &' which is defined by
nodes (2') = nodes (£) - {a’(2)}
arcs (') = ares (L) - {(nf(l),m)| n € nodes (&)}

nf(z') (m| m € nodes (&) A {nf(R),m)} € arcs (1))

‘(") n* (1)
(pop removes the first node of the list along with its associated

arc and returns the list)

The execution of pop(R) , where ¢ is a list containing one node,

returns the list &' which is defined by

nodes (R') = @
arcs (') = ¢
afey =0
S OL

append : L x N> L
The execution of append(f,n) returns the list ' which is de-
fined by
nodes (') = nodes (£) U {n}
arcs (') = arcs () U {nl(i),n}

nfet) nf )

nt (')

n

(append adds a node and its associated arc to the beginning of the

list and returns the list)




—

The execution of append(f,n) , where

turns the list &' which is defined by

list :

by

nodes (L') = n

arcs (') =¢

nf(z') = n
nt (") =n
N+ L

£ 1s the empty list, re-

The execution of 1list(n) returns the list &' which is defined

nodes (R') = n

arcs (') = ¢
f

n (") =n

nﬂ(l') =n

(list builds a list for the node n )

11




TABLE 4

LIST ACCESSING PRIMITIVES

last : L * n
The execution of last(f) returns the last node of the list 2.
i.e., the node which has no outgoing arc emanating from it, defined by

nl(l)

next : Nx L > n
The execution of next(n,2) returns the node of list & which has
an incoming arc that emanates from node n , defined by

m| (n,m) € arcs (L) A n # ni

item : I x L + n
The execution of item(i,2) returns the ith node in the list & 5
defined by
£ ;
lnext(next(...next(n D R By

i




CHAPTER II

SIMPL-T (BASIC VERSION)

1. SIMPL-T Syntax

The language being modeled in this section of the paper is
the basic version of SIMPL-T. It recognizes data only of type integer.
This data is stored either in an integer variable or in a one-dimensional
integer array which is defined as an ordcred collection of elements.
These elements are numbered 0,1,...,n-1 where n 1is the number of ele-
ments in the array, as declared by the user at compile time.

These data configurations appear as terms of a SIMPL-T expression.
In its simplest form the expression is a simple variable (e.g., x), or
an element of an integer array (e.g.. A(i)). It may also take the form
of a function (e.g., fact(x) ), or a primitive operation (e.g., atb,
a<b, ma ), or a combination of both. In each of these cases the expres-
sion itself represents a value which must be computed by the program at
execution time.

The program itself consists of a set of global variables, a set of
functions, and a non-empty set of procedures, one of which is designated
as the starting procedure. The global variables are integer variables
and arrays that are known to all segments (functions and procedures) of
the program. If the value of this global variable is not initialized
by the program, it is undefined when execution of the program begins.

SIMPL-T is a structured programming language whose flow of control
is governed by the execution of its procedures and functions. It is
therefore necessary to examine these basic building blocks in some de-

tail.

13
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A procedure is defined by a set of formal parameters, a set of
local variables, and a sequence of statements. When the procedure is
invoked, the actual parameters supplied by the user are passed to the
procedure, and the sequence of statements is executed. Control then re-
turns to the caller. The user may choose to include a RETURN as the
last statement in the sequence. It, however, has no effect on the exe-
cution of the procedure.

A function is similar to a procedure in that it uses its parameters
and local variables, together with the global variables known to the
program, to execute its specified sequence of statements. It differs
in that upon execution it returns the value of the expression specified
in the RETURN statement. This expression and the function itself must
both be of type integer. The function RETURN, unlike the procedure
RETURN, is a required statement which must appear as the last statement

of a function. Both procedures and functions may be recursive.

The execution of a program has been defined as a sequence of states.

It is the execution of the statements of a segment that causes these

state transitions to be made. A description of the SIMPL-T statements

follows:

a) The assignment statement assigns the value of an expression to a
variable.

b) The IF statement causes the conditional execution of a sequence
of one or more statements. The expression is evaluated at execution
time and the appropriate action is determined. If the conditional
expression is found to be true (#0), the THEN portion of the state-
ment is executed, otherwise execution continues with the ELSE por-

tion (if it exists).
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c) The WHILE statement provides a means of writing iterative code. As
long as the value of the conditional expression is non-zero, the
designated statement list is executed. If its value is zero, exe-
cution continues with the statement following the WHILE.

d) The CASE statement provides for the execution of one of a group of
statements. The value of the conditional expression is evaluated at
execution time and its value is matched against the value assigned
to each statement in the group. When a match is found, the corre-
sponding statement 1is chosen for execution. If no match occurs, the
statement referenced by ELSE is chosen (if it exists).

e) The CALL statement causes a specified procedure to be executed. It
passes a list of arguments (actual parameters) to the procedure.
These arguments must agree in number and type with the formal para-
meters defined by the procedure itself. Upon completion of the pro-
cedure, execution resumes with the statement following the CALL state-
ment.

f) The RETURN statement signifies the end of a procedure or function.
In the case of a function, it designates the expression whose value
is to be returned.

For a more detailed discussion of the language features SIMPL-T,

consult the SIMPL-T manual [3] (pp. 3-17).

2. H-Graph Syntax

With this introduction to SIMPL-T complete, h-graph syntax for the
language can now be described. The basic unit of information in the
model is a variable. 1t is represented by a node which has associated
with it a value, a graph, and a set of attributes. The attributes re-

main constant throughout the execution of the program but the value of
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the variable may change at any time merely by modifying the v mapping
associated with the node.

Variables may be linked together in list form to create a one-dimen-
sional array. This array is represented by a node whose graph consists
of nodes representing the individual elements of the array. The number
of elements in the array and the type of the array, together with other
identifying characteristics are reflected in the attributes associated
with the array. At the same time, each element of the array retains its
own value, graph, and attributes, as described above.

In addition to the simple variable and simple array just described,
the recursive variable and recursive array are necessary for the imple-
mentation of this model. Simple variables are joined together in a list
structure to form a recursive variable; simple arrays are joined to-
gether to form a recursive array. The use of this additional form of
data will be made clear when procedures are discussed.

The syntax for an express.ion is defined either as an operation node
or as a node containing a variable node. The operation node in turn
translates into an operator followed by a list of operands. The operands
are themselves expressions. It is because a variable node eventually
appears in the operand list associated with the operator, and because
the elements of the operand list must be unique, that we nest the vari-
able node in an additional node. This then permits us, for example, to
add the variable x to itself. The graph of the expression would
look like [add] » [[x] » [x]] .

The graph of the program node is defined as a set of global vari-
ables (i.e., simple variables and simple arrays), a set of functions,

and a non-empty set of procedures, one of which is designated as the
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entry node of the graph. The procedure node consists of a parameter
list, a set of locals, and a statement list. These parameters and

local variables describe nodes which pertain only to a particular pro-
cedure at a particular point in time. In order to preserve the integ-
rity of the procedure at each nested level of recursion, every one of
the variables (both local and parameter) is stored in its own stack as

a recursive variable or array. The description of the actual execution
of the procedure is reserved for the section which deals with the seman-
tics of the model.

A function is similar to a procedure in that its graph contains a
parameter list, a set of locals, and a statement list. In addition,
however, its graph contains a node representing the return expression.
It is here that the evaluated expression that is returned by the function
is to be stored. The evaluated expression and the function itself must
both be of type integer.

The list of statements forms the major portion of both the proced-
ure and function nodes. Three of the statements in this model, namely the
CALL, assignment, and RETURN statements are treated as operations con-
sisting of a semantic operator followed by a list of operands. The re-
maining three statements, namely the IF, CASE, and WHILE statements are
represented by a node whose graph must be traversed at execution time.
The value that results from the evaluation of the entry node of the

graph determines the path of traversal.

BNF Notation

The notation used to describe the h-graph syntax is an extension to

BNF notation, The following extensions are defined:

-y
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a) <a> :: = [<b>] | [<e>]
<a> 1s defined as (1) [<b>], a node whose h value is given
by <b>;
(2) [<c>] , a node whose v value is given
by <c>.
b) <f> sz = [<g>]; att, = vall, eey att = valn | [<d>]
<f> 1is defined as (1) a node whose h wvalue is given by <g>
and whose a; value is given by vali
for all attributes a; associated with
the node;
(2) a node whose h wvalue is given by <d>
and which has no attributes associated
with it

(I.e., | has precedence over ; )

<h> 1is defined as a directed graph from an element of class <i>

to an element of class <k> with a directed arc from <i>
to <k> whose label 1s an element of <j> . The entry
node of the graph is <i>
d) <h> :: = <1>* > <k>
<h> is defined either as a directed graph or as a list from an
element of class <i> to an element of class <k> . The

entry node of the graph is <i>

*
. <m, > “en <m >
; .

e) <> :: = [<m i

9%

1

<¢> may be defined as a node whose h value is a graph with

n disjoint components from classes <m >, <m2> goe s <mn>.

The entry node of the graph is <m1>
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It should be noted that the model syntax guarantees the uniqueness
of variables passed as arguments to a procedure or function by virtue of
the fact that the nodes of a list must be distinct. It is not desirous,
however, to place this uniqueness restriction upon the variables appear-
ing in an operand list. For this reason, each variable in the operand
list is nested in an expression variable node. Although the expression
variables themselves are distinct, the variables nested within them need
not be unique.

For example:

Non-unique variable may be added together as follows
[add] ~ [[x] » [x]]
but unique arguments are passed by a CAllL statement as follows

[call] = [PROCA -+ [x+y]]

Shorthand Notation:

Due to the extensive use of operations throughout this paper, a
shorthand form of the h-graph notation has been adopted:
name r €X_ > »+ <X > R <X >
[name] + [<x, ; X >]

will be written as

name (<x CXa g <xn>)

1T

Some additional abbreviations are defined on p. 30.

Data
Variables

V1l <variable> :: = <simple var> | <rec var>

V2 <simple var> :: = <integer var>

V3 <integer var> :: = [<integer>]; class='data',type='integer',

structure='scalar',form="'simple' |
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[undefined];class='data',type="integer',
structure='scalar',form='simple'
example
<integer var>
int I class='data',type='integer',
structure='scalar',form="'simple'
V4 <rec var> :: = <rec integer>
* o

V5 <rec integer> :: = [<integer var> {+<integer var>Jo];c1ass='data',

type='integer’',structure="scalar',form="rec'

Arrays
AL Lainl

Al <array> :: = <simple array> [ <rec array>

A2 <simple array> :: = <integer array>
; *r J . n ' '

A3 <integer array> :: = [<integer var> {+<integer var>! ];class='data’',
type="integer',structure='array',form="'simple",
arraysize=nsize (h(<integer array>))

example

<integer array>

int arrav A(3)

AT e e e - k
* class="data',type='integer', class='data', class="data',
structure='scalar', b S
form="'simple' o ST
1

class='data',type="integer',

structure='array',form='simple'

arraysize=3
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A4 <rec array> :: = <rec integer array->
* n
N A5 <rec integer array> :: = [<integer array> {+ <integer array>]o];
class='data',type="integer',structure='array',

form="rec',arraysize=nsize (h(<rec integer

array>))
Expressions
El <expr> :: = <operation>|<ref predicate>|[<variable>];

class="exprvariable'
/* A variable is nested within an outer node so that the
variable can be repeated in the operand list - denoted

by class='exprvariable' */

example
(a) <expr>

[<variable>]; class='exprvariable'

i class="exprvariable'
class="data',
type="integer"',
structure='scalar',
form="simple' AJ
p
Operations

01 <operation> :: = <primitive operation>|<user operation>
*
02 <primitive operation> :: = [<operator> +<operand list>]s
class='operation'

*
: 03 <operand list> :: = [<operand> (+<operand>}2]

04 <operand> :: = <expr>
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05 <operator> :: = <primitive binary function>;form='binary',
category="primitive"|
k) <primitive unary function>;form='unary',
category='primitive'
06 <primitive binary function> :: = <binary integer function>;
| . optype="integer"' |
<binary relational function>;optype='rel'|
<binary logical function>;optype="log'
07 <binary integer function> :: = [ggg]l[gggjl[gglgj] [9£X]|[££§J|[£E§]|
[Eiﬁ][[£§§]|[bitand]![bitor];{bitxor]
08 <binary relational function> :: = [£t]][2ec]|[gell(gt]]|(eg]](ne]
09 <binary logical function> :: = [and]|[or] {
010 <primitive unary function> :: = <unary integer function>; |

optype="integer" |

<unary logical function>;optype='log'

011 <unary integer function> :: = [minus]|[comp]
012 <unary logical function> :: = [not]

example

(b) <expr>

<primitive operation>

I+1 class="operation'
*
. 1
=" ' -’ 1 class=
o form="binary', ) ﬁ——-—— class='exprvariable o T;;;;;
categogz='primitivé} [::::] v:;::
optype='integer' &
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*
013 <user operation> :: = [<user operator> +<arglist>];class='operation'

014 <user operator> :: = <user function>;category="f
015 <user function> :: = <func def>

016 <ref predicate> :: = [<ref operation>];class="'op

017 <ref operation> :: ref (<array>,<expr>) /* [ref]>[<array>+<expr>] */

example
(c) <expr>
<ref predicate>

A(I)

23

unction'

eration'

class="operation'

* class='data',
type="integer', f1

ref structure='array', e
— form='simple' ,——— >

klass="expr-
variable'

arraysize=3 ] |

where A is defined as an <integer array>

I is defined

Program Structure

Pl <program> :: = [{<global var>}2.\proc def>*,{<seg
class="program'

P2 <global var> :: = <simple var>;§£923?'global'|<si
scope="global'

P3 <segment def> :: = <proc def>|<func def>

Procedures
P4 <proc def> :: = [<formal parlist>,<loclist>,<stmt

class='program',segtype="'proc'

as an <integer var>

ment def>}2];

mple array>;

*
list> ];

R
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. Functions
% P5 <func def> :: = [<formal parlist>,<loclist>,<stat list>*,<ret var>];
class="program',type=<typename>,segtype='func'’
P6 <typename> :: = 'integer'
P7 <ret var> :: = <simple var>;role='return'
] P8 <formal parlist> :: = [*par?k{’\par'}gl;g}§§§?'parlist'| [
class="'parlist'
P9 <par> :: = <rec var>;galltzge=<callname>)<rec array>;
calltype='reference'
P10 <callname> :: = 'value'|'reference'
P11l <loclist> = [<10c>*{'<10c>}2];gl§§§;'loclist'l { ]jclass="loclist'
P12 <loc> :: = <rec var>|<rec array>
Statements
S1 <stat list> :: = [<stat>*{*<stat>)2]; class="program’
S2 «<stat> :: = <if stmt>|<while stmt>|<case stmt>|<assign stmt>
<call stmt>|<return stmt>
§3 <call stmt> :: = [<call operation>];class='operation'
S4 <assign stmt> :: = [<assign operation>);class='operation'
S5 <if stmt> :: = [<convert predicate>t$’<5tat liSt>]\*<end>];c1ass='program'
OKQ<stat list>}g” AT
86 <convert predicate> :: = [<convert operation>);class='operation'
general <if stmt>
H class=
class="operation "progran’
category='semantic' ) <stat
—7 list-”\‘ ey
convert —{ expr \O){Qtatz n_q:g_g'
list>

——Y - .t - H
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example

if A(I) = 5 then FOUND := 1 end
class='program'

class='operation'

; *
f b class='operation'
category='semantic', : - sy
- = [ class="operation
category form="binary ', * Soess :
'semantic'|pptype="rel' —_———————
optype: b
r pe ref : .
=5 [3 ot | 1

v

lconvert |3 f eq

4

0
'operation'
Qategory=
'semantic'
f———‘———ﬂ FOUND
(! assign S e
| i |8 o
e /1]
1
no-op
N <stat list>
< ist>
S§7 <case stmt> :: = <case exprikr «:E:E ii:§>—~’ <end>| ;class='program'
D

{<stat list>}L/z
o]}
S8 <case expr> :: = [<case operation>];class='operation'

S9 <case operation> :: = calculate(<expr>) /* [calculate] » [<expr>] */
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-

*
S10 <while stmt> :: =[¢-<convert predicate><<$tat list>¢class=,program,
0 2 “end>

general <while stmt>

class=
'program’

* class="operation'
="'semantic!
Laccrory - <stat lists

(’,//L////?
convert — <expr>
e i \\\ no—OH

example

while I<2 do <stat list>

class="program'

* class="operation'
* class='operation' ]
fategory= 5 T ] :
Torimitive’, class class .T <stat

orm="binary' "expr- 'expr- —7 list>
category= et el % ,variable' variabléd
'semantic' ;RJUL-

* el S

SN convert Ly it ._____> l:] __)r_l_zi:l

o

no—oE

where 1 1s defined as an <integer var>

S11 «<return stmt> :: = [<return operation>];class='operation' |
[<freturn operation>];class='operation'
S12 <assign operation> :: = assign(<gp>,<expr>)

/*i.e., [assign] + [<tp> + <expr>] */

- T ——| -
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S13 <gp> :: = <variable>|<ref predicate>
example
<assign stmt>
FOUND : = 1 where FOUND is defined as an <integer var>
class=
category="'semantic' IS 'operation'
ﬁ‘ class='exprvariable'
Basign ; FOUND
! I‘—-—-‘——)
S14 <call operation> = call(<proc def>,<arglist>)
/* [call] » [<proc def>»<arglist>] */
* n, |
S15 <arglist> :: = [<arg> {-*arg>}o] e
S16 <arg> = <array> | <operation>|<ref predicate>|<variable>
/* The arguments in an arglist must be unique, that is, an argu-
ment may not appear in the list more than once. Therefore,
the variable node need not be reduced another level */
S§17 <convert operation> = convert(<expr>) /* [convert] + [<expr>] */
S18 <return operation> = return( ) /* procedure return
[return] > [ ] */
S19 <freturn operation> :: = freturn(<expr>) /* function return
[freturn] + [<expr>] */
$20 <end> :: = [no-op]

Semantic Operations

Fl1 <semantic operation>

F2 <gemantic operator>

*
:: = [<semantic operator> *<semantic operand list>];

class="operation'

:: = <semantic function>;category="semantic'
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F3 <semantic function> :: = [assigg][[call]([convert]'lcalculate]l

[return]\[freturn]\[eval]}[fcall]‘[Igi]l[1eveleval]|[§§§£§!§l]i

[installpar]|[evalargs]|[valuenode]|[refnode] | [buildbuffer]|

[installargg]l[pushpar]l[parattr]}[installocals]][installoc]]

[pushloc]l{1nstallocarray]I[locattr]l[releaselocs]l[releasepars]l

(release] | [popstack]| [pass)

*
F4 <semantic operand list> :: = [<semantic operand> {*<semantic operand>}2]
i
P f
F5 <semantic operand> :: = <expr>l<variab1e>!<segment def>

<semantic operation>|<formal parlisL>!<1oclist>I<arglistb '
An example of a program which consists of three global variables and
a single procedure follows:

int 1 = -1, FOUND = 0
int array A(3) = (2,5,5)
proc FINDS

while I < 2 do I ii= I+l
if A(I) = 5 then FOUND := 1 end

end

start FINDS |
class='program' |

B e f—z__)|5__>|?ﬂ

FIND5 ) class='p-x"_o_g¥_§_m_'_~
* o
[}
1 =| : '
X N1 class="operation clases
N clasg= 'operation'

category=
'semantic’ *‘—}_9
*
convert |—> 2t —
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N4
NS ¢lass="operation'
<statl. 2 L .
assign 1 > class=
£Li add-» —1 Toperation'
N¢€ class='program'
* N7 class=
R R T o=t » '
class='operation N10

N8 )
el ) /}//ﬂ <stat3>

clgss='operation' L : ]
N9 Program l

f

i

;

i

!
|
! class='operation' class=
H l* et P ant-
l _ iable
. . e
convert bl e = ref _91 ‘__)i 5 .
' : ] — |
= 0 no-o

N10
]
class='ex>' class='operation'
FOUND PTY .
<stat3> *
assign —> ﬂ > | 1

et S —— : i
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3. Semantic Functions

The semantics of a programming language are defined as a set of se-
mantic functions over an instruction set consisting of the state transi-
tion primitives, the graph structure construction and accessing primi-
tives, and some mathematical primitives. Some of these semantic routines
specify the sequence of control and are called control functions, where-
as others define the meaning of the language components (e.g., procedures)
relative to one another. These are called component functions. The con-
trol functions define a mechanism which permits the execution of the com-
ponent functions.

At the time of execution of these functions, it is assumed that com-
pile-time syntax checking is complete and that the arguments satisfy the
conditions which make them valid for use by the routines. These assump-
tions are enumerated in the brackets { ? that precede the instruction set
of the semantic functions.

The control functions execute, traverse, nextnode are now defined.

The definition of the component functions will follow.

Shorthand Notation

The following abbreviations are used by the semantic functions:

elt (set) /* any element from a set */
size (set) /* the number of elements in the set */
nsize (h(node)) /% the number of elements in h(node) */

*node = entry (h(node)) /* the entry node of the graph associated with
a node */

a(node) = {atti(node)} /* the set of attributes of 'node' */

operl(node) = *next(*node,h(node)) /* the first operand node of the

operand list node associated with 'node' */

- e —— i i ——
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oper2(node) = next (operl(node),h(next(*node,h(node))) /* the second
operand node of the operand list node associated with
'node'. */

oper3(node) = next (oper2(node),h(next(*node,h(node))) /* the third

operand node ... */

oper4 (pode) = next (oper3(node),h(next (*node,h(node))) /* the fourth
operand node ... */
pars (segment) = x ! x € nodes (h(segment)) A class(x) = 'parlist’

/* the parameter list of the segment definition

'segment' %/

CONTROL FUNCTIONS

/* Execute

A single node 1is passed to this routine and the value resulting
from its execution is returned. The manner in which the node is actually
executed depends on the composition of the node itself. If the node refers
to a single function (in which case its class attribute would be 'opera-
tion'), the contents of the node are evaluated by the component function
eval and the execution of the node is considered complete. If, however,
the node refers to a graph containing a sequence of nodes (in which case
its class attribute would be 'program'), additional control functions must
be utilized before the execute function is able to return a value. The
traverse function provides the means for moving along the graph described

by the node to be executed. */

(1) execute (node) =

I

gclass(node) = 'operation' v class(node) = 'program'
class(node) = 'operation' = eval(node)

class(node) = 'program' = traverse(*node,node)

p— . —— . —
. e .
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/* Traverse is a recursive procedure which controls the path of traversal
through a graph. It calls for the execution of the node 'current node'
(via the execute function) and uses the value of the node returned by
its execution to calculate the next node in the graph (via the nextnode
function). Traverse then examines this new 'current node'. If it is a
data node, we know that the previous node had been the last executable
node (see line (c) of nextnode). The new node is returned and the
traverse function terminates at this point. If the new node indicates,
by way of a message generated by the execution of the previous node,
that a function's RETURN statement had been encountered (i.e., if

Jcurrent node) = freturn), traverse stores the value of the RETURN ex-

pression in the graph of the function definition.

If neither of these above conditions has been met, traverse calls
itself recursively to calculate the next node in the path and then sub-
jects the new 'current node' to the checks described above. */

(2) traverse (current node, nodeset) =
class (current node) = 'data'yv
(v (current node) = freturn A segtype (nodeset) = 'func' A
type (x|role(x)="return' A x € nodes(h(nodeset)))=type

(*current node) A type (*current node)=type(nodeset))

NANANSS

/* type of RETURN expression = type of function */ vy

class (current node) = 'program' v

WA,

class (current node) = 'operation'

'data' o current node /* end of

class (current node)
traversal */
class (current node) = 'return' .

assign (x|role(x) = 'return' A x € nodes (h(nodeset)),

current node)
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/* store value of RETURN expression in the graph of the func-
tion definition */
class (current node) = 'program' v class (current node) =
'operation'

- traverse (nextnode (execute (current node), current node,

nodeset), nodeset) /* continue traversal */

/* Nextnode examines the previous node ('lastnode') and the node con-
taining the value resulting from the previous node's execution ('lastnode-
value'). If the previous node had been a function RETURN statement
(line b), a message to this effect is sent back to traverse. If the
previous node had been any other terminal node (line c), the traversal

i of the graph is complete, and the previous node is passed back to the
traverse function. If the last node executed had not been a terminal
node and had had one arc directed to the next node (line d), this new
node is returned to traveise. If, however, more than one arc had ema-

nated from the last node executed, the arc label must be matched against

I the value resulting from the execution of the previous node (line e,f).

When a unique match is found, the next node to be examined is returned

to traverse. */
F (3) nextnode (lastnodevalue, lastnode, nodeset) = H

v (lastnodevalue) = undefined v i

v (lastnodevalue) = freturn A size (padj(lastnode,

h(nodeset))) = 0 v
/* RETURN appears as last statement in the graph */
0 < size (padj(lastnode,h(nodeset))) < 1
/* 0 or 1 successors */ v
((Hx) x ¢ padj (lastnode,h(nodeset)) A e (lastnode,x)=

h(nodeset)
V (lastnodevalue) /*matching arc label for IF, WHILE,

CASE statements*/ Vv
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(=x) x € padj(lastnode,h(nodeset)) o e (lastnode),x)='else')
h(nodeset)

A size(padj(lastnode,h(nodeset))!e(lastnode,x)-
h(nodeset)

v(lastnodevalue) V e(lastnode,x)='else')=1)
h(nodeset)

/*only one match exists*/

/* (a) pass on error message */

v (lastnodevalue) = undefined = lastnodevalue

/* (b) pass on return message */

v (lastnodevalue) = freturn - lastnodevalue
/* (c) no arcs emanating from lastnode, indicating that it was the last
executable node in the graph - pass on its value */
size (padj(lastnode,h(nodeset)))=0 = define (x|class(x)='data',
v(x)=v(lastnodevalue))
/* (d) return the one successor to lastnode in the graph */
size (padj(lastnode,h(nodeset))) = 1 » elt(padj(lastnode,
h(nodeset)))

/* (e) choose the appropriate node from among the multiple successors
to lastnode (applies to IF, WHILE, CASE gtatements). ! (iota)
denotes a 'choose' function which selects the unique value for
which the condition is true. */

(3 x) (x € padj (lastnode,h(nodeset)) A e (lastnode,X) =
h(nedeset)
v(lastnodevalue)) =
(1x) (x¢ padj (lastnode,h(nodeset)) A e (lastnode,x) =
h(nodeset)
v(lastnodevalue))

/* (f) choose the node from among the successors to lastnode whose arc

label is 'else' (applies to CASE statement) */

(5 x) (x€ padj (lastnode,h(nodeset)) A e (lastnode,Xx) =
h(nodeset)

'else') =
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(1x) (x¢ padj (lastnode,h(nodeset)) A e (lastnode,x) =
h(nodeset)

'else')

An example might be of help in understanding the flow of control

dictated by the functions defined above. Using the program described on
page 28 for this purpose, the steps generated by the execute command
will be described in detail, beginning at the point where I =1 .

The procedure FIND5 is examined by the execute routine and is
.found to have class = 'program' . The nodes of the procedure must
therefore be traversed, beginning with N1, the WHILE statement. The
conditional expression (I < 2) {s evaluated ard is found to be true (i.e.,
1). The nextnode routine matches this value 1 against the edge labels
emanating from N1 and determines that the next node to be traversed must
be N3, a statement list. This statement list must itself be traversed,
beginning with the assignment statement in N4. Upon completion of the
assignment, nextnode determines the next node in the path of traversal.
Only one arc emanates from N4 and so the next node must therefore be N6,
the IF statement. The conditional expression (A(I) = 5) 1is evaluated
and is found to be true (1). By matching the edge labels against this
value, nextnode determines that N9, the statement list associated with
the IF is next. The assignment is made and nextnode again is called to
find the next step. No new node can be found and a data node is returned
to signal the end of the statement list contaiued in N9. Likewise, no
new node can be found to follow N9 and the data node is returned to
signal the end of the IF statement in N6. Again nextnode is called to
continue the traversal of the statement list associated with the WHILE

statement (N3), but no node can be found to follow N6. The

traversal of N3 is said to be complete. One arc emanates from this node,
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and nextnode therefore chooses N1 to be the next node in the path. The
WHILE loop will be entered once again.

The value of I is now 2, however, and the conditional expression
(I < 2) is found to be false (i.e., 0). The next node in the path is de-
termined to be N11 by the nextnode routine. Traverse returns a data

node, and the execution of the procedure FINDS is complete.

Example

where I=1
P refers to the procedure FINDS

(:)refers to a node whose value is l,(:) to a node whose value

is O

refers to the expression variable whose variable node has

a value of 1

FOUND data refers to a data node whose value is the value of

FOUND
ex = execute
tr = traverse
ex P = €r(N1,P) an = nextnode

= tr(nn(ex(N1),N1,P),P)
eval(N1)
convert (N2)

m(@,ﬂl,P)

= tr(N3,P)

= tr(nn(ex(N3),N3,P),P)
o=
tr(N4,N3)
tr (nn(ex(N4),N4,N3),N3)

eval (N4)

assign(I,N5)

. - ... - \-‘w y v

. L e ————l



tr(nn(I,N4,N3),N3)
tr(N6,N3)
tr(nn(ex(N6),N6,N3),N3)
tr(N7,N6)
tr(nn(ex(N7),N7,N6),N6)
eval (N7)
convert (N8)
EE(QQ((E),N7;N6),N6)
tr((N9,N6)
tr(nn(ex(N9),N9,N6) ,N6)
Raogguenmet
tr(N10,N9)
tr(nn(ex(N10),N10,N9),N9)
.:x_vil_(Nlu)
assign (FOUND @)
tr (nn(FOUND, N10,N9),N9)
tr (FOUND data, N9)
tr(nn (FOUND data, N9,N6),N6)
tr(FOUND data,N6)
tr(nn(FOUND data,N6,N3),N3)
tr(FOUND data,N3)
tr(nn(FOUND data,N3,P),P)
= tr(N1,P)
I=2
= tr(nn(ex(N1),N1,P),P)
eval(N1)
convert(N2)

= tr(n ((0),N1,P)

= tr(Nl1,P)

= Rl

37
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COMPONENT FUNCTIONS

/* Eval

A single parameter (node) is passed to this routine for evaluation.
If the node contains data, the node is returned and the evaluation is
complete. If the node is an expression variable (i.e., class(node) =
'exprvariable'), it is evaluated by an auxiliary routine leveleval
which examines the inner node for data. If the node represents an oper-
ation, the action taken depends on the type of operation specified.

An operator which is in a category called 'primitive' indicates that
some basic integer (comp. add) or relational/logical (eq, not, and)
operation is to be performed on some integer expression(s). The node
whose operator is of the category 'function' is directed to the fcall
routine for further evaluation. The fcall routine calculates the value
of the expression designated in the RETURN statement and passes the
node containing this value (albeit encased in an additional node) to
the eval routine. The eval routine, in turn, passes this node to its
user and the evaluation is complete.

All other operations passed to this routine involve the evaluation
of semantic functions. The value of the operator determines which of
the routines described below is to be executed. The node returned by
the executing routine is returned to eval which then returns it to its

user.
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(4) eval (node) =
% ~ class(node)="data' , (form(node)='rec' V form(node)='simple') V
class(node)="exprvariable' v
class(node)="operation' 5 ((category(*node)='primitive'
A ((form(*node)='binary'

A (optype(*node)="integer' V optype(*node)=

'rel' V optype(*node)="log')
A integerexpr(operl(node))=1 A integerexpr(oper?2
(node))=1)

V (form(*node)="unary'

A (optype(*node)="integer' V optype(*node)="log")

A integerexpr(operl(node))=1)))
V category(*node)="function’
v (category(*node)="'semantic' Ao (v(*node)=
assign V v(*node)=convert Vv

v(*node)=calculate V v(*node)=call\

v(*node)=ref V y(*node)=return V
v(*node)=freturn V v(*node)=

leveleval v v(*node)=addlevel V

s
:
?
E
z

e T T NN e Y T T Y S e SN A YA S S AT ARSI

evalargs Vv v(*node)=yaluenq§§ \

7
Z v(*node)=installpar V v(#*node)=
(

v{*node)=reinode VvV v(*node)=build-

v{(*node) -pushpar V v(*node)=
parattr V v(*node)=installocals V
v(*node)=installoc V v(*node)=

buffer V v(*node)=installargs V
pushloc vV v(*node)=installoc-

TNA N i STV A

array V v(*node)=
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3 locattr V v (*node)=releaselocs V ?
v (*node)=releasepars V v(*node)= é
¢

release V v(*node)=popstack V

-~

v (*node)=pass)))

/* node to be evaluated is a data node */
class(node)="data' =
form(node)="rec' = *node
form(node)="'simple' = node
/* node to be evaluated is a variable node */

class(node)="exprvariable' = leveleval(node)
/* node to be evaluated represents an operation */
class(node)='operation' =
category(*node)="primitive"' =
form(*node)="binary' =
v (*node) (eval (operl (node)),eval (oper2(node)))
/* where 1f v(*node)=add = add(eval(operl(node)),
eval (oper2(node)))
v (*node)=sub = sub(eval (operl(node)),
eval (oper2(node)))
etc., */
form(*node)="unary' =
v(*node) (eval (operl(node)))
/* node to be evaluated represents a function call */
category(*node)="function' = fcall (*node,padj(*node),pars(*node))
/* node to be evaluated represents a semantic function */
category(*node)="semantic' =

v(*node)=assign = assign(operl(node),oper2(node))

rtL




v (*node)=convert = convert (operl(node))

v (*node)=calculate = calculate (operl(node))

v (*node)=call = call(operl(node),oper2(node),
pars (operl(node)))
v (*node)=ref = ref (operl(node),eval(oper2(node)))

v (*node)=return = return([ ])

v (*node)=freturn = freturn(operl(node))

v (*node)=leveleval = leveleval(operl(node))

V (*node)=addlevel = addlevel(operl(node))
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V (*node)=installpar = installpar(operl(node),oper2(node))

V (*node)=evalargs = evalargs(operl(node),oper2(node),

oper3 (node) ,oper4(node) )
V (*node)=valuenode = valuenode(operl(node))

V (*node)=refnode = refnode(operl(node))

V (*node)=buildbuffer = buildbuffer(operl(node),
oper2(node))

V (*node)=installargs = installargs(operl(node),

oper2(node) ,oper3(node) ,opers (node))
V (*node)=pushpar = pushpar(operl(node),oper2(node))

V (*node)=parattr = parattr(operl(node))

V (*node)=installocals = installocals(operl(node))

V (*node)=installoc = installoc(operl(node),oper2(node))

V (*node)=pushloc = pushloc(operl(node))

V (*node)=installocarray = installocarray(operl(node),

oper?2(node) ,oper3(node))

v (*node)=locattr = locattr(operl(node))

v (*node)=releaselocs = releaselocs (operl(node))
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v(*node)=releasepars , releasepars(operl (node))

v(*node)=release = release(operl(node),oper2(node))

v(*node)=popstack = popstack(operl (node))

v(*node)=pass = pass (operl(node))

/* This routine examines the entry of the expression variable 'node'
for data. It returns a data node nested in an outer node (i.e., ex-

pression variable node). */

(5) leveleval (node) =
class(node)="exprvariable' A
g class(*node)="data' A (form(*node)='simple' V
form(*node)="rec")
form(*node)="simple' = node /* return expression variable*/
form(*node)="yec' = addlevel(**node)
/* choose entry of recursive

variable and nest it in an

expression variable */

/* This routine guarantees that an expression is returned by building

a new node around the original node passed as a parameter. */

(6) addlevel (node) =

define (x | class(x) = 'exprvariable', h(x) = list(node))

/* Assign evaluates the right part 'rp' of the statement and assigns
its value to the node represented by 'p'. Being that 'rp' signifies
an expression, the inner node's value (namely v(*eval(rp))) is used in

the assignment., */

(7) assign (Lp,rp) =

/* assignment to integer variable or integer array element by

isatade
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an integer expression */

(integervariable(£p)=1 V integerarrayelement (Lp)=1)

A integerexpr(rp)=1

integervariable (2p)=1 = setv(eval(ip),v(*eval(rp)))

integerarrayelement (2p)=1 -, setv(*eval(&p),v(*eval(rp)))

/* ref returns an expression variable whose inner

node is assigned a value */

/* Ref uses the evaluated expression ('var') as an index into 'array'.
It calls addlevel to encase the desired array element in an expression

variable */

(8) ref (array,var) =
type(*var)="integer' /* index into array is an integer */
A structure(array)='array' A (form(array)='rec'V
form(array)="simple"')
0 < v(*var) < arraysize(array) = /* element lies within
bounds of array */
form(array)="'rec' - addlevel(item(v(*var) + 1, h(*array)))
form(array)="'simple' = addlevel(item(v(*var) + 1, h(array)))
T » addlevel(define(x|v(x)=undefined,class(x)="data')) /* error

conditon */

/* Convert evaluates the expression contained in 'node' and returns a
node whose value is 1 1f the condition is satisfied (i.e., evaluates

to non-zero), and 0 otherwise */

(9) convert (node) =

é (node)=<expr> E

v(*eval (node))=0 = define(x|v(X)=0)
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v(*eval (node))#0 = define(x|v(x)=1)

/* Calculate evaluates the expression contained in 'node' and returns a

node whose value is that of the evaluated expression. */

(10) calculate (node) =

g (node)=<expr> %

define (x|v(x)=v(*eval(node)))

/* The parameter list for a procedure return is empty. Being that the
RETURN statement is the last statement of the procedure, it does not

affect the flow of control and no action need be taken. */

(11) return (node) =

? (node)= [ ] ;

node

/* The parameter list for a function freturn represents a variable ex-
pression. A message node is returned whose value is freturn and whose

graph correspond: 1o that ¢¢ the evaluated expression */
(12) freturn (node) -
i (node)=<expr> g

define (x!vix)=freturn, h(x)=h(eval (node)))

/* This routine returuns the value 1 1if 'expr' is an integer expression

and 0 otherwise. */

(13) integerexpr (expr) =

class(expr)="operation' A (optype(*expr)='integer'
V optype(*expr)="rel' v optype (*expr)='log"')

v type(*expr)="integer' = 1

T =0

DRSS

i e ——
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/* This routine returns the value 1 if 'node' is an integer array

element and 0 otherwise. */

(14) integerarrayelement (node) =

class(node)='operation' A v (*node)=ref A type(oper l(node)) =
'integer' = 1
@ T = 0

/* This routine returns the value 1 if 'node' is an integer variable,

and O otherwise */

(15) integervariable (node) =

structure(node)="scalar' A type(node)='integer' = 1

E =0

/* Call executes the subprogram which is represented by the list:

[installpar(args,pars)]* » [installocals(proc)] » proc

[releaselocs(proc)] + [releasepars(proc) ]

The list primitive append is used to construct the list */

(16) call (proc,args,pars) =
proc=<proc def> A
args=<arglist> A
pars=<formal parlist> A pars ¢ nodes(h(proc))
A class(pars)="parlist' i

execute (define(x|class(x)="program', h(x)=
append (append (append (append (1ist ([installpar(args,pars)]),

[installocals(proc)]),proc), [releaselocs(proc)]),

[releasepars (proc)])))

/* The function call routine fcall executes the subprogram which 1is

represented by the list:
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[installpar (args,pars)]* + [installocals(func)] + func -
[releaselocs (func)] + [releasepars(func)] ~ [Eass(xIrole(x)=

'return' A x € nodes(h(func)))] */

(17) fcall (func,args,pars) =
func=<func def> A
args = <arglist> A
pars= <formal parlist> A pars € nodes(h(func)) A class(pars)=
E ‘parlist’
execute (define(x]class(x)='Program', h(x)=
append (append (append (append (append(list ([installpar(args,pars)]),
[installocals(func)]),func), [releaselocs(func)]),
[releasepars (func)]),[pass(x|role(x)="return's x €

nodes (h(func)))1)))

/* The following routines assign the arguments ('args') supplied by the
calling routine to the parameters ('pars') declared in the segment defi-
nition. Each parameter in turn is examined and if it is to be passed

by value, the corresponding argument is evaluated and its value is

stored in a buffer. Otherwise, the graph of the corresponding argument
is stored in the buffer. When the parameter list has been exhausted,
each parameter is again examined in succession. If the parameter is to
be passed by value (i.e., calltype = 'value'), the value stored in the
buffer is assigned to its corresponding parameter. If the paramter is
to be passed by reference (i.e., calltype = 'reference'), the graph of
the argument is assigned to the corresponding parameter. This process

continues until all parameters have been assigned.

——
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Upon entry to these routines it is assumed that the number of

Al parameters is equal to the number of arguments, and that each evaluated
argument agrees in type and structure to its corresponding parameter.
Installpar initializes the buffer to the empty node, the index ro
1, and then calls evalargs. */
(18) installpar (args,pars) =
evalargs(define,define(x]v(x)=l),args,pars)
/* Evalargs stores the evaluated argument in a buffer for each parameter
} passed by value, and stores the graph of the argument in a buffer for

each parameter passed by reference */

(19) evalargs (buffer,index,args,pars) =

nsize(h(args))=nsize(h(pars)) A
structure(item(v(index),h(pars)))=structure(eval(item(y (index) %
h(args)))) A
type(item(yv(index),h(pars)))=type(eval(item(y (index),
h(args)))) A )

form(item(v(index),h(pars)))="rec' A class(item(y(index),

h(pars)))="data' A

((calltype(item(v(index),h(pars)))="value' A
((class(item(yv (index),h(args)))="data’
A class(item(v(index),h(args)))="scalar')
v class(item(v(index),h(args)))="operation')) Vv
(calltype(item(v(index),h(pars)))="reference' A

i
(form(eval (1tem(v(index),h(args))))="simple' v ;

(class(item(v(index),h(args)))="data'

§
; form(eval (item(v(index),h(args))))="rec') A

R T— P
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V (class (item(v(index),h(args)))="'operation' 5
v(*item(v(index),h(args)))="ref'))))
" v(index) > nsize(h(args)) = installargs(buffer,setv(index,1),
args,pars) /* buffer construction is complete */
v(index) < nsize(h(args)) =
/* parameter passed by value */
calltype(item(v (index),h(pars)))="value' =
/* evaluate argument, store its value in buffer, and then
proceed to process next argument */

evalargs (buildbuffer(buffer,valuenode(eval (item(v (index),

h(args))))),setv(index,v(index)+1l) /* increment index */
args,pars)
/* parameter passed by reference */

calltype(item(v(index),h{pars)))="reference' o

/* evaluate argument, stor. node in buffer, and then proceed

to process next argument */

evalargs (buildbuffer(buffer,refnode(eval (item(v(index,

h(args))))),
setv(index,v(index)+1), /* increment index */
args,pars)
/* Valuenode returns a node whose value is equal to that of an evaluated

argument 'node' */

(20) wvaluenode (node) =
(class(node)="exprvariable' o type(*node)='integer') Vv
(class(node)="data' A type(node)='integer')
class(node)="exprvariable' =

type(*node)="integer' = define (x|v(x)=v(*node))

— ~ —-—— > e '
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class(node)='data' -

type (node)="integer' = define(x|v(x)=v(node))

/* Refnode returns the evaluated node, stripping the outer node of an
expression variable, if necessary */

(21) refnode (node) =

2 class(node)="exprvariable' Vv class(node)="data' z
class(node)="exprvariable' = *node
class(node)='data' = node
/* Buildbuffer adds a node to the buffer and returns the buffer */
(22) buildbuffer (buffer,node) =
seth(buffer,append(h(buffer),node))
/* 1Installargs pops the buffer containing the evaluated arguments and
assigns these arguments to their appropriate parameters. */
(23) 1installargs (buffer,index,args,pars) =
v(index) > nsize(h(args)) = define(x|v(x)=true) /* parameter
installation complete */
v(index) < nsize(h(args)) =

execute (define (x|class(x)='program', h(x)=

append (1ist ([pushpar (item(v(index),h(pars)),*buffer)]),
[installargs(seth(buffer,pop(h(buffer))),
setv(index,v(index)+1),args,pars)])))
/* pop buffer, increment index, then proceed to
install next parameter */

/* Pushpar adds the evaluated argument onto the beginning of the approp-
riate parameter list., */
(24) pushpar (parameter,buffernode) =

parattr(seth(parameter,push(h(parameter) ,buffernode)))

PR R T R
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/* Parattr assigns the attribute of the previous first node to the cur-
rent first node */

(25) parattr (parameter) =

seta(*parameter,a(next (*parameter,h(parameter))))

/* The following routines add a variable to the list associated with
each scalar local variable, and add an array to the list associated
with each local array variable. The value of the local is undefined
upon entry into the segment.

Installocals initializes index to 1, and calls installoc. */

(26) installocals (segment) =

segment= <segment def> A

locs= <loclist> A locs € nodes(h(segment)) a
? class(locs)="loclist'
1nstalloc(define(x)v(x)=1),locs)

(27) installoc (index,locs) =

(structure(item(v(index),h(locs)))="'scalar' v
structure(item(v (index),h(locs)))="array') A
form(item(v(index),h(locs)))="rec' A
type (item(v(index),h(locs)))="integer"
v(index) > nsize(h(locs)) = define(xlv(x)=££gg) /* installation
of locals
complete */
v(index) < nsize(h(locs)) =
structure(item(v(index),h(locs)))="scalar' =
execute(define(x|class(x)="program', h(x)=

append (1ist ([pushloc(item(v(index) ,h(locs)))]),/*install

variable*/
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[installoc(setv(index,v(index)+1),locs)])))
/* proceed to process next local */
structure (item(v(index),h(locs)))="array' =
execute(define(xiclass(x)='program',h(x)=

append(list ([installocarray (define,define(x|v(x)=

arraysize(item(v(index),h(locs)))),item(v(index),
h(loes))))), /* install array */
[installoc(setv(index,v(index)+1),locs)])))
/* proceed to process next local */
/* Pushloc adds a local variable to its corresponding stack. The stack
is initially set to .a single node with attributes. */
(28) pushloc (local) =
structure(local)="scalar' o form(local)='rec' A
type (local)="1integer"'
type(local)="'integer' =

seth(local,push(h(local),define(x|a(x)=a(*local))))

/* Installocarray builds an array and then adds it to its corresponding

stack. (The stack is a recursive array which is initially set to an
array with attributes.) Array is initially set to [ ] and v(count)
is set to the size of the array. Count is decremented until the array
has been completed. The push primitive is used to install the array on

{ts stack. */

(29) 1installocarray (array,count,stack) =

i type(stack)="integer' A form(stack)='"rec"' ;
v(count)=0 = /* array ready to be added to stack */
locattr(seth(stack,push(h(stack),array)))

v(count )#0 = /* array building still in progress */
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type(scack)="integer' =

installocarray(seth(array,push(h(array),define(y|a(y)=

a(*(*stack))))),setv(count,v(count)-1),
stack)
/* proceed to install next element of array */

/* Locattr assigns the attribute of the previous first array to the

current first array */

(30) 1locattr (stack) =

seta(*stack,a(next (*stack,h(stack))))

/* The following routines release the locals and parameters. Releaselocs

calls on release to release locals. Releasepars calls on release to re-

lease parameters. */

(31) releaselocs (segment) =

segment= <segment def> A
locs= <loclist> o locs € nodes(h(segment)) A class(locs)=
'loclist’
release(define(x|v(x)=l),locs)
(32) releasepars (segment) =
segment= <segment def> A
pars= <formal parlist> A pars ¢ nodes(h(segment)) A
class(pars)="parlist'
release(define(x!v(x)=l),pars)

/* Release is used to release both locals and parameters. The value of
index is initially set to 1. It calls on popstack to pop the local or
parameter */

(33) release (index,locsorpars) =

v(index) > nsize(h(locsorpars)) = define(x|v(x)=££gg)/*release

is complete*/

e — b i it
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v(index) < nsize(h(locsorpars)) =
append (1ist([popstack({item(v(index),h(locsorpars)))]),
[release(setv(index,v(index)+1l),locsorpars)])))
/* proceed to release next local or parameter */
(34) .popstack (locorpar) =
seth(locorpar,pop(h{locorpar)))

(35) pass (node) = node

Primitive Functions

[* These functions periorm the primitive functions (ADD, SUB, MINUS,
etc.) upon the operands supplied. The operands are expression variables,
each of which contains a variable node. The result of the operation
upon the specified variable nodes is stored in a node which becomes
nested in an expression variable before being returned to the eval rou-
tine. */
<op> (operandl, operand2) =

3g§luqu(dwt(no(x:\\x)={-(*npnrandl)gn v(*operand2)),

a(x)=a(*operandl)))

/* Binary routine evaluates the function and builds a node contain-
ing the result of the evalvation. This node is nested within an
outer node before being returned. */

<op> (operandl)
addlevel (define (x |v(x)=op v(*operandl),
a(x)=a(*operandl)))

/* Unary routine evaluates the function and builds a node contain-
ing the result of the evaluation. This node 1s nested within an

outer node before being returned. */




CHAPTER III1

EXTENSION 1

(ESCAPE MECHANISMS)

1. SIMPL-T Syntax

This section of the paper describes extensions to the base model of
SIMPL-T which reflect the addition of escape mechanisms to the language.
These mechanisms, namely the EXIT, RETURN, and ABORT statements, affect
the program's flow of control and allow the user to cause the early termi-
nation of a WHILE loop, a procedure, a function, or the program itself
when his pre-defined conditions are met.

The EXIT statement provides a means of escaping from a WHILE loop.
In its unlabelled form, it causes the termination of the innermost WHILE
loop containing the EXIT statement. By specifying its label in the EXIT
statement, however, any one of the loops within which the EXIT is nested
may be terminated. Normal execution proceeds upon termination of the
proper loop.

The RETURN statement causes a return to the calling procedure or
function. In the extended version of SIMPL-T, the RETURN may appear any-
where within the statement list of the segment and need not be the last
statement.

The ABORT statement causes the immediate termination of the entire

SIMPL-T program.

2, H-Graph Syntax

The changes to the control structure of the language described above,
will affect only the control statements of the SIMPL-T model - the re-

mainder of the model {s virtually unchanged. The control functions will
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in effect ignore the remaining statemen within the WHILE loop(s) after

an EXIT statement has been encou i, and will ignore the remaining

statements within the segment after a RETURN statement has been encounter-

ed. For the case of an ABORT, all remaining statements in the program
are ignored, and execution of the program terminates.

The modifications and additions to the base model of SIMPL-T follow.
When much of a routine is uncha ym that presented in Chapter II,
the notation '...' 1is used to denot he unchanged portion. That portion
of a routine which has been chai 1 is designated by a vertical line ! .

Syntax changes and additi are preceded by the corresponding line
number of Chapter II (if it exists) and the suffix .x . This section
uses the suffix .1 . Changes and additions to the semantic functions

are handled in a similar

SYNTAX: EXIT, RETURN, ABORT

Statements

§2.1 <stat> :: = <if stmt>|<while stmt>|<case stmt>|<assign stmt>| 1
<call stmt>|<exit stmt>!<return stmt>|<abort stmt>

3 1 _<stat list> ]

$10.1 <while stmt> :: = [ <convert pzwdicatc$ 0 ¥
<end>

class="program',label=<labelname>,stmttype='while'
/* WHILE statements can be labelled */
$21.1 <exit stmt> :: = [<exit operation>];class='operation',
designator=<labelname

§22.1 <exit operation> :: = exit( )

shorthand notation for [exit] - [ ] */
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ex le

<exit stmt>

class='operation'

S ] SR
category= ‘ K Ao
exit s Jel >.{ i!gegignator <labelname>
< I
L‘___ﬁJi

§23,1 <labelname> :: = <identifier>'| '0"

S24.1 <abort stmt> :: = [abort( )];class='operation'

F3.1 <semantic function> :: = , . .|exit|abort

3. Semantic Functions

CONTROL FUNCTIONS

/* Traverse is a recursive procedure which controls the traversal
through a graph. It calls for the execution of the node 'current node'
(via the execute function) and uses its value to calculate the next node
in the graph being traversed (via the nextnode function). Traverse then

examines the new 'current node'. If it is a data node, we know that the

previous node had been the last exccutable node (see line (c) of nextnode).

The new node is returned and the traverse function terminates at this
point.

If the new node indicates, by way of a message generated by the exe-
cution of the previous node, that an EXIT statement had been encountered
(i.e., 1if v(current node)=exit), traverse checks to see if 'nodeset' cor-
responds to the WHILE loop which is to be terminated. If it does not,
the EXIT message is passed along until traverse succeeds in finding the

proper WHILE loop. When the label of 'nodeset' corresponds to the label

of a WHILE loop, a dummy node is returned and the message is in effect

|
|
i
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erased.

If the new node indicates that a procedure RETURN statement had been
encountered (i.e., if v(current node)=return), traverse then checks to
see if 'nodeset' represents a procedure, If it does not, the RETURN mes-
sage is passed along until traverse succeeds in finding the innermost
procedure. When the procedure is found, a dummy node is returned, and
the RETURN message is in effect erased. If the new node indicates that
a function RETURN statement had been encountered, (i.e., v(current node)=
freturn), the value of the RETURN expression is stored in the graph of
the function definition. The node containing the stored evaluated ex-
pression is returned and the RETURN message is in effect erased.

If the new node indicates that an ABORT statement had been encounter-
ed (1.e., if v(current node)=abort), the ABORT message remains unchanged
and the execution of the program terminates.

If none of these above conditions has been met, traverse calls it-
self recursively to calculate the next node in the path and then subjects

the new 'current node' to the checks described above. */

(2.1) traverse (current node, nodeset) =
class (current node)='data'
V v (current node)=returnp (segtype(nodeset)="proc' V
. : n n n-1
(3n3dx 3 nodeset € nodes(h (x))ah (x)=h (h(x))A

segtype (x)="proc "))

type(x| role(x)="return'sx¢ nodes (h(nodeset)))=
type (*current node) A (type (nodeset)=
type(*current node))

V v (current node)=freturn, ((segtype(nodset)="'func' A 2
)
5
%

V (3n3x 2 nodeset € nodes(h"(x)) A

hn(x)=hn-)(h(x)) A segtype(x)="func'))
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V v(current node)=exit
V v(current node)=abort
1

V class(curreat node)='operation

V class(current node)="program'

class(current node)='data' = current node /*end of traversalk/
v(curreat node)=return = /*procedure RETURN*/
segtype(nodeset)="proc' = define(x|v(x)=true)
T = current node /*pass on message,
continue search for procedure*/
v(current node)=freturn = /*function RETURN*/
segtype(nodeset)="func' =
assign(x|role(x)="return'y x ¢ nodes(h(nodeset)),
current node)
/* store value of RETURN expression in graph of the
function */

T =» current node /*pass on message, continue search for

function*/
v(current node)=exit =

stmttype (nodeset)="while' =
label(nodeset)=designator(current node) V
designator(current node)="'Q" =>define(x[v(x)=££gg)
/*proper WHILE loop has been found, erase
message*/
T = current node /*pass on message, continue search
for WHILE*/

v(current node)=abort = current node /*pass on message*/




59

class(current node)='operation' V class(current node)='program'

= traverse (nextnode (execute (current node),current node,

nodeset) ,nodeset)

/* continue traversal */

/* Nextnode examines the previous node ('lastnode') and the node con-
tainireg the value resulting from the previous node's execution ('last-
nodevalue'). If the previous node had been a RETURN, EXIT, or ABORT
statement (line b), a message to this effect is sent back to traverse.
If the previous node had been a terminal node (line c¢), the traversal of
the graph is complete, and the previous node is returned to the traverse
function. If the previous node executed had had one arc directed to the
nextnode (line d), this new node is returned to traverse. If, however,
more than one arc had emanated from the last node executed, the arc
label must be matched against the value resulting from the execution of
the previous node (line e,f). When a unique match is found, the next
node to be examined is returned to traverse. */
(3.1) nextnode (lastnodevalue, lastnode, nodeset) =
é v(1astnodevalue)=gpg3£igsg %
v(lastnodevalue)=return V v(lastnodevalue)=freturn V
v(lastnodevalue)=exit V v(lastnodevalue)=abort V
0 < size(padj(lastnode,h(nodeset))) < 1 /*0 or 1 successors*/ Vv
(((3x%) xepadj(lastnode,h(nodeset))ae(lastnode, x)=v (lastnodevalue)
h(nodeset)

/* matching arc label for IF, WHILE, CASE statements*/V

(3x) x épadj(lastnode,h(nodeset))Ae(lastnode,x)-'else')
h(nodeset)

A eize(padj(lastnode,h(nodeset))[e(1astnode,x)=v(lastnodevalue)
h(nodeset)

v e(lastnode,x)="else')=1) /*only one match exists*/

h(nodeset)

|
;
|
|




/* (a) pass on error message */
v(lastnodevalue)=gpduxingg = lastnodevalue

/* (b) pass on return, exit, or abort message */

v(lastnodevalue)=£g£prn vV v(lastnodevalue)=freturn V
V(lastnodevalue)=g§l£ v v(lastnode value)=abort

= lastnodevalue

COMPONENT FUNCTIONS

(4.1) eval (node)

b4

AN

V (category(*node)="'semantic' A (. . .V
v(*node)=exit V v(*node)=abort ...)))

/* node to be evaluated represents a semantic function */

category (*node)="semantic’

v(*node)=exit = exit(define(x|designator(x)=
desigrator(node)))
v(*node)=abort = abort([ J)
(11.1) return (node) =

Z node=[ ] i

define(x|v(x)=return) /* procedure RETURN */

(12.1) freturn (node) =

2 node=<expr>§

define (x|v(x)=freturn,h(x)=h(eval (node))) /*function

RETURN */
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/* Exit creates a message node which signals that an EXIT statement

has been encountered. If no label appeared in the EXIT statement, the
designator of the input 'node' would be '0'. If a label did appear in
the EXIT statement, the designator of the input ‘node' would be the label
name. In either case, the value of the node is set to exit to indicate

to the control functions (traverse, nextnode) that an EXIT statement has

been encountered. */

(36.1) exit (node) =

; designator (node)=<labelname> %

define (x|designator(x)=designator(node),v(x)=exit)

/*  Abort creates a message node which signals to the control functions

(traverse, nextnode) that che program is to be terminated. The input

'node' is empty. */

(37.1) abort (node) =
z node=[ ] ;
define (x|v(x)=abort)
As an example, consider a SIMPL-T statement whose syntax and h-graph
representhtion are given below:
while <expr> do <statl>
while <expr> do <stat2>

exit

end

<stat3>
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The statement W is examined by the execute routine and is found to
have class='program'. The nodes of the statement must therefore be tra-
versed, beginning with the conditional expression represented in N1l. By
assumption, the expression is true (i.e., evaluates to 1). The nextnode
routine matches this value 1 against the edge labels emanating from N1
and determines that the next node to be traversed is N2, a statement list.
Each statement of the statement list must be examined, beginning with N3
and then proceeding to the WHILE loop represented in N4. The class of
N4 is 'program' so it too must be traversed. Its traversal begins with
N5, which by assumption is a true expression (i.e., evaluates to 1).

The nextnode routine matches this value 1 against the edge labels emana-
ting from N5 and chooses N6 as the next node to be examined. The state-
ment list represented in N6 must be examined one statement at a time, be-
ginning with N7 and then proceeding to the EXIT statement found in N8.
Evaluation of the EXIT results in a node whose value is exit and whose
designator attribute is 'LABl'. This node serves as a signal to the con-
trol functions that the normally sequential flow of control is being
altered. The message is transmitted by the nextnode routine to the
traverse routine which checks to see if a WHILE statement has been com—
pleted. Toward this end, first N6 and then N4 are examined. A WHILE
statement is indeed represented in N4 but its label does not agree with
the designator of the EXIT statement and so the search for the proper
WHILE statement must continue. The traverse routine examines N2 and
then W. A WHILE statement (W) whose label matches the designator of the
EXIT statement has been found. Execution of statement W 1is complete.
The execution of the statement is described below. The following

shorthand notation is used:




(:) refers to a node whose value is I
EXIT node refers to a node where v(node)=exit and
designator (node)=<labelname>
ex=execute
tr=traverse
nn=nextnode

It is assumed that both instances of <expr> in the example are true.

ex(W)=tr(N1,W)

=tr (nn(ex(N1),N1,W),w)
=tr(nn(eval (N1) ,N1,W),W)
=g(n_n(@:Nl.W).W)
=tr(N2,W)
=tr(nn(ex(N2),N2,W)W)

——
tr(N3,N2)

tr(nn(ex(N3),N3,N2),N2)
eval (N3)

tr(N4,N2)

tr (nn(ex(N4) ,N4,N2) ,N2)
v’

r (N5,N4)

(84

T

r (nn(ex(N5) ,N5,N4) N4)

eval (N5)
exan((),N5,850) ,84)
tr (N6,N4)

tr(nn(ex(N6),N6,N4) ,N4&)

[
tr(N7,N6)

tr(gn(ex(N7),N7,N6) ,N6)

eval(N7)

——— i i i —e— WU W




tr(nn(tr(nn(tr(nn(tr(N8,N6) N6,N4),N&),N&,N2),N2),N2,W),W)
tr(an(ex(N8),N8,No) ,N6)
eval (N8)
tr(nn(EXIT node,N8,N6),N6)
tr(EXIT node,N6)
tr (un(EXIT node,N6,N4),N4)
tr (EXIT node,N4)
tr(nn(EXIT node,N4,N2),N2)
/*labels do not match*/
te(EXIT node,N2)
=tr (nn (EXIT node,N2,W),W)
=tr (EXIT node,W)

sfrue

/*labels match*/

'
f
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CHAPTER IV
EXTENSION 2

(STRINGS (1))

1. SIMPL-T Syntax

In the basic version of the SIMPL-T language described above, the
only data type recognized was 'integer'. An extended version of the lang-
uage which includes 'string' data types will now be described.

A string i1s a finite sequence of characters. In this first version
of string extensions to SIMPL-T, this sequence of characters will be
treated as a unit whose value is the value of the string. No attempt
will be made to consider the characters as individual units of informa-
tion.

A string has two lengths associated with it: a maximum length which
reflects the maximum length declared by the user, and a current length
which reflects the actual number of characters in the string at a par-
ticular point in time.

Strings may be linked together to form a string array. All elements
of this array must have the same maximum length. Thus a string array
declaration includes two static length declarations: one specifying the
maximum size of a string within the array, and the other specifying the
number of elements (i.e., strings) in the array.

Binary relational operators can be used in conjunction with string
operands, as can the two new operators that are introduced in this sec-
tion: concatenate and substring. The concatenate operator con generates

a string by joining together two existing operand strings. The substring
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operator generates a string by extracting a substring from an existing

\ string.

| The assignment statement for strings assigns the value of a string
expression to a string variable. It is also possible, by using the sub-
string operator on the left side of the assignment statement, to assign
a value to a portion (i.e., substring) of a string operand. This facility
is called substring assignment.

A string function is a function whose value is a string. The rules
governing the use of string functions are analogous to the rules for
integer functions described in the basic version of SIMPL-T. Similarly,
the conventions followed for passing strings and string arrays as argu-
ments to user procedures and functions are the same as for integers and
integer arrays.

The extended version of SIMPL-T defines several intrinsic functions
that facilitate programming with strings. Two of these functions are
modeled in this paper: trim (which truncates trailing blanks) and digits
(which checks to see if each character is a digit).

For a more detailed description of strings, see SIMPL-T manual [3]

(pp. 25-39).

2. H-Graph Syntax

The h-graph syntax of the extended model of SIMPL-T has been ex-
panded to include string as well as integer variables. The string vari-
able 1s represented as a node whose value is the value of the string.
Two lengths, a maximum and a current length, are associated with the
node. Being that the maximum length remains constant throughout the
program, it is assigned to an attribute (maxsize) of the node. The cur-

rent length, however, changes dynamically during execution and has there-




68

fore been assigned to a node within the string.

String variables may be linked together in list form to create a
one-dimensional string array. This array is represented by a node whose
graph consists of nodes representing the individual strings of the array.
The number of elements in the array (arraysize), together with other iden-
tifying characteristics are reflected in the attributes associated with
the array. At the same time, each string of the array retains its own
value, list structure, and attributes.

Simple string variables are joined together in a list structure to
form a recursive string variable; simple string arrays are joined to-
gether to form a recursive string array. These additional forms of data
are necessary for the implementation of procedures and functions.

The addition of string functions has been made possible merely by
expanding the definition of <typename» to include 'string'. The gen-
eral rules governing the use of functions need not be modified.

The flow of control in the expanded model, together with its associ-
ated control functions, remain unchanged by the addition of strings.

The component functions, however, must be adapted to recognize this new
data type.

Since integer operands may not be used in conjunction with the two
new operators introduced in this section, con and substring, type check-
ing must be performed at compile time to enable the proper evaluation by
the eval routine. The assign routine as well assumes extensive type
checking upon its parameters at compile time to ensure that strings and
integers are handled properly. In addition, the assign routine has been
expanded to allow for substring assignment.

The extensions to the base model of SIMPL-T follow.

e -
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SYNTAX
Data
Variables
V2.2 <simple var> :: = <integer var>|<string var>
V6.2 <string var> :: = [ﬂlength>*+<string>];Elgégé'data',Exgg?'string',
structure='scalar',form="'simple',maxsize=<integer>
V7.2 <string> :: = <charlist> | [ ]
V8.2 <charlist> :: = [any sequence of legal characters]
V9.2 <length> :: = [<integer>]
example
<string var>
string FOUND[3] = 'NO'

class="data',

o type='string',
structure='scalar',

2 f——> | NO form="simple',

maxsize=3

/* The rules governing the passing of string parameters are analogous
to those for passing integer parameters. Local variables and parameter
variables are defined as recursive variables containing their own
stacks. These stacks are defined by a list structure. Recursive string

variables and recursive string arrays are now defined:

V4.2 <rec var> :: = <rec integer>|<rec string>
*
V10.2 <rec string> :: = [<string var> {+<string var>}n]; class="data',

)
type='string',structure="'scalar', form="rec'

Arrays

A2.2 <simple array> :: = <integer arrny>|<str1ng array>

*
A6.2 <string array> :: = [<string var> {+*<string var>)n];class='data',
o
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type='string',structure='array',form="'simple’,arraysize=
nsize(h(<string array>))
¥ A4.2 <rec array> :: = <rec integer array>|<rec string array>
A7.2 <rec string array> :: = [<string array;{+<string array>}2];
class='data',type='string',structure='array', form="rec',
arraysize=nsize(h(<rec string array>))
/* The syntax for <expr> and <operation> is unchanged from that de-
fined in previous sections. The syntax for <operator> has been ex-
tended. */
El <expr> :: = <operation>|<ref predicate>| [<variable>];

class="exprvariable'

Operations
01 <operation>:: = <primitive operation>|<user operation>
*
02 <primitive operation> :: = [<operator> +<operand list>];

class="operation'
05.2 <operator> :: = <primitive unary function>;£g£g='unary',
category='primitive'|
<primitive binary function>;form='binary',

category="primitive'|

<primitive tertiary function>;form='tertiary',

category="primitive'|

<primitive quint function>;form="quint',

category='primitive'
010.2 <primitive unary function> :: = ...|<unary string function>;
optype="string'

018.2 <unary string function> :: = [trim]|[digits]

06.2 <primitive binary function> :: = ...|<binary string function>;

optype="string'




72

019.2 <binary string function> :: = [con]

020.2 <primitive tertiary function> :: = <tertiary string function>;

optype='string'

L}

021.2 <tertiary string function> [substringrtn]| [substring]

il

022.2 <primitive quint function> <quint string function>;

optype='string'

023.2 <quint string function> [substringassign]

gigg[qmrSquyturq

P6.2 <typename> :: = 'integer'|'string'
S13.2 <@p> :: = <variable>|<ref predicate>|<substring predicate>
$25.2 <substring predicate> :: = [<substring operation>];class='operation'

§26.2 <substring operation> :: = substring(<expr>,<expr>,<expr>)

Semantic Operations

F3.2 <semantic function> :: ... [stringeval]|[substringeval)

3. Semantic Functions
COMPONENT FUNCTIONS
(4.2) eval (node) =

class(node)="data's (form(node)="rec' V form(node)='simple')V
class(node)="exprvariable'Vv

class(node)="'operation'A ((category (*node)="primitive'A
A((form(*node)="binary' A
(((optype(*node)="integer' V optype(*node)=
'rel' V optype(*node)="log')
A integerexpr (operl (node))=1
A integerexpr (oper2(node))=1)
v ((optype(*node)="string' Vv optype(*node)=

[ 'rel")

o £ A o s - '
W : — L
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A stringexpr(operl(node))=1

~~J

A stringexpr(oper2(node))=1)))

—

V(form(*node)="unary'
A(((optype(*node)="integer' V optype(*node)=
'rel') A integerexpr(operl(node))=1)
V (optype(*node)="string'
A stringexpr (operl(node))=1)))

Vv (form(*node)="tertiary"'

A optype(*node)="string' l
A stringexpr (operl(node))=1
A integerexpr (oper2(node))=1
A integerexpr (oper3(node))=1)
VvV (form(*node)="quint'
A optype(*node)="string'
A stringexpr (operl(node))=1
A stringexpr (oper2(node))=1
A integerexpr (oper3(node))=1
A integerexpr (operé (node))=1 ;

A Integerexpr (oper5(node))=1)))

V category (*node)="function'

V (category(*node)="'semantic'
A (v(*node)=assign v .

VvV (*node)=stringeval

A

VvV (*node)=substringeval)))

/* node to be evaluated represents an operationk/

class(node)="operation' =
category(*node)="primitive' =

form(*node)="'binary' =

,
.
]
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v (*node) (eval (operl(node)),eval (oper2(node)))
/* where if v(*node)=add » add(eval(operl
(node)) ,eval (oper2(node)))
v(*node)=sub = sub(eval(operl
(node)) ,eval (oper2(node)))
v(*node)=con = con(eval(operl
(node) ),eval (oper2(node))) etc.*/
form(*node)="unary' =
v(#*node) (eval (operl(node)))
form(*node)="tertliary' =
v (*node (operl(node) ,oper2(node) ,oper3(node))
/* where if v (*node)=substringrtn - substringrtn
(operl(node),oper2(node),oper3(node))*/
form(*node)="quint' =

v(*ncdc)(operl(nude),operZ(node),operB(node),

oper4 (node) ,operS (node))

/* node to be evaluated represerts a semantic function */
category (*node)="'semantic' =
v(*node)=assign =» (operl(node),oper2(node))
v(*node)=stringeval (operl(node),oper2(node))
v(*node)=substringeval (operl(node),oper2(node),

oper3(node) ,oper4 (node))

/* The assign routine, together with stringeval and substringeval, evalu-

ate the right side ('rp') of the statement and assign its value to the

node represented by 'ip'. Being that 'rp' designates an expression, its

e
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nested node's value is used in the assignment. The routine is written
in modular fashion to avoid the possibility of side effects. Type check-
ing is performed to ensure that strings are not assigned to integer vari-

ables and integers are not assigned to string variables. */

(7.2) assign (gp, rp) =

((integervariable(gp)=1 V integerarrayelement (¢p)=1)

A integerexpr(rp)=1)

v((stringvariable(gp)=1 V stringarrayelement (2p)=1)

A stringexpr(rp)=1)

V(class(2p)="operation' A y(*gp)=substring A stringexpr(rp)=1))

/* assignment to integer variable or integer array element b
8 g y
an integer expression */

integervariable(gp)=1 = setv(eval(2p),v (*eval(rp)))

integerarrayelement (¢p)=1 = setv(*eval(ep),v(*eval(rp)))
/* assignment to string variable or string array element by a
string expression */

stringvariable(¢p)=1 = stringeval(eval(gp),eval(rp))

stringarrayelement (gp)=1 = stringeval (*eval (gp),eval(rp))

/* assignment to a substring of the string variable specified
in the left part ('¢p') of the statement by the expression
! specified in the right part ('rp') of the statement.

The string variable specified in the '@p' of the state-
ment is represented by operl(gp). The field that speci-
fies which character of the string is to serve as the be-
ginning of the substring is represented by oper2(gp)

The length of the substring is represented by oper3(gp)

An additional routine substringeval is needed so that
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each of the parameters is evaluated only once, thereby elim-
inating the possibility of side effects. The parameters of
the substring operation appearing on the left side of the
statement, along with the expression appearing on the right
hand side are evaluated and passed to substringeval for
further processing. If the field specifying the length of
the substring (oper3(gp)) is omitted, it is assumed that
the substring is to consist of all characters of the original
string beginning at the location specified by oper2(gp) .
The empty node is then passed along to fill the place of the
omitted parameter. All parameters passed to substringeval
(except for the empty node) are expression variables. */

class(2p)="operation’ A v(*ip)=substring =

size (padj (oper2(ip),h(elt (padj(*1p,h(2p))))))=0

/* oper3(gp) omitted*/

= substringeval ( kP gval (operditpl s
define,eval (rp))
size(padj (oper2 (ip),h(elt (padj(*1p),h(2p)))))) >0

/* oper3(¢p) included in substring

operation */

= substringeval (operl(gp),eval (oper2(ip)),

eval (oper 3(ep)) ,eval (rp))
/* Stringeval assigns the string constructed by substringrtn to the
string variable '¢p'. Substringrtn is treated as a primitive operation
which creates a copy of the string 'rp', truncated to the maximum length

of '¢p', if necessary. The parameters passed to substringrtn are expres-

sion variables which are defined as follows:

. i ——
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parameter 1) the string to be copied,
parameter 2) the starting location of the string to be copied
(= 1) , and

parameter 3) the length of the string to be constructed.
Substringrtn returns a string nested within an expression variable. The
graph of the new string is assigned to '#' and the stringeval routine,
as well as the assign routine, are complete.

(The string construction is described in detail in Chapter V where

substringrtn is treated as a semantic function (46.3).) */

(38.2) stringeval (gp, rp) =
class(rp)="exprvariable' A type(*rp)='string'
A class(ep)="data' A type(gp)='string'
/* length of 'rp' does not exceed maximum length of 'gp' */
maxsize (2p) 2 v(**rp) =
seth(¢p,h(*substringrtn(rp,addlevel (define (x|v(x)=1,
type(x)='integer')),addlevel (define(x|v(x)=
v(**rp),type(x)="integer')))))
/* length of 'rp' exceeds maximum length of 'lp' */
maxsize (2p) < v(**rp) =
seth\Ep,h(*substringrtn(rp,addlevel(define(x]v(x)=l,
type(x)="integer')),addlevel (define(x |v(x)=
maxsize (7p),type(x)="integer')))))
val 1s referenced by the assign routine for the purpose of

tring variable 'rp' to a string designated by the sub-

first three parameters of the substringeval rou-

iriables which furnish information relating to the
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string 1 = original string
varl = location of first character within string to be
assigned (F1)
var? = number of characters y be assigned (F2)
The fourth parameter 'rp is an expressi variable which represents the

string variable that is to be assigned to the substring appearing on the
left side of the assignment statement
If var2 is empty, 1ndicating that the length field was omitted, the
length of the substring is calculated and the substringassign routine is
then invoked. This routine, which performs the actual assignment, shall
be treated as a primitive operation in this section of the paper. The
parameters passed to the routine are defined as follows:
parameter 1) expression variable containing original string
parameter 2) expression variable containing the string variable
to be assigned to the substring
parameter 3) expression variable containing the location within
the original string at which the assignment will
begin
parameter 4) expression variable containing the Jength of the sub-
string to be assigned
parameter 5) a node whose value is initially set to 1.
Upon returning from substringassign, both the substringeval and assign
routines are complete.
(The substring assignment is described in detail in Chapter V

where substringassign is treated as a semantic function (48.3).) */

(39.2) substringeval (stringl, varl, var2, rp) =

é class(stringl)="exprvariable' A class(varl)=‘exprvariable’ A§
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(class(var2)="exprvariable' Vv var2=[ ]) A class(rp)= 1
'exprvariable' A type(*rp)='string' A
s substringsyntax(*stringl,*varl,*var2)=1 1
/* substring syntax OK */
v(*varl) > 0 = /* Fl1 positive */
| V(*var2)=0 = define(XEV(x)=££23) /*F2=0, no action taken*/
[ nsize(h(var2))=0 A V(*varl) < v(**stringl)
/* F2 omitted and Fl falls within bounds of string*/
/* F2 omitted */ = substringassign(stringl,rp,varl,addlevel
(define(x]v(x)=»(**stringl)-v(*var1)+1,type(x)=
'integer')),define(x]v(x)=1,type(x)='integer'))
é v(*var2) = 0 A v(*varl)+v(*var2)-1 < v(**stringl)

/* F2 positive and lies within bounds of string*/
/* F2 positive */ = substringassign(stringl,rp,varl,var2,define(x!V(x)=1,
type(x)='integer"'))

T = define(x|v(x)=undefined,class(x)="'data")

/* error condition */

i
i

T = define (x|v(x)=undefined,class(x)="data")

/* error condition */

/* Valuenode returns a node whose value is equal to that of an evaluated

argument node. */

(20.2) wvaluenode (node) =
class(node)="exprvariable' A (type(*node)='{integer' Vv
type (*node)="'string') v

class(node)="data' A (type(node)='integer' v

————

type(node)="string')
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class(node)="exprvariable' =
type (*node)="integer' = define (x| (x)=v (*node))
type (*node)="string' = assign(define(x|type(x)="string',
class(x)='data',structure(x)="'scalar’,
form(x)="simple',maxsize (x)=maxsize (*node)),node)
class(node)="data' =
type (node)="integer' = define (x|v(x)=v(node))

type(node)="'string' = valuenode (addlevel (node))

/* Pushloc adds a local variable to its corresponding stack */
(28.2) pushloc (local) =
(type(local)="integer' V type(local)="string"')
A structure(local)="'scalar' A form(local)="rec'
type(local)="integer' =
seth(local,push(h(local),define(x|a(x)=a(*1local))))
type (local)="string' =
seth(lnral,push(h(lnual),dvfinv(x:u(x):a(*luca]),h(x)=
! append(list(define(y]v(y)=0)),define))))
(29.2) installocarray (array, count, stack) =
(type(stack)="integer' V type(stack)="string') A;
form(stack)="rec'
v(count)=0 = /* array ready to be added to stack */
locattr (seth(stack,push(h(stack),array)))
v(count)#0 = /* array building still in progress */
type(stack)="string' =
installocarray(seth(array,push(h(array),

define(y[a(y)=a(**stack),h(y)=append

(1ist (define (x|v(x)=0)),define)))),

SR
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setv (count,v (count)-1),

stack)

/* proceed to install next element of

l array */

type(stack) = 'integer' =

/* This routine returns the value 1 if 'node' is a string variable */
(40.2) stringvariable (node) =
structure(node)="'scalar' A type(node)='string' = 1
P =0
/* This routine returns the value 1 if 'node' is a string array
element */
(41.2) stringarrayelement (node) =
class(node)="operation' A v (*node)=ref A type(operl(node))=
'string' = 1
il =0
/* This routine returns the value 1 if the syntax of the substring
is valid, i.e., 'node' is of type string, Fl and F2 are integer ex- ’
pressions, F2 may be omitted. */
(42.2) substringsyntax (node, Fl, F2) = %

type(node)="string' A integerexpr(F1)=1
A (integerexpr(F2)=1 V nsize(h(F2))=0) = 1

T =0

/* This routine returns the value 1 {if 'expr' is a string expression */

(43.2) stringexpr (expr) =

(class(expr)="operation' A optype(*expr)='string')
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V type (*expr)="string' = 1

T =0




CHAPTER V

EXTENSION 3

(STRINGS (II))

In this section an added level of detail will be introduced into the
modeling of strings. The <charlist> which heretofore has been treated
as a unit, will now be treated as a node which itself is composed of in-
dividual nodes of information. Each of these nodes represents one char-
acter of the string. A list structure is used to describe this sequence
of characters.

Because of the added level of detail, the implementation of routines
that were called in the previous section can now be described. The list
construction primitives push and append are used by these routines

to generate new strings, whereas the list accessing primitives item and

next are used to address individual characters within an already exist-

ing string.

1. H-Graph Syntax

Data
V6.3 «<string var> :: = [<length>*»<string>]; class='data',type="string',

structure='scalar', form='simple',maxsize=
nsize(h(<charlist>))

V8.3 «<charlist> :: = [<character>*{»<character>}2]

example
<string var>

string FOUND[3] ='NO'

- class="data',
type="string'

2 N [ 30 structure='scalar'
form="simple'
maxsize=3

82
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/* The primitive operations introduced in the previous section will now

be treated as semantic functions. The additions of the previous section

pertaining to primitive operations can now be deleted. */

Semantic Operations

F3.3 <semantic function> :: = ... |[substringassign]|[substring]|

[substringé]i[subSCring;cn]][buildstring]‘

[setvalue]| (setblanks]|[trim]|[trimexpr]|

[digits]|[digitexpr]|[con]

2. Semantic Functions

COMPONENT FUNCTIONS

(4.3) eval (node) =

-

‘
(

7 class(node)='data' Ao (form(node)='rec' Vv form(node)='simple') Vv

class(node)="operation' 5 ((category(*node)='primitive'

E class(node)="exprvariable' V

~

—— P

A ((form(*node)='binary' A (optype(*node)=

'"integer' V optype(*node)="rel'
V optype(*node)="log') A integerexpr
(operl(node))=1 A intepgerexpr(oper2(node))=1)
vV (form(*node)="unary' A (optype(*node)=
'integer' V optype(*node)='log')
A integerexpr(operl(node))=1)))
V category (*node) ' function'
v (category (*node)='semantic' A
(v (*node)=assign V ... V v(*node)=

stringeval V v(*node)=

substringeval Vv (*node) =

s
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? substringassign V v(*node)=substring 2

V v(*node)=substring3 V v(*node)=
substringrtn V v(*node)=buildstring
V v(*node)=con V v(*node)=setvalue
V v(*node)=setblanks V v(*node)=

digits V v(*node)=digitexpr V
v(*node)=trim V v(*node)=trimexpr)))

/* node to be evaluated represents an operation */
class(node)="'operation' =
category (*node)="primitive' =
form(*node)="binary' =
v(*node) (eval (operl(node)),eval (oper2(node)))
/* where if v(*node)=add = add(eval (operl(node)),eval (oper2(node)))
v(*node)=sub = sub(eval(operl(node)),
eval(oper2(node))) */
form(*node)="unary' =
v(*node) (eval (operl(node)))

/* node to be evaluated represents a function call */

category (*node)="function'
/* node to be evaluated represents a semantic function */

category(*node)="semantic' =

v(*node)=substringassign = substringassign(operl(node), i

v

oper2(node), ... , operS(node))
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v(*node)=substring = substring(operl(node),oper2(node),

oper3(node))

v (*node)=substring3 - substring3(operl(node),oper2(node),

i oper3(node))

v(*node)=substringrtn = substringrtn(operl(node),

oper2(node),oper3(node))

v(*node)=buildstring = buildstring(operl(node),

oper2(node),...,oper6(node))
v(*node)=con = con(operl(node),oper2(node))

v(*node)=setvalue = setvalue(operl(node),

oper2(node) ,oper3(node),oper4(node))

v(*node)=setblanks = setblanks (operl(node),oper2(node),

oper3(node))

v(*node)=digits = digits(operl(node))

v(*node)=digitexpr = digitexpr(operl(node),oper2(node))

v(*node)=trim = trim(operl(node))

v(*node)=trimexpr = trimexpr(operl(node),oper2(node))

/* The substring operator generates a string by extracting a substring
of length F2 from its string operand, beginning at character position

Fl. The string operand in this routine is the node 'stringl'. The two
fields F1 and F2 of the substring operator may be any integer variables
and are nested in the expression variables 'varl' and 'var2' respectively.
The F2 field may be omitted, in which case the substring from character
Fl to the end is implied. 1If F2 is omitted, the substring routine cre-

ates a node to simulate the F2 field before calling substring3. */

(44.3) substring (stringl, varl, var2) =

v(*varl) > 0 = /* F1 positive */
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/*F2 omitted*/ mnsize(h(var2))= 0 - substring3(stringl,varl,addlevel
(define(x:v(x)=v(**stringl)—v(*vatl)+l,
type(x)="integer',class(x)="'data"',
form(x)="simple')))

/*F2 included*/ nsize(h(var2)) > 0 o substring3(stringl,varl,var2)

v(*varl) < 0 = define(x|v(x)=undefined,class(x)="data')
/*error condition*/

/* Substring3 returns an expression variable containing the null string

or invokes substringrtn to build the new string, in which case the ex-

pression variable containing the new string is returned. */

(45.3) substring3 (stringl, varl, var2) =

substringsyntax(*stringl,*varl,*var2)=1
% /* substring syntax OK */
v(*varl)+v (*var2)-1 < v(**stringl) = /*substring lies within
bounds of stringl#*/
/*F2#0%/ v(*var2) > 0 =» substringrtn(stringl,varl,var2)
/*build new string#*/
/*F2=0%/ v(*var2)= 0 = addlevel(define(x|class(x)=‘data',
type(x)="string',structure(x)="scalar',
form(x)="simple',maxsize (x)=0,h(x)=
append(list(define(xlv(x)=0)),define)))
/*F2 < 0%/ vy(*var?) <0 = define(xlv(x)=undefined,class(x)='data')
/*error condition*/
v(*varl)+v(*var2)-1 > v(**stringl) = define(x|v(x)=undefined,
class(x)="'data')

/* error condition - substring does not lie within bounds

of stringl */
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/* Substringrtn creates a substring from the node nested in 'stringl',
beginning at character position v (*varl). The length of the substring
being created is v(*var2). The resulting string consists of a length
component and a character list component. The string is nested in an
expression variable before being returned.

4n auxiliary routine buildstring is invoked to generate the list of

characters. */

(46.3) substringrtn (stringl, varl, var2) =
class(stringl)='exprvariable' A class(varl)='exprvariable'
A class(var2)="exprvariable' A

substringsyntax(*stringl,*;ar]l ,*var2)=1

addlevel(define(zlclass(z)='data',type(z)='string',
structure(z)="scalar', form(z)=

'simple',maxsize(z)=v(*var2),h(z)=

/*length component*/ append(list (define(y|v(y)=v(*var2))),
/*character list component*/ buildstring(define,
/*first character*/ define(xiv(x)=v(item(v(*varl),h(next

(**stringl,h(*stringl)))))),
/*set count = 0%/ define (x|v(x)=0),

/*node containing original

character list*/ next (**stringl,h(*stringl)),
/*start location*/ varl,
/*substring length*/ var2))))

/* Buildstring is a recursive routine which builds a node whose graph
is a character 1ist. The list contains the characters of the original

string ('charstring') beginning at character position v(*Vl) and con-

tinuing for v(*V2) characters. One 'node' at a time is appended to
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the list. When the counter indicates that the string is complete, (i.e.,
when v(count)= (*V2)) , the node 'stringlist', whose graph is the com-
* pleted list of characters, is returned. */
(47.3) buildstring (stringlist, node, count, charstring, V1, V2) =
% class(Vl)="exprvariable' A class(V2)='exprvariable' ;
v(count)=v(*V2) = stringlist /*string completed*/
v(count) < v(V2) =
buildstring(seth(stringlist,append(h(stringlist),node)),
define(x[v(x)=v(item(v(*V1)+v(count)+1,h(charstring)))),
setv(count,v(count)+1),

charstring, V1 , V2 )

F /* This routine assigns a value to a substring of a string variable.

The input to substringassign is as follows:

left: expression variable containing the string variable under-

going assignment

right: expression variable containing the string variable whose
value will be assigned to a substring of 'left'

position: expression variable containing the node whose value is
the starting position within the original string variable |
at which the replacement will begin

length: expression variable containing node whose value corresponds

to the number of characters to be replaced, as specified in
the substring operation.

index: node whose value is initially set to 1.

Beginning at character position v(*position) of the original

string variable, the first v(*length) characters of node (*right)

are assigned. If v(*length) exceeds the length of the string in 'right',
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the value of the specified substring is extended with trailing blanks so
that the replacement of the desired number of characters can be made com-
plete. The remaining characters of the original string ('left') are not

changed, nor is the length of 'left' changed. */

(48.3) substringassign (left, right, position, length, index) =

class(left)="exprvariable' A type(*left)='string' A
type(*right)="string' A class(right)='exprvariable' p
class(position)='exprvariable' A type(*position)="integer' A
class(length)="exprvariable' A type(*length)="integer'A
type(index)="integer"'
V (*length) < v(**right) = /*length of right string exceeds sub-
string to be replaced*/
v(index) = v(**right) = /* assign first (length of left
string) characters */
execute (define(x|class(x)="program',h(x)=append (1ist(
[setvalue(left,right,position,index)]),

[substringassign(left,right,position,length,

setv(index,V(index)+1))]1)))
/*proceed to next character*/
v(index) > v(**right) = dofine(xlv(x)=££gg)

/*assignment complete*/

v(*length) > v(**right) = /#*length of left substring to be re-
placed exceeds length of right string*/
v(index) < v(**right) - /*assign characters of 'right'
to 'left' string*/

execute(definekxgrlnss(x)='program',h(x)=append(1ist\

[setvalue(left,right,position,index)]),
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[substringassign(left,right,position,length,

setv(index,v(index)+1))])))
/*proceed to next character*/
v(index) > v(**right) =
v(index) f_v(*length) = /* add trailing blanks */
execute(define(x|class(x)="'program',h(x)=append
(1ist([setblanks(left,position,index)]),

[substringassign(left,right,position,length,

setv(index,v(index)+1))])))
/*proceed to next character*/

v(index) > v(*length) = define(x v(x)=true)

/*assignment complete*/

/* Setvalue assigns a character from right string to left string begin-

ning at location 'position' */

(49.3) setvalue (left, right, position, index) =
type(*left)='string' A class(right)='exprvariable' A
type(*right)="string' A class(position)='exprvariable' A
type(*position)="integer'

setv(item(y (*position)+v(index)-1,h(next (**left,h(*left)))),

v(item(v(index),h(next (**right h(*right))))))
| /* Setblanks assigns blanks to left string beginning at location

'position' */

(50.3) setblanks (left, position, index) =

type(*left)="string' A
type(*position)="integer"'

setv(item(v (*position)+v(index)-1,h(next(**left,h(*left)))), d )
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/* This routine concatenates the nodes nested in 'stringl' and 'string2'
and returns the resulting node nested in an outer node. The auxiliary
routine buildstring is used to create a copy of the character list of
'stringl'. The routine is then called a secend time to append the char-
acter list of 'string? to the newly created list. This list is then ap-

pended to the length component to complete the concatenation. */

(51.3) con (stringl, string2)
class(stringl)="exprvariable' A type(*stringl)='string' A

class(string2)="exprvariable' A type(*string2)='string'

' Al
addlevel (define(z|class(z)="data',type(z)="string',
struct : lar',maxsize(z)=maxsize

(*stringl)+ma ize(*string?),

form(z)="simple' ,h(z)=

/*length component*/ append (list (define (y!v(y)=v(**stringl)+
( { ¥% 3
/*character list component*/ buildstring(buildstring(define,define(x|v(x)=

(L,h(next(**stringl,
/*copy stringl*/ h(*stringl)))))),define(x|v (x)=0),
t (**stringl, h(*stringl)),
iddlevel (define (x|v(x)=1)),
iddlevel (define (x| v(x)=
v(**stringl)))),
define(x|v(x)= (item(1,h(next (**string2,
h(*string2)))))),
/*string2*/ define (x!v(x)=0),
next (**string2,h(*string2)),

gﬁ[bfgj<hh<fh)v\x'»(x)“l)),

‘:1}7161;!'7"'"»1 (def im-(x' (X\*’:\ (**:4( ringi)))))))
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/* Digits returns an expression variable whose inner node has the value
1 if each character in the string is a digit (0-9) and otherwise returns
an expression variable whose inner node has the value 0. In order to

avoid side effects, the string expression is evaluated only once by the

eval routine. The digits routine separates the string variable into its
character list and length components. It then calls on digitexpr to

perform the actual examination of each of the characters. */

(52.3) digits (string) =

§ class(string)="exprvariable' A type(*string)='string' ?
/*null string*/ v(**string) = 0 = addlevel(define(xlv(x)=0)

v(**string) > 0 = digitexpr(next (**string,h(*string)),

k **string)
/* The 'charlist' parameter for the digitexpr routine corresponds to
the characters of the string under scrutiny. The 'counter' parameter
indicates the number of characters that have still not been examined.
Its initial value is set to the total number of characters in the string.
It is then decremented until all characters have been examined. If each

character lies between 0-9, a nested node is returned whose value is

1. */
(53.3) digitexpr (charlist, counter) =
v(counter)=0 = addlevel(define(x|v(x)=1)) /*only digit found*/
v(item(v(counter),charlist))=0 V y(item(v(counter),
charlist))=1 v
... Vv(item(y(counter),charlist))=9 =
digitexpr(charlist,setv(counter,v(counter)~1))

T = addlevel(define(x[v(x)-O)) /*non-digit found*/

‘ /* Trim builds a string which corresponds to the string contained in
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the expression variable 'string' truncated to remove trailing blanks.

The resulting string is nested in zn expression variable before being
returned by the trim routine. The original string remains unchanged.

To avoid side effects, the string expression is evaluated once by the
eval routine. The trim routine separates the string variable into its
charaeter list and length components. It then calls on trimexpr to per-

form the actual truncation. */

(54.3) trim (string) =
; class(string)='exprvariable' A type(*string)="string' }
v(**string)=0 = string /* null string */

v(**string) > 0 = trimexpr(next (**string,h(*string)),**string)

/* The 'charlist' parameter for the trimexpr routine corresponds to the
characters of the string being examined. The 'counter' parameter indi-
cates the number of characters that have not yet been examined. Its
initial value is set to the total number of characters in the string.

It 1s then decremented to reflect the number of non-blank characters in
'charlist'. The auxiliary routine buildstring is used to build the

truncated character list. */

(55.3) trimexpr (charlist, counter) =
v(counter)#0 A v(item(v(counter),charlist))=4 =
trimexpr (charlist,setv{counter,v(counter)-1))
/* check for blanks and decrement counter */
T = /* build string */
addlevel (define(z|class(z)="data',type.z)="string",
structure(z)="scalar', form(z)="simple',maxsize(z)=

counter,h(z)=

append (1ist (define(y|v(y)=counter)),
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buildstring(define,
define(xlv(x)=v(item(1,h(charlist)))),

-

define (x|v(x)=0),
charlist,

addlevel (define (x|v(x)=1)),

addlevel (define (x|v(x)=counter))))))

—— e




CONCLUSION

Several h-graph models for SIMPL-T have been presented in this pap-
er. These models attest to the fact that it is possible to extend
the original model without destroying its basic framework. The inclusion
of string data in Chapters IV, V required additions, but very few
changes, to the original component functions of the base model. The
control functions presented in Chapter II were easily adapted to provide
the flow of control necessitated by the addition of escape mechanisms in
Chapter I1I. The model is cognizant of what has preceded a particular
statement, and can therefore EXIT from a WHILE loop or RETURN from a
procedure with no major changes to the control functions. Had SIMPL-T
included a GOTO statement among its escape mechanisms, however, major re-
visions to the original model would have been necessary, since the con-
trol functions, as presented in these models, have no provision for for-
ward jumps. The basic model presented in this paper did prove sufficiently
flexible, however, to include the language features that actually exist
in SIMPL-T.

The models themselves are complex, but they merely reflect the com-
plexity of the semantics of the underlying language. They are written
in modular fashion so as to preserve the independent character of the
extensions. The addition of an EXIT statement, for example, has no ef-
fect on the handling of strings, and vice versa. When adding a new
feature to the language, the designer need not be concerned with the
effects his changes may have on unrelated features of the language. He
can rather focus his attention toward the task of incorporating the new
features within the existing framework. In this way, he can continue

to use modeling as a tool for the further design and modification of the

language.
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