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ABSTRACT

'The Code 50 Nuclear Exchange Model is a war game model produced by the LAMBDA
Corporation. This Research,,6ntribution derives and explains the basic mathematical
models used in the computer programs of that model, including models of missile and
bomber penetration as well as damage calculation, weapon allocation, and kill probability
models. Model implementation and integration into the Code 50 program are also
demonstrated.
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SECTION I

INTRODUCTION

GENERAL

This Research Contribution presents the derivations and explanations of the basic
mathematical models used in the computer programs of the Code 50 nuclear exchange
model and includes modifications by CNA to permit exercise of the Code 50 model and
submodels on computers of limited core-storage capacity. The models included in the
Code 50 nuclear exchange model are concerned with:

* Missile penetration

S Bomber penetration

* Damage calculation

* Weapon-target allocation

0 Single-shot kill probability.

The final section of this Research Contribution shows how the various models are
implemented and integrated into the Code 50 program. Additional documentation on the
exact details of computer operations of the Code 50 program is published in Research
Contribution 133, The Calculation Procedure for the CNA Version of the Code 50 Nuclear
Exchange Model. '> 7,7 T__
NUCLEAR EXCHANGE MODELS

A nuclear exchange model simulates the result of strategic warfare in a 2-player
game in which nuclear weapons only are employed. There are basically two types of
such models:

The first includes highly detailed simulations, used to establish targeting strategy
for various contingencies. Such simulations consider many variables, requiring, in some
cases, weeks of data preparation and many hours of computer time.

The second type includes the many aggregated gross effectiveness models in use
today. In this type of model, many individual targets are grouped in a single target class
if their individual characteristics are similar. Such details as range constraints, attack
azimuth, attack timing, etc., are not considered. The Code 50 exchange model is of the
latter type.

In the play of a nuclear exchange war game, it is first necessary to decide which side
strikes first, second, third, etc., and how many strikes each delivers. It is also neces-
sary to specify whibh types of target are attacked in each strike. For example, targets
might be the strategic force, population centers, or mixes of P itary targets and popula-
tion centers. The terms "counter-force-" "counter-value," and "mixed" are used,
respectively, to define these types of target.



In a counter-force attack, the attacker attempts to minimize future damage to him -
self by striking at the other side's strategic nuclear force. This is also known as a
"damage -limiting" attack.

In a counter-value strike, the attacker attempts to maximize the damage to some
measure of value on the other side. Generally, this measure of value is expressed in
terms of either population or industrial floor space. Mixed targets present some of thecharacteristics of both counter-value and counter-force targets.

Since mixed targets present complications, particularly with respect to target value
assignments, the Code 50 nuclear exchange model considers pure counter-force and
counter-value strikes only.

CODE 50 BACKGROUND

Code 50 is an early version of a nuclear war game developed by the Lambda Corpora-
tion for the Office of the Assistant Secretary of Defense (Systems Analysis). Throughout
this model, expected values that tend to be conservative from the point of view of the
offense ("offense-conservative") are used. For example, the probability of penetrating
defenses tends to be offense-conservative. Blast damage to the intended target is the
only damage considered, with the result that both collateral damage and damage resulting
from effects other than blast are not included. Hence, total damage inflicted also tends
to be offense-conservative.

Code 50 allows a maximum of three strikes. The choice of the first attacker is
determined arbitrarily; on the second strike, however, the roles of the attacker and
defender are reversed. The roles are reversed again on the third strike. The type of
strike is also arbitrary on the first two strikes (i.e., counter-value or counter-force),
but the third strike is always a counter-value strike.

The forces and cities of the two sides are agglomerated, each side being restricted
to a total of 48 target types. These include all the weapon types and all the city types for
the side. The program does not require that the proportion of weapon types to city typesconform to any pre-established ratio.

CODE 50 EXPERIENCE AT CNA

Under Task I of the Strategic Force Study, the Center for Naval Analyses was
charged with evaluating Code 50. This included program adaptation to exercise the
Code 50 model on the CNA computer, as well as documentation and evaluation of the
program. Because the original Code 50 program required more core storage than the
CNA computer could provide, modifications were made to reduce the core requirements.
The resulting program, designated "CNA 50", carried out generally the same operations
and yielded approximately the same results as earlier implementations of the original
Code 50 program.
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SECTION II

CODE 50 MATHEMATICAL MODELS

GENERAL

This section explains and derives the appropriate mathematical expressions for
each of the Code 50 models, to promote a fuller understanding of the underlying implica-
tions of the models themselves and to provide greater insight into the meaning of the
overall results obtained when Code 50 models are used.

In both the missile and bomber penetration models, the derivation is in two parts.

The first is concerned with penetration of area defenses; the second is concerned with
the problem of penetrating terminal defenses. In the case of bombers, the area defenses
consist of waves of fighters sent out to intercept and shoot down the bombers. In the case

of missiles, the area defenses consist of a nationwide area ABM defense. Terminal de-
fenses against bombers consist of surface-to-air missiles (SAMs); terminal defense
against missiles is assumed to be provided by a terminal ABM system around the target.
An additional complication is provided in the case of bombers: those which penetrate
terminal defenses are allowed, in certain cases, to attack the SAM sites directly, rather
than merely suffer attrition in exhausting the supply of SAMs.

The single-shot kill probability model covers the mechanics of kill, taking into ac-
count target hardness and weapon yield. The model considers the effects of probabilistic
delivery errors and the geographic distribution of an individual target's value, under the
assumption that both delivery error and target value can be approximated by circular
normal distributions.

The damage assessment models recognize two types of targets:

The first is a point target, thac is, a target with no appreciable area. Weapons and
other military targets are considered point targets within the meaning of the program.
Damage to point targets is assessed, using an exponential law (Bernoulli trial methodol-
ogy), since each weapon is assumed capable of destroying the target if placed correctly.

The second type is an area target. All cities are treated as area targets. For area
targets, the square root law is employed, since it is assumed that a single weapon may
not be able to destroy the entire target, even if placed optimally.

The weapon-target allocation model in Code 50 has a two-fold purpose: to inflict
the maximum amount of damage on the whole target base and to inflict the required
amount of damage on preferred targets. Preferred targets are defined as non-military
target- that have terminal defenses. The generalized LaGrange multiplier technique is
used, along with some heuristic non-linear programming logarithms to improve the
efficiency of the program in finding a new optimum solution that satisfies the maximiza-
tion problem and the preferred target damage constraint.

MISSILE PENETRATION MODELS

Offensive missile penetration in Code 50 consists of a two-part problem. First,
there is the problem of missiles penetrating an area defense system that is assumed

-3-



capable of protecting (up to the level of available interceptors) all probable targets. Thetsecond problem is the penetration of terminal defenses at the individual targets by mis -
siles that succeed in penetrating the area defenses. In this subsection, the area and
terminal penetration models used in Code 50 are described, beginning with the basic
area penetration model and proceeding to the terminal penetration and entry price models.
Subsequently, sample calculations ar.e made to demonstrate the operation of the models.

tI'

The subscript conventions in this subsection are as follows:

k7 IW Weapon type subscript (missile types only)

LKS Strike subscript

To simplify notation, no target type subscripts are used in this development. However,
because the equations do not vary with target type, no confusion should result.

Other symbols used in the equations are listed below:

AIN Number of interceptors used on a given strike

AINX Total number of area interceptors available

AMP Price in missiles successfully launched which just exhausts area
interceptors

AOB1W  Number of area objects per type IW missile

ARR KS Number of missiles of type 1W successfully launched and arriving atdefender's area defenses on strike KS

ARR* Number of missiles arriving at area defenses, just exhausting areadefenses but resulting in no payoff

ARRMX W , Maximum number of type IW missiles that could be successfully

launched by attacker and arrive at defender's area defenses on firststrike

FSENT w KSFraction of missiles of type 1W sent on strike KS

NLEFT1W  Number of offensive missiles of type 1W from original inventory

that have been withheld from prior strikes

NMINT Number of terminal interceptors

NNWP 1W  Number of offensive missiles of type IW in attacker's inventory

NP1w  Price in terms of independent targetable weapons successfully launched

NWPIW  Total number of independent targetable weapons available

OARR1 w  Number of area objects successfully launched by the attacker and
arriving at defender's area defenses on strike KS

OBJIW  Maximum number of area objects that could be launched by the attacker
and arrive at the defender's area defenses on the first strike

-4-
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OBJD Number of area objects that can be destroyed by area interceDtors

OPEN Number of area objects penetrating the area defense

PEN Equivalent number of type IW missiles penetrating area defense1W

PENPROB Probability that missile area objects will penetrate the area defense

PKMIS Probability of kill of an individual interceptor against an individual
area object

VRELAI Interceptor reliability

RN1w  Probability that missile type 1W does not fail during flight on strike KSIKS

RR1 ,KS Probability that missile type IW does not fail during launch on strike KS

SURV1W  Probability of NLEFT missiles surviving prior strikes by enemy

TOBIW  Terminal objects per missile

TOS1w  Number of terminal objects surviving

TPRWPN1W  Number of independently targetable weapons per missile for weapon
type IW

Assumptions Concernin Penetration of Area Defenses

Basic assumptions regarding area defenses are as follows:

0 Area defenses are capable of defending all targets and may not be bypassed.

* Area defenses are so balanced that there is no more advantage in attacking
the area defense weapons than in attacking targets directly.

* The area defenses do not preferentially defend but randomly destroy the
incoming offensive weapons.

* The defense is unable to discriminate between warheads and decoys.

0 Offensive weapon spacing is assumed such that a single interceptor may
destroy only a single area object.

0 On the first strike, the defender's strategy is to use only a fraction of his
area interceptors; that fraction is equai to the ratio of area objects actually arriving to
the number of area objects that could arrive.

* The offense knows exactly how many of its weapons have survived prior
strikes.

* Losses because of unreliability occur before the missile area objects reach
the area defenses and do not draw down the area interceptors.

The Area Defense Penetration Model

The significant parameter in the area defense penetration model is PENPROB, the
probability that an individual independent weapon in the remaining inventory will pene-
trate the area defense.
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Initially, there are NNWP w  offensive missiles of type IW in the attacker's inven-

tory. At present, NLEFT1W offensive missiles of type IW from the original inventory

n have been withheld from prior strikes. The probability that these NLEFT w  missiles

survived prior strikes by the other side is SURV The conditions on the three strikes

are:

NLEFT w = NNWP w

SURV1 w  =1 KS=

NLEFT w = NNWPiw
KS = 2 (1)

SURV1W  1

NLEFT W = NNWP1W (I- FSENTIW 
) KS = 3

SURVw : 1

The reprogrammable reliability (the launch reliability or the probability of failing
such that remaining weapons can be retargeted, taking the failure into account) for
missile type IW on strike KS is RR1w , KS " The non-reprogrammable reliability

(in-flight reliability or the probability of not failing after it is too late to retarget, taking
the failure into account) for missile type IW on strike KS is RN IW , KS " The fraction

of the remaining missiles of type IW sent on strike KS is FSENT w KS

The maximum number of missiles of type IW that could be successfully launched
by the attacker and arrive at the defender's area defenses on the first strike is:

ARRMX1W = NNWP 1W * RRIW I , 1 RN (2)

Now, for missile type IW there are AOB1W area objects per missile. Therefore,

the maximum number of area objects that could be launched by the attacker and arriveat the defender's area defenses on the first strike is:

OBJ = ARRMX1W . AOB1W  (3)
1W

The number of missiles of type IW successfully laurched and arriving at the defen-
der's area defenses on strike KS is:

ARR1w = NLEFT w " SURV1W  FSENTIw, KS RRIW,KS • RN 1w K (4)

The number of area objects successfully launched by the attacker and arriving at the
defender's area defenses on strike KS is then:

-6-
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OARR =EARRw AOBw (5)1W W I

On the first strike, the area interceptors are "shared out," so that the fraction of
area interceptors expended is identical to the ratio of offensive area objects arriving
in strike one to the maximum number of offensive area objects that could arrive. Thus,
for any remaining interceptors, AIN will be expended on strike one according to the
relationship:

AIN OARR"0 : KS =1 (6)

The number of area interceptors expended on a given strike is, then:

AIN = AINX • OARR/OBJ: KS = 1 (7)

AIN=AINX: KS>1

The number of area interceptors remaining is, then:

AINX 4AINX - AIN (8)

The destruction of area objects by area interceptors is determined on the basis of
zero leakage until the number of area objects exceeds the expected kill potential of
the area interceptors. Thereafter, the numbei of area objects destroyed is random
and proportional to the number of interceptors (AIN), interceptor reliability (RELAI),
and the probability of kill of an individual interceptor against an individual area object
(PKMIS). The maximum number of area objects that can be destroyed is therefore:

OBJD = AIN • RELAI • PKMIS (9)

The number of area objects penetrating the area defense is, then:

OPEN = MAX <0 : OARR - OBJD > (10)I The probability that missile area objects penetrate the area defense is, then:

OPEN (11)PENPROB ="--R-

The equivalent number of missiles of a given type penetrating the area defense, then,
is:

PENw = ARRw •PENPROB (12)

Terminal Defense Penetration and Total Price to Attack a Target

These are the assumptions regarding terminal defenses:

-



A. The number of terminal intercepts is equal to the total number of terminal
interceptors. (This implies either that each terminal interceptor is perfectly reliable or
that a reduced number of interceptors is assigned to compensate for reliability losses.)

B. Terminal interceptors have a probability of kill of unity against all terminal
objects arriving at the target.

C. The terminal defense may not be suppressed, and no terminal objects penetrate
to the target until the terminal interceptor supply is exhausted.

D. The defense is unable to discriminate between warheads and decoys.

E. Offensive weapon spacing is assumed such that a single interceptor destroys
exactly one terminal object.

F. All offensive terminal objects have perfect reliability, all unreliability losses
having occurred before penetration of area defenses.I As presented earlier, the number of missiles that penetrate the area defenses .s:

PEN w = ARR w * PENPROB (13)

Based on the assumption of TOB1w terminal objects per missile, NMINT terminal

interceptors with unity kill probability and perfect reliability can destroy NMINT
offensive terminal objects.

The number of terminal objects surviving is, then:STOS 1W =MAX (0: (ARR 1?w * PENPROB . TOBIW ) - NMINT> (14)

Now, if TOS 1Wis exactly zero, the number of missiles arriving at the area defenses

that just exhausts the area interceptors but results in no payoff is ARR1W *

ARR1W * = NMINT/(PENPROB • 'OB.w) (15)

Another way of expressing the price is in terms of missiles successfully launched.
If equation (15) is divided by RN IW KS' the price will be in these terms:

AMPIw = ARR w */RNw  KS (16)

Finally, if this result is multiplied by the number of independently targetable weapons
per missile, and the result is converted to an integer, the price will be, in terms of in-
dependently targetable weapons successfully launched:

NP1W = IU [AMP1W • TPRWPN1W J (17)

IA
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The total number of independently targetable weapons available, NWPI W , is just the

integer number of missiles that will be successfully launched on this strike (the number
left multiplied by the fraction sent and the launch reliability), multiplied by the number
of independently targetable weapons per missile, with the results truncated to an integer
value.

NWPIw =ID D[NLEFTIw " SURVI W " FSENTIw RRIW KS 1

TPRWPN1W ] (18)

Now, if NP 1W  NWPIW , the price of entry exceeds or equals the available resources

and no payoff from the target can be obtained by weapon type IW alone.

If NPIxw < NWP R the entry Price allows a payoff from weapon type IW

It should be noted that the preceding calculations of entry price presumes that only
a single weapon type will be used on a terminally defended target, since there are no
provisions for allocating the total price among several weapon types.

Sample Problem of Missile Penetration

A series of cases will now be considered and the necessary calculation° carried out
in a tabular manner, with one case explained in detail. "!he parameter values for the
cases are as follows:

KS > 1

NLEFT 1W " SURV1 w " FSENTW, KS " 10, 20, 30, 40, 50

RR =-0.9
RR1W, KS

RNIw, KS 0.8

AOB1w  = 3
TaBWi TOBw = 3

TPRWPN1W = 3

AIN = 30

RELAI = 0.8

PKMIS = 1.0

NMINT = 30

The case of NLEFT 1W  SURV1W • FSENTIW KS = 50 will now be carried out in

detail.

-9-



The number of missiles arriving at the area defenses is:
ARRN =-(NLEFT1- SURVIW FSENTI KS) RRIWK " RNIWKS

(50) *(.9) *(.8) = 36

The 14 missiles lost consist of 5 launch failures and 9 inflight failures. Because
only a single missile type is being analyzed, the nrumber of area objects arriving is:

OARR = ARR w AOBw

h= (36) - (3) = 108

The number of effective area interceptors is:

OBJD = AIN • RELAI • PKMIS

= (30) (.8) • (1.0) = 24

Therefore, the number of area objects penetrating the area defenses is:

OPEN =MAX<0:OARR-OBJD>

= MAX <0:108 - 24>= 84

The penetration probability may then be found:

PENPROB= OPEN

84= 84 = .7778

The number of missiles penetrating is, then:

PENw = ARRw • PENPROB

= (36) • (.7778) = 28

The number of terminal objects surviving terminal defenses is:

TOS =MAX <0: ( •RR1W. PENPROB TOBW) - NMINT>

= MAX<0: ((36) . (.7778) . (3)) -30 >

= 54

The price in missiles arriving at area defenses that was necessary to gain a payoff
was:

ARRw* = NMINT/(PENPROB • TOBrw)

= 30/(.7778 . 3) 12.86

-10-



This translates into the price of missiles successfully launched:

AMP = /RNIw, KS

= 12.86/.8 = 16.08

In terms of an integer number of independently targetable weapons, the price is:

NPw = IU [AMPw . TPRWPNI

=I [16.08t 3]

= 49

Now, the number of allocatable weapons was:

NWP~w = IDIID [NLEFTIW SURVrw" FSENTwKS RRWKS TPRWPN]

I= IDI D[(50) • (.9)]. (3)

= 135

Since NPw < NWP! I , a payoff may be secured from the target.

The number of weapons providing the payoff is:

N = MAX (0: (NWPJw - NPw) •PENPROB - RNIw,KS >

= MAX <0 : (135 - 49) • (.7778) • (.8) >

= 54

Notice that this result is the same as the result obtained for the number of terminal
objects surviving terminal defenses since the terminal objects per missile and the
independently targetable weapons per missile are both set to the same value (3). The
results for the other cases are shown in table 1.

i -11-
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TABLE I

SUMMARY OF RESULTS FOR SAMPLE CASES

Nmbf Number of Number of Number of Probability of a Number of Number of Number of
Number of missiles allocatable misiles that missile or waon missiles that missiles that targetablemissiles succesfully weapons, reach area penetrating area reach terminal arrive at weapons
launched aunched wp defense, defense, defense, target on target

lW ARRIw PENPROB PENIw

10 9 27 7.2 0 0 0 0

20 18 54 14.4 .4444 6.4 0 0
30 27 81 21.6 .6296 13.6 3.6 11
40 36 108 28.8 .7222 20.8 10.8 32
50 45 135 36.0 .7778 28.0 18.0 54

BOMBER PENETRATION MODELS

As with missile penetration, bomber penetration in Code 50 consists of a two-part
problem. First, there is the problem of the bombers that penetrate the interceptor
defense system. * The second problem is penetration of the SAM defenses. ** Theremainder of this subsection discusses the p,'netration models, beginning with the model
of interceptor defenses, and then proceeds to the SAM defense penetration model. Some
sample calculations, showing how the models function in Code 50, are then presented.

The subscript conventions used in this subsection are as follows:

rw Weapon type subscript (bomber types only)

IB Bomber class subscript

IF Fighter type subscript

KS Strike subscript

*This corresponds to the penetration of area defenses in the missile penetration

problem although, mathematically, the missile penetration and bomber penetration
are handled much differently.
*This corresponds to penetration of the terminal defenses in the missile penetration

problem.

-12-
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To simplify notation, no target type subscripts are used in this development. However,
* because the equations derived do not vary with target type, no confusion should result.

Other symbols used in the equations are listed below:

AMP1W  Price in bombers successfully launched

ARELIW  ASM reliability
ARRw 1Number of bombers and decoys successfully launched
ARIWand arriving at defender's fighter defense system on

strike KS

ARR1w * Price in bombers that arrive at defenses

ASMDEC1W  Number of ASM decoys per ASM warhead

B Total number of bombers and decoys arriving at fighter

defense system

BDESZw Number of bombers destroyed by all NSAMX missiles

BDPEN Iw Number of bombers and decoys of weapon type IW expected
to penetrate fighter defenses

BMRDEC1w  Number of bomber decoys per bomber of type rW

F Fraction of bombers that attack through given corridor; also
fraction of fighters that attack bombers

FKBD1W  Fraction of type IW bombers killed before weapon delivery

FSENT1 W , KS Fraction of remaining type IW bombers sent on strike KS

IWP Number of warheads required to produce at least 95 percent
1kill probability

NIIF Number of fighters in defense system of type 1W

NLEFT w  Number of bombers that have not been sent in prior strikes

NNWP w  Number of type IW bombers in attacker's inventory

NPw Total price in bombers, or in subsonic cruise armed decoys
NP1W (SCADs)

NPSNw 1WNumber of independently targetable weapons successfully
launched

NPSSw 1WNumber of independently targetable weapons for suppressing
SAM sites

NSAMDIT Number of suppressible SAM sites at target IT

-13-
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NSAMDM Number of suppressible SAMs per site

NSAMX Number of non-suppressible SAMs

NWP 1W  Number of independently targetable weapons available

PEN1W  Expected number of bombers penetrating defenses

PENPROB w  Overall penetration probability for type IW weapon

PK Probability that a type IF attacking fighter kills a type IB1w
1W bomber

L PKILL IB Probability that a bomber or decoy is killed

PSEFF1W  Probability of bomber survival until weapon launch

PSURV IF Probability that none of the F . NIIF fighters kills a given
IW IF bomber of same type

RIF Ratio of type IF interceptors to total number of bombers in
the corridor

RN1w , KS Probability that bomber type IW does not fail during flightSKSon strike KS

RR1w KS Probability that bomber type IW does not fail during launch
on strike KS

SSK Single-shot kill probability for ASM bomber, taking into
account SAM site hardness, SRAM yield, CEP, and height
of burst

SSKK Overall kill probibiity of ASM bomber against suppressible
SAM site

SURV w  Probability that NLEFT bombers survive prior enemy
strikes

TPRWPN~ Number of independently targetable weapons per missileSfor weapon type IW

WHDS1w  Number of ASM warheads per bomber for weapon type IW

Interceptor Penetration Model

Before a discussion of the penetration equations themselves, we shall list the basic
assumptions regarding the interceptor defenses:

A. The interceptors are assumed capable of defending all targets and may not be
bypassed.

B. There is no way of destroying the interceptors on the ground before the bombers
attempt penetration.

C. The interceptors attack the bomber force randomly in waves, each wave con-
sisting of a single type of interceptor.
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D. The interceptor/bomber ratio is constant for a single interceptor type in all
attack corridors.

E. There is no coordination between interceptor waves; i.e., the whole force of
interceptors of each type attacks the whole bomber force on a random basis.

F. The defense is unable to discriminate between bombers and bomber decoys
and between ASMs and ASM decoys.

G. The offense knows exactly how many of its weapons have survived prior strikes.

IH. Losses because of unreliability occur before the bombers reach the interceptors.

These assumptions understood, we now present the interceptor defense penetration
model. The significant parameter is PENPROB1W , the probability that an individual

independently targetable weapon in the remaining inventory penetrates the interceptor
defenses.

Initially, there are NNWP 1W bombers of type IW in the attacker's inventory. At
present, there are NLEFT w bombers that have not been sent in prior strikes. The

probability that these NLEFT w bombers have survived prior strikes by the other side
is SURV . The conditions existing on the three strikes are:

NLEFT = NNWP

SURV w 1K=
1W =

NLEFT = NNWPI

SR 1W<1W KS =2 (19)
SURV1w <1W

NLEFT w - NNWP w (I " FSENT 1 ) I

SURV1w  " KS =3

The reprogrammable reliability (the launch reliability or the probability of failing
such that remaining weapons can be retargeted, taking the failure into account) for
bomber type 1W on stril-e KS is RRIw, KS " The non-reprogrammable reliability (in-

flight reliability or the probability of not failing after it is too late to retarget, taking
the failure into account for bomber type 1W on strike KS is RNM , KS - The fraction of

the remaining bombers of type IW that are sent on strike KS is FSENT The
MW,KS

number of bomber decoys per bomber for bomber type 1W is BMRDEC 1W

The number of bombers and decoys of type IW successfully launched and arriving
at the defender's fighter defense system on strike KS is:

-15-
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ARR 1W =NLEFT1W . SURV 1W • FSENTIW , KS• RRIW ,KS• RNIW , KS
~(20)

. (I+ BMRDEC1w )

IThe total number of bombers and decoys arriving at the fighter defense system is,then:

B = ARR (21)
1W 1W

Now, the defense includes NIIF fighters of type IF . It is assumed that a fraction F

of the bombers is to attack through a given corridor and that the same fraction F of the
fighters is pre-positioned to counter the F.B bombers in the corridor. If the probabilitythat an attacking fighter of type IF will kill a bomber of type IBw is PKIF BW the

probability that a specific one of the F. NIIF fighters encounters and kills a specific

bomber out of the F. B in the corridor is PKIF, IBw/(F. B)

The probability that none of the F. NIIF fighters kills a given bomber of this type

sBthen: URV- (PKIF= [B w/(F • B) (22)

P R IF=[ ]F F. NIFF22

Let the ratio of interceptors of type IP to the total number of bombers in the corridor
be RIF.

RIF = FNIIF/(F B) (23)

The probability of survival is, then:

FSURV mIF = {1[1 - (KIM1 /(F. B) )JjIIF (24)

As an approximation of (24) as (F. B) becomes large:
R ] IF

PSURV IBwIF = [exp(- PKIFM ) IF

PSURV IB IF= exp C- PK IF , IB I  NIIF/B] (25)

1W IFI 1W

When all interceptor types are considered, the probability that a given bomber or decoy
penetrates the defenses is of the form:

PSURVM - I exp [-A IF,•B1 W  (NIIF/B) C IF, IB1W ] (26)x ~IW -IF 1F BW
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Although equation (26) represents the survival probability of a bomber or decoy, the
important issue is whether a bomber successfully delivered its weapon and, if so, the

" A reliability of those weapons after release. These parameters are taken into account in
calculations of the overall penetration probability (PENPROBIW ) of the weapon type.

From equation (26), the probability that a bomber or decoy of type I1W is killed is:

PKILLIB = I - PSURVB (27)

The fraction of bombers of weapon type IW killed before weapon delivery is FKI3DIw.

The effective probability of survival to weapon launch is, then:

PSEFF1W = PSURVIB w + (PKILL•IB (I - FKBD1W)) (28)
1W 1W

Finally, tor ASMs the probability that the weapon is successfully delivered must
take the ASM reliability (ARELIW ) into account as a multiplication factor. The overall

penetration probability for weapon type IW is, then:

PENPROBIW = PSEFF 1W • ARELIW

= ARELIW [I -(FKBDI W (I - PSURVIB))] (29)

The number of bombers and decoys of weapon type IW expected to penetrate is:

BDPEN1W = ARR 1W PENPROB1W  (30)

However, since only the fraction 1/(BMRDEC1W + 1) are actually bombers, the

expected number of bombers penetrating is:

PEN 1W = ARR1W • PENPROBMN/(I + BMRDEC)1W  (31)

Terminal Defense Penetration and Total Price to Attack a Target

The assumptions regarding surface-to-air-missile (SAM) defenses are as follows:

A. Gravity bombers do not have to pay a definite price to attack a SAM-defended
target; their kill probability against that target takes into account, as a multiplicative
factor, the probability that the target will shoot down the bomber with SAMs.

B. ASM bombers with short-range attack missiles (SRAMs) must destroy with a
probability of .95 the requisite number of suppressible SAM sites and exhaust the
requisite number of missiles from non-suppressible SAM sites before attacking the
target.

C. Subsonic cruise armed decoys (SCADs) must exhaust the requisite number of
suppressible and non-suppressible SAM sites before attacking the target.

-17-
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D. Each SAM may kill only one attacking SRAM or SCAD.

E. Each SRAM may attack only a single suppressible SAM site.

Based on the above assumptions, gravity bombers have no entry price to pay at a
SAM-defended target. Therefore:

NP1W = 0 : gravity bombers (32)

For the ASM bomber case, the price for suppressing suppressible sites is calculated
first. A single-shot kill probability (SSK) is calculated for the SAM site hardness, the
SRAM yield, CEP, and height of burst. The probability of kill must then be degraded by
the probability that the SRAMs arrive. The resulting overall kill probability is, then:

SSKK = SSK . PENPROBnv RNrw KS (33)

For this SSKK value, the number of warheads required to produce at least a 95 per-
cent kill probability (IWPIW ) is obtained from the relationship:

IWPw

.95 1 1 - (I - SSKK) 1W (34)

Therefore:

IW = U log (.05)/log (I - SSKK)] (35)

Now, since there are NSAMDIT suppressible SAM sites at target IT, the total number

of warheads required to suppress the sites is IWP1W ' NSAMD.

This result must now be translated into independently targetable weapons required
per target. We may do this by dividing through by the number of warheads per bomber
of weapon type 1W and multiplying by the number of independently targetable weapons of
weapon type IW per bomber, and taking this to the next larger integer value, to obtain
the price of independently targetable weapons for suppressing SAM sites:

NPSS1W = Iu[IWP1w  NSAMD *TPRWPNr W /WHDSI W ] (36)

Next, the price for non-suppressible SAM sites must be calculated. This is very
similar to the missile price calculation, since, in both cases, the specified number of
interceptors must be exhausted.

The number of ASM warheads per bomber for weapon type IW is WHDS w. The

number of XSM decoys per ASM warhead is ASMDEC 1W . The total number of warheads

and decoys per ASM bomber of weapon type 1W is, then, WHDS1W (l + ASMDECI W ).

Then, since the NSAMX non-suppressible SAMs are capable of destroying a single decoy

: -18-
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or warhead each, all NSAMX missiles are capable of destroying BDESIw bombers of

weapon type IW:

BDES w = NSAMX/[WHDSI W (1 + ASMDECI W )] (37)

Taking into account the penetration probability, the price in bombers of type IW
arriving at the interceptor defense is:

ARR* = NSAMX/[PENPROBI w • WHDS w (I + ASMDECI W ) 1 (38)

L -In terms of bombers successfully launched, thus taking inflight reliability into con-
sideration, the price is:

AMP w = ARRw/RN w K (39)

Then, as in the case of missiles, if this result is multiplied by the number of inde-
pendently targetable weapons per bomber, the result is expressed in terms of indepen-
dently targetable weapons successfully launched:

NPSN1W = [NSAMX -TPRWPNIW/(RNI W , KS 'PENPROB 1 W  (0
WHDSI W (1 + ASMDECr W )1)

The total price for ASM bombers, then, is just the sum of the prices against sup-
pressible and non-suppressible SAM sites:

NP1W = NPSSI w + NPSN1w  (41)

For the SCAD case, since all SAMs must be exhausted anti there are NSAMDM
suppressible SAMs per site, the total number of SAMs to be exhausted is (NSAMD

NSAMDM + NSAMX). Additionally, for the SCAD there are no secondary decoys, and
ASMDEC w = 0. The overall price for SCADs, thus, is:

NPw = L(NSAMD • NSAMDM + NSAMX) - TPRWPNr w /(RN 1w KS

•PENPROB1W * WHDS1W)] (42)

The number of independently targetable weapons available, NWPI W , is just the

integer number of bombers that will be successfully launched on this strike (the number
left, multiplied by the fraction sent and the launch reliability), multiplied by the number
of independently targetable weapons per bomber, with the results truncated to an integer
value:

NWP1w = ID[ID NLEFT M • SURV w  FSENT w ,KS RR w K TPRWN W

(43)
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Now, if NP1w >NWPIW , the price of entry exceeds or equals the available resources,
and no payoff from the target can be obtained by weapon type IW alone. If NP1W < NWPIw ,

the entry price allows a payoff from weapon type IW.

Sample-Bomber Penetration Problem

A series of cases will now be considered and the necessary calculations carried out
in a tabular manner, with one case explained in detail. The results will be presented
both in a table and graphically. The parameter values for the cases are as follows:

KS -1

NLEFT IW  SURV 1W  FSENTIw, KS = 10, 20, 30, 40, 50

RRIW , KS = .99

RNIW, KS 9

BMRDEC w = 1

IBw = 1
B1W  -

WHDS1w = 5

TPRWPNrw = 5

ASMDECr w = I

A 1 W

= AI = .5

C1, 1

FKBDIw = .9

AREL1.V = .9

SSK = .5

NSAMX = 5

NSAMD = 2
NSAMDM = 5

The case of NLEFT w  SURV1w • FSENT w KS = 50 will now be carried out in detail.

The expected number of bombers and decoys arriving at the interceptor defenses is:
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Z7 47

ARRIw (NLEFTIw SURVIw FSENTK) RRIw RNIw

(1 + BMRDECnv)

= (50) . (.99) (.95) (2) = 94.05

Because only one weapon type is considered, the total number of bombers and decoys
arriving at the interceptor defenses is:

B = 94.05

The probability that a decoy or bomber survives the interceptor attack is:
PSURV 1 = exp[- .5 1 (50/94.05)

= .7666

The penetration probability, then, is:

PENPROBJ (.90) .1 ((.9) (1 .7666)

= .7109

The expected number of bombers penetrating the interceptor defense, then, is:

PEN 1W = ((94.05). (.7109))/(2)

= 33.43

Now, the SAM defense must be handled. First, against the suppressible sites, the
overall kill probability is:

SSKK = (.5) . (.7109) (.95)

= .3377

The number of ASMs required per suppressible site is:

IVPiw = U [log (.05)/log (1 - .3377)]

=! U [7.271 = 8

The price to overcome suppressible SAM sites, then, is:

NPSSIw = [(8). (2)(5)/5 1

= IU [ 16] = 16
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The price to exhaust the non-suppressible SAMs is:

NPSNw = IU{(5) (5)/ (.95) (.7109) (5) (2)

=1u [3.70=4

The total entry price to the target, then, is:

NPrw= 16 + 4 = 20

Now, the number of allocatable weapons was:

NWPIw = ID [ID [(NLEFTw." SURVI W FSENTIw, KS)  RRIw KS1 " TPRWPNIw

• TPRWPNIw]

=I D[ID(150) (.99)]. (5)]

= 245

Since NPIw ! NWPw, a payoff may be secured from the target. The results for the

other cases are shown in table 2.

TABLE 2

SUMMARY OF RESULTS FOR SAMPLE CASES
IN BOMBERS UNLESS OTHERWISE NOTED

NWPIW IWP NPSSIW NPSNIw NPIw
IndependentlY ARRIw PSURVIBIw PENPROBIw PENIw SSKK Independently Independently Independently Independently

targetable 1W Ii W 'Wtargetable targetable targetable targetable
weapons weapons weapons weapons weapons

45 18.81 .2647 .3044 2.86 .1446 20 40 9 49#

95 37.62 .5145 .5068 9.53 .2407 11 22 6 28

145 56.44 .6421 .6101 17.22 .2898 9 18 5 23
195 75.24 .7173 .6710 25.24 .3187 8 16 4 20

245 94.05 .7666 .7109 33.43 .3377 8 16 4 20

*No payoff from this case, sinceNPiw> NWPIw
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SINGLE -SHOT KILL PROBABILITY MODEL

The single-shot kill probability model has several distinct parts. The first involves
determination of a 50 percent single-shot kill radius for weapon type IT when used
against target type IW . The second part involves the introduction of aiming errors and,
for area targets, distribution of the target, to determine a probability of kill for weapon
type IW against target type IT, on the premise that the weapon type is successfully
delivered. The third part involves strategy considerations and the probability that weapon
type IW can be delivered against target type IT.

Symbols used in the equations are listed below:

A Parameter for generalized kill function

CD Drag coefficient

CEP Circular error probable - radius of the circle centered at the mean
and containing 50 percent of the impact points

F Adjustment factor; ratio of FM for any yield to FMO for the datum yield

FM Initial value of the force applied to the target

FM' Peak force per unit area

FM" Force per unit area of blast wave

FMO Peak damage pressure for a given level of damage

F(t) Force resulting from dynamic pressure and as a function of time

GZ Ground zero

H-1 Lever arm

HOB Height of burst

IMP Impulse of the system

K Target factor used in reference (c)

KN Similar to the K factor in reference (c), except for a factor of 10

M Effective mass of the system

MU Ductility ratio

P0 .5  Peak overpressure associated with a .5 probability of obtaining a
desired degree of damage

PAT Atmospheric pressure ahead of blast wave

PKILL1~w Probability of target being killed

PK(R) Probability of damage as a function of distance R

PSURVrw, IT Probability of surviving attack by the target terminal defense

PT Point at which effective mass is assumed to be concentrated
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P(t) Overpressure

PTGTwIT Probability that there is a surviving target at the site
,QO.5  Peak dynamic pressure associated with a 5 probability of damage

Q(t) Dynamic pressure

R Distance (see figure 7)

Rt Distance to the target element from (0, 0)

R"t Distance to the impact point from (0, 0)

RE Structural resistance

R(x) Resistance of target to displacement surface area exposed to force

S Surface area exposed to blast
SSKPI1w, IT Single-shot kill probability for a single warhead

STRAT Iw ' ITStrategy factor

SURVXIT Probability that target type IT has not already been destroyed

T Natural period of elastic vibration

TC Period of a compound pendulum

TD Effective time duration

TDO Effective time duration for a reference yield YO

TS Artificial "period" for system

V Velocity of the system

VF Maximum and final velocity of system

VN Vulnerability number
VO Initial velocity of the system
W Weight of the system

WB Work done by blast wave in moving the structure

W R Weapon radius

WS Work done by the system in resisting deflection

X Target displacement or deflection

XE Yield deflection

XM Maximum deflection

Y Weapon yield

YO Datum yield
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CAngular acceleration

71 Coefficient of friction between the sliding surfaces

' iKinetic energy of the system

0' Work done to overturn the system

W Angular velocity

a Measure of gradual fall-off in probability of damage with distance

a', C" Standard deviations of the distributions

T Torque
F

Determination of the 50 Percent Kill Radius*

Blast Phenomena - The blast from a nuclear explosion, which constitutes the foremost
cause of damage to structural targets, is the result of two related blast phenomena: over-
pressure, P, and dynamic pressure, Q. Overpressure may damage targets by several
different modes: by crushing, by causing severe horizontal deflections, by overturning,
etc. By contrast, dynamic pressure acts in one direction and can be thought of as wind
pressure. It results from the velocity and density of the strong transient winds that
accompany the blast wave. Both Pand Q are usually expressed as pressure, in units of
pounds per square inch (PSI).

When the blast wave arrives at a target, both P and Q rise abruptly to their maxi-
mum values and then decay as functions of time, in the manner shown by the solid lines
in figure 1.

It is more convenient to work with pressures which vary linearly with time instead
of the shapes shown by the solid lines in figure 1. The linear method of representing
the pressure-time curves uses triangles with the same maximum pressure value as in
the ideal case, but lasting for a new duration, termed effective duration, TD . This
representation is indicated by the dotted lines in figure 1. The effective duration is
usually so determined as to provide the same impulse in the triangular representation
as contained in the ideal case; that is, the areas of triangles P-TD-0 and Q-TD-0 are
equal to the areas under the respective ideal curves. Pressures represented in this
triangular manner are referred to as "initially peaked triangular pressure pulses."

IThe two blast phenomena, overpressure and dynamic pressure, cause damage to
targets by several different types of loadings. Thus, most targets may be classified
into two types, overpressure-sensitive (or P-type) targets and dynamic-pressure-sensitive
(or Q-sensitive) targets.

Externally Applied Forces - Although many targets are influenced by more than one
form of blast loading, it is convenient to consider targets to be solely either overpressure
or dynamic-pressure-sensitive. Also, the complex decaying pressures that result in
complex forces can be approximated with sufficient accuracy by the triangular representa-
tion discussed previously if the target response time is long compared with the duration of

*Ixcept as noted, this derivation is based on reference (a).
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C the loading. Since the loaded area of many targets remains constant during the significant
damage phase, these pressures are directly proportional to forces on the target. There-

1 fore, these forces may be represented triangularly, as were the pressures.
P

ItI
0. 1

0 0
TD TP TD TQ

Time Time

FIG. 1: OVERPRESSURE AND DYNAMIC PRESSURE AS FUNCTIONS OF TIME

Figure 2 is a simplified force-time diagram, where F(t) is the force (pressure
times unit area), varying linearly with time, and FM is the initial value of the force
applied to the target. This peaked force could result from either of the two pressures
discussed previously.

FM

F(t)
0

U.

0
TD

Time

FIG. 2: SIMPLIFIED FORCE-TIME RELATIONSHIP
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As mentioned above, the forces on the target during the significant damage phase are
equal to the product of the particular pressure times the area existing at that time. For
example, the existence of frangible sheathing may be an important determinant of the area
loaded. In the special case of a loading resulting from dynamic pressure, the shape of the
target is important. In general, the force resulting from the dynamic pressure is given
by-

F(t) = S • Q(t) • CD (44)

V_ where F(t) is force at time t, S is the presented area, Q(t) is the dynamic pressure atI time t, and CD is the drag coefficient. This coefficient, a property primarily of target

shape, ranges in value from 0.35 for cylinders to 2 for unshielded structural members
(I-beams, etc.). It also depends on Reynolds Number for most objects.

Resistance of Target - Complex targets resist displacement in the same manner
as a beam resists bendii'g, or a desk resists sliding, or a box resists overturning. The
relationship between the resistance R(X) that many targets offer to displacement, and
target displacement or deflection, X may be expressed by a bi-linear resistance curve
as shown in figure 3. In figure 3, the point (RE, XE) is the yield point. Resistance func-
tions are shown for: (a) a strain-hardening situation in which, for some reason, the
resistance of the structure increases beyond the yielding point of (RE, XE), (b) a con-
ventionalized elasto-plastic relationship with constant RE after the yield deflection XE is
reached, and (c) an unstable situation in which the resistance decreases after the yield
point. Although resistance curves take many forms, as shown in figure 3, they may be
approximated by an "equivalent" elasto-plastic resistance-deflection relation. In such
equivalent cases, shown in figure 4, fictitious values of RE and XE are used so that the
area under the equivalent curve equals the area under the original elasto-plastic curve;
thus the work required to deflect the structure is the same. To assist in relating external
force and resistance, the structural resistance, R(X), should, for convenience, be de-
fined in the same units as F(t), i.e., pounds or psi.

Strain hardening

SRE

0
XE

Displacement (or deflection), X
FIG. 3: RELATIONSHIP BETWEEN STRUCTURAL

RESISTANCE AND DISPLACEMENT
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- " RE'

-- --I I

0*

F I

XE XE' XM
Displacement (or deflection), X

FIG. 4: RELATIONSHIP BETWEEN EQUIVALENT
RESISTANCE AND DISPLACEMENT

Figure 4 introduces a new term, XM, called the "maximum deflection," which is
the deflection at which a target is damaged to the extent desired. For example, in
overturning a target, XM will be the point at which the target is balanced with its center
of gravity over the point of rotation. In another case, XM might represent the distance
a bridge slides before falling off its supports: or XM might be the deflection of the upper
end of a building column at which it will fall by its own weight or the building will be
unusable to a specified degree.

In order to describe XM conveniently, the term ductility ratio, MU, is used. It is
defined as follows:

MU = XM/XE (45)

The ductility ratio is a measure of the inelastic action required to damage a target.

It is convenient also to describe structures by their natural periods of elastic vibra-
tion, T. For a single-degree-of-freedom system, the period is represented by:

T = 2r(M XE/RE) 1 / 2  (46)

where M is the mass of the structure, and RE/XE is the spring constant of the structure.
When an equivalent elasto-plastic resistance deflection relationship is considered as
shown in figure 4, the resulting period is then termed the "effective period."

Equation of Motion of a Single-Degree-of-Freedom System - The mass and resistance
of a structure may be represented by the single degree-of-freedom system shown in
figure 5.

Newton's equation of motion for this single-degree-of-freedom system may be

expressed as:

F(t) - R(x)= Md 2X/dt 2  (47)
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where F(t) is the externally applied force as a function of time, R(x) is the resistance
of the system as a function of displacement, M is the effective mass of the system and
d2X/dt 2 is the second derivative of displacement with respect to time (acceleration).

R(X
SM F(t)

FIG. 5: A SINGLE-DEGREE.OF-FREEDOM SYSTEM

The displacement of this model can correspond to the displacement of some point on
a structure, for example, point Pr on the roof of the one-story structure shown in
figure 6. The effective mass is assumed to be concentrated at this point PT. The
resistance of the structure is related to the sum of the resistances of the individual
components (the columns) of the structure. The external force, acting on the concen-
trated mass, may be an initially peaked triangular force of the type described in figure 6.

Applied force esistig f orce
PT Reitnfoc

PTF(t) -R M-RX

777"277 7 7 7 7777 7I
Before blast During blast

FIG. 6: STRUCTURE BEFORE AND DURING THE BLAST

The solution to equation (47) for structures represented by an elasto-plastic
resistance (figure 4) was solved by reference (b); the derivation is given below.
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Derivation of the Damage Pressure Level Equation - The damage pressure duration
for most targets has a value somewhere between zero (impulse load) and infinity (steady-

[* state load). The approach is to add together the determined peak damage pressure
equation for each of these two duration limits. This results in a single equation for a
damage pressure level with a duration somewhere between zero and infinity. The mathe-
matical technique of adding the two equations results in a solution that closely agrees with
the exact solution.

The basic concept of the derivation is the Law of Conservation of Energy, that is,[: the work done by the external forces from the blast wave must equal the energy absorbed
by the structure in the process of deformation. This means that the work done by the
external forces is equal to: (1) the work done in deflecting the target, or (2) the work
done on the system resisting the deflection, or (3) the kinetic energy of the system for: impulse loading.

Using these facts, the peak damage pressure level equation for impulse loading and
then for the steady-state loading will be developed.

L For the impulse loads, let the kinetic energy of the system, 0, equal the work done
by resisting deflection, WS The kinetic energy of a system is:

0 =M.V2 /2 (48)
where 0 is the kinetic energy, M is the mass per Lait area perpendicular to the blast
wave, and V is the velocity of the system. To solve the equation, the velocity, V, is
first found. To do this, the impulse, IMP, is first considered. The impulse is equal
to the area under the pressure-time curve (figure 2).

IMP = FM'. TD/2 (49)

In equation (49), FM' is the peak force per unit area, and TD is the effective time
duration. Impulse is also equal to the change in momentum of a system for impulse
loading.

IMP= M AV=M(VF -VO) (50)

Also, where M is the mass per unit area, VO is the initial velocity of the system (VO =0
when at rest) and VF is the maximum and final velocity.

Thus:

FM'. TD/2 = M(VF - VO) (51)

or: A V = FM' • TD/2M (52)

Substituting this in equation (48), then:

0= (M/2) * (FM' . TD/2M)2  (53)

-30-

t



Referring to figure 4: The work done in resisting the external force to the maxi-
mum deflection, XM is equal to the area under the elasto-plastic resistance curve:

WS = RE - XM - (RE • XE)/2 (54)

According to equation (47):

RE - XM - RE XE/2 = (M/2) • (FM' • TD/2M)2  (55)

Dividing both sides by RE2 and rearranging:

FM'/RE = (2/TD). {(M. XE/RE) * [(2XM/XE) - 11}1/2 (56)

Equation (56) contains the terms: M, XE, and RE. Conveniently, these same terms
are included in the fundamental period of vibration, an expression that may be used to
describe a structure.

Substituting the ductility ratio MU from equation (45) and the period T from

equation (46) into equation (56) yields:

FM'/RE = (T/(rr • TD). (2MU - 1)1/2 (57)

This completes the first portion of the damage pressure level equation for impulse
loading.

A steady-state pressure (or force per unit area) means that the pressure does not
decay with time and that the pressure is of the same intensity at zero deflection as at
maximum deflection, SM . Thus, the work done by the blast wave in moving the struc-
ture a distance XM by a force FM" is equal to:

WB = FM" • XM (59)

where WB is the work done by the blast wave in moving the structure and FM" is the
force per unit area. As stated before:

WB=W

Thus: FM" XM = RE" XM - RE- XE/2 (60)

or: FM"/RE = 1 - XE/(2XM) (61)

Substituting the ductility ratio MU = XM/XE in equation (61) yields:

FM"/RE = 1 - 1/(2MU) (62)

This completes the second portion of peak damage pressure level equation for a loading
of infinite duration.
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As stated before, the sum of the two limiting expressions is a good approximate
solution over the whole range of durations. Thus:

FM/RE = FM7'RE + FM 1 RE
i~i l  (63)

- (T/irD) * (2 MU - 1)1/2 1/(2MU) + 1

In usage, equation (63) has been found to be in error by less than 20 percent in most
cases and less than 32 percent in all cases when compared with numerical solutions of
equation (47).

in order to use this expression, some datum yield YO is selected for which the peak
force per unit area, FMO, and the duration, TDO, are known. Then equation (63) can
be rewritten for the datum yield as follows:

FMO/RE =(T/rfFDO)* (2 MU - 1)1/2 - I/(2MU) + 1 (64)

The ratio of FM (for any yield) to FMO (for the datum yield) is termed "Adjustment
factor." This ratio may be either less than or greater than unity. Thus:

R = FM/FMO (65)

The following expression for R can be derived by sub3titution of equations (63) and (64)
into equation (65):

FM/RE
R -FM/RE

(66)
(T/iTID) • (2 MU - 1) /2 - I/(2 MU) + I

(T/rfTDO) • (2 MU - 1)1/2 - 1/(2MU) + I

By rearranging and simplifying, the influence of weapon yield in terms of duration is given
by the following expression:

RI - 1/(2MU) (I TDO/TD) (67)

(T/IrTDO) • (2 MU - 1)1/2

Since the expression within the brackets in equation (67) is a function of the target
type's physical characteristics and the effective duration for the datum yield, equation
(67) may be rewritten as:

R = 1 - KN • (1 - TDO/TD) (68)

The term, KN, is similar to the K factor in AFM 200-8, except for a factor of 10.
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Thus:

K=10 KN (69)

Then, equation (68) can also be written as:

R=I -. 1K (I-TDO/TD) (70)

and:

K =10 S-1 II(2 • MU)

(T/(Tr. TDO)) • (2 MU-i)1/2

All of the factors included in K are constant after the datum yield is selected.
Since much of the original target damage data was obtained from the Japanese explosions
and from nominal yield experiments, a datum yield of 20 kilotons was selected for
AFM 200-8.

Hence, KN or K is a constant for a given damage level to a given target. This
constant K then can be used to describe the way in which target damage pressure (FM)
changes as a function of weapon yield with respect to the damage pressure level at
20 kilotons.

The K factor above is for a target with an elasto-plastic or an equivalent elasto-
plastic resistance. Different K factor relations are required for sliding and overturningtargets because they have other than elasto-plastic resistance. These relations are
derived in the next two subsections.

Derivation of K for Overturning Targets - The overturning K factor equation is
different from the one just described primarily because the overturning target does not
follow the conventional elasto-plastic resistance pattern. This subsection will develop
the overturning K factor equation which will be used in the same way as the previously
developed K factor.

Here again, the approach used in reference (b) is to determine the peak damage
pressure equation for an impulse load and then for a steady-state load. These two
equations are added, to provide a single equation for a peak damage pressure for a
duration between zero and infinity. This single equation will be used to determine an
adjustment factor relationship after which the overturning target K factor may be
isolated.

Conservation of energy shows that the work done by an external force from the
blast wave is equal to: (1) the work done in overturning the target and (2) the kinetic
energy of the system for impulse loading.

To obtain the damage pressure level equation for impulse loading, the kinetic
energy equation will first be developed. Then the kinetic energy will be equated to the
work done in overturning the target.
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Consider the overturning target described in figure 7.

F i(t ) - .W

LFIG. 7: FORCES ON AN OVERTURNING TARGET

The following assumptions are made: (1) the target overturns about point 0; (2) the
target does not slide, and (3) the duration of the shock is short compared with the time
required for the target to overturn.

From energy considerations, the following kinetic energy equation is given for an
impulse load for an initially peaked triangular pulse that is very short (impulsive) in
duration:

KE = 0" Ia,2/2 (71)

where I is the polar moment of inertia and wis the angular velocity of the target. For
convenience:

2 = (I w) 2/21 (72)

Another relationship from physics is:

T= aI (73)

wherc a is the angular accAeration of the target, I the polar moment of inertia of the
rotating system, and T the torque (or the moment equal to the force times the lever
arm). In the overturning problem, the force, or force/unit area, i.e. pressurt;, is a
function of time as shown in figure I or 2. Thus, the torque in equation (73) may be
expressed in terms of a moment:

I a=F(t) H (74)

Since the integration of angular acceleration results in angular velocity, then by integra-
ting both sides, equation (74) becomes:

I • =fF(t) H • dt (75)
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The pressure or force at arty time, t, between the limits of t = 0 and t = TD, is
represented in figure 8 and by equation (77).

FMA

F(t)
a.

0
U-

0 -- t

t TD
Time

FIG. 8: RELATIONSHIP BETWEEN FORCE (PRESSURE) AND TIME

FM/F(t) = TD/(TD - t) (76)

or

F(t) = FM - (TD - t)/TD (77)

Substituting the force (or pressure) at any time, t, between the limits of t = 0 and
t = TD into equation (75) yields the result:

TD
I * FM - H E(TD - t) - /TDJ. dt

0 2 TD(78)

= FM H * t - FM * H - t /(2 * TD)1D (

Consider the static moments about point 0 in figure 7. The resultant static force acts
at a distance H above che surface. This force must be large enough to overcome thestatic resistance in order to overturn the target.

Thus:

RE- H = W XC (79)

where RE is considered the static force required for overturning, (or the internal
resistance), H is the point of application, and W is weight of the target. Substituting
equation (79) into (78), and modifying FM to FM' to indicate a very short pulse, the
equations become:
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I W (0 = (FM'/RE). RE" H" TD/2

= (FM'/RE) * (W XC/H)" (H TD/2) (80)

Substituting equation (80) into (72), the solution is:

Wihte= (1/(2 . I)) . (FM'/RE)2 . (W . XC .TD/2)2  (81)

With the kinetic energy solved, the work done in overturning must be determined. The
work done on the system to overturn it is equal to lifting its weight from the position of
rest to a position such that the center of gravity is directly above the center of rotation
as shown in figure 9.
~W

WF I

[D - "" XO -)
2 - XC2l//

[O2-(X)2lXC

FIG. 9: POSITIONAL RELATIONSHIPS FOR AN OVERTURNING TARGET

Expanding the square root In binomial series and dropping the hfigher order terms:

Oz: , W' .D - I- + (xC/D) 2/2 ..
(82

W D (XC/D)2/2 (83)
W (XC)2(2 D)

As stated previously, Ql from equation (81) and 0' from equation (83) may be
equated:

(1/21). { FM'/RE) 2 . (W.- XC.- TD/2) 2 = w . (XC) 2/(2. D) (84)

Therefore:

FM'/RE =2 •(1/(D • W))'/2 /TD (85)
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When the duration of the force pulse is very long, the peak force must at least
equal the initial resistance (RE) or the system will not overturn. Thus FM" = RE:

FM"/RE = 1 (86)

where FM" indicates a force of great duration.

The damage pressure for an initially peaked triangular force pulse with a duration
between that of an impulse (TD = 0) and infinity (TD = 0) can be approximated by the sum
of equations (85) and (86).

FM/RE = (FM'/RE) + (FM"/RE)tK /2 (87)
= I + 2 .(I/(D • W))I/"TD

[To arrange the solution in terms of a K factor, consider the period of an over-
turning object. This period corresponds to that of a compound pendulum supported at
the point about which it pivots when it overturns.

I A compound pendulum (or physical pendulum) is any body that vibrates in a
manner of a pendulum but whose mass is distributed throughout the body, and not a
concentrated mass at the end of a cord of negligible weight, as is the case with the
simple pendulum. Thus, the period of a compound pendulum is:

TC =2n. 1I/(M .D g))i/ 2  (88)

since:

M=W/g . (89)

Then:

TC/2T= (I/(W D)) 1 2  (90)

Conveniently, the terms necessary to describe an overturning target in the period ex-
pression are also in the force calculations for overturning. Therefore by substituting
equation (90) into (87), the result is:

FM/RE = 1 + TC/(TT • TD) (91)

The adjustment factor (which leads to the K factor) for overturning targets may be
solved by substituting equation (91) into the previously described adjustment factor ex-
pression, equation (65).

F = FM/FMO

= (FM/RE)/(FMO/RE)

I + TC/(n. TD) (92)I + .7:'C/(rr • "DO)
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By rearranging and simplifying:

= (- T 'TD j) (1-TDO/TD) (93)

Since the expression within the brackets in equation (93) is a function of the target
type's physical characteristics and the effective duration for the datum yield, equation
(93) can be rewritten in the form of equation (68).

F = 1 - KN • (I - TDO/TD) (94)

By again making K = 10 . KN, equation (94) becomes:

F= I -. 1K (1 -TDO/TD) (95)

K = 10/[1 + (rr. TDO/TC)]

Derivative of K for Sliding Targets - Sliding targets have a different type K factor
expression from the one described previously, because the sliding system has a rigid-
plastic resistance (figure 10). To develop the sliding target K factor, the approach used
will be the same as in for overturning targets, which is to determine the peak damage
pressure equation for an impulse load and then for a steady-state load. These two
equations are added together to provide , single equation for a peak damage pressure

for a duration between zero and infinity. This single equation will be used to determine
an adjustment factor relationship after which the sliding target K factor may be isolated.

When considering sliding as the mode of damage, the target will not begin to slide
(deflection remains zero) until the applied external force becomes greater than the
sliding resistance which is presumed to remain constant. An example of a sliding
target would be a bridge, which may .lide a maximum distance of XM on its abutment.

SREIC
01

XM
Displacement (or deflection), X

FIG. 10: RELATIONSHIP BETWEEN RESISTANCE AND
DISPLACEMENT FOR A SLIDING TARGET
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The energy absorbed by the system is equal the area under the resistance curve, or:

O= RE • XM (96)

If the initially peaked triangular force pulse is of very short duration (impulsive)F. then the energy absorbed, 0, in deformation must be equal to the impulsively applied
L ' kinetic energy, 0 ' , or-

- O = of (97)

Since I= M • V for impulsive loadings:

= M • V2/2

12 (98)= 1./(2 •M) (8

Also, impulse is equal to the area under the initially peaked triangular pressure-

time curve, or considering the pressure as a force per unit area, then:

I = FM' • TD/2 (99)

Substituting equation (99) into equations (97) and (98) yields:

) = 0' = (FM' • TD/2) 2/2M (100)

or

RE . XM • 2M = (FM' • TD/2)2

and therefore:

FM'/RE = 2" (2" M - XM/RE) 1/2/TD (101)

where FM' indicates a very short duration loading.

When the duration of the loading is very long (TD -4 -), then the peak pressure or
peak force (FM) must be equal to or greater than the sliding resistance; otherwise, the
structure will not move.

Thus:

FM"/RE = 1 (102)

According to reference (b), the damage pressure level for an initially peaked tri-
angular force pulse with a duration between that of an impulse and infinity can be approxi-
mated by the sum of equations (101) and (102), or:

FM/RE = (FM'/RE) + (FM"/RE)

= 2. (2. M XM/RE) 1/2/TD + 1 (103)
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The incorporation of this expression in terms of the previously developed adjustment
factor will provide a K factor for sliding targets. The adjustment factor expression,
equation (65) and equation (103) may be written as follows:

F = FM/FMO

= (FM/RE)/(FMO/RE) (104)
2 2.(2. M • XM/RE)I/ 2 /TD + (
2 (2 . M - XM/RE) 1/ 2 /TDO + I

As shown in figure 10, the sliding resistance is constant, or XE can be taken to be
zero. Therefore from equations for the ductility ratio (equation (45)) and natural period

of vibration (equation (46)) T = 0 and MU = m" However, to incorporate the sliding
target intO the K factor system, the following conveniently artificial "period" may be
used:

TS = 2 * 11. [2. (W/) . (XM/RE)] 1 / 2  (105)

or

TS/(2rr) = [2" (W/g) (XM/RE) ]1/2 (106)

Substituting equation (106) into equation (104):

F2=Z. (TS/2r)/TDO + 1 (107)

Rearranging and simplifying yields:

[ 1 + . 1D/T1. (1 -TDO/TD) (108)

-J

As in the previous cases, equation (108) can be separated into two parts, one of which
is only a function of the target type's physical characteristics and the effective duration
for the datum yield and can be rewril-'en as:

F = I -KN. (I -TDO/TD) (109)

For K = 1OKN equation (109) becomes:

F = 1 -. 1K • (1 -TDO/TD) (110)

K = l0/[l+( .TDO/TS)3

Considering equation (105) once again, W is the weight of the target, XM is the displace-
ment of the target and RE is the sliding resistance offered by the target. Assuming the
only sliding resistance is that offered by friction, then RE = 11W where is the co-
efficient of friction between the sliding surfaces. Using this assumption, the TS term
in equation (110) becomes: 

4
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TS 2 iT. [(2 * W/g) * (XM/(. W})]I/2

1 /2 (2 (X1/(g •

Effective Time Durations and VN Number Adjustments - As is well known, a target's

susceptibility to nuclear weapon blast effects can be described in terms of a vulnerability
number, consisting of three parts: a number, a target type (i.e., P or Q) and a K factor.
The latter terms have been described previously but a cursory review of the vulnerability
number (VN) scheme is in order.

The numerical value scale of the VN is an arbitrary classification scheme describ-
ing a target's vulnerability. (The basic VN is referenced to 20 kilotons while the
"adjusted VN" is adjusted to some other particular yield.) Actually, the numerical
values are linear functions of the logarithm of either the peak overpressure or the peak
dynamic pressure that is required to achieve a given probability of a defined level of
damage to a randomly orientated target. In the special case of a .5 probability of damage,
the numerical value of the "P" type VN is defined as:

log (P log (1. 1216)
log (1.2) (112)

where P0 5 is the peak overpressure associated with a .5 probability of obtaining a

desired degree of damage such as: "severe," "light," "depot repair," "30-day
recovery time," etc. In a similar way, the "Q" type VN is defined as:

log (Q0 . 5) - log (0.02893)
"Q"VN = o (113)

where Q0.5 is the peak dynamic pressure associated with a .5 probability of damage.

These two relations are illustrated in figure 11.

As a point of interest, it may be noted that for a given numerical value of either

typo VN (e.g., VN-12P and VN-12Q) the corresponding overpressure (P 0 5 = 10 psi)

and dynamic pressure (Q0. 5 = 2.3 psi) are related by an approximation given by

equation (114)

Q= 5" P2/(2. (7 PAT+P))

= .023 * P2

In equation (114) PAT is the atmospheric pressure ahead of the blast wave. This
means that under nearly ideal surface burst conditions and with no K factor considera-
tions, in the example cited, VN-12P and VN-12Q targets will be damaged with a proba-
bility of .5 about the same distance from ground zero (no weapon delivery errors
considered).
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0 5C0152

FIG. 11: RELATIONSHIP BETWEEN 50 PERCENT PROBABILITY OF
PRESSURE DAMAGE AND VULNERABILITY NUMBER

Occasionally, the .5 probability of damage-distance is used erroneously to indicate
a "go-no go" or "cookie-cutter" probability of damage-distance situation. Actually, a
target's destruction is a "go or no-go" proposition only when considering a given damage
criterion, such as 75 percent building floor space unusable or a vehicle is overturned.
This means that a target is either damaged or not damaged to the desired extent. How-
ever, achievement of tils criterion must be considered on a probabilistic basis because
of variabilities in: weapon output and blast phenomena, intrinsic target structural
characteristics, mutual target shielding, terrain, target orientation, etc. When a
specific target is considered, these factors lead to a variation in probability of damage
versus distance from ground zero (GZ), as shown in figure 12.

It may be noted that the distance, ar, betwveen a probability of .69 and .31 is a
measure of this gradual fall-off in probability of damage with distance. Although a .5
probability of damage distance can be used as a "probable radius," the VN system
employs another distance, which is the weapon radius or WR.

WR = [f2 PK(R)RdR]1/2 (115)

where PK(R) is probability of damage as a function of the distance R . The WR may be
thought of as defining the radius of a circle centered on the GZ . Assuming an infinite
array of identical targets, the WR circle will enclose just as many undamaged targets
as will be damaged outside the circle. Special "cookie cutter" cases of a= 0 result
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in WR equal to the "probable radius." For real conditions, such as existed at Hiroshima
and Nagasaki, ct/WR may very well be 0.20 or 0.30 ("Sigma-20" or "Sigma-30"). For
Sigmna-20, the solution of equation (115) leads to a WR equal to a distance R from tile
GZ corresponding to a probability of damage, PK(R), of .473 . Thus, for many real-
life situations, WR is slightly greater than the .5 probability radius.

1.0

S.69

e .31 . .

R
Distance from ground zero

FIG. 12: EFFECT OF DISTANCE FROM GROUND ZERO
ON PROBABILITY OF KILL

Obviously, the described probability of damage-distance relationship may be ex -

pressed in a probability of damage-pressure relationship shown in figure 13 for either
P or Q, by converting distance into pressure by empirical overpressure or dynamic
pressure-distance relations.

1.0

~.0 -M

~ o
0

0i

+

Pressure

FIG. 13: EFFECT OF PRESSURE ON PROBABILITY OF DAMAGE
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A statistical analysis of the probability of damage-pressure data obtained from
Hiroshima and Nagasaki was performed for the VN system. These results were com-
bined with the previously described VN-pressure definitions which resulted in probability
of damage -V N-pressure relationships.

As a matter of interest, it may be noted that in reference (c), these two probability-
pressure -VN curves were "tied together," that is, the dynamic pressure and overpressure
were related at all points by the approximate form of the Rankine -Hugoniot equation

(Q = .023P 2). Originally, only the overpressure relation was based upon empirical
evidence and the dynamic pressure relation merely calculated from it. A recent restudy
of Hiroshima-Nagasaki data combined with DASA field test data resulted in confirmation
of the probability -overpressure curves but provided new probability -dynamic pressure
curves. These curves are interrelated through the approximate Rankine -Hugoniot relation
at the P.5 and Q. 5 points only.

Therefore, a given VN represents a line on a probability-pressure graph or a curve
on a probability-distance graph, rather than a specific point, as may seem to have been
implied in equations (112) and (113). Thus, while reference is often made to the P 5 or
Q. 5 corresponding to a VN, pressures associated with other probabilities of damage may

be read from probability of damage-VN-pressure curves.

Of more ultimate value is the use of these curves to calculate WRs for a wide range
of weapon height of burst-VN combinations. This is done by merely retracing the steps
described above. Specifically, the relationships are determined at one height of burst
(HOB) and are assumed to remain the same regardless of HOB. Then, P and Q versus
distance data for one kilotron, as determined by field measurements for various HOBs
are used to get probability-versus-distance curves analogous to those in figure 12. The
integral of the WR equation (114) is then found. In practice, this has been accomplished
by electronic computers and the results are presented in graphs which are shown in the
forms in figure 14.

These one-kiloton curves can be used for any nuclear weapons yield by the proper
scaling. WR scales with the cube root of the weapon yield, so that:

WR - (WR (y (116)1KT(16

K factor equations using the approximate effective time duration for both dynamic
pressure and overpressure of TD = 0. iyl/3 were formerly used. The use of this simpli-
field relation for TD was entirely satisfactory for targets vulnerable to pressures of the
order of 10 psi overpressure and for the pressure data available at that time. The avail-
ability of more recent pressure data plus the increased interest in hard targets as well
as fractional KT nuclear weapons necessitated the improvement of the approximate
effective duration equation. In this subsection the necessary modification of the effective
duration equations for both overpressure and dynamic pressure will be explained.

-44-



Since the effective duration of tlWl overpressure and the dynamic pressure differ,
separate adjustment factor relationships will be introduced for each. Using the modified
effective durations, revised K factor equations will be provided.

H0
00

10 "n"type
VN-24

Weapon radius

.0 "0" type
0

Weapon radius

FIG. 14: EFFECT Of~ IEIGHT OF 1UFRST ON WEAPON RADIUS
FOR A ONE-KILOTON YIELD
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Overpressure Effective Duration and Adjustment Factor - The meaning of effective
duration, TD, was explained in the subsection on determining the 50 percent kill radius
and its relationship to the positive phase duration shown in figure 1.

Empirical data (reference (d)) indicate the following equation, for any height of burst
to be a better approximation for a burst of yield of Y kilotons.

TD = .45 • P-1/2y1/3 (117)

As a result of equation (117), the ratio of effective duration for yield Y to the effective
duration TDO for a reference yield YO is given by:

TD/TDO = (PO/P)1/ 2 . (Y/YO)i/ 3  (118)

The adjustment factor for damage by elasto-plastic deformation, overturning andI sliding was shown to be:

F = I -. IK(l - TDO/TD) (119)

By substituting equation (118) into equation (119):

F =1 - lK [I - (/PO) 112 . (YO/Y) 11 3  (120)

Now, by the definition of the adjustment factor R:

R = FM/FMO

= S' P/(S , PO)

Therefore, equation (120) can also be written:

F= I - 1K[I -F I / 2  (YO/Y) 1/ 3 ) (122)

By letting X = F1/ 2 equation (122) may be written as:

S2 IK (YO/Y) 3 +X+.IK- I =0 (123)

Because the values of K are 0 K : 9, equation (123) can be shown to have two roots,
one positive and oue negative. Of these two, only the positive root fits the physical condi-
tions. Therefore:

.IK. (YO/Y) 1/ 3 + f[.1K (YO/Y) 1/3] 2 +4( 1 -. lK)} 1/ 2

X = 2 - (124)

and as a result:

F= 1/4{.IK. (YO/Y)1/3+ {.IK . (YO/Y) 1 /3 12 +4(1- .IK)}11/2}2 (125)
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The Dynamic Pressure Effective Duration and Adjustment Factor - Empirical data for1etermiaton of the effective dynamic pressure duration are not available. However,theoretical free air blast data (reference (e)) as modified by other theoretical relationships(reference (d)) have provided the following expressions for the dynamic pressure effectiveduration.

TD= .105Q W 
(126)

As a result of equation (126), the ratio of effective duration for yield Y to the effective
duration TDO for a reference yield YO is given by:

TD/TDO = (QO/Q) 1/ 3(y/yo) 1/3(YY)(127)
The equation for the dynamic pressure adjustment factor becomes:

F =- .IK(I - TDO/TD)

= I - IK[I - (Q/QO)1/ 3 . (YO/Y) 1/3] (128)

Now, because of the definition of F:
F = FM/FMO 

(129)
- S • Q/(S • QO)

Therefore, by using the ratio of Q/QO from equation (128) in equation (129):
F---I - .1K[I -F 1/ 3 

* (Y/Yo) 1/ 3 ] (130)
By letting Z = F1/ 3, equation (130) may be written as:

Z =.IK. (YO/Y) 1/ 3 . Z+.IK - 1=0 (131)
First note that equation (131) has only a single change of sign since:

.K(YO/Y)l 1 3 <01K -I <0 
(132)

Then, applying Descartes' rule of signs, there is only a single positive root of equa-tion (131). Since, by definition F > 0 then Z > 0 and hence the positive root is the onlyone desired from equation (131).

VN Number Adjustment and Application - Solutions for the overpressure adjustmentfactor from equation (125) or for the' dynamRi adjustment factor from equation (131) maynow be used to find (P. 5 )y or (Q.s)y respectively for a weapon of yield Y. First, anadjusted VN number is defined for the P and Q cases respectively as:

-
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log (P log (133)
A~r'PvN =log (1.2)

log (Q. 5)y - log (0.02893)
ADPQVN log (1.

Rearranging equations (133) yields:

(P. 5) = (1. 1216) • (1 . 2)ADJ' PVN
(134)

(Q.5) = (0.02893) • ( 1 . 44 )ADJQVN

Now, by the definition of F

F (P. 5 ) (1.1216) • (1 . 2 )ADJ P'PVN (135)F= (D,.5) 20KT (1.1216) . (1.2),,V(35

F (Q. 5 )Y _ (0.02893) • (1 . 44)ADJ" Q " VN

F .5)20KT (0.02893). ( 1. 44 )QVN

Solving for the adjusted VN number:

ADJ"P'VN = "P'VN + iog (F)/iog (1.2)
(136)

ADr'Q"VN - "Q"VN + log (F)/log (1.44)

Now, tables relating weapon radii, WR , to VN number for various heights of burst
based on a one-kiloton yield are readily available. * The radii obtained from these tables,
however, must be scaled using the cube root scaling laws for yield. Thus, the weapon
radius for yield related to a one-kiloton weapon radius is:

WRy/WR I = y (137)

Combining equations (136) and (137) as advocated by equation (116):

WRy("P" CASE) = y1/ 3 . WR 1 (BASED ON "?' CASE ADJ VN)Y 1 (138)

WR ("Q" CASE) = y 1/ 3 . WR 1 (BASED ON "Q" CASE ADJ VN)Y1

The Application of R and K to Find Weapon Radius - In the previous paragraphs,
individual components of the VN system are discussed. Now these components will be

*See reference (a).
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F- 7integrated into a useful system. A target's vulnerability may be described by a VN
Y_ number consisting of 3 parts: a number, a target type symbol and a K factor. The

number expresses the peak damage pressure (FMO) for a given level of damage for a
20-kiloton weapon, and for a given probability, say .5; the target type symbol indicates
the most dominant damage pressure type; the K factor in effect adjusts the number (or
FM) for weapon yields other than 20-kilotons. Also, the adjustment factor as described
previously, is the ratio of FM to FMO which can be converted to an Adjustment Value.Tihe Adjustment Value, as explained previously, is applied to the basic datum yield V/N.
Thus, the purpose of the whole K factor scheme is to derive this Adjusted VN , which
is the tool used to determine the usable and meaningful value of Weapon Radius (WR) for
a given yield.

The Adjusted VN may be calculated by use of the formulas just given. Having the
Adjusted VN , one obtains the conveniently selected WR at the proper HOB. The

lKT thprprHBTe
WRlK T is then scaled to the proper WR by means of the cube root scaling law with the
desired yield.

WR=WR IKT . (139)

Aiming Errors, Target Distributions, Kill Functions and the Determination of a Condi-
tional Single Shot Kill Probability

The preceding discussion has shown how the 50 percent kill radius is determined
from semi-theoretical relationships, on the basis of target hardness (expressed as a
VN number or in psi) and weapon yield. In this subsection, aiming errors, the distribu-
tion of the target, and a set of kill functions will be explored, and functions for a condi-
tional single-shot kill probability will be derived. It is a conditional probability, because
weapon delivery to the target is assumed. Removal of this condition to find an overall
single-shot kill probability will be covered later.

Aiming Error, Target Distribution, and Impact Point-Target Element Distances -
First, consider the situation in figure 15 in which the targets are continuousl-y distributed
and this distribution is circular normal with center (0, 0). Now, assume that the center
of the target distribution is also the aijr point for weapon delivery and that tP3 weapon
delivery error is also circular normal and centered about (0, 0). For a differential ele-
ment of the target area located at (X'1 , X'2 ) , the probability of its being killed is directly
related to its distance from the differential element of area at the impact point (X" 1, X"2).

This distance has components (XA1, XA 2) related to (X1, X2 ) and (X' , X'2) as follows:

XA1 = X"1 - X1
X = t 1 (140)

XA2 = X" 2 - X'
2 2 2

Now, the situation portrayed in figure 15 and equation (140) must be generalized if one
is to find the probability density distributions of XA1 and XA2 from the probability density
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distributions of X'1 , X'2 , X" 1 and X" 2 . By the definition of a circular normal distribu-

tion centered at (0, 0):

P(X' 1) = l/( 'rT)exp[ - (X'/a')2 /21

2) =/(a' 4rr)exp[ -(X' 1 /a') 2/2] (141)

P(X" 1) = 1/(a"' 2TT)exp[ - (X"iI/') 2/2]

P(X" 2) = 1/(a" 472rr)exp C - (X"2 /0") 2/2]

X2

Impact

XA2 R X

I/ ( 0 0 N o X 1

X XA1

I!

FIG. 15: AREA TARGET SPATIAL RELATIONSHIPS

In equation (141), a ' and a" are the standard deviations of the distributions. Gener-
ally, the delivery error is specified in terms of circular error probable (CEP). This is
just the radius of the circle centered at the mean (in this case (0, 0)) which contains 50
percent of the impact points. For finding a" from CEP it is first necessary to find the
distance to the impact point, R" .

R" = [(X" 1)2 + (X" 2 )2 11/ 2  (142)
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It can be shown that the probability density distribution for R" developed from the
density distribution of X"I and X"2 and equation (3) is:

P(R") = (R"/(f 2 ) • exp[ - (R"/a")2/2 (143)

Then, by the definition of CEP:
, CEP

.5 C P(R ")dR (144)

= - xp[ - (R"/aY") 2 /2 10 GP

Therefore, the standard deviation of delivery error is:

d ' = CEP/l. 1774 (145)

Now, a similar development for the standard deviation for the target distribution
will be carrieu out.

For distributed targets, the appropriate parameter for determining o' is R95,

the radius of the circle centered at the mean (0,0) which contains 95 percent of the
target area. Paralleling the previous development:

R' = [(X' ) 2 + (X') 2 1 1/2 (146)

Then:

P(R') = (R'/a') 2 exp[ -(R'/') 2/2 1 (147)

Then, by the definition of R95

.95 95 P(R')dR (148

= I-exp C(R'/o)2/2 R 95
/20

Therefore, the standard deviation of the target distribution is:

a' = R9 5/2.4477 (149)
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Now that the standard deviations for the equation (141) distribution have been
developed, it is possible to proceed to find distributions for XA1 and XA 2 . It can be

shown that:

P(XA) I /.2T [(a) 2 + ( I)21/ ex { (XA)0/12[() .a92
11 (150)

P(XA 2  [ /2r(a')2+(o" 2 ]12ep (XA )f2 Cr 2 + (.)

Now, since the probability of killing an element of the target is directly related to
the distance between the impact point and the target element's location, it would be useful
to convert equation (150) to a single equation for the distribution of impact point - target
element range R . First:

R = [(XA1)2 + (XA2)2 ]1/2 (151)

As in the previous cases of delivery error and target distribution, the probability
density distribution for R may be written as

P(R) +(/) 31fp R/ (152)

Substituting for cr' and a" in equation (152), then provides the desired distribution
of impact point -target element distances:

P(R) = R/[(CEP/1. 1774) 2 + (R9 5 /2.4477) 2 ]

exp{R 2/2 [(CEP/1. 1774) 2 + (R9 5/2.4477)2}} (153)

Generalized Kill Functions and Weapon Radius

A set of generalized probability of kill functions have been postulated in reference (f)
for a target at a distance R from ground zero. These are of the form:

2 K-I
PK(R) = cxp( - K R2/A 2 ) Z (K" R2/A2)J/J! (154)

J=0

In particular, values of K = 3 and K = 6 in equation (154) have been found to approxi-
mate the dynamic pressure and overpressure kill curves of reference (g).

Since the only parameter in equation (154) not defined is A , this will now be derived.

Weapon radius is defined in reference (g) as:

WR f 2PK(R)RdR 1/2 (155)
0
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In equation (155) PK is the probability of damage as a function of distance from
ground zero, R . Now, by squaring equation (155) and substituting equation (154) for
PK(R):

(WR)2 J 2R exp( -K R 2/A 2 ) K (K" R2/A2)}JJ • dR (156)

0 J=O

Equation (156) can also be written as:

( WR)2 =  2[(K R 2/A2) J/J! exp(K IZ2/A 2) R dR (157)j=o d

Consider the jth term of equation (157). By making the substitution K R 2/A = X,
the j term may be written as:

t jth TERM =f0 (A2/Kj!) * X J 
* exp ( - X)dX (158)

0

Carrying out the integration yields:

th 2J TERM =A/K (159)

F Integrating and summing all K terms of equation (157) provides the following result:
2 K-I

(WR) = x A2/K
~J=0

=A2 K/K (160)

= A2

flTerefore:

A=WR (161)

The probability of killing a target at a distance R from ground zero is, then:
2 2 K-I 2

PK(R) = exp r -KR2/(WR) 2 ]  [K K. R2 /(WR) 2 ]J/J! (162)
J=O

K = 3 dynamic pressure kill

K = 6 overpressure kill
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The Probability of Kill for a Successful Weapon Delivery

The preceding two subsections have dealt with two aspects of the kill problem: The
probability that a differential element of target is a distance R from ground zero and
the probability of an element of target at a distance R from ground zero being killed.
It remains in this subsection to tie these two together and obtain the probability of kill
for a single weapon successfully delivered. For this purpose conditional probability and
marginal probability relationships will be used.

Consider two random variables and i defined in the same sample space with fixed
values t = tip t2 " **M and 1 = i t2 N " The marginal probability of t = tj is
defined as the probability that = j and = summed over all K . Symbolically:

P(t= t= E = K) (163)
All K

The conditional probability of t is defined as the probability that given
that i = 'K * Symbolically:

P(= K P(t= fj, K/P (164)

Combining both equations (163) and (164):

P( l P =K P(t= tj41= K)  (165)JAll K

In the particular case under consideration, the probability of the target's being
killed is equal to the summation of conditional probabilities of kill given a ground zero
distance of R times the probability of ground zero being at a distance R . Applying
this to equations (153) and (162) and replacing the summation with an integration:

PKILLIw f {R/[(CEP/1.1774) 2 + (R95/2.4477)
2 ]}

0

exp i- R2 /J2. C(CEP/l.1774) 2 + (R 95 /2.4477) 2]. (166)K-1

{exp [-KR2/(WR) 2 ] E K [K. R2/(WR) 2 ]J/J!idR
J=0

Now, for simplicity,

let a = K/(WR) 2

b =I/{2 [(CEP/l.1774) 2 + (R95 /2.4477) 2 4 (167)
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Equation (166) then becomes:

PKIL~~iW =]~(2bR - exp r-R 2 (a + b)JK- [(aR) J/Jljd(18
0 J=O

The J term of equation (168) is:

Vh TERM (a Jb/jhR J exp C -R (a i-b)] 2RdR (169

th TRM ab/( + bJ~l(170)

Thie complete series therefore, is:

PKL W= Cb( )IE [a/(a +b) J (1.71)

By taking the sum of the geometric series in equation (171):

PKIL(i 1 ) - [a/(a + b)

I b(Wb1{ I a/ a/(a b) K

=1 - [a/(a +b) ]K 
(172)

r By multiplying the numerator and denominator of the term within the brackets by
K/al,:

PKILL~ I 1/2 K7T7 (173)

Now, substituting equation (167) into equation (173) provides:

PIL IK. [ (CEP/1.1774) 2+( /2 .47)2 1K (174)

PKIL K1- C(CEP/1.1774) 2 + (R 9 5 /2.4477)" 1+ (WR) 2/2J

Of course, when a point target is being considered, R 95 =0 in equation (174).
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Strategy Considerations and Weapon Delivery Probabilities

Thus far, the probability of kill development has taken into account only those factors
of significance for a weapon type actually delivered to the target. Now, the probability of
being able to deliver a weapon to the target must be considered. The overall single-shot
kill probability of weapon type 1W against target type IT depends on inflight reliability
(or the probability that the weapon will arrive at the area defenses), the probability of
penetrating the area defenses, and the probability that there will be a target available to
hit.* Therefore, the single-shot kill probability may be written as:

=SKP (INFLIGHT RELIABILITY) • (PENETRATION PROBABILITY)•
SSKPIwIT (PROBABILITY OF SURVIVING ATTACK BY RANDOM TARGET

TERMINAL DEFENSE) . (PROBABILITY THERE IS AN AVAILABLE
TARGET) * (PROBABILITY OF KILL WHEN WEAPON IS DELIVERED)
(ALLOWABLE STRATEGY FACTOR)

RNIW * PENPROBw " PSURVIW, IT ' PTGT w, IT ' PKILL IWIT

STRAT (175)
IW,IT

The only elements of equation (175) not previously considered are the probability
that there is an available target, the probability of surviving attack by target terminal
defense when the terminal defense is random, and the allowable strategy factor.

The probability of surviving attack by the target terminal defense is specified as:

PSURV1W, IT (I - PKIT ' W)  (176)

The probability that there is a target left at the site is the fraction of weapons with-
held from a prior strike plus the fraction of weapons sent but not successfully launched.

The probability that the target type has not been destroyed previously is SURVXIT

Therefore, the 'robability that there is a surviving target at the site is:
PTGTIT, W = [(l - FSENTIT) + FSENTIT * (1 - RRIT) ] SURVX(

i (177)

= (1 - FSENTIT * RRIT) • SURVXIT

Now, the strategy factor, STRATIw IT enters. If the weapon type is allowed to

attack the target type STRAT = 1 . Therefore, the single-shot kill probabilityIW,IT
for a single warhead is:

SSKPIlW, IT RNLW • PENPROB.w • (1 - PKIT ' IW)

(178)
(I - FSENTIr ' RRIT) " STRATIwIT PKILL wIT

*For example, a bomber arriving at an ICBM site may find that all ICBMs have already
been fired.
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Finally, the number of warheads per independently targetable weapon is used to find
the single-shot kill probability per independently targetable weapon. Since the number
of warheads (WHDS1W ) per independently targetable weapon (TPRWPN1 W ) may be con-

sidered as an equivalent number of Bernoulli trials, then:

, IT)WHIDS/TPRWPNw
SSKPI = 1 - (1 - SSKPI 1 W  TIW IWIW, IT IW, IT(179)

This completes the derivation of the single-shot kill probability relationship.

DAMAGE CALCULATION MODELS

The damage calculation models are important, since in many cases more than a
single weapon will be used against a target and the single -shot kill probability model
previously developed will, therefore, not be enough for total damage calculations.

There are two different models for calculating damage. The first is for calculating
damage to point targets, the second for calculating damage to area targets with a circular
normal distribution of target value, e.g., an approximation of fatalities in an attacked
city.

R

Symbols used in the equations are listed below:

A Target area

K Expected lethal area of one weapon

N Number of weapons, or the number of Bernoulli trials

NP1w IT Price in independent targetable weapons for each weapon type

P Probability of the weapon's being delivered to the target area

PKILL I (N) Overall probability that the Ith increment of target within area A
is killed for N weapons

R Distance from the target center
RK Lethal radius of one weapon

SSKPIw, IT Single -shot kill probability of weapon type IW against target type IT

SURVIT Overall survival of the target type

SURVI(N) Overall probability of survival for Ith increment of target within
area A for attack by N weapons

TPKILLIw IT Total probability of a target's being killed

TVKILL Total value of target killed

VIT Value given to target

VKILLIw, IT Expected value killed per target
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VKILLED I  Expected value of target killed by N weapons

W IT Number of weapons of type IW used against target type IT

W* TEffective number of weapons
I'W, IT

W Weapon density

Point-Target-Damage Model - No Terminal Defense - Single Weapon Type

In attempting to destroy a point target, a single successful weapon is assumed to be
all that is required to destroy the target completely. The probability of success with
a single weapon of type IW against target type IT is SSKPIw, IT'When WIW,I T weapons

of type IW are used against a single target of type IT, the total probability of kill is:

W
TPKILL 1-( IT IW,IT (180)

IT= 1 - (I - SSKP Iw ' IT)W~,I 10

Considered over many targets of type IT the expected value killed per target when

each target has the value VIT is:

VKILL = V[ -(1 SSKPIW I)w, IT
IW,IT IT[ IT) ul (181)

This is the final expression for damage to point targets.

Area-Target-Damage Model for Circular Normal Distribution of Target Value - No
Terminal Defense - Single Weapon Type

For area targets such as cities, where target damage is measured in fatalities and
the lethal radius of a single weapon is small compared with the size of the target, the
point-target-damage model is not applicable, since no single weapon may be capable of
destroying the entire target and if a single weapon is not capable of destroying the entire
target, the weapons should be distributed in a way to maximize expected destruction.
lhe problem then becomes (see reference (e)): maximize the target value destroyed
at a target of type IT, subject to the constraint that only W weapons of type IW

IW, IT
may be used. The solution, when obtained, will be in terms of two limit curves for
expected damage. The lower-value limit curve for damage will then be used for damage
calculations involving area targets, since it yields a more conservative result.

First, assume that the lethal area, n(RK) , of a single weapon is small with respect
to the total target area A . For a single weapon, the probability of the weapon being
delivered to the target area A is P . The probability that an increment of target at an

arbitrary point within A is killed by a weapon delivered to target area A is rkRK) 2 /A
The overall probability that the Ith increment of target within A is killed is:
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PKILL 1(1) =P T rRK 2 /A (P.- r RK 2 /A <1)

PKILL (1)=1I (P. it .rRK 2/A -1)(12
I

The corresponding probability of survival for the Ith increment is:

S~URVI(l) = I - PKILLJ

= 1 - P - TrRK 2/A (P -rr-RK 2/A <1)

SURV (1)=O0 (P aTToRK /A !1)(13

For N weapons delivered, corresponding to N Bernoulli trials, the probabilities
of survival and destruction for target increment I are:

SURV (N)=(1 -P i- K/A)2
(P. it TT RK /A <I1)

2 NPKILL I(N) = 1 - (1 -P TT * RK /A)

SURV I(N) 0(14

(P. - T RK /A 1)
PKILL (N) II

Now, let K be the expected lethal area of one weapon and Wv be the weapon density.
Then:

K=P~rRK2  185)

Substituting equation (185) into equation (184) yields:

SURV I(N) = (I K(L/N)N
(Kw/N <z 1)

PKILL I(N) = 1 -(1 - K w/N) N

SURV (N) = 0

(Kw/N ! 1)(16
PKILL I(N) = 1

Now, assume that there are M increments of the target, the Ith incremen, contain-
ing an area AA, and having a value density of V, per unit area. The expected value

killed by N weapons is:
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VKILLED I = V I  [I ( K/N)N ] A (Kw/N < 1)

VKILLED I = VI AA (KW IN > 1) (187)

li For all M increments the total value killed is:

"- . M=V 1  E l- (1 - K /NN) A (Kw/N < 1)

VKILL

M (188)

TVKILL = V A (Kw/N )

It is now desired to maximize the total value killed by adjusting the value of cc
in some manner corresponding to the value of the target increments. Thus W

replaces w in equation (188). Now, introduce the constraint of total weapons expended,
W , by the relationship:

M
Sw = E(189)I,11

While it is noted that W and N are actually the same, it is useful in this para-
metric approach to keep them separate for the theoretical development.

The problem is now to maximize:

M
TVKILL = V VIE i - (I -KwI/N)N]AA I  (For KW I/N < 1)

1=1M(190)
~M

TVKILL= VI AA 1  (For Kw I/N 1)
I1=1

Subject to:

M
W = Aj w A

Since the first of equations (190) is a concave function in N for each increment,
the total value killed will be maximized when the marginal kills in each increment are
equal. To establish the marginal kill for the Ith increment, both equations (190) are
differentiated with respect to W This yields:

-60-

'1



d(TVKILL)/dW 1 = VI K( - K w 1/N)N- AAI (Kuw1/N < 1)

d(TVKILL)/dw I = 0 (K w/N ! 1)

* dW/d 1 =AA

Dividing the first two equations of (191) by the third provides the marginal kill
relationship:

d(TVKILL)/dW = VI • K(I - Kw I/N) N -1 (Kw,/N < 1)
(192)

d(TVKILL)/dW = 0 (Kw I/N 2 I)

Letting d(TVKILL)/dW = X, equation (192) may be solved for w,

N j X/(V I  K)] [X/(V. K)< 1

(193)
I =0 [X/v K) L 11

Substituting this result into equations (190):

M N

TVKILL = f - K) VI A I  [For %,/(VI. 1 <1I=1

M
TVKILL = VI AAI  [For X/(V I • K)>1 (194)

1=1
M

W = - -{ 1 - [X/(V1 • K)=' AAI  [For X,/(V 1 • K) I ]

Now, for area targets, the value is assumed to have a circular normal distribution,
in whuch R is the distance from target center and aV is the standard deviation:

V = [1/(2nT 2V)] exp R - R2/(2 2 V) (195)I 2

Rewriting equation (195) and expressing R2 in terms of V yields:

R= - 2 a 2  loge (2i Ta2V) V : 1/(2rTa 2 V) (196)
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Multiplying equation (196) by TT would yield the enclosed area as a function of the
enclosed value. By differentiating the results dA may be obtained in terms of V

d(R 2 ) = dA = - 2l~o 2V dV/V (197)
IV

Now, allowing the area increment to decrease to differential size and allowing M-o,
equation (194) may be written as:

TVKILL I ,- [V/(v. K) } VdA
i (198)

A

Substituting equation (197) into equation (198) and using the limits dictated by
equation (194) and (196) provides:

/ 2
TVKILL = 2Ta2 vf 1 - [X/ (V.K) dV

X/K 2 (199)

W = 2TlOa2 v 1/(27r a {f - [V • K) --

X/K
Integrating equation (199) yields:

N

TVKILL = I - 2rra 2V X/K + (N-I) [(2n 2vX/K) 2rTr2vX/K

(200)

W= (2 TOa2 vN/K) -log,(21Ta 2v X/K) + [(]a2V K (N- 1)

Now, since N and W have been kept separate, it is possible to define two limit

curves for the extreme conditions of N, namely N-41 and N-+ - . These two conditions
imply the situation of a single weapon or an infinite number of weapons assigned to the
target. To find the equation applicable to these two limiting cases, however, requires
some effort since by inspection it can be verified that both of equation (200) have inde-
terminate forms for N=I and N =-.

First, in equation (200) the substitution is made:
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, 3 =(2frt2 X/K) (201I)

Equation (200) may now bL rewritten as:

N-ITVKILL = -3 [I + (N-1)(1-3)]

2ra 2N(N-I) (202)
VSW = K [- =O - - loge(p3)

The second of equation (202) may also be rearranged to yield:

7 KW =- 3  1 - loge( 3) = X (203)

2TTc vN(N-1)

By noting the original limiting conditions in equation (199) and elsewhere, it may be
declared that the range for (3 is (0 5 3 ! 1). For the limiting values of 3=0 and 3=1 ,
it is useful to tabulate the corresponding values of N and X from equations (201), (202)
and (203):

0 N X

0 1

1 0

Thus, the conditions of 3=0 and 3=i correspond to the condition of N-+I and
N -=:, respectively, the conditions of interest as stated earlier.

The N 41 case will now be listed in detail.

Rewriting equation (203), an expression for N-I may be obtained:

N-I = C/(NX)

" = KW/(2rr-v)

Using equation (204) in the first of equation (202) results in:
C

TVKILLMI= - -"7 l+ CC/(NX)][i-9]

c (205)

I 1- P {I J + C/(NX) - (3C/(NX)}
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Now, as established previously, as N 41 , f3 40 and X 4 . Therefore the last

two terms go to zero as N -1 and:

C

TVKILL(I)41-3
N -41 (206)

Equation (206) may now be rewritten and the natural logarithms of both sides taken:

loge [1 - TVKILL(1) I= (C/X) loge (207)

Using the equivalent expression for X from equation (203) in equation (207) results
in:

loge [I - TVKILL(i)] = C loge(P)/[ 3 -i - loge(P) ] (208)

Now, in the limit as N -41, (3 . 0):
loge [1 - TVKILL(1)] IC1I/[ - I + (P-1)/log (n1)(29

-40(209)

4-

I The n:

I - TVKILL(1)= exp(-C) 2(210)
= exp( - KW,(2nar V)

Therefore, the N=I bound of the circular normal target destruction Q¢se is:

2TVKILL(1) = 1 - exp( - KW/(2rr V) ) (211)

The N 4 case wvill now be treated in detail.

First of all, when N 4 -, equation (203) maybe approximated by:

KW KW X (212)

2rr vN(N-1) 2TTa vN

Now:

N = (C/X) 1/ 2

C = VW/(2TTa 2V) (213)
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By substituting equation (213) in the first of equation (202):

Oc) 1/2 -1
l ~ ~~~~~~TVKILL(-) =1 / [ I+[CI) 1  (

Th 1 (214)

1 - 0 X) [l + (C/X) 1 / 2 (1 - 1/9)]

The last term in equatioi, (203) is indeterminate as N -+, since X 40 and 34 1
The limit for this last term may be found, however, by substitution of the equivalent
expression for X from equation (203) and then, for ease of operation, evaluation of
the limit of the last term squared as N -4- (3 -+).

LAST TERM = (C/X)1 / 2(1 - 1/3)

= 1/2(1 - 1I/P) 
(215)

[P1I - loge(
1 ) ]1/2

Then:

(LAST TERM) = CkI -
2  (216)I - log e(T)

Differentiating numerator and denominator with respect to 13 (1 'Hospital's Rule)
to find the limit of equation (216) as 0 -1 yields:

(LAST TERM) 2 _ 2C(1 P 1/1). (1/G)2 (217)1341 1 - 1/fi

-4 2C

The re fore:

LAST TERM -2C)1/2 (218)

In equation (207) the positive root was selected since C , (1-3) and X are all > 0
Now equation (203) has be come:

C 1/2(~) (201/21
TVKILL(-) = I - 13 [I + (2C) (219)
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It is now necessary to find the limit of the indeterminate form J3 as
N -# (B -4 t, X -40). This can be accomplished most efficiently by taking the natural
logarithm of the expression in question, squaring it, substituting for X from equation
(203), evaluating the squared expression in the limit, and then extracting the appropriate
square root. Thus

I1/2

() 2 (C/X)og (220)

C loge(p) 
] 2

Now differentiating numerator and denominator twice (double application of
I'Hospital's Rule) to find the limit of equation (220) as -+41:

2C log

logeL -

2C (1/93) (221)

- 2C

Now, since 0 5 g 1 , the negative square root from equation (221) is desired:

I C 1/2)
(0)1 -+-/2 C 1/2 (222)

loge ~ 4(C

Therefore:

1( / exp[ (2C) /2(

f3 4,1

Using the result in equation (219) results in:

TVKILL()= I -[I + (2C)1 / 2 exp [- (2C)1/2 3

I- { + [K W / 7a 2 V ) j/2 exp { K W /( rr2 v j] /2 ,(224)
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Comparative kill results from equation (211) for N -1 and from equation (224) for
N 4 - are shown in figure 16. Since the kill values obtained by using TVKILL(-) are
always less than the values obtained by using TVKILL(1), TVKILL(-) will provide a
conservative estimate of kill and has been used as the basic model for evaluating kill
for area targets.

Although equation (224) has incorporated weapon delivery probability, delivery error
has not been included. It therefore remains to integrate this into the damage model. To

do this, the value of W is set equal to one in equation (224) and the result set equal to
the single-shot kill probability with K' used in place of [K/(2rra 2 )1t / 2 Thus:

SSKPIWIT = (I + K'IW IT) exp ( - K' W , IT) (225)

The resulting value of K' is then found by an appropriate method (such as Newton's
method). The final damage model for area targets is therefore:

1/2 / 2
VILVIT[1K'IWI(W1  T exp [K'1(226)V ILw, IT VIT IIw, IT(Ww, IT e -KIW' IT(WIw I)

Using this approach the damage from equation (226) and from equation (181) as a
function of the number of weapons employed would be as shown in figure 17. It can also

be shown that for some K" W IT (in place of K/(21 g2V)) determined from SSKPIW IT'
equation (181) and equation (211) yield identical results for the same single shot kill
probability. Thus, the optimistic area target damage model and point target damage
model are identical for identical single-shot kill probabilities.

Point-Target-Damage Model - Terminal Defense - Multiple Weapon Types

In this extension of the point-target-damage model developed previously, it can be
considered that each weapon type must pay a price at the target of NPIwI IT independently

targetable weapons. For WM,IT weapons of type IW allocated to target type IT,

the effective number of weapons is:
C

W* = - (227)
IW,IT IW,IT IW,IT

The overall survival of the target type is, then, the probability that it survives each
weapon type's raid or:

ALL SURVIT 1W (228)

WEAPON
TYPES
ASSIGNED

Since:
PKILLIT = I - SURV I. 

(229)

-67-



00

2w

Lu
00

Lw

ft _ cco

CL

0 9N
CN LL

0~

E cc

0

ii~~~~~~C 00LU C f C N -
'- 0 00 0 0 0I0

P~~~Il~~~t WGJi~ U~~~

-68-



(N

eN
-1

0
(N

zo0

>

0>

:3 Mw

z i

0 >

0.

-~ 0n 0 000

pB~~~I~~j CCJ~~ U i~J

-69-

4.-..- -



Then equation (181) may be extended by using equations (227), (228) and (229):

VKILLITVT1 w H'T (1-SSKP IT)W IWIT - NPrw, IT (230)
ALLI WEAPON~TYPES
ASSIGNED

Area-Target-Damage Model - Terminal Defense - Multiple Weapon'Types

In extending the area-target-damage model, the process is not so direct as in the
point-target case. While it is true that equation (227) applies in arriving at the effective
number of weapons, equation (228) does not. Presumably, the total number of weapons
should be applied in some optimum density pattern over the target. How the parameters
can be combined can best be seen by consideration of two weapon types with identical
kill probabilities against target type IT . Then W weapons of the first type and
W2 IT weapons of a second type, in the absence of h rminal defense should yield the
same results as if W I IT + W IT weapons of either type had been used. This leads
by heuristic argument to:

VKHIT VIT + (KIw~T W1W,IT]/
ALL
WEAPON
TYPES

WEAPON
TYPES
ASSIGNED

When the terminal defense is taken into account by use of the effective number of weapons
W* from equation (227), equation (231) becomes:IW, IT

VKILLIT VIT {I+ E(K' W ,IT)2 (W Iw, IT - NP Iw, IT)/2

iALL ''I

WEAPON
TYPESASSIGNED (232)

• exp- E(K'rwMIT )2 (WrW,iT - W N~wI T)  }
ALL
WEAPON
TYPES

ASSIGNED

This completes the derivation of the damage calculation models.
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WEAPON-TARGET ALLOCATION MODEL

The efficient allocation of resources has always been one of the core problems of
economic theory. To solve such problems, a great body of theoretical literature in the
fields of linear and non-linear programming has been generated in recent years. One
set of methods within this body of literature makes use of the so-called LaGrange
Multiplier Theory as a convenient means of solution for resource allocation problems.

The basic resource allocation problem to be solved in Code 50 by the weapon-target
allocation model is the allocation of weapons (resources) to targets so as to maximize
the destruction of enemy target value subject to the constraints of weapon inventory,
integer number of weapons assigned to each target, and lower limits for the destruction
of defended targets (if achievable). The solution is provided by a procedure making use
of LaGrange Multiplier Theory, steepest ascent methods of mathematical programming
and certain heuristic mathematical programming algorithms which have proved sufficient
in obtaining a solution to this problem.

Symbols used in the equations of this section are listed below:

CRIT Maximum value for CRITIT

CRITIT Penalty parameter for target type IT for using the second best
weapon type

CRITFAC Assured destruction modifier for CRIT based on whether assured
destruction criteria have been satisfied

DIT Damage to target type IT due to weapon types Wl, IT,.WN, IT

assigned to target type IT

DPRE F Total defended target value destroyed

DSUM Total damage

DTOT 1  Initial allocation of damage

DTOT 2  Second allocation of damage

FRACINV Class of weapons
FRACP Fraction of defended target value specified for destruction; also

called the preferred target destruction criterion

FRACPA Fraction of defended target value destroyed

F RL Fraction of defended target value destroyed for undefended target
multiplier value of oL

FRU Fraction of defended target value destroyed for undefended target
multiplier value of U

IT Number of weapons which maximizes the LaGrangian profit for
H T single target type
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1 H*IT Upper bound of the LaGrangian profit for target type IT

1 HMAXCIT Best LaGrangian profit per target for target type IT

HMAXNLT Second best LaGrangian profit for target type IT

HSUM Overall upper bound to the LaGrangian profit
ITC Most critical class of targets

IWM Best type of missile

KIT Expected lethal area of weapon type IW used on target type ITIweapon

MAXWPS Number of weapons applied which are of best type for use against at
least a single target in the critical class

NI W , IT Integer number of weapons for each weapon type that will maximize
the expected value destroyed per weapon

NOTAS1W  Number of unassigned weapons

NP1w  Price in term; of independent targetable weapons successful]' launched

NWP 1 w  Total number of independent targetable weapons available

NWPDIw, IT Total desired inventory for weapon type IW

PERR 1  Percentage eror between initial allocation of damage, DTOT 1
and upper bound of damage, UBOUND

PERR 2  Percentage error between second allocation of damage, DTOT 2and upper bound of damage, UBOUND

PERR 3  Percentage error between second allocation of damage, DTOT 2 ,

and upper bound of damage, UBOUND, based on revised shadow values

SSKP wIT Single shot kill probability for target type IT

STOGO Total shadow value of the unassigned weapons

SVAL Shadow value of the weapon inventory

SVDL Shadow value for the aggregate desired inventory

UBOUND Upper bound for target damage considered over the target set

VIT Value of target type IT

VPREF Total defended target value
W*IW, IT Optimum number of weapons

W*[WM ITC Optimum number of weapons to be used against a single target of theIW ,ICcritical type
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XMAXL Absolute value of the maximum adjustment of X AV

a L Highest pr-,)r value of cN to produce an acceptable level of
assured destruction

aN Undefended target value multiplier

aU Lowest value of aN to produce an unacceptable level of assured
destruction

Correction factor

ANWPD w ' IT Inventory increment for weapon type IW against target type IT

XIWM Shadow value for the best weapon

LaGrange Multipliers from the Classical View

The mathematical formulation of the allocation problem may be stated as:

Maximize:

y = y(x, x2 . xN)

subject to the constraints:

I (x1, X2, ... XN) = 0(233)

2(X1, X2, ... xN) = 0

X x2 , .xN) = 0

It has been shown in references (h) and (i) that when x 1, x2, .. .xN are continuous

variables, y(xX x .. N) is a concave function and M N (there are no non-binding

constraints) a global solution to the above problem can be found by finding a solution
to the unconstrained problem:

M
Y=y(xl, x2,...xN)- K K K(Xl, X2 ,...xN) (234)

K=1

where the XK's are non-negative multipliers. The solution to equation (234) is then

generated by differentiating Y with respect to each xI and setting the derivatives to

zero. Thus solving the M constraint equations and the N equations

M
aY/ux = ay(x1 ,x 2, ... xN)/axl - V( /x I ) = 0 (235)

K=I
I= 1, 2, ... N
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results in the desired solution, a set of x 0 's and ,K'S which yield a y(x°0 x 2, .. x 0 N)

that is a maximum.

As Samuelson noted in reference (j), the values of the XK's in equation (234) are> equal to marginal costs or a unit price for each of the M facilities. However, sincethese are not necessarily real prices in problems of this type, the XK's are considered

"shadow prices". The inte rpretation of the summation on the right side of equation
(234) is then the "shadow value" expended. The composite view of equation (234), then,
is that the difference between the "payoff' and the "shadow value" expended may be
termed a "profit". It is this "profit" that is to be maximized.

The Generalized LaGrange Multiplier Theory

For the allocation of weapons in Code 50, the classical problem may be stated as:

'Maximize the total damage DSUM:

DSUM =]DIT(W1, IT'" WN, IT)  (236)

ALL
TARGETS
IN
TARGET
SET

Subject to the N constraints:

FW W, IT <5 NWP Iw ' IW p ,2p,... N
ALL

TARGETS (237)
IN
TARGET
SET

WIW, IT = integers

and subject to the strategy constraints of no mixing of weapon types on terminally defended
targets and a minimum level of damage (if achievable) of x percent against that subset
of targets with terminal defenses.

The classical theory would then indicate that an augmented equation of the form of
equation (234) would be formed. Then the augmenteu equation would be differentiated
with respect to each W and the result solved for the weapon allocation. ThisrW, IT
procedure, however, is not tractable in this case because (1) the numbers of weapons
allocated to individual targets must be integers and (2) the form of the destruction
equations from the previous subsection is such that solutions are not directly available
by these means. To get around this difficulty, Everett, in reference (k), showed that the
theory of LaGrange Multipliers is not limited in usefulness to differentiable functions.
Essantially Everett's method is based on two theorems. These two theorems are related
to the use of the LaGrange Multipliers and to the computation of an upper bound with
which to test a particular allocation. These theorems are:
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Theorem 1: Let S be the domain of an objective function F(x) If XK, K = 1, N

are non-negative real numbers and if x* e S maximizes the function:

H F -K=(

Where the CK's denote the constraints, over all x eS, then x* maximizes F(x) over

all those x CS such that CK(X) s CK(x*) for all K, regardless of the nature of the set S.

As demonstrated earlier, a LaGrange Multiplier problem is normally solved by
differentiating the LaGrangian function, setting the results equal to zero, and solving
for both the XK's and the resource allocation that maximizes the objective function,
given a set of constraints. This theorem says that if the LaGrangian is maximized,
given a set of XK's (i.e., given the shadow prices of the resources), the resulting

allocation, x* , implies a set of constraints, CK(x*) . Thus, automatically there is

an optimum allocation, x* , for a constrained problem, namely the problem with
constraints CK(x*)

Thus, there is a great advantage in starting with the multipliers and deducing the
constraints, rather than deducing the multipliers given the constraints, in that this
approach allows one to place no restriction on the domain of the objective function.
Therefore, having an objective function that is neither continuous nor differentiable no
longer presents an insurmountable problem.

The disadvantage of this modified method is that unless the correct set of XK's is

chosen all the constraints will not be satisfied. However, one can prove that if all but
one constraint are held constant, the remaining constraint is a monotone decreasing
function of its associated multiplier. Thus, after a wrong solution has been reached,
the direction to adjust the X K's in order to obtain the desired constraints is known.
Algorithms have been developed which make this adjustment relatively efficient.

In many cases, one cannot find a set of multipliers which imply the desired con-
straints. The above theorem insures only that if one finds a solution, it is a correct
solution; it does not guarantee that a solution can be found. The existence of optimum
solutions that can be found by adjusting the multioliers depends upon the objective function
being approximately concave in the region of the solution. Such concavity is not always
present; however, the following theorem allows bounds to be placed on the solution to
problems where a direct adjustment of the multipliers will not work.

Theorem 2: If x' comes within e of maximizing the LaGrangian, i.e., if for all x ES
where S is the set of all possible strategies

F(x') - XKCK(X') > F(x) -EXKCK(X) - C, (239)

then F(x') , the payoff at x' , is within e of the maximum payoff for those constraints.
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The proof of this theorem gives some insight into its usefulness. Rearranging the
above inequality:

F(x) - F(x') + .XK CK(X') - CKtx)J < £ (240)

Keeping the XK's fixed, the allocation x' implies constraints CK(x') and, obviously,

x' is a feasible solution to the problem:

Maximize: F(x)

subject to:

CK(X) : CK(x') (241)

For any other feasible solution to this problem, CK(X) ! CK(x') by definition, implyingI CK(x') - CK(x) t 0 . Thus, substituting into inequality equation (239) above,

F(x) - F(x') < e for any x that is a feasible solution to the problem defined by equationI(241) above. In practice, the value of e is restricted by imposing the constraint that
the number of weapons available for allocating to any one target is restricted to the
number of weapons in the stockpile. No payoff can be more than e greater than the
payoff given by the allocation x' .

Thus, this theorem allows an upper bound to the maximum payoff to be computed
for any constraints. A set of XK 's is picked and both the maximum LaGrangian and

the implied coihstraints are computed. A new allocation, x , is then found that implies
the desired constraints, and, keeping the XK's fixed, the LaGrangian at x' is

evaluated e is then the difference between the maximum LaGrangian and the value of
the LaGrangian at x = x' . This is the maximum additional payoff above F(x') which
could ever be obr ted while meeting the desired constraints. Geometrically, Theorem 2
says that the hype rplane with slopes defined by the XK's , tangent at x° to the envelope

of the maximum payoff surface in the space of maximum payoff versus resources ex-
pended, is an upper bound to F(x) at any point if x maximizes F(x) -XKCK(x)

The Mathematical Programming Procedure in Code 50*

The mathematical programming procedure in Code 50 for weapon allocation involves
three fairly separate steps. These are: (1) the initial allocation, (2) testing of the initial
allocation, and (3) computation of a second and, if necessary, a third allocation if the
prior allocation is determined to be unsatisfactory. These steps will be discussed in
turn.

*The remainder of this section parallels the discussion in reference (1).
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Tile Intial Allocation - The first of these allocations is a heuristic process making use
of a steepest ascent a.gorithm. The various operations involved are listed and discussed
in the order in which they are carried out.

r'lhe first operation that is carried out is to find the integer number of weapons
NIIw IT for each weapon type that will maximize the expected value destroyed per

weapon. Of course, for targets without terminal defenses a single weapon produces this
result since the destruction functions (see figure 16) are concave functions and each
additional weapon after the first adds progressively less value destroyed. For defended
targets the number of weapons producing this result is some number greater than the
price paid to the terminal interceptors. When the price to be paid to terminal interceptors
exceeds the number of weapons in inventory, the target cannot be attacked by that weapon
type. These relationships are summarized in equation (242).

NIIwIT = 1 : NPRVIT = 0

NIw,IT DIT(NI IT)/NIw,IT is MAXIMIZED (242)

NIVIT . :NPIW,IT > NWPw

Now the best payoff target class for the first weapon type is selected. And a maxi-
mum of 1/5 of the weapons of this type are assigned to the target class provided this is
enough to attack at least one target of the class under the maximum efficiency attack
relationships established in the first two of equation (242). If 1/5 of the weapons cannot
produce a maximum efficiency attack on a single target of the class, then enough weapons
are allocated to the class for attacking one target. Destruction for the target class
attacked is then computed. When all targets of the class are net attacked, the class is
split into subclasses - the targets of the class not attacked with the weapon type forming
the new subclass. This procedure continues, all target subclasses being considered for
remaining weapon increments (1/5 invntory or number for maximum efficiency attack
on one target of highest payoff target subclass remaining as outlined above) of the first
weapon type until all weapons of this type have been allocated. The procedure above is
then continued (except terminally defended subclasses already attacked with another
weapon type are not considered) for the second weapon type, t"'-n the third until all
types have been allocated.

Testing of the Initial Allocation - After all weapons of all types have been assignei the
maximum -dditional payoff available from an addition, . weapon of each type is computed,
with the stipulation that no weapon mixing against terminally defended targets is allowed.
This maximum incremental payoff can be considered the value of a single weapon in its
best alternative use and in accordance with economic theory, this is its value, or as used
here the "shadow value" of the weapon type. In mathematical notation using a difference
viuation approach (since integer numbel of weapons are considered) and noting that the
"Thadow value" is the current value of the LaGrange Multiplier, X lW I

1 W= MAX (6DSUM > MAX /DIT(Wuw IT + I) - Dr(Wiw I'd)> (243)
OVER ALL
PERMISSIBLE
'ARGL r CLASSES
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This result also approximates the result which might have been obtained by formally
differentiating the augmented destruction equation, of the form of equation (234) with
respect to WI Noting that the augmented function, exclusive of strategy con-"" IW IT"

straints is of the form:

1ifferentiating equation (244) with respect to each W IW IT and setting the derivative

c. ial to zero results in:

d[DIT(W, IT' W 2, IT)... WN, IT) ]/dWIw, IT - 'IN = 0 (245)

If the derivative in equation (245) is approximated by a difference in which dW Iw IT

= 1, then it is seen that the two results evaluated for this allocation are approximately
equal.

The formal evaluation process now continues by evaluating how much LaGrangian
profit (damage minus weapon shadow value) would result from employing the best weapon
type on each target (provided that the total inventory would not be exceeded for any one
target of the class). This provides an "upper bound" to the LaGrangian profit against
which the initial allocation may be evaluated. If the upper bound and the initial allocation
fall within a specified amount of each other, the allocation process can be terminated at
this point and the initial allocation adopted as the final allocation. The upper bound
determination is based upon pure weapon allocations, i.e., a single weapon type per
target of each type. The computation of the upper bound is based upon the steps outlined
below.

For each weapon type, the number of weapons that maximize the LaGrangian profit
HIT, IW is found for a single target of that type:

H IT, IW = DIT(Wrw, IT) - X IWWIw, IT (246)

For point targets and area targets DIT(Ww, IT) is:

Point targets:

DIT(WIwIT)=VIT{I -(I- SSKPIw, IT) WIW,IT "NPWIT}

Area targets: (247)

DIT(WIw, IT) = VIT {l - {+ [(W w ' IT - NPIW, IT)(KIW, IT)2 1/2}

exp - VIikrT - NPIw, IT) (Krw, IT)
2 1/21/2
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Differentiating equation (246) for the two types of targets and setting the results to
L, zero yields:

Point targets:

~dHT

i I V IT f[loge( 1 SSKPIw , IT) ( ( SSKP lw , T)W lw , N P

Vi 1W = 0

Area targets:

dHIT (248)

IW,- IT 1f(KIw, IT))
exp -f[(Kjw, IT)2 WIW,IT - NPIw IT)] 2

" 1W =  0

Using the form of equation (248) appropriate to the target type and the value of W
previously found in equation (243), the optimum number of weapons W maybe
found as: IW, IT

Point targets:

NP IT + loge f- I (1- SSKP
* W IT l g /[ 1 1 S PIW IT)IW, IT log I (1 SSKP )

ge IW, IT JArea targets:
(249)

WW •T* (*NPI IT + loge [VIT(K IT)2/(2 1 2rW, IT = NP IW, IT eW T I
KIW, ITI ~ The vaIue of W_(247). o W, rrF can then be used to find HIT IW  from equations (246) and

HIT, IW* = DIT(WIw, IT* - AIWwT*
1W r, IT(250)The upper bound of tbk LaGrangian profit - *

value of II 
for target type IT is the maximumIT, I Produced by any single eaponType. Therefore:
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H*IT MAX <HIT, W*>aOVER (251)
ALL; WEAPON

CLASSES

Extending this to the complete target set, the overall upper bound to the LaGrangian
profit, HSUM, is just the sum of all such HIT* 's

L

HSUM= . HI* (252)
IT IT

Now HSUM is the difference between the upper bound of target damage UBOUND
considered over the target set and the shadow value SVAL of the weapon inventory.

HSUM = UBOUND - SVAL
(253)

SVAL = F X1W NWP 1W
1W

Therefore

UBOUND = HSUM + SVAL (254)

The expected total damage to the target set provided by the initial allocation,
DTOTI, may now be compared with the upper bound of damage UBOUND, using
Theorem 2 and the difference c computed.

Ci= UBOUND - DTOT 1  (255)

This may also be expressed as a percentage error PERR I .

PERR 1 = 100 (e /DTOT) (256)

If PERR is sufficiently small, then the initial allocation by steepest ascent is

satisfactory with respect to total damage and only the level of damage to the defended
target subset must be investigated. If PERRI is not sufficiently small, then a new

allocation must be madE using the procedure outlined below.

The Second Allocation - The second allocation makes use of the same X1W 's as the

initial allocation. The general procedure is to find the target type for which there is
the greatest penalty incurred when the second-best -- rather than the best -- weapon
type is employed against it. The algorithm to determine this penalty includes the
fraction of the remaining inventory (initially this is the entire inventory) of the best
weapon (in the LaGrangian profit sense) required to produce this profit against all targets
of the class, FRACINV , the number of weapons of the best type IWM needed for a
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payoff at all, NPI W M, IT+I, the best LaGrangian profit per target for target type
IT , HMAXCIT and the second best LaGrangian profit for target type IT, HMAXNIT

ITI! Making use of all the above, the penalty parameter for target type IT, CRITIT, is
I defined as:

CRITIT= (NPIWM,IT+ 1). FRACINV(.1 HMAXCIT - HMAXNIT) (257)

The maximum value of CRIT over the target set is then selected and the target

type which produced it is considered the most critical type with respect to the allocation

CRIT = MAX<CRITIT> (258)
OVER I
ALL
TARGET
SUBCLASSES

Provided there are enough weapons of the best type for use against at least a single
target in the most critical class ITC , these are applied in accordance with an algorithm
relating (1) the total shadow value of the NOTAS w unassigned weapons, STOGO,

(2) the total shadow value of all weapons, SVAL, (3) the shadow value for the best
weapon XlWM , and (4) the optimum number of weapons to be used against a single

target of the critical type, W The number applied according to theIWMITC
algorithm is:

MAXWPS = MAX <[I + (STOGO - .3 SVAL)/X : W W>M ITC (259)

W here

STOGO = I NOTASIw XWIW I
1W

(260)
SVAL = NWP w XIW

1W

Now, MAXWPS of the type IWM are applied to target type ITC and the destruc-
torn calculated. NOTASIwN and STOGO are updated to reflect the expenditures. In

addition, HMAXC and HMAXN are modified as necessary, to reflect the factIT IT
that there may now not be enough weapons if type IWM was the best or second-best
weapon for target type IT.

The entire procedure is now repeated, beginning at equation (257) until STOGO
.3 SVAL . When cnough weapons have been allocated to critical target types this way to
make STOGO < .3 SVAL , the remainder of the weapon inventory is allocated by the
steepest ascent method used for the initial allocations.
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Testing of the Second Allocation - The second allocation is testeu using the total expected

value destroyed on the second allocation, DTOT2 , and UBOUND from the first alloca-

tion (X1W 'S and unchanged):

V I
C2 = UBOUND - DTOT2

PERR2 = 100 (C2/DTOT 2) (261)

If PERR 2 is sufficiently small, then the second allocation is satisfactory with

respect to total damage and only the level of damage to the defended target subset must
be investigated. If PERR 2 is not sufficiently small, then the shadow values (X1W 'S)

are adjusted using the procedure outlined below.
Weapon Shadow Value Adjustment - If the second allocation outlined is not satislactorily

close to optimum, the optimum criterion is adjusted by adjusting the weapon shadow
prices (XIW s). This is carried out by comparing the desired inventory of each weapon

type (as derived by a heuristic algorithm) with the actual inventory of the weapon type.
If more weapons of type IW are desired than currently are in inventory, the price is
too low and XrW should be increased. Conversely, if fewer of weapon type IW are

desired than there are in inventory, X should be decreased. In addition to changing
1W

the individual X1W 's , the total shadow value of the desired inventory should match the

total shadow value of the actual inventory. If the total desired inventory shadow value is
greater than the actual inventory shadow value, it indicates that the imputed weapon
values (X1W s) are too high and conversely. When the desired and actual inventories

match or the X 1W s are sufficiently close and the desired inventory shadow value is

sufficiently close to the actual inventory, the XIw 's are used to re-evaluate the second

allocation.

Now that an overview of the procedure has been given, the actual steps and algo-

rithms will be presented.

The first step is to determine the desired inventory for each weapon based on the
X W s derived in evaluating the second allocation.

The inventory increment for weapon type IW against target type IT is:
W * MAXK0: -.95IT*>

NWPD - IW, IT HIT, IWIT (262)
N W , IT ;-MAX (0: H 9W *>

IT,iw I
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The total desired inventory NWPDIW for weapon type IW is then:

NWPDiw' NWPDIW, IT (263)

Ii Now if the desired inventory for each weapon is compared with the actual inventory,
and if the desired inventory is less than the actual inventory for weapon type 1W , X lW

is reduced by 5 percent.
X 1W -0 .95X1W

(264)
NWPD1w <NWP

A new desired inventory is now computed using the new value of X . Following)SW

this, the values of increments to the X1W  , (AX1w 's), are generated using a con-

verging iterative process. Initial values for the AX w's are:

AXIW = .05 NWPDIw > NWPpw

AX1W = =.05 NWPDIw N (265)

Further adjustment is then accomplished as follows:
X - -6X /4 NWPDIw <NWP1 w  and AX1W >0
A1W  1W -W X1W /4

or

NWPDIW = NWP 1W (266)

or

NWPDIw >NWPw and AX 1W <0

X 1.36XBV NWPD 1w < NWP W  and AX :g 0

or

N W PDIw > NWP W  and AXW  0

Further refinements are now made to the A XiW 's based in part on the absolute

value of the maximum adjustment made so far:

XMAXL = MAXjA X W I>
OVER (267)
ALL
WEAPON
TYPES
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When XMAXL .001, (which it will not be the first time) sufficient adjustment
has been made. If not, the A X1W's are checked and adjusted if necessary to keep

them within preset bounds in two steps as follows:

Step I Adjustment

AX1 W  -. 8, AX W <-.8
(268)

A Xi W 4XMAXL/20, 0 : A X 1W < XMAXL/20

Step II Adjustment

AX1W - =XMAXL/20, =XMAXL/20 < AXW <0

A XI- .5 A XI > .5
1W 1Ws

The values of the X Is are then recalculated taking into account the above

A X1W s and a simultaneous correction factor AX . Initially AX = - .03

l~ Xl - W(I +AX W)( + AX') (269)
The shadow values for both the aggregate desired inventory and the aggregate actual

inventory are now computed for the purpose of adjusting A '

SVAL = J'-'. INWPw

ii -- (270)
~~SVDL =EXkI- NW PDw

The adjustments to AX' are now made similar to the way adjustments were made to
the AX 1W  in equation (266):

A'- -A V/4 SVDL<SVALandA'0

SVDL > SVAL and AX' !- 0
(271)

A'-. 1.3 A' SVDL<SVALandAX'<0

SVDL > SVAL and AX' >0

As in the case of the A X 'W s the value of AX' is limited as follows:

Step I Adjustment

AX'. -. 8 AX'< -. 8

A X' V XMAXL/20, 0 g AX' < XMAXL/20 (272)
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Step II Adjustment

A V -o - XMAXL/20, - XMAXL/20 < A X' < 0

A X'- .5, AV > .5

The above sequence is now repeated beginning at equation (262) and continued until
either a present number of iteration (generally 100) has been completed of XMAXL < .001
as determined in equation (267).

Retesting the Second Allocation Based on Revised Shadow Values - The second allocation
is now tested again using the new snadow values (Xw' s) just derived. The procedure

is identical to the procedure followed in evaluating the initial allocation in equations
(249)-(256). The results based on a new value of UBOUND are:

3 = UBOUND -DTOT2  (273)

PERR3 = 100 (e3/DTOT 2)

If PERR3 is small enough, the second allocation is satisfactory with respect to totalI damage and only the level of damage to the defended target subset must be investigated.
If PERR3 is not small enough, then a third allocation must be made, by means of the

procedure outlined below.

The Third Allocation - The third allocation is generated using exactly the same pro-
cedure which was used in generating the second allocation but utilizing the adjusted
X w's discussed earlier.

Testin g the Third Allocation - The third allocation is tested in the same way as the
second allocation, except that the restriction on PERR 4 for a satisfactory solution is

changed from 1 percent to 3 percent (or 6 percent if it is not desired to take the time
necessary for 3 percent convergence). If PERR4 meets the criterion with respect to

total damage, then only the level of damage to the defended target subset must be
investigated. If PERR4 does not meet the relaxed criterion, the above procedure must

be repeated, as outlined below.

Additional Adjustment to Shadow Values Re-evaluation, Additional Allocations and Tests
of These Allocations - When the thirid allocation has not produced satisfactory results,
the X w's are again modified, the third allocation is then retested and, if necessary,

a fourth allocation is generated and tested. Similarly, if this is not satisfactory, the
process of X W adjustment, re-evaluation, new allocations, and allocation testing

is repeated until a satisfactory allocation is found.

Satisfying the Assured Destruction Constant - When a satisfactory allocation has been
found -- whe ier it be on the tirst, second, third, etc. allocation -- an additional
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constraint must also be satisfied. That constraint is the need to destroy at least some
stipulated fraction (FRACP) of the total value of the subset of defended targets. The
fraction actually destroyed is termed FRACPA. This is also known as the preferred-

) target -destruction criterion. Thus, starting with the total defended target value, VPREF,and the total defended target value destroyed, DPREF:

VPREF = IT
SUBSET OF
DEFENDED
TARGETS

(274)
•JPREF = FDIT

SUBSET OF
DEFENDED

TARGETS

Then:

FRACPA = DPREF/VPREF (275)

Now, if FRACPA < FRACP, all non-defended target types are being valued too
highly and a new allocation is made. In this allocation all undefended target values are
multiplied by cc = .003 to reduce their values on this next allocation to .3 percent of

their original values.

V--.4 .003 VI(
TARGET (276)
TYPE IT
UNDEFENDED

The allocation procedure is the same as that previously outlined, beginning with a
steepest ascent initial allocation and proceeding to second, third, etc., allocations as
necessary. The only difference occurs in the penalty algorithm, equation (257), in
which a multiplicative factor is added. The value of this factor depends on whether the
allocation just previous destroyed enough preferred target value. I

CRITFAC = .1 FRACPA > FRACP

CRITFAC = 10 FRACPA FRACP (277)

CRITIT = CRITFAC(NPIwM, IT + 1) • FRACINV(1.1 HMAXCIT - HMAXNIT )

After the allocation procedure is again completed the defended target value destroyed
is recomputed using equation (274) and the fraction of total defended value destroyed is
recomputed using equation (275). If FRACPA and FRACP are now within 0.02 of
each other, or if FRACPA < FRACP (assured destruction is inachievable), the allocation
process is complete. If not, the undefended target value multiplier N for the Nth
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assured destruction iteration is varied using a linear interpolation method. The essen-
tials of the process are explained below using figure 18.

F RP L

-M FRACP
'9N

I I\

V L IN 'N+ N

CI

Oa ON aN+I aU

Undefended target multiplier (a)

FIG. 18: RELATIONSHIP BETWEEN FRACTION OF DEFENDED VALUE DESTROYED
AND UNDEFENDED TARGET MULTIPLIER

In figure 18, cL is defined as the highest value of (N that has thus far produced an

acceptable level of assured destruction. U is the lowest value of aN that has thus far

produced an unacceptable level of assured destruction. Initially, since the first accept-able allocation assumed no preference for defended-target values, 1 . Similarly
since the first iteration using cc = 0.003 was successful in producing an acceptable

level of assured destruction, then initially L = 0.003 . FRL and FRU, then, areL
defined as the fractions of defended target value destroyed (assumed destruction level),
when the undefended target multiplier takes on values of a and -U # respectively.

k Following the first and higher iterations, m or L and FRU or FRL are

updated reflecting the value of FRACPA obtained on the Nth iteration.

SU ~N N !}I JFRACPA.<FRACP

F RU -4 FRACPA jFRACPA - FRACPI > .02 (278)

CL _+ccN N _1 -fFRACPA >FRACP

FRI,- FRACPA I .FRACPA -FRACPI > :02
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Based on figure 18 and the above, the linear interpolation value of N+I for
iteration N+l is then:

c N+1 cL + N - L)(FRL - FRACP)/(FRL - FRU) (279)

The value of undefended targets for assured destruction iteration N+1 are then
updated:

VIT' 4 cN+l VIT (280)
rARGET

TYPE IT
UNDEFENDED

A new allocation is then processed based on the new values of undefended targets.
When this allocation is completed, it is tested to see if the defended target fraction
FRACPA is within 0.02 of the desired fraction, FRACP . If so, the allocation is
complete. If not, but the limit on the number of assured destruction iterations has
been reached, then the assured destruction iteration allocation in which FRACP was
exceeded by the smallest amount is taken to be the final allocation. If FRACPA is not
sufficiently close to FRACP (differing by more than 0.02) and the limit for assured
destruction iterations has not yet been reached, then another iteration is made beginning
with the updating of the various c's in equation (278).
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SECTION III

SUMMARY OF SUBROUTINE OPERATIONS

GENERAL OVERVIEW

As a point of reference, it is first useful to review the typical Code 50 scenario.
While many other possibilities exist, this is the most extensively used. [ir~st, it is
assumed that the Soviet Union attacks the United States in a counter-force-only strike
hitting U.S. land-based missile sites and non-alert bombers and ballistic 1jisSile sub-
marines. The Soviets are assumed to hold back all bombers an mtllumber of
missiles for the third strike, -The-S6V ie attack is optiirzed to maximize the U.S.
weapon value destroyed. After the destruction is taken into account, all surviving U.S.
forces attack-the Soviet cities in an attack that is optimized to maximize fatalities,
subject to the assured destruction constraint that X percent of the value in terminally
defended cities must be destroyed. After the second strike, the Soviets make a third
strike a ainst U.S. cities with their remaining weapons, to kill a maximum namber of
people. On this basis, the discussion can now proceed into how Code 50 operates to
work tlT ough this scenario.

The Code 50 program is divided into two parts. The first consists of the war-game
model itself and the data input systems. This segment of Code 50 reads in data, initial-
izes for the ensuing computations, calculates single-shot kill probabilities, analyzes
weapon-interceptor engagements for both missiles and bombers, and in general, prepares
the weapon and target data for the second part of the program which will 'etermine the
weapon-to-target allocation. The various components of this part of Coce 50 are Code
50, the main executive program; GENX and DATAX, the input routines; STRIKE, a
secondary executive and general calculating routine; MBPEN, a single-island random
area penetration subroutine for both missiles and bombers; SSKCALC, which calculates
single-shot kill probabilities; ano MINNUM, which computes the minimum number of
weapons of each type which must be invested at each type of target in order to obtain a
payoff.

i: The game model segment of Code 50 is interfaced with the weapon-to-target allocation

through subroutine TRANS. Control then passes to subroutine ASSIGN which is the execu-
tive subroutine for the allocator section of Code 50. When the allocation is complete,
the damage is computed, control is returned to Code 50, the attacker becomes the de-
fender and vice-versa, and subroutine STRIKE is called again. The procedure is carried
out three times or less, although the initializing and data-reading subroutines are only
called on the first strike.

THE WAR GAME SEGMENT

The basic purpose of the war game segment of Code 50 is to feed to the inside (or
allocator) segment lists of available weapons to allocate to the various targets along with
all requisite information concerning both weapons and targets. The subroutine calling
sequence for the war game is as shown in figure 19, the events represented by this
sequence are as follows. The executive routine Code 50 sets the attacker and defender
indices and c.Als the data input subroutines, GENX and DATAX. These read in informa-
tion and also compute some parameters such as the number of weapon and target types
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for each side. Control then returns to Code 50 where an initializer transfers data from
the fixed arrays to the working arrays. Then a secondary executive routine, STRIKE,
is called. It sets the number of weapon classes and target classes for attacker and
defender for later use. It then obtains the target values. There is an option to either
read in target values or calculate them. The calculation, of course, applies only to
weapons considered as targets since the value of a city has been taken as its population.
The other task of STRIKE is to set flags in arrays to indicate missiles, targets withl~t extended areas to which the square-root law is applied to calculate survival, targets
which are terminally defended, and to update the weapons left.

The subroutine that calculates the area penetration probabilities, MBPEN is now
called. The bomber and missile area penetration models covered in section II are
included in MBPEN. MBPEN is called with an argument so it can be used for either side
at any time, not merely the attacker. This capability is required if one assumes that
the value of a weapon as a target is in part a function of its delivered yield. Thus, given
the index for one side, the first step is to find the other index. MBPEN then proceeds to
find the number of bombers of each type arriving at the area defenses as well as the total
number. There is an option to read the kill probability of a bomber by a fighter instead
of calculating it. The penetration probability is defined as the probability that a bomber
is not killed before delivery multiplied by its ASM inflight launch reliability. This last
is unity for gravity bombers. The last point here is the calculation of NWP which is the
number of reliable independently targetable weapons.

Subroutine SSKALC calculates the singe-shot kill probabilities and modifies them
to include any restrictions placed on the weapons such as not sending bombers against
alert missiles. This is done using the single-shot kill models discussed in section II.

Subroutine MINNUM gives the minimum number of weapons of a given type required
to obtain a payoff at a target. The bomber and missile terminal penetration models dis-
cussed in section II are used for this purpose.

This completes the description of the game model and how the specific game models
of section II fit together. To recapitulate, this section of the program feeds to the inside
a list of numbers of reliable weapons, kill probabilities, number of weapons required for
a payoff, a target list, and numbers of weapon and target types. At this point the weapon-
to-target allocation routine takes over. Then after the allocation is complete, and a
summary result is printed, control returns to Code 50 where the attacking and defending
sides are exchanged, the strike number is increased by unity, and the sequence starts
again.

THE WEAPON ALLOCATION SEGMENT
The calling sequence for the weapon allocation segment is handled by subroutine

ASSIGN. Its flow chart is shown in figures 20-23. First, it calculates several
quantities including the total and terminally defended target system values. Next it calls
an initializing routine (INITIAL), and then performs the steepest ascent initial laydown
allocation. As discussed in section 1I in the Weapon Target Allocation Model, this alloca-
tion is a compormise in that it neither lays down all of a given weapon type at once, nor
does it lay the weapons down individually. Rather it makes the laydown using one-fifth
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of each weapon type on the best targets. The best target for a given weapon type is found
in subroutine MAXPAY. As some number of targets of a given type have weapons assigned

N, to them, new target classes are created for the targets of that type which have not as yet
been touched. This is done using subroutine SPLIT. When the laydown is completed, one
more weapon of each type is then assigned to the best target for that weapon. The bare
payoff or best alternative use for a single weapon is taken to be the starting value of the
LaGrange multiplier. Having obtained a set of multipliers, the next step is to evaluate
the allocation just made. To do this, one must have in some sense an optimum allocation.
This optimum is obtained using subroutines MAXLAG and EVAL. The first of these finds
the maximum LaGrangian payoff for each target if the optimum number of the best weapon
type is used at each target. Subroutine EVAL then compares the total payoff using these

V optimal LaGrangian payoffs with the actual payoff obtained using the laydown allocation.
Generally, the fractional error will be over the preset limit so a new allocation must be
made. This new allocation is made on the most critical targets first. These are the
targets on which the largest differences are obtained in the LaGrangian payoff if the
optimum weapon were out of stock. This allocation proceeds until seventy percent of tMe

• total Sadow value of te weapons hias been expended. Thie remaining thirty percent is

allocated using the steepest ascent laydown algorithm. Again the allocation is evaluated.
If it is not good enough, the LaGrange multipliers axe adjusted using subroutine ADJLAM.[ This subroutine first calls OPLAG which finds for the given types of weapons in stock
the optimum number of each weapon to have. The difference between the optimum num -
ber and the actual number is the criterion by which the lambdas are adjusted. This
adjusting involves a number of heuristic considerations and is both complicated and time-
consuming. After it is completed, another allocation is made. Experience has indicated 13
that this allocation is almost always very close to the optimum, although additional
allocations may need to be made in some cases using the loop mechanism shown in
figures 20-22. This completes the weapon-to-target allocation. If there is no assured-
destruction required, ASSIGN calls CONSOLID to find any repetitions in the allocation
list and to combine such repetitions into a single target type subclass. ASSIGN then
makes a final call on EVAL, calculates damage and calls on TARGSUM to print out the
damage. Then ASSIGN calls WPSUM to print out a summary of the attacking side weapons.,4
Finally, PRALLOC is called to print out a summary of the allocation. Control then T.-
returns to Code 50.

On the other hand, if there is some assured destruction requirement, a somewhat
L longer calculation is made. A check is first made to see if the assured destruction was

obtained on the optimum allocation. If so, the allocation is complete. If not, the valueV of all the non-preferred targets is set to zero, and we start over. On returning to this
point, a check is made to see if it is ever possible to obtain the assured destruction on
the preferred targets. If not, a message is printed and the allocation is complete. If
the assured damage level was obtained with the non-preferred target values set to 0.3
percent of their values, an iterative technique is used as explained in section II to find
the factor by which the non-preferred target values are to be multiplied to obtain as
nearly as possible the exact assured damage level. The allocation is then returned to
Code 50 through MINNUN, TRANS and STRIKE, as shown in figure 19.

Ii
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FIG. 19: OUTLINE OF CNA 50 OUTER CALCULATION
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