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I.  INTRODUCTION

In the last few years,‘a concerted effort has been made to analyze |
submerged structures under explosive loadings, by utilizing the Doubly
Asymptotic Approximation (DAA), Ref. [1],‘to account for the structure-fluid

interaction. The current implementation of the DAA;by Weidlinger Associates,

Ref. [2] to [5], employs a modal analysis for the structure and a set of
orthogonal functions (surface expansion functions) for the fluid, the latter

being used to improve the conditioning of the governing response equations.

The DAA yields exact results for high and low frequencies and produces a
smooth transition between these limits. Since a more accurate fit at
intermediate frequencies may prove to be important in some problems of
interest, the DAA may prove to be inadequate in some cases. Thus, work was
done on developing improvements to the DAA. One such approach,'the Inertial-
Damping Collocation Approximation (IDCA), was developed by
Weidlinger Associates several years ago and was reported on in Ref. [2]. The
IDCA_gives exact results for low, high, and selected intermediate

frequencies, and as such represents a potential improvement over the DAA.

Although the IDCA was described in Ref. [2], problems arising from the
fitting procedures used to match exact steady-state results were not
discussed in detail. With some current interest in the development of
improved uncoupling techniques, this note has been prepared to document the

current status of the IDCA and to demonstrate the new improved fitting

procedures developed for the application of this method.




II. DESCRIPTION OF THE INERTIAL-DAMPING COLLOCATION APPROXIMATION

For a submerged structure subjected to an underwater explosion, it is
possible to approximate the structure-fluid interaction by expressing the
surface pressures in terms of the normal surface velocities (Refs. [1] and
[2]). Such a procedure essentially uncouples the fluid from the structure
by subjecting the structure in-vacuo to free-field effects plus a structure-
fluid interaction loading. The DAA, for example, is an uncoupling technique
which yields correct results for low and high frequencies. 1In this section,
a new uncoupling scheme, the IDCA, will be described briefly. This method
allows matching exact solutions for low, high, and selected intermediate

frequencies.

Let a time-harmonic normal displacement be applied to a fluid surface
(cavity) having the shape of a structure to be submerged and loaded by an

underwater explosion:

w2 1D = Wha) ek

where s denotes position on the surface, t represents time, and i =\/— 3

The radiated fluid pressure may then be written in the form

p(s, ©) = [p(s) + 1 p(s)] o™

in which the inertial (real) component, p, is in phase with the
displacement, and the damping (imaginary) component, p, is in phase with the

velocity.

For arbitrary excitation of a submerged structure, the radiated
pressure (the difference between the total and incident pressures on the
surface of the structure) may also be represented by a component in phase

with the displacement of the surface of the structure and a component in

(1)

(2)




-

e

phase with the normal velocity of the surface. The generalized force

associated with the radiated pressure may then be expressed as

Q=09 +Q, O

~ ~

where Ql and Q2 have the characters of an inertia force and a damping force,
respectively, underlining denotes a matrix, and the caps indicate a x
formulation of the fluid response based on surface expansion functions rather

than structural modes.

*
When based on surface expansion functions, the IDCA may be written as )

t L
G- b de =S =0 = ] [fgldtdt+§91+991 s
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g~ =5l ad-06"8& (5)
R a2 8
(o]

in which q is the array of generalized coordinates for the fluid,

~

91 is the array of expansion coefficients for the incident

A ~

(free-field) velocity, Yy is the virtual mass matrix, o is the diagonal
radiation damping matrix, and a dot indicates differentiation with respect to
time. The elements of matrices B, C, D are evaluated by matching exact

steady-state solutions at selected frequencies.

For low frequencies, Eq. (4) reduces to the Virtual Mass Approximation
(Ref. [6]), and for high frequencies, Eq. (5) reduces to the Plane Wave

Approximation (Ref. [7]). The matrix a in Eq. (4) is used to ensure the

!

1f a submerged body is subjected to an incident pressure wave with zero
rise time, a time-integrated form of Eqs. (4) and (5) should be used,
as shown in Ref. [2].
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correct asymptotic behavior of the inertial part of the IDCA for high
frequencies (Curved Wave Approximation, Ref. [8]). Details of the procedures

used to obtain the elements of a, B, C, D may be found in Ref. [2].
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[TT. DIFFICULTIES ENCOUNTERED

In the IDCA, fitting is employed for the relations between normal
surface displacements and the resulting generalized forces considered as
functions of the frequency. The concept of fitting was developed after a
study of simple cases (infinitely long cylindrical and spherical shells)
where one displacement mode and one force are fitted at a time. In this
situation the fitted curves are necessarily smooth, and in general acceptable. ;
In the general case, a considerable number of surface expansion coordinates
and the corresponding forces are fitted simultaneously, and the success of

this fitting process was a major matter of concern for the investigators.

Discussing as a typical example the case N = 1 (one circumferential
wave) for the structure treated in Ref. [3] (ring-stiffened circular
cylindrical shell closed by flat end plates), it was found that the fitting
process properly reproduced the desired values of the fluid resistance*) at
the frequencies selected for fitting. However, the curves were not as smooth
as hoped. While the oscillations in most cases are minor, there are a number
of cases with violent oscillations in narrow frequency ranges. In the case
under discussion, 18 surface expansion functions and the corresponding 18
generalized forces were used, and the resulting relations plotted. In two

cases the values YR (accession to mass) oscillated so severely that the

values became negative for a narrow frequency range. Figures 1 to 4 show as

"

In this note, the term fluid resistance is used to denote the array

Y = YR + iAYI, in which YR and YI have real elements and i =\/— 1.
The array YR has the character of the specific acoustic inertia, while
Q §I’ where {i represents frequency, has the character of the specific

acoustic resistance. The exact frequency dependence of Yy was obtained
by modifying an existing sound radiation code (Ref. [9]).
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examples plots of YR for surface expansion functions 1, 2, 5 and 12. For

A

function 1, the rigid body displacement, Y_  is in general well approximated,

R
but there are slight oscillations below f = 0.5 kcps. For functions 2 and
12, Figs. 2 and 4 show the worst situations encountered; they give
unrealistic negative values for §R at certain frequencies. An intermediate
situation for function 5 is shown in Fig. 3. There are strong oscillations,
but no negative values for ;R° The fitting of the values ;I (damping) does
not lead to violent oscillations as was the case in Figs. 2 to 4. The
result for the rigid body motion, function 1, is shown in Fig. 5. However,
inspection of the results for the remainder of the surface expansion

functions disclosed two cases, functions 12 and 13, shown in Figs. 6 and 7,

where the damping YI becomes negative for frequencies below f ~ 1.5 kcps.

It would be legitimate to reason that local oscillations in the curves
for ;R and ;I should not cause unrealistic final results, because the
response is inherently a composite of effects originating from all
frequencies. However, the occurrence of regions of negative damping or
negative accession to mass makes the results of the analysis tainted,
although only 4 of the total of 18 relations are thus affected. Thought was

therefore given to variations of the scheme which avoided the described

undesirable situations.




IV. IMPROVED FITTING PROCEDURE

If the IDCA in terms of surface expansion functions, as described in
Ref. [2], is applied to an infinitely long cylindrical shell (or to a
spherical one) of uniform thickness, the difficulties described in
Section III could not occur, because only one surface expansion coordinate
and one generalized force couple. This simple situation is caused by the
fact that the matrices §R and §I are diagonal. This suggests that one could
avoid these difficulties if one could select surface expansion functions
such that the matrices §R and ;I are diagonal at all frequencies. This
ideal solution is not available for a general, complex structure.

However, one can start by selecting surface expansion functions ;j(s)
which make the matrices ;R and ;I diagonal Jfor 2 = 0 and 2 » o,
respectively, where ! denotes frequency. This is always possible, and can
be done as described in the Appendix. (Note that the previously proposed
functions wj(s) already lead to a diagonal matrix ;I for  » ©.) At
intermediate frequencies, such as those selected for fitting, the matrices
§R and QI would not be diagonal. However, since ;R and ;I are diagonal for
=10 and 2 > ©, respectively, one may expect that the matrices at
intermediate frequencies are sufficiently close to diagonal to permit
ignoring, as an approximation, the off-diagonal terms. Such an approach

leads to an IDCA-solution without problems caused by negative accession to

mass or negative damping.

In order to evaluate this idea, a unique, but of course truncated set

~

of surface expansion functions was obtained, such that the matrices YR and
¥y were diagonal for 2 = 0 and Q > ®, respectively. This was again done
for the case studied in Section III. Using these new surface expansion

A ~

functions, the matrices YR and YI were computed at several intermediate

T B s R

B s T —

.y




frequencies to verify the order of magnitude of the off-diagonal terms to be

ignored.

In the earlier scheme using the complete matrix of the fluid resistance,
including the off-diagonal terms, certain fitting frequencies were selected.
Obviously, the importance of the off-diagonal terms to be dropped in the
newly proposed scheme should be considered at the level of the fitting
frequencies appropriate for the new scheme. The frequency dependence of the
fluid resistance in either scheme depends on the typical distance between the
nodal lines of the imposed displacements, i.e., the surface expansion
functions. This may be seen, typically, for the scheme for which fitting
results are shown in Figs. 1 to 7. The values ;R (accession to mass) were
fitted for one frequency above and one frequency below the peak of a curve.

-

The peak shifts to higher frequencies as the mode number increases, because
the nodal distances decrease with mode number. The peak is located at quite
a low frequency (f ~ 0.3 kecps) for function 1, higher frequency (f <~ 1 kcps)
for function 5, and much higher frequency for function 12. A shift of
fitting frequencies through the same range is to be expected for the
proposed new surface expansion functions. The range f = 0.5 to 2.5 kcps
was therefore studied carefully.

The method shown in the Appendix was applied to determine the fluid

A

resistance (YR and YT) based on transformed surface expansion functions wi(s).

A

Little difference in the importance of the off-diagonal terms in YR
(accession to mass) was observed over the above range of frequencies. As
typical, Table I shows the matrix for f = 1 kcps. Inspection of the Table
indicates that the off-diagonal terms are nearly always less, often very

much less, than 1/10 of the diagonal ones. The ignoring of such small

terms seems reasonable.

0 M e e .
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The check on the importance of the off-diagonal terms for the matrix YI
(damping) is slightly more complex because of the nature of these curves.

They have the character of Fig, 8. The values are practically ~ero from f = 0

to some value close to the fitting point, {{. As a result, the prevailing of
the diagonal terms is of importance only near the fitting frequency for the
respective function. At frequencies below the fitting point, the diagonal and
the off-diagonal terms are several orders of magnitude smaller than near the
fitting point. The situation away from fitting points is thus of no
consequence. This is illustrated in Tables II to IV. For the first five
transformed functions $j the fitting points are below or up to f = 1 kcps, and
Table II shows the matrix $I for the lowest values k, j < 5. The diagonal
terms prevail, not so strongly as for $R’ but still with factors close to 10.
On the other hand, for the same frequency the diagonal terms do not prevail
for higher functions, as may be seen from Table III for k, j = 12 to 18.
However, the values $I are here of the order 10.2 and 10_3, i.e., extremely
small compared to the diagonal terms in Table II, which are of the order

lOfl. For values k, j > 12 the fitting frequencies are in the f = 3 to 4 kcps
range, and Table IV shows the appropriate portion of the matrix $I' It is

seen that the diagonal terms in this range prevail strongly, with factors

larger than 10.

*
It is thus concluded that the proposal to disregard off-diagonal terms )

appears to be a promising approximation.

%)

It is noted that an entirely different fitting scheme, involving the use
of convolution integrals was suggested at a technical meeting at DNA in
July 1974 by Dr. T. Geers. The scheme was based on surface expansion
functions which lead to diagonalized matrices YR and YI at Q = 0 and

§i » ®»yrespectively. This scheme also ignored off-diagonal terms at
intermediate frequencies. The degree of approximation obtainable by any
such scheme, shown here in Tables I to IV, has however not been
demonstrated previously.
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APPENDIX

Determination of Surface Expansion Functions which Diagonalize the Damping

Matrix for High Frequencies and the Inertia Matrix for Low Frequencies.

In Ref. [2], elements of inertia and damping matrices, when surface

*
expansion functions are used, are defined, respectively, as )

~

ij & ﬁj(S) b (s) dA (A-1)

and

~

Yk = PJ(S) wk(s) dA (A-2)

A

In Eqs. (A-1) and (A-2), the wk are the surface expansion functions. The

~

ﬁj and ;j are defined by equations analogous to Eqs. (96) and (97) of Ref. [2].
In Eq. (95) of Ref. [2], the normal components of the shell modes, ®?, are
replaced by the wj, and the generalized coordinates,qj, of Eq. (123) of

Ref. [2] replace the qj of [Bg. (39) of ReE. [2].

The inertial and damping components of the generalized forces

~

corresponding to the coordinates qj, defined by Eq. (126) of Ref. [2], are

given by expressions analogous to Eqs. (110) and (98) of Ref. [2]:
q, (A-3)

a. (A-4)

*

) The elements of the inertia and damping matrices appearing in Eqs. (A-1)
and (A-2) are related to the elements of the fluid resistance matrix of
Section II1 by the expressions

A ~

i = 2 P ; = -
Y * Qj (YR)kj and " Qj (YI)kj

where Qj denotes the frequency of the prescribed time-harmonic normal

A

displacement. Details may be found in Ref. [2].




If the normalizing coefficients ﬁi of Eq. (124) of Ref. [2] are chosen

equal to the shell surface area, the orthogonality condition becomes

dA = =

\pixpj A A Gij (A-5)
A

The choice of an orthogonal set of surface expansion functions is not

unique. Given one set wi(s), new functions wk(s) can be constructed as

infinite series of these:

(k)

@k(S) = g r, wi(s) (A-6)

Because the problem is linear, it follows from their definitions that the

pressures Ej(s) and P, (s) corresponding to the new set of surface expansion

functions wj(s) are related to the ﬁi(s) and pi(s) obtained using wi(s) by

relations similar to Eq. (A-6),

ﬁj(s) = % ri(j) 51(5) (A~7)
P Iy ¢§) = 2
pj(s) = g = b, (s) (A-8)

Using Eqs. (A-5) and (A-6), it follows that

—

(1) _ P (A-9)

<>
€
(2%
>
[}
>
g~
]
~

A

7% .

e e o (A-10)

As was shown in Section J of Ref. [2], the use of any set of orthogonal

surface expansion functions leads to a diagonal damping matrix in the limit

of infinite frequency, i.e.,




2
lim Y, . = - ., =

- pcA ij (A-11)

It is now desired to choose that (unique) orthogonal set of @ [from among
t k

all those obtainable from Eq. (A-6) with coefficients satisfying Eq. (A-10)]
*
which diagonalizes the inertia ) matrix at zero frequency, i.e., which

results in

N - 5% 5, (A-12)
J D=0 J

If Eqs. (A-6) and (A-7) are substituted into equations analogous to

~

Eq. (A-1), with $kj on the left-hand side instead of ij, there results

T | B
n T Ynm (A-13)

<1 >

asll

Diagonalization at zero frequency is ensured by substituting Eq. (A-13)

into Eq. (A-12):

@y ) = o ,
E Py £ Ynm]Q ik b ij (A-14)

5~

Thus, the set (and only that set) of surface expansion functions which is
obtained from Eq. (A-6) with expansion coefficients satisfying both Eqs.
(A-10) and (A-14) will be orthogonal in the sense of Eq. (A-5) and
produce diagonal damping and inertia matrices at infinite and zero

frequencies, respectively, as expressed by Eqs. (A-11) and (A-12).

=<t »

%
) 1t should be noted that the elements of the inertia matrix, Kj

related to those of the virtual mass matrix, ;kj’ by

s, are

This may be seen by comparing the definitions of Eqs. (75) and (96)
of Ref. [2] with surface expansion functions used instead of shell
modes.




In partial matrix form, Eqs. (A-6), (A-10) and (A-14) may be written as

b, () = w(s) +V (A-15)
r(1) r(J) e (A-16)
= % ij
g D0 1T
8= 0 ]
Equations (A-16) and (A-17) constitute a standard eigenvalue problem in
which the elements of the (diagonal) inertia matrix at zero frequency, b(J),
are the eigenvalues and the columns of expansion coefficients E(J) are the
corresponding eigenvectors. The solution of Eq. (A-17) which satisfies
Eq. (A-16) is readily seen to be
1. - 53 I E(J) - (A-18)
Q=0

in which T is a unit diagonal matrix. After the series of Eq. (A-6) is
truncated by considering a finite number of expansion functions Wi, the

eigenvalue problem of Eq. (A-18) may be solved by any standard method.




