— P——

" AD=AO43 349 AERONAUTICAL RESEARCH LABS MELBOURNE (AUSTRALIA) F/8 9/2 .
THE SIMULATION LANGUAGE CSMP=10(ARL), (V)
MAY 76 N E GILBERT: P 6 NANKIVELL

UNCLASSIFIED ARL/AERO, 362

R

[
=

EE

[y
N
"N

E

5
®
S
e

f's HDN%

il

e

L o

NATIONAL BUREAU OF STANDARDS
MICROCOPY RESOLUTION TEST CHART

Ry W), —m—

UNCLASSIFIED

ARL/Aero. Note 362 / ARL,Aero Note 362

]" <
s (i
3y, AUSTRALIA &

L

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANIZATION
AERONAUTICAL RESEARCH LABORATORIES

ADAG43349

MELBOURNE VICTORIA

Aerodynamics Note 362

THE SIMULATION LANGUAGE CSMP - 10(ARL,

N. E. GILBERT and P. G. NANKIVELL

@ COMMONWEALTH OF AUSTRALIA 1976
REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE MAY 1976

U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA, 22161

UNCLASSIFIED

DIC FiLe coy,

¥ DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANIZATION

AERONAUTICAL RESEARCH LABORATORIES

£

‘// Fows" ol e = e
_AERODYNAMICS NOTE 362

THE SIMULATION LANGUAGE CSMP-10(ARL) , |

by

/ N. E./GILBERT and P. G. NANKIVELL

/Y|

/

f SUMMARY

‘/‘bfi description is given of the ‘block oriented' simulation language CSMP-10(ARL),
which has been developed from CSMP-10 and is written mainly in FORTRAN 1V for a
PDP-10 computer. The major improvement made has been to incorporate ‘user-defined’
blocks, which are written as FORTRAN subroutines. A large number of outputs may be
defined within these subroutines by using ‘dummy’ or ‘user output’ blocks. Two other
major improvements have been made, both enabling the saving of appreciable core storage.
Firstly, arrays necessary to store information on each block used are automatically expanded
to the size determined by the user. Secondly, the language is divided into a modelling
program, which is used to perform the model simulation and store the output in a binary
file on a specified storage device, and an output program, which is used to print and plot

the character conversion of the binary file. K

POSTAL ADDRESS: Chief Superintendent, Aeronautical Research Laboratories,
Box 4331, P.O., Melbourne, Victoria, 3001, Australia.

- : : A

it Bt

T

e =t

CONTENTS / "4/

1. INTRODUCTION

2. OUTLINE DESCRIPTION OF CSMP-10(ARL)
2.1 General
2.2 Improvements to CSMP-10

3. MODEL REPRESENTATION
3.1 Types of Statements
3.1.1 Configuration Statements
3.1.2 Parameter Statements
3.1.3 Function Statements
3.2 Sort Process
3.3 Model Execution Process

4. BASIC OPERATIONS OF SIMULATION LANGUAGE

4.1 Running the Modelling Program
4.1.1 Stage 1—Loading the Program
4.1.2 Stage 2—Execution Initiation and Dimensioning the Expandable Arrays
4.1.3 Stage 3—Status of Input and Output Channels
4.1.4 Stage 4—Setting up the Model
4.1.5 Stage 5—Storing the Model
4.1.6 Stage 6—Specification of Integration and Output Control Parameters
4.1.7 Stage 7—Executing the Model

4.2 Running the Output Program
4.2.1 Setting up the Program
4.2.2 Teletype Output

5. FURTHER OPERATIONS OF MODELLING PROGRAM
5.1 Changing the Status of Input and Output Channels
5.1.1 Model Output
5.1.2 Model Input
5.1.3 Block Output
5.2 File Safety
5.2.1 Output Files
5.2.2 Input Files

...Page No.

7-8

8-9

9-11
11

11
12
12-13
13-14

15
15
15-17
17-18

18
18-19
19-21
21-23

23

24

24

24

s

5.3 Modifying the Model
5.4 Non-Interactive Running and Batch Processing
5.5 Miscellaneous Commands

§.5.1 RUN

5.5.2 LOOK

5.5.3 DEBUG

5.5.4 PROGRAM

5.5.5 RETAIN

6. LOOP BREAKING BLOCKS
6.1 Unit Delay
6.2 Integrator
6.3 First Order Lag

7. USER-DEFINED BLOCKS

8. SPECIAL FACILITIES
8.1 Solution of an Implicit Equation
8.2 Discrete System Simulation

9. DESCRIPTION OF MODELLING PROGRAM
9.1 Program Structure
9.2 Storage Requirement

10. CONCLUDING REMARKS
ACKNOWLEDGEMENT
REFERENCES

APPENDICES

FIGURES

DOCUMENT CONTROL DATA

f

24-25
25-26
26
26
26
27
27
27

27-28
28
28-29
29

29-31

31
31-32
32-33

33
33
33

33

34

35

36-49

fad Al —u

-

1. INTRODUCTION

Programming of both continuous and discrete dynamic systems for digital computers has
been aided considerably in recent years by the development of simulation languages. These
languages enable the user to make a relatively simple transition from the environment of an
analogue computer to that of a digital computer. Simulation languages have advantages over
high level programming languages such as FORTRAN and ALGOL of economy in program-
ming time through the sorting of statements and ease of modification, use of centralised
integration, and specialised output facilities. There are two types of simulation language, ‘block
oriented’ and ‘equation oriented’: the latter resemble a high level programming language such
as FORTRAN, while the former are expressed in coded form with the aid of a block diagram.*
The interactively controlled ‘block oriented’ language CSMP-10' became available for use on
the PDP-10 computer at ARL but, because of its inability to handle complex algebraic expres-
sions, was of limited usefulness. Consequently, a modified version, called CSMP-10(ARL), has
been developed whose major improvement is the incorporation of user-defined blocks which
are written as FORTRAN subroutines. CSMP-10 was developed from a series of languages,
namely (in order of development) PACTOLUS? for an IBM-1620, 1130-CSMP?** for an IBM-
1130, and CSMP-9° for a PDP-9. Besides CSMP-1)(ARL), there have been a number of other
off-shoots with extended capabilities, including 1130 CSMP®7 written for an IBM-1130, and
allowing the use of five short user-defined FORTRAN subroutines and several other improve-
ments. Another version, ***CSMP.* offers several improvements which also appear in
CSMP-10(ARL). but allows only two short user-defined subroutines written in BASIC.

An outline description of CSMP-10(ARL) is given in Section 2, which includes also the
improvements made to CSMP-10. Section 3 shows how a specific mathematical model may be
represented using various statements, while Section 4 gives the Teletype responses necessary for
the beginner to complete the simulation of his specified mathematical model. Details of more
advanced features of the language are given in Section 5 to 9. In addition to the many changes
made to CSMP-10, the Teletype messages and corresponding responses have been completely
revised, and much greater detail is provided here than in descriptions of previous versions of
the language.

The language CSMP-10(ARL) is currently being used at ARL in the computer simulation
of the behaviour of helicopters while under manual or automatic flight control.

* A block diagram (e.g. Fig. 2) consists of a number of linked modules (called blocks), each one
representing a particular function or operation.

N—

2. OUTLINE DESCRIPTION OF CSMP-10(ARL)
2.1 General

CSMP-10(ARL) is written mainly in FORTRAN 1V for the PDP-10 FORTRAN compiler
‘F40 Version-27" running under the operating system ‘FOROTS'. The language consists of a
modelling program named BOMMP (Block Oriented Mathematical Modelling Program) and
an output program named TRANS (Translation). In conjunction with various statements,
control parameters, and FORTRAN subroutines defined by the user in order to represent a
specific mathematical model, the modelling program is used to perform the simulation and
store the output in a file in binary form on a specified storage device. The output program is
then used to print and plot the character conversion of the binary file in either tabular or graphical
form. The output program may be used independently of the modelling program as a general
purpose output program (provided data are supplied in the appropriate format). Only a brief
description of its use is therefore included here (in Section 4.2); a complete description is given
in Reference 9. Although the modelling program is designed to be run interactively from a
Teletype, it may also be run non-interactively during Batch or On-Line processing. In the
modelling program, the subroutines CPU, EXPAND, FCHECK, and TTYCHK are written in
MACRO-10, the assembly language for the PDP-10.

The modelling program allows a specific mathematical model of a dynamic system to be
represented by control parameters and three types of statements, viz, configuration, parameter,
and function statements. The configuration statements describe the block structure of a particular
model: each statement consists of a block number, a block type (e.g. integrator, adder), and a
list of which other blocks (up to three) supply the block with input signals. The parameter state-
ments specify numerical values of parameters associated with the configuration statements,
while function statements specify coordinate pairs used to generate a function. The configuration
statements may be listed in any order: the modelling program (BOMMP) sorts them into an
executable order. Following these statements, integration and output control parameters are
specified. Integration is performed numerically using a second order Runge Kutta (i.e. Modified
Euler) method with a fixed integration interval. The user specifies the lower and upper time
limits and the interval thus giving equispaced time steps at which the calculations are performed
and required output values are stored. For the integration method used (see Section 6.2), there
are two stages of calculation. The second stage provides a solution of the simulation at the present
time step, while the first stage provides a solution at a time value midway between the present
and previous time steps. This ‘mid-point’ time value is referred to as a ‘half time value' or
*half time step’.

2.2 Improvements to CSMP-10
(a) User-defined block s
Because of its inability to handle complex algebraic expressions either directly in the

configuration statements or indirectly in user-defined subroutines written in FORTRAN,
CSMP-10 cannot be considered a very useful general purpose simulation language. The major
improvement made in CSMP-10(ARL) therefore has been to incorporate user-defined blocks,
which are written as FORTRAN subroutines and are compiled and loaded into core with the
compiled version of BOMMP. The current version of BOMMP allows a maximum of fifteen of
these blocks: however, this number may be increased indefinitely within the limits of the com-
puter core storage by simple coding alterations to BOMMP. These blocks may have only three
sorted block inputs (as declared in the configuration statement), but may have any number of
unsorted block inputs. ‘Dummy’ or ‘user output’ vlocks have been created whose output
value is defined in the appropriate user-defined subroutine, thus allowing a large number of
additional outputs for each of these blocks.

(b) Expandable arrays

With CSMP-10, the total number of blocks is limited to seventy-five, which includes a

maximum of twenty-five integrator and unit delay blocks, and three function blocks. These
limits could be increased by resetting the appropriate DIMENSION statements in BOMMP,
but to do so would reserve a large amount of core storage that may not be required for most
models. Therefore, the facility has been introduced in CSMP-10(ARL) whereby the user specifies

2

e el

(i) the maximum block number,

(ii) the total number of integrator and first order lag blocks,
(iii) the number of unit delay blocks, and
(iv) the number of function blocks.

The appropriate arrays in BOMMP are then automatically expanded to the necessary size so
that a minimum of core storage is used. The provision of this facility required the inclusion of a
subroutine named EXPAND, which as previously stated is written in the assembly language
MACRO-10 for the PDP-10. For other computers, this subroutine would have to be rewritten in
the appropriate language; alternatively, the facility may be removed and array limits set as in
CSMP-10.
(¢) Block output

In CSMP-10, a significant amount of core storage is used to code the output section of the
program. By dividing the language into a modelling program and an output program, the core
storage required for coding is significantly reduced. The size of the problem that can be handled
in CSMP-10(ARL) is then determined by the requirements of the modelling program alone. A
large number of improvements to the output part of the language have been effected without
reducing the size of the problem that can be handled. Also, because the ‘raw’ output data are
stored in a file in binary form by the modelling program, various forms of output of the same
data may be obtained without repeating the simulation. As a further saving, an output value is
only stored if it changes by more than a specified percentage from the last value stored at a previous
time step.

(d) Other Improvements to CSMP-10

In addition to the three major improvements described above, a large number of minor
improvements have been made, many of them being corrections to errors in the available version
of CSMP-10. The significant improvements include:

(i) an improved iterative method of solving an implicit equation;

(ii) improved integration facilities which include a first order lag block and ‘hold’ and
‘reset’ operations for the integrator block:

(ii1) a function block with any number of arbitrarily spaced abscissae and where, in addition
to linear interpolation, either a polynomial of degree two or higher, or a user-defined
function, may be used to calculate the function value;

(iv) a debugging facility:

(v) alphanumeric labelling of each block; and
(vi) the capability of continuing execution of the model at a later stage.

3. MODEL REPRESENTATION

To represent a dynamic system in CSMP-10(ARL), the user should first produce a block
diagram of the type suitable for programming an analogue computer. The list of available
block functions in CSMP-10(ARL) is given in Table 1 (see Section 3.1 for associated notation).
More complex mathematical operations may be defined by the user as user-defined blocks
written as FORTRAN subroutines. The block diagram should then be translated into configura-
tion, parameter, and function statements. These statements, which are outlined briefly in Section
2.1, are described in detail below in Section 3.1. To complete the model representation, the user
needs to specify integration and output control parameters (see Sections 2.1 and 4.1.6).

In order to understand many of the features of the language, particularly the more advanced
ones, it is important to know the algorithm for sorting the configuration statements into an
executable order and the processes by which the model is executed. These two processes are
therefore described below in Sections 3.2 and 3.3 respectively.

3.1 Types of Statements

As outlined in Section 2.1, there are three types of statements associated with the model
representation, viz, configuration, parameter, and function statements. The notation associated
with these statements and the integration parameters is defined as follows (see Fig. 1 for corres-
ponding block diagram notation):

I iii; = .‘-, . i . 4: ——- .) - __i —

P

-

i s e -

B block number (i.e. an integer identifier)

Bl, B2, B3 blocks which supply input signals to a given block (referred to as inputs)

M integer parameter used only with the block types F, I, T, T1, V, and Y; zero for
all other blocks (see Table | and appropriate sections)

Pl B2, P3 parameters associated with a given block

T block type (library given in Table 1; each type has an associated reference
number)

X output value of block B

X1, X2, X3 output value of blocks Bl, B2, and B3 respectively

h time interval for integration

t time

ty initial time

Errors and their diagnostic messages relating to the above specification statements are
presented in Appendix B.

TABLE 1
Block Type Library
(refer Appendix A)

Name Type Type No. No. of No of Description
Inputs Parameters
Bang bang B 2 1 0 X =Lt Xl >0
=—]ifX] <0
Dead space D 4 1 2 X = X1-Pl if X1 > PI
= X1—-P2if XI < P2
=Qif P2 < Xt < P!
Function 2 6 1 1 X = f(X1). Interpolation from
a function generated by co-
ordinates with arbitrarily
spaced abscissae; linear if
Pl =0 or 1, of degree Pl if
P1 > 1, user-defined if P1 =
—1, —2, or —3. Uses P3 and
M internally (see Section 3.1.3)
Gain G 7 1 [X = PI*Xl1
Half power H 8 1 0 X = vXI
Integrator I 9 3 3 X =Pl + [, ydt
where y = X1(1+P2)+P3;
if X2 #0; RESET TO PI if
X3 # 0. Uses M internally
(see Section 6.2).
Jitter J 10 0 0 X = {random number uni-
formly distributed between
—1 and +1}
Constant K h 0 1 X =Pl

TABLE 1—continued

-

Name Type Type No. No. of No. of Description
Inputs Parameters

Limiter L 12 1 2 X =Pl if X1 > Pl
P2if X1 < P2
XLif P2 < X1 < Pl

Magnitude M 13 | 0 X X
Negative N 14 1 0 X=Xt X1'> 0
clipper =10 X1 <0
Offset (] 15 1 1 X = X1+PI
Positive p 16 1 0 X=Xlif Xl <0
clipper 0if X1 >0
Quit Q 17 2 0 Terminates run if X1 > X2:

types message
RUN TERMINATED BY A

0O BLOCK
Relay R 18 3 0 X=X2ifXl >0
X3if X1 <0
Time pulse 2% 20 1 1 Gencrates pulse train of period
generator Pl starting when XI > 0.

Uses P2 and M internally (see
Appendix A also, Section 8.2
for use in discrete system

simulation)
First order il 30 3 2 Solution of the first order
lag differential equation

X+P2dX/dt = X1+X2-+X3
where X = Pl when ¢t = ¢,
Uses M internally (see Section
6.3)

Unit delay U 21 | 1 X = Pl whent = 1,
Xlatr—h2whent > f,
Uses P2 internally when the
input Bl is a U block (see
Section 6.1: also Section 8.2
for use in discrete system
simulation)

User output vo 3 | 0 X is defined in the user-
defined subroutine associated
with the input Bl (see Section
N

-

TABLE 1-—continued

Name

Type Type No. No. of
Inputs

No. of
Parameters

Description

User-
defined

Vacuous

Weighted
summer

Multiplier

Wye

Zero order
hold

Summer

Divider
Inverter

Blank

Um 30+m 3

3

X is defined by the user in
subroutine USERm, where m
is an integer, 1 to 15 (see
Section 7)

Use with wye block to solve
an implicit equation (e.g.
¥y =/(»)). Pl is the initial
approximation of y, i.e. y,.
Uses P2, P3, and M intern-
ally (see Section 8.1)

X = PI*X1 +P2*X2+P3*X3

X = X1*X2

Used with vacuous block to
solve an implicit equation
g y=f). X=y; Pl is
the error tolerance for con-
vergence, Ec: P2 is the maxi-
mum number of iterations,
Ni: if not set, Ni is assumed
to be 20. Uses P3 and M
internally; also, dual use of
P2 (see Section 8.1)

X = Pl when ¢t = ¢,

=Xl if X2 >0 when
t > t,; X is unchanged if
X2 <0 when > 1,; P2 is
used internally to store X at
the previous half time step
(see Section 8.2 for use in
discrete system simulation)

X = +X1+X2+X3. The
inputs Bl, B2, B3 may be
preceded by a plus or a minus
sign in the configuration state-
ment

X = Xi/X2
X = =Xl

Causes the previous state-
ment with the same block
number to be deleted but not
replaced

3.1.1 Configuration Statements
The configuration statements describe the block structure of a model and have the form

B, T, Bl, B2, B3; “label”™ $ “comment”

The arguments are separated by commas (as shown) or blank characters. The modelling
program reserves block number I, whose output value is the current time, 7. A blank block
number (i.e. two consecutive ‘carriage-returns’) terminates the set of configuration statements.
The library of available block types is given in Table 1. The following examples of configuration
statements illustrate the various ways these statements may be typed (explanations given below):

2 D i6 :ALPHA §$ IN RADIANS
3, 1,4,5 6 SACCELERATION
7.K; PHI

8§ Wi129 B3 is blank so that X3 is assumed zero

The inputs Bl, B2, and B3 must be valid block numbers, or zero or blank to signify the
absence of an input. If the block type is a ‘summer’ (i.e. T is *+"), the inputs Bl, B2, and B3
may be negative integers. If, for example, Bl equals —3, this means that the output value of
block number 3 will be multiplied by —1 when used as the input signal to the given ‘summer’
block. Although the general definition of a block type may assume the presence of specific
inputs, one or more of these inputs may be left blank, in which case the corresponding value of
each of these inputs is assumed to be zero (e.g. in the above examples, B3 for block number
8). Block types that often do not require all their specifiable inputs are ‘integrator™ (I), ‘first
order lag’ (T1), ‘user-defined’ (Um), ‘weighted summer’ (W), and ‘summer’ (+).

The semi-colon in the configuration statement is optional: when used. the ten characters
following may be used to provide an alphanumeric label for B, which is retained when storing
the model (see Section 4.1.5) and is used to label the printed and plotted output. The dollar sign
terminator is also optional: all characters following it are ignored and may therefore be used as
comments.

The configuration statements may be input in any order. The sort process. described in
Section 3.2, determines the order in which the statements are executed. If the user types a con-
figuration statement having a block number, B, that has already been used as the block number
of a previous statement, the previously defined statement is replaced by the new statement unless
the type, T, of the new statement is blank, in which case the previous statement is deleted but not
replaced (see examples in Section 4.1.4).

3.1.2 Parameter Statements

Parameter statements specify parameter values, e.g. mnitial conditions and multiplication
constants, associated with the configuration statements (see Table [), and have the form

B, PI, P2, P3 § “comment”

As with configuration statements, the arguments may be separated by commas or blanks, and
two consecutive ‘carriage-returns’ terminate the set of parameter statements. Here again, the
dollar sign followed by a comment is optional, and previous parameter statements may be
replaced by repeating the block number. The parameters P1, P2, and P3 are associated with the

T Teletype messages typed by the user are shown in bold upper case: messages typed by the
appropriate computer program are shown in italic upper case. Comments on Teletype messages
are shown in upper and lower case print alongside the appropriate message.

. - - T

block number B appearing in the configuration statements. For example, when the parameter
statement

21, 1.5 $ INITIAL CONDITION FOR Y
is typed for a model with the previously defined configuration statement
21, 1, 103

the initial value of block number 21 is set equal to 1.5 (as defined by the specification for an
integrator block type in Table).

Aecause storage for the parameters is allocated for each of the blocks defined in the configu-
ration statements, any parameters not set will assume a value of zero. To delete the parameters of
a particular block, the user sets the parameters equal to zero by typing only the block number.

3.1.3 Function Statements

Function statements specify coordinate pairs used to generate a function for each block of
type ‘F’ defined in the configuration statements. The appropriate block number is first typed
following the Teletype message

BLK NO. -

and each coordinate pair, i.e. abscissa followed by ordinate, is then typed on a separate line
following the message

COORD PAIRS:

ordinate pairs. The first of the two Teletype messages above is then repeated so that further
functions may be specified: a blank block number (i.e. ‘carriage-return’) terminates the set of
function statements.

The coordinate pairs define a function with arbitrarily spaced abscissae. Between each
adjacent pair of abscissae, the value of the function is obtained by interpolation. The inter-
polation is linear if P1 = 0 or I, of degree P1 if P1 = 0, and user-defined if P1 — —1, —2,0r —3
(see Appendix C). Outside the abscissae limits, the function value is obtained by extrapolation.
The coordinate pairs may be typed in any order: on typing each pair, the appropriate list is
rearranged such that the abscissae are in order of increasing magnitude. While entering the list,
coordinate pairs may be deleted or replaced (see example in Section 4.1.4). The list may also |
be modified at subsequent stages (see Section 5.3). The internal use of the parameter P3 and |
integer parameter M in locating the position of the data for each function (F) block in the
appropriate expandable array (used to store all the function coordinate pairs) is described in
Appendix C.

For a polynomial of degree P1, at least P1 + 1 coordinate pairs must be defined. There is no
limit, subject to sufficient core storage being available, to the number of coordinate pairs that
may be defined for each function. However, the number, n say, of F blocks specified when |
dimensioning the appropriate expandable array (see Section 4.1.2) must not be less than the
actual number of F blocks used, and the total number of coordinate pairs of all F blocks must
not exceed 15# (i.e. to exceed an average of 15 points per F block, n must be made larger than the
actual number of F blocks used).

L (see example in Section 4.1.4). Two consecutive ‘carriage-returns’ terminate the list of co-

SO

3.2 Sort Process

The purpose of the sort process is to arrange the blocks. represented by their configuration
= statements, into an order such that for each statement the input signals have been previously
: defined. The list of blocks obtained in this way is termed the ‘sort list’, and execution of the
blocks in this list for each half time step is referred to as ‘execution of the sort list’. User output
(UO) blocks are excluded from the sort list because their output is calculated when the associated
user-defined block is executed. However, when storing the configuration statements (see Section ﬁ

4.1.5), statements with a UO block type are stored immediately following the associated statement
with a user-defined block type.
The algorithm for determining the sort list is described as follows:
(1) Enter into the sort list the constant (K) blocks in ascending order of block number
followed by the unit delay (U) blocks, also in ascending order of block number.
(2) Select the lowest numbered unsorted block and then go to (4).
(3) Select the next lowest unsorted block number.
(4) If the block numbers of all the inputs (i.e. BI, B2, and B3) have (a) already been entered
into the sort list or (b) are themselves defined as integrator (I) or first order lag (T1)
blocks,T enter this block into the sort list and then go to (2): otherwise go to (3).

3.3 Model Execution Process

Initially, the output value of each block is set equai to the value of its first parameter, i.e-
X == PI1. This has the effect of setting initial conditions for integrator (1), first order lag (T1),
unit delay (U), vacuous (V), and zero order hold (Z) blocks, and setting constant (K) blocks to
their constant value. The output values of other blocks arbitrarily set in this way are overwritten
on initially executing the sort list. The only difference from subsequent sort list executions is
that the output values of the U, V, and Z blocks are not set since their output values have already
been set equal to P1. At each subsequent half time step, the output values of I and T1 blocks are
first calculated (see Section 6.2) and the sort list is then executed. Though calculated before
execution of the sort list, the output values of I and T1 blocks are not set until immediately after
the output values of the U blocks are set. Because the output value of the K block is set initially
and does not change, K blocks are skipped when the sort list is executed.

4. BASIC OPERATIONS OF SIMULATION LANGUAGE

This section explains only the basic operations necessary for a user to be able to initially
use the simulation language. Further operations, which allow a much greater degree of
flexibility, are described in the next section. The modelling program BOMMP is first used to
perform the simulation, and the output program TRANS is then used to obtain printed and
plotted output. Both programs are controlled by commands, which are typed following an ‘*’
from the Teletype. The appearance of an “*' signifies the command mode. These commands
may be shortened to three characters and are listed with brief descriptions in Tables 2a and 2b.
They are described in much greater detail in Sections 4.1, 4.2, and 5. For the modelling program
only, a command string may be formed by a list of commands separated by semi-colons.

The operating procedures are best illustrated by an example. For convenience, the non-
linear spring problem of the CSMP-9 and 1130-CSMP manuals is repeated. The problem may
be expressed in terms of the differential equation

ay +by+f(3) =0 or = —[by+f(3)]a

where f(») is a non-linear function defined by linear interpolation of a set of coordinate pairs
(1, /). A complete description of the problem to be solved is given in Figure 2, which also includes
a block diagram representation and the necessary configuration, parameter, and function
statements.

4.1 Running the Modelling Program
The running of the modelling program may be conveniently divided into the following
seven stages:
(1) Appropriate relocatable binary files are loaded into the computer core storage, and a
core image of the resulting modelling program is saved.

t The output value of integrator and first order lag blocks are known before the sort list is
entered (see Section 6.2).

TABLE 2A
Modelling Program Commands

All commands, except the ‘channel’ command, may be shortened to three characters

—— —

Command Effect Section(s) for
Reference
CONFIGURATION Reads in configuration statements 311,414
DEBUG Provides a complete block description during 5.5.3
execution
EXIT Returns control to the monitor 4.1.7
FILE Gives the status of the model input, block output 4.1.3
and model output channels
FUNCTION Reads in function statements 313,414
GOE Initiates execution of the model 4.1.7
INTEGRATION Reads in integration control parameters 4.1.6
LOOK Examines block output at final time value 3.5.2
MANUAL During non-interactive On-Line processing, returns 54
the program to interactive running and to the
command mode
OUTPUT Reads in output control parameters 4.1.6
PARAMETER Reads in parameter statements 312,414
PROGRAM Executes another specified program, e.g. ‘'TRANS’ 554
RETAIN Enables model execution to continue at a later 55
stage
RUN When setting up a model, initiates the command 5.5.1
string ‘TITLE:CON:PAR;FUN:INT:OUT:
GOE’; if the Teletype is not used as the model
input channel, the TITLE commandisexcluded:
where part of the string has already beeninitiated
by individual commands, the remaining ones are
initiated
STORE Stores model specification statements in a file 4.1.3, 5.1.1
TITLE Reads in title 414
‘channel’ Used to change the status of the input and output 5.1

channels

(2) Execution of the program is initiated, and the amount of additional storage is deter-
mined by specifying the maximum block number and number of special blocks so that
the appropriate array dimensions may be expanded to the minimum size necessary.
The maximum block number may exceed the total number of blocks used since not all
intermediate numbers need be used as block identifiers.

(3 The ‘status’ of the input and output channels may be examined if required (see Sections
4.1.3 and 5.1 for explanation).

(4 The model is set up by specifying in turn: a title, configuration statements, parameter
statements, and function statements (if any).

(5) The model may be stored for future use or reference.

(6) Integration and output control parameters are specified.

(7) The model is run, and on completion, control may be returned to the monitor, or
modifications may be made to the model by repeating the appropriate commands so
that the model may be re-run.

Stages (3) and (5) are optional, but Stages (1), (2), (4). and (6) must be completed in order
before the model is run in Stage (7). Stage (3) may be included anywhere following Stage(2)
while Stage (5) must be preceded, though not necessarily immediately, by Stage (4). Stages (3) to
(7) are controlled by appropriate commands (see Table 2a). Though not shown here, commands
may be repeated at any stage. This enables alterations or additions to the model.

For the non-linear spring problem, the operating procedures are described below for each
of the above stages.

4.1.1 Stage 1—Loading the Program

At propriate relocatable binary files, which include the files BOMMP.REL, DUSER.REL,
and any user-defined files, are loaded into the computer core using the normal PDP-10 loading
procedure, and a core image of the resulting modelling program is saved. The user-defined
files contain user-defined subroutines, as well as other functions and subroutines required by the
user-defined subroutines, and the file BOMMP.REL is the binary version of the basic modelling
program. Because the basic modelling program contains ‘CALL" FORTRAN statements for
each of the user-defined subroutines USERI, USER2, ... USERIS and the subroutines
INTRPI, (NTRP2, INTRP3 used for user-defined interpolation in the function block (see
Appendix C), corresponding versions of these subroutines are required when (oading the program.
‘Dummy’ versions, which perform no calculations, are therefore stored in a file whose binary
version is called DUSER.REL. By loading DUSER REL last and using the ‘L’ switch (i.e.
the user types DUSER/L), these ‘dummy’ versions are loaded only if corresponding versions
specified by the user have not already been loaded. For the non-linear spring problem, which
has no user-defined subroutines, the files BOMMP.REL and DUSER.REL are loaded, and a
core image of the program is saved as follows:

.R LOADER

*BOMMP Basic modelling program

*DUSER/L ‘Dummy’ versions of user-defined subroutines— loaded last
*$ ‘Altmode’ character

BOMMP 12K CORE, 194 WORDS FREE
LOADER USED 14+4K CORE

EXIT
.SAVE BOMMP Produces core image in file BOMMP.SAV : the name need not
BOMMP SAVED be BOMMP

4.1.2 Stage 2—Execution Initiation and Dimensioning of Expandable Arrays

The execution of the program is initiated and the expandable array dimensions are set as
follows

.RU BOMMP
MAX BLK NO. = 48

NO. OF: I & Tl BLKS, U BLKS, F BLKS — 2,0, 1

*

G e

4.1.3 Stage 3—Status of Input and Output Channels

The modelling program uses three channels for input and output. They are:

(1) an input channel for reading in the model specification statements, viz, title, configura-
tion statements, parameter statements, and function statements;

(2) a model output channel for storing these statements for future use;

(3) an output channel for storing the block output (i.e. output value of each of the blocks)
in binary form on a specified storage device during execution.

The ‘FILE’ command gives the status of each of these channels and may be used at any
stage of execution. Initially, the channels are set up as follows, but they may be changed at any
stage by using the ‘channel’ command (see Section 5.1):

*FIL

MODEL 1/P FROM TTY:
BLOCK O/P TO LOGI!:OUTPT.DAT
MODEL O|P TO LOG3:MODEL.MOD

*

The number of characters used for all file names (without extension) must not exceed five.

4.1.4 Stage 4—Setting up the Model

The model is set up by specifying in turn (a) a title, (b) configuration statements, (c) para-
meter statements, and (<) function statements (if any). The appropriate commands ‘TITLE’,
‘CONFIGURATION', ‘PARAMETER’, and ‘FUNCTION' control the input of these
statements by the modelling program; the latter three are hereafter referred to by their shortened
form (i.e. ‘CON’, ‘PAR’, and ‘FUN’). Each of the three sets of statements is terminated by
a blank block number (i.e. an additional ‘carriage-return’). The model for the non-linear spring
problem may then be set up as shown below, where typical errors are included to illustrate their
correction procedure:

*TIT

TITLE (LIMIT 60 CHRS)
NON-LINEAR SPRING WITH DASHPOT

*CON
CONFIGURATIONS:

BLK, TYPE, Bl, B2, B3
4, /, 17, 6; Y DBLE DOT

5K Typed in error

6, K

5

PREV BLK 5 DELETED Blank type causes deletion of statement defined previously
9, 1,48; Y for block number 5

17, W, 48, 10

48,1,4; Y DOT

10, F, 9

Blank block number terminates configuration statements

12

PARAMETERS:

BLK; BRI, P2, P3

9, -10.0
17, 2 Second parameter omitted in error
17,2, 1 Repeated block number causes replacement of parameters
6, -5 defined previously for block number 17

Blank block number terminates parameter statements
*FUN

FUNCTIONS:

BLK NO. 10

COORD PAIRS:

-10, =100
-8, -64
-6, -36 Typed in error
-6, -36 Repeated abscissa causes replacement
COORD PAIR (-6.0000E+00, 3.6000E 01y DELETED
-4, -16
0,0
-2, -4 Coordinate pairs may be in any order
2,4
8, 64
5, 30 Typed in error
5 Blank ordinate causes deletion without replacement
COORD PAIR (S.0000E--00, 3.0000E+0l) DELETED
4,16
10, 100
6, 36
Blank abscissa terminates coordinate pairs
BLK NO. Blank block number terminates function statements

Coordinate pairs are read in using the format statement
FORMAT (2E)

MODEL COMPLETE

The message

MODEL COMPLETE

(see above example) is typed by the program only when coordinate pairs for all the function
blocks have been specified. If there are no function blocks, the message is typed following the
completion of the parameter statements. Even if there are no parameters to be specified, the
‘PAR" command must still be used following the ‘CON’ command.

4.1.5 Stage 5—Storing the Model

By using the ‘STORE' command, the current model specification statements may be stored
for future use in a file which is referred to as the model output channel. For the present example,
the complete model is stored in ‘LOG3:MODEL.MOD" (refer to initial status of the model

output channel in section 4.1.3), but each set of statements may be stored in separate model
output channels: however, the model output channel must be redefined prior to each set being
stored (see Section S5.1.1). The title is included in the set of configuration statements. Comments
following the optional statement terminator ‘$’ are ignored and hence are not stored (see
Section 5.3 if comments are required to be stored). The appropriate Teletype messages and res-
ponses here are:

*STO

CON, PAR, FUN, OR ALL :ALL

The configuration, parameter, and function statements are each stored in ascending order
of block number. However, by typing CS in place of CON, and AS in place of ALL, the con-
figuration statements are stored in sorted order of block number.

Parameter statements that have a zero value for PI, P2, and P3 are not stored.

4.1.6 Stage 6—Specification of Integration and Output Control Parameters

The commands ‘INTEGRATION' and ‘OUTPUT', which are hereafter referred to by
their shortened form (i.e. 'INT" and *OUT’), allow the integration and output control para-
meters to be set: the order of these commands is optional. For the integration, which is per-
formed using the second order Runge Kutta (i.e. Modified Euler) method, the lower and upper
time limits and the interval are specified (each in the same unit). For the output control, the
required block numbers are first listed. They may be typed on more than one line, each line
consisting of a maximum of 72 characters: two consecutive ‘carriage-returns’ terminate the list.
If all the block numbers are required, the user may type ALL (which may be shortened to A) in
place of the individual block numbers, in which case a single ‘carriage-return’ terminates the
list: the block output values are stored in ascending order of block number. By typing AS in
place of ALL or A, the block output values of all the blocks are stored in sorted order of block
number. An output value is only stored if it changes by more than a prescribed percentage from
the previously stored value: this percentage is specified. followed by the interval of time between
output values in the same unit as the integration parameters. The appropriate Teletype messages
and responses for the present example are:

*INT
INTEGN PARAMS; LOWER, UPPER, INTERVAL - 0, 20, 0.1
*OuT

O P BLKS
9, 4,48, 10 Two consecutive ‘carriage-returns’ terminate the list

OP PARAMS,; °, CHANGE REQRD, INTERVAL — 01,1

*

If the output interval is less than the integration interval, the output values are recorded at
every half time step of the integration (see Sections 2.1 and 6.2). To execute the model only at
the initial time value, the lower and upper integration limits should both be set equal to the
initial time value; the integration interval need not then be set.

On using the ‘*OUTPUT' command, a ‘TITLE’ command is first implied if a title has not
already been specified (i.c. the program requires the user to type a title).

-

4.1.7 Stage 7—Executing the Model

The ‘GOE’ command initiates execution of the complete model. Upon completion, the
run CPU time is given and control is returned to the command mode. If required, alterations
may then be made to the model before re-execution (see Section 5.3). Eventually, control is
returned to the monitor by the ‘EXIT" command. Use of the *GOE" and ‘EXIT' commands
is illustrated as follows:

*GOE

*% RUNNING **

RUN CPU TIME: 1.25 SEC.
*EXI

END OF EXECUTION
CPU TIME: 5.74 ELAPSED TIME: 13:58.74
EXIT

.

The model execution may be halted before completion by typing *, in which case execution
1s completed up to the next time value for which the block values specified for output are required.
The message

RUN TERMINATED BY A “t
is typed by the program and control is returned to the command mode.

4.2 Running the Output Program

The output program TRANS is controlled by commands in exactly the same way as the
modelling program. These commands are listed with brief descriptions in Table 2b. The program
provides Teletype and line printer output in either tabular or graphical form and incremental
plotter output in the form of ‘strip’ plots (of the form produced by a multi-channel
chart recorder) and ‘overlay’ plots (a single graph for up to eight output variables).
The block output file obtained by running BOMMP, which then becomes the input file for
TRANS, includes the time limits and interval, a title, and labels for each output variable. Subject
to some restrictions, these may be redefined. For graphical output, convenient scales are calculated
by TRANS such that each curve is fully shown: however, these scales may also be redefined by
the user.

Only the commands necessary to produce Teletype tabular and graphical output (i.e.
‘PRCOLUMN and *PRPLOT") are described here: a complete description of all the features
of TRANS is given in Reference 9.

4.2.1 Setting up the Program

The user initiates execution of the program by first running the core image version
TRANS.SAV of the relocatable binary file TRANS.REL, and then specifying the filename
(without extension) of the block output file (OUTPT for the non-linear spring problem) produced
by running BOMMP. The output program then types the title, date and time of creation of the
block output file, integration interval, run CPU time, and time parameters, followed by an “*',
which signifies the command mode. An example of how to set up the program in the above
manner is shown below.

15

TABLE 2B
Output Program Commands
All commands may be shortened to three characters

Command Effect Section(s) for
Reference
EXIT Returns control to the monitor 4.2.1
GOE Obtains the tabular or graphical output for the commands 421
‘PRCOLUMN’, ‘PRPLOT’, ‘PLSTRIP’, and
‘PLOVERLAY’
LABEL Redefines labelling information —
PLOVERLAY Specifies ‘overlay’ plotting on the incremental plotter —*
PLSTRIP Specifies ‘strip’ plotting on the incremental plotter —*
PRCOLUMN Specifies tabular output on the disk or Teletype in the 4.2.2
form of printed columns
PRPLOT Specifies graphical output on the disk or Teletype 422
RUN Equivalent to the commands (in order) ‘PRCOLUMN’, —*
‘PRPLOT’, ‘PLSTRIP’, and ‘GOE’; if any form of
output is not required, a ‘carriage-return’ is typed in
place of the block numbers
SCALE Redefines graphical output scales —*
TIME Redefines time parameters —*

* See Reference 9.

.RU TRANS

I/P FILENAME = OUTPT

NON-LINEAR SPRING WITH DASHPOT

I/P FILE RECORDED ON 21-APR-76 AT 16:57

INTEGN INT = 1.0000E-01; RUN CPU TIME — 1.25 SEC.

TIME FROM 0.0000E—01 TO 2.0000E+01 IN STEPS OF 1.0000E+00

*

Although the filename extension is not specified, the extension name ‘DAT" is assumed. If,

in the above example, a file named OUTPT.DAT is not found on the disk, the message

OUTPT.DAT NOT ON DSK

I/P FILENAME =

-

is typed by the program so that a new filename may be specified.

A particular type, or types, of output may be specified by using the appropriate commands
listed in Table 2b: to complete the output process, the ‘GOE’ command should follow, after
which control is returned to the command mode. Repetition of the appropriate commands for
each type of output before the ‘GOE’ command, deletes the effect of the previous use of the
command: repetition after the ‘GOE’ command, results in additional output. Control is returned
to the monitor by the "EXIT' command.

4.2.2 Teletype Output

The commands ‘PRCOLUMN and "PRPLOT" are used to obtain tabular and graphical
output respectively on either the line printer or Teletype. For each command the required biock
numbers are first listed. They may be typed on more than one line, each line consisting of a
maximum of 72 characters, and the list is terminated by two consecutive ‘carriage-returns’. If
all the block numbers are required, the user may type A in place of the individual block numbers,
in which case a single ‘carriage-return’ terminates the list. When specifying blocks by their
individual block numbers. a maximum of a kundred blocks may be processed each time the
‘GOE" command is used: however, all blocks are processed when the user types A instead, even
if there are more than a hundred blocks. Following the Teletype message

IS OP TO TTY REQRD:

typed by the program, the user types Y if the output is to be printed directly on the Teletype, or
any other character (including a ‘carriage-return’) if the output is to be stored in a disk file so
that the resulting file can subsequently be printed on the line printer (see Reference 9), This latter
form of output contains more information than the Teletype output: blocks are identified by
their number rather than by a label on the Teletype output. On completing the Teletype responses
to either the ‘PRCOLUMN" or ‘PRPLOT" commands, the program returns control to the
command mode. The "GOE" command is then used to obtain the Teletvpe output. It should
be noted that both tabular and graphical output cannot be obtained on the Teletype by using a
single ‘GOE’ command following the *PRCOLUMN™ and ‘PRPLOT" commands. Convenient
plotting scales are calculated by the output program and are shown at the head of each Teletype
plot.

T'he following example shows how both tabular and graphical Teletype output may be
obtained for the non-linear spring problem:

*PRC
PRINTING IN COLUMNS:

BLKS
A List terminated by a single ‘carriage-return’

IS O|P TO TFTY REQRD: Y

*GOE

** RUNNING **

(See Section | of Appendix D for Teletype output)
*PRP

PRINTER PLOTS:

BLKS
9,4 List terminated by two consecutive ‘carriage-returns’

17

IS O/P TO TTY REQRD: Y

*GOE

** RUNNING **

(See Section 2 of Appendix D for Teletype output)
*EXI

END OF EXECUTION
CPU TIME: 2.27 ELAPSED TIME: 9:9.82
EXIT

5. FURTHER OPERATIONS OF MODELLING PROGRAM

In the previous section, the basic operations necessary to run both the modelling program
and output program were described. In this section, further operations of the modelling program
are described that allow much greater flexibility. In particular, facilities are described that allow
repeated alteration to the model and repeated execution of the model without exiting from the
modelling program.

5.1 Changing the Status of Input and Output Channels
The three channels used for input and output are described in Section 4.1.3, where the initial
status of each channel is given by the ‘FILE’ command. If the user wishes to re-run a model,
perhaps after making some alterations, it may be desirable to alter the status of one or more of
these charnels. The logical unit and filename for a particular channel is altered by the program
command (termed a ‘channel’ command)

LOGn: “filename™ < ‘“‘channel”
where
(1) n is an integer, 1 to 12, representing the logical unit number; the following list gives
those that are reserved, LOGS5 being permanently reserved:
LOG I —block output channel (initially):
LOG3 —model output channel (initially)
LOGS5—output file named BOMMP.OUT which contains the Teletype responses
typed by the user for subsequently running the modelling program non-
interactively (see Section 5.4);
LOGI2—output file named DEBUG.OUT which contains a complete block
description (i.e. values for each block of X, X1, X2, X3, M, PI, P2, and
P3) for each half time step during execution; the file is only opened, and
logical unit only reserved, following an initial ‘DEBUG" command
(see Section 5.5.3) when the output is not required on the Teletype.
(2) “filename" is a filename without an extension and with a maximum of five characters.
(3) “channel™, which is one of the following list, represents a particular input or output
channel:
I/P—input of model specification statements (to run the model);
MODEL—output of model specification statements (to store the model).
O/P—Dblock output.
The above channel descriptors may be shortened to one character (e.g. ‘I/P'may be short-
ened to ‘I').
The Teletype may be used as the model input or model output channel, in which case the
‘channel’ command takes the form
TTY:« *“channel”

18

i

The Teletype is initially used as the model input channel. The model specification statements
entered in this way are separate from the commands and control parameters read in using the
Teletype. The status of the model output and block output channels remains the same uniless
changed by a further channel command. However, if the status of the model input channel has
been changed from the Teletype to reading from a file, it reverts to the Teletype once input is
completed (see Examples 1 and 2 in Section 5.1.2). If further specification statements are required
to be read in from another file, the status of the model input channel would have to be changed
from the Teletype to the new file.

Whenever the status of a channel is changed, either by a ‘channel’ command or upon rever-
sion to the Teletype for the model input channel, the status of the appropriate channel is typed on
the Teletype by the program as shown in the examples in Sections 5.1.1 to 5.1.3.

The use of different logical units enables files to be read from, or written onto, a specific
device other than the disk (i.e. DECtape or magnetic tape). To use this facility, the *ASSIGN’
monitor command is used: for example, to assign DECtape DTA3 to LOGI, the user types
AS DTA3 1 to the monitor prior to running the modelling program.

5.1.1 Model Output

In the non-linear spring problem of Section 4, by using the ‘STORE' command, the model
specification statements were stored in ‘LOG3:MODEL.MOD" (see Sections 4.1.3 and 4.1.5).
The ‘STORE' command allows any one, as well as all, of the separate groups of specification
statements (i.e. configuration, parameter, and function statements) to be stored in the file defined
as the model output channel. The three examples below show how (1) all the specification state-
ments may be stored in ‘LOG6:SPRING.MOD’, (2) the configuration, parameter, and function
statements may be stored separately in ‘LOG7:SPCON.MOD’, ‘LOG8:SPDAT.MOD",
and ‘LOG7:SPFUN.MOD" respectively, and (3) all the specification statements may be listed
on the Teletype by using the Teletype as the model output channel (headings are deleted).
Example |
*LOG6:SPRNG « M
MODEL OP TO LOG6:SPRNG.MOD
*STO

CON, PAR, FUN, OR ALL :ALL

*

Example 2

*LOG7:SPCON <M

MODEL O/P TO LOG7:SPCON.MOD
*STO

CON, PAR, FUN, OR ALL :CON
*LOG8:SPDAT - M

MODEL O/P TO LOGS8:SPDAT.MOD
*STO

CON, PAR, FUN, OR ALL :PAR

*LOG7:SPFUN- M
MODEL O/P TO LOG7:SPFUN.MOD

*STO

-

CON, PAR, FUN, OR ALL :FUN

Example 3

*TTY: - M

MOBEL OfP' TO TTY;

*STO

CON, PAR, FUN, OR ALL :AS Configuration statements in sorted order (see

Section 4.1.5)
NON-LINEAR SPRING WITH DASHPOT

6 K

AR 48 ; Y

10 F 9

7 s 48 10

4 17 6 ;¥ DBLE DOT
48 4 .Y Dbor

6 S.0000E + 00
9 1.O000E 01
17 2.0000E - 00 1.0000E 00

10
LOOOOE - 01 — 1.0000E -+ 02
8.0000E + 00 —6.4000FE - 01
6.0000E + 00 — 3.6000FE 01
4.0000E -+ 00 — 1.6000F - 01
—2.0000E 00 —4.0000F +00
0.0000E 01 0.0000E 01
2.0000E + 00 4.0000E - 00
4.0000E + 00 1.6000E+ 01
6.0000E + 00 3.6000E + 01
8.0000E 00 6.4000E 01
1.0000E 01 1.0000E + 02

Usually, when reading from a file used as the model input channel, all the statements would
be read in. However, it is possible that the different types of statements may need to be read in
from different sources (i.e. Teletype and various files) without reading in all the information stored
in a particular file. For example, two files may each contain a set of configuration, parameter,
and function statements. The user may wish to read the configuration statements from one file
(File A say), the parameter statements from the Teletype, and the function statements from the
other file (File B say). The procedure would be as follows:

(1) Use the ‘channel’ command so that File A is used as the model input channel.

(2) Type CON to read in the configuration statements.

20

(3) Use the ‘channel’ command so that the Teletype is used as the model input channel;
the parameter and function statements are therefore not read in from File A.

(4) Type PAR followed by the parameter statements.

(5) Use the ‘channel’ command so that File B is used as the model input channel.

(6) Type FUN to read in the function statements; the configuration and parameter state-

ments are therefore skipped in File B.

Although the user is free to redefine the data source for each type of statement, it should be
remembered that when setting up the mode!, thic commands ‘CON’, ‘PAR’, and ‘FUN’ (if
any functions) must be typed in order; the 'TITLE' command would also be required if reading the
configuration statements from the Teletype. Until the model is complete, modifications should not
generally be attempted by repeating the commands (except for the ‘TITLE’ command). The model
input channel only reverts to the Teletype on reacning the end of a file. If a file is not read to its end
therefore, as in the case of File A in the above example, a ‘charic,” command must be used
to either revert to the Teletype or change to another file. On mai ng an error in the above
procedures, an appropriate diagnostic error message (Appendix B) is given, and control is returned
to the command mode with the model unaffected.

5.1.2 Model Input

Having already stored the specification statements during a previous run of the modelling
program, the user may wish to set up the model using these stored statements. Alterations may
then be made after all the statements have been read in (see Section 5.3) from the current input
file. Because the title is included in the configuration statements when using the ‘STORE’
command, the ‘TITLE’ command should not be used unless the titie is to be modified (see
Section 5.3), in which case it should be used after the configuration statements have been read in.
If it is used before, the title included in the configuration statements will overwrite the intended
title. Consider Examples 1 and 2 given in Section 5.1.1, where the same specification statements
are stored in (wo different ways. Phe method of reading these statements for both examples is:

Example 1

*LOG2:SPRNG -1

MODEL I'/P FROM LOG2:SPRNG.MOD
*CON

CONFIGURATIONS :

NON-LINEAR SPRING WITH DASHPOT

BLK TYPE Bl B2 B3

TR SR B ;Y DBLE DOT
5§ K
g9 I 43 L
0 F_ 9
17 W 48 10
8 1 4 ;Y DOT
*PAR
PARAMETERS :
BLK Pl P2 P3

6 —5.0000E + 00
9 —1L.O00OE + 01
17 2.0000E +00 1.0000E + 00

21

*FUN

FUNCTIONS :

BLK NO. 10

COORD PAIRS :

1.OO00E + 01
8.0000E -+ 00
6.0000E - 00
4.0000E + 00
2.0000E + 00
0.0000E —01
2.0000E -+ 00
4.0000E - 00
6.0000E - 00
8.0000E - 00
1.0000E - 01

1 0000E -
6.4000E
3.6000F -
1.6000E
4.0000E -

0.0000E

4.0000E -
=01

1.6000E

3.6000E +
6.4000E +
1.0000E -+

02
0l
01
01
00
0l
00

0l
0l
02

MODEL I'P FROM LOG2:SPRNG.MOD COMPLETED

MODEL I/P FROM

MODEL COMPLETE

*

Example 2

*LOG6:SPCON- 1

MODEL I'P FROM LOG6:SPCON.MOD

*CON

CONFIGURATIONS :

NON-LINEAR SPRING WITH DASHPOT

TTE:;

BLK TYPE Bl B2 B3

4 /

6 K
) !
10 3
17 W
48 /

17 6
4(\,
9
48 10
4

Status of model input channel reverts to Teletype

;Y DBLE DOT

MODEL I'P FROM [LOG6:SPCON.MOD COMPLETED

MODEL I'P FROM

*LOG6:SPDAT - 1

MODEL I'P FROM LOG6:SPDAT.MOD

“PAR

LY

PARAMETERS :

BLK Pl P2 P3
6 ~ 5.0000E 00
9 —1.O00VE +01
17 2.0000E+00 1.0000E--00

-

MODEL 1I'P FROM LOG6:SPDAT.MOD COMPLETED
MODEL I/P FROM TTY:
*LOG6:SPFUN - 1
MODEL I/P FROM LOG6:SPFUN.MOD
*FUN
FUNCTIONS :
BLK NO. 10
COORD PAIRS :

1.O000E + 01 —1.0000E +02

8.0000E +00 —6.4000E +01
—6.0000E 00 —3.6000E-+ 01

—4.0000E-+ 00 —1.6000E 01
—2.0000E -+ 00 —4.0000E 00

0.0000E —01
2.0000E + 00
4.0000E + 00
6.0000E + 00
8.0000E + 00
1.0000E+01

0.0000E—01
4.0000E -+ 00
1.6000E + 01
3.6000E - 01
6.4000E + 01
1.0000E - 02

MODEL I'P FROM LOG6:SPFUN.MOD COMPLETED

MODEL I/P FROM TTY:

MODEL COMPLETE

5.1.3 Block Output

While running the modelling program, the user may wish to make a number of separate
alterations either to the specification statements or control parameters, and to re-execute the up-
dated model each time. To preserve the block output for each run, the block output channel may
be altered as in the following example:

*LOGL1:0OUTI- O

;) BLOCK O/P TO LOGI:OUT! DAT

.

5.2 File Safety F

5.2.1 Output Files

If the user attempts to overwrite a model or block output file that is already in existence on
the disk, then the following message is typed on the Teletype by the program:

BLOCK/MODELY O/P TO LOGn:filename"."‘extension"

WILL OVERWRITE ‘‘filename™.“‘extension” ON DSK
oK :

If the file is to be overwritten or written onto a device other than the disk, having previously
assigned the device to the appropriate logical unit, the user types Y and the program will continue.
Otherwise, the user types any other character, including a ‘carriage-return’. The message

THEN CHANGE FILENAME

is then typed by the program and control is returned to the command mode. The status of the
model or block output channel should then be altered by using the appropriate ‘channel’
command (see Section 5.1) before continuing. Block output and model output files are opened
automatically following the ‘GOE’ and ‘STORE’ commands respectively.

Following a system failure during Batch processing, it may be possible that output files
opened during the ‘failed run’ would need to be overwritten when the run is repeated, thus
requiring interaction by the operator. To avoid this, when running the modelling program non-
interactively (see Section 5.4), an output file will be overwritten automatically; in place of the
above messages, the following message is typed by the program:

HAVE OVERWRITTEN FILE ‘‘filename” .“extension” ON DSK

5.2.2 Input File
Immediately following a channel command that changes the status of the model input

channel, the modelling program searches for the appropriate filename on the disk. If it cannot
1 be found. the following message is typed by the program:
MODEL I/P FROM LOGn: filename.MOD
“filename”.MOD NOT ON DSK ‘
IS IT ELSEWHERE :
It the file is to be read from a device other than the disk (see Section 5.1), the user types Y and

the program will continue. Corresponding to the procedure with output files, by typing any
other character, the message

THEN CHANGE FILENAME

is typed by the program and control returns to the command mode so that the input file status
may be altered before continuing.

5.3 Modifying the Model

The specification statements stored in a file may be altered or added to using a text editing
program such as ‘TECO" or ‘EDIT" before running the modelling program. If it is desired

§ T Whichever is appropriate.

to retain the comments following the dollar symbol or to retain an unsorted order of statements,
it is necessary to make alterations in this way. Alternatively, specification statements may be
altered or added to by repeating the appropriate command (i.e. ‘TITLE’, ‘CON’, ‘PAR",
or ‘FUN’) at any stage after the model has been set up; the modifications would usually be read
in from the Teletype, but they may be read in from a file that is being used as the model input
channel (see Sections 5.1 and 5.1.2). Alterations may also be made to any of the control parameters
by repeating the appropriate command (i.e. ‘INT' or ‘OUT"), or to the status of the input and
output channels. Following these alterations, the model is re-executed using the ‘GOE’
command.

5.4 Non-Interactive Running and Batch Processing

To run the modelling program in a non-interactive way, all the Teletype input that is typed
by the user when running interactively must be stored in a file named BOMMP.IN. The
modelling program first searches for a file with this name on the disk: if it is found, then the
usual Teletype input is read from this file and most messages usually typed by the program are
suppressed. This facility has been introduced primarily for Batch processing, but may also be
used during On-Line processing to avoid tedious re-typing of the Teletype input by the user
when it is desired to run a model that, except for minor modifications, has been run previously.
When using this facility during On-Line processing, the messages typed by the program are
shown in the following example:

RU BOMMP

NON-LINEAR SPRING WITH DASHPOT
** RUNNING **

RUN CPU TIME : 1.21 SEC.

END OF EXECUTION
CPU TIME: 2.62 ELAPSED TIME: 3.10
EXIT

The most convenient way to create a file containing the Teletype responses is to perform a
‘dummy’ run using the modelling program interactively with all quantities set to their desired
value except for the upper time limit of integration, which is set much smaller than desired so
that a minimum of CPU time is used. The Teletype responses typed by the user are stored by the
program in ‘LOGS5:BOMMP.OUT'. The filer BOMMP.OUT may then be renamed
BOMMP.IN and the upper time limit of integration changed to the desired value using a text
editing program. This method of creating the file provides the user with a check on the file format
so that he can be sure the modelling program will run properly when used non-interactively.

To obtain the advantages of both non-interactive and interactive running during On-Line
processing, the ‘MANUAL' command has been introduced, which returns the program to
interactive running and to the command mode. This enables alterations to be made interactively
to a model that has been read in non-interactively and allows repeated model executions follow-
ing further model alterations. Even if no alterations are envisaged, replacement of both the
‘GOE" and ‘EXIT" commands by a single ‘MANUAL' command is advised and will require
only the ‘GOE" and "EXIT' commands to be typed interactively by the user. Ifthe ‘MANUAL'
command is typed while running interactively, e.g. when creating a file to be renamed
BOMMP.IN by performing a dummy run (see above), control is returned to the command
mode (i.e. in effect, nothing happens except that the command is written into the file
BOMMP.OUT: see Section 5.1). On returning the program to interactive running by using the

25

‘MANUAL" command, further Teletype input responses typed by the user are stored in the
file FROMAN.OUT (on LOGS), and not in BOMMP.OUT.

5.5 Miscellaneous Commands

5.5.1 RUN

When setting up a model, the ‘RUN" command may be used to initiate the command
string ‘TITLE:CON:PAR:FUN:INT:OUT:GOE". If the Teletype is not used as the
model input channel. the "TITLE" command is excluded because the title is included with the
configuration statements when previously stored using the ‘STORE" command. Where part
of the string has already been initiated by individual commands, the remaining ones are initiated.
If required, the *“STORE" command may then be used following the execution. Having set up a
model and executed it once, the ‘RUN' command is equivalent to the ‘GOE’ command and
could be used following alterations to the model by other commands.

If a file is used as the model input channel, the configuration (including the title), parameter,
and function statements are all typed by the program in response to the ‘RUN' command. The
Teletype output of these statements may be terminated by typing “Control O™. If all the model
specification statements are not stored in the file used as the model input channel, a message
indicating that a particular type of specification statement cannot be found is typed by the
program and control is returned to the command mode. The model input channel should then
be altered the appropriate number of times so that the remaining specification statements may
be read in on repeating the ‘RUN’ command.

5.5.2 LOOK
Following the execution of a model, the output value of any block may be examined by

using the ‘LOOK" command. For the non-linear spring problem, an example of its use is as
follows. control being returned to the command mode on typing a blank, or zero, block number:
*GOE

** RUNNING **

RUN CPU TIME : 1.23 SEC.

*LOO

BLK 4
o/P LOISIE 01

BLK - 9
oP 1.6200FE - 0]

BLK — 10
or 3.2399E—01

BLK = 17
or S.0907E 01
BLK - 48

or 9.2538E - 02

BLK Blank block number returns control to command mode

5.5.3 DEBUG P

For each block, the "DEBUG™ command provides the block output value X, the values
X1. X2, and X3, the integer parameter M, and the parameter values PI, P2, and P3 (for notation,
see Section 3.1). The above values are printed for each half time value during execution of the
sort list. In response to prompts on the Teletype, the user specifies (@) the time interval during
which the debugging output is required and (&) whether the output is required directly on the
Teletype. If the response to (b) is anything other than Y, then the file named DEBUG.OUT
is opened on LOGI12 if it has not already been opened by a previous ‘DEBUG’ command. As
with the mput and output channels, the file DEBUG.OUT may be written onto a specific
device other than the disk by assigning the appropriate device to LOGI12 (see Section 5.1).

After the model has been executed, debugging for further runs is cancelled. The ‘DEBUG’
command must therefore be repeated prior to any further runs if debugging output is again
required To obtain debugging output at one time value only, the lower and upper limits should
be made the same. For the non-linear spring problem, the use of the ‘DEBUG’ command is
illustrated by the following example:

‘DEB

TIME LIMITS, LOWER, UPPER — 0.2, 0.3
IS O/P TGO TTY REQRD : Y

*GOE 3
** RUNNING **

(See Appendix E for Teletype output)

RUN CPU TIME : 224 SEC.

5.54 PROGRAM

The "PROGRAM" command enables another program (e.g. TRANS) to be run without
specifically terminating the execution of BOMMP. Once execution of the new program is com-
pleted. control is returned to the monitor, not BOMMP. Following the ‘PROGRAM®

command, the message
PROGRAM NAME

Is typed on the Teletype by the program. The user responds by typing the name (maximum of
five characters) of another program. Following a ‘carriage-return’, the new program is executed.)

5.5.5 RETAIN

For each block with type I, TI. U, and Z (i.e. those requiring specified initial conditions),
the "RETAIN' command resets the initial condition (i.e. the first parameter) to the last calcu-
lated output value. When used following execution of the model, the ‘RETAIN' command
enables execution to be continued at a later stage during either the same program run or a sub-
sequent one. In the latter case, the *‘STORE" command would have to be used to retain the
modified initial conditions in a file for future use.

6. LOOP BREAKING BLOCKS

When solving differential or difference equations, it is necessary to break the sort loop
that occurs. Blocks whose output values are known at the beginning of each half time step
enable this to be achieved. For differential equations, integrator and first order lag blocks are

&l

-~ .o

- 1

used, while for difference equations, unit delay blocks are used. Only brief descriptions of these
blocks are given in Table 1: further details are given below.

The vacuous (V) block is used to break the sort loop that occurs when solving an implicit
equation. However, this block can only be used in conjunction with the wye (Y) block; its use
is therefore described as a special facility in Section 8.1.

6.1 Unit Delay

Unit delay (U) blocks are entered in order of ascending block number at the beginning of
the sort list following the constant (K) blocks and are the first to be executed at each step (see
Section 3.2). This is because the input signal to a U block is calculated at the previous half time
step (see definition in Table 1) so that it is not necessary for the input Bl to have already been
sorted. Hence, provided the input of the U block is not itself another U block, the output value
X of the U block is defined simply as the output value X1 of the input block BI. The procedure is
more complex when the input to a U block is itself a U block: this occurs when the output value
of a block at the previous complete time step is required. The validity of the above definition of
the function performed by a U block then depends on the order of entry of the U blocks in the
sort list. To avoid this difficulty, the U blocks are therefore executed in the following two stages,
with the first stage being completed for all the U blocks before commencing the second stage
immediately after:

(a) Stage |

When t —= t,, X = Pl
When 1 > 1,
X — X1 if Bl is not a U block
X — P2if Bl is a U block
(Both X1 and P2 are last calculated at previous half time step)
(b) Stage 2 (for all values of 1)
No further calculation if Bl is not a U block
P2 — X1 if Bl is a U block (P2 is then used in Stage | at next half time step)

Consider a function y, which is calculated in a user-defined block, U3 say, and assume a
unit time interval (or step size) and that the current step value is & (i.e. output of the U3 block
is 1(k)). The following configuration statements show how y may be represented at each of the
previous two steps:

3 W 5 wWhk—2)
5 U 6 wk—3)
6 U 4 Wk
4 U 2 Wk —1)
2 U39 (k)

6.2 Integrator
Consider the first order differential equation

dyldt = f ¢, y]

Then. for the second order Runge Kutta (i.e. Modified Euler) method used in the integrator (1)
block. the dependent variable v, which is the output value of the I block, is defined as

V(t - h/2) = v() H(h/2) £t ()]

v hy =y h e hi20 (e h2))

where /1 is the time step. It can be seen that at each half time step, 1 is defined in terms of quan-
tities calculated previously. It is therefore evaluated at the beginning of each half time step before
execution of the sort list (see Section 3.3). Like most other blocks though, an I block is entered
into the sort list only when its inputs have already been sorted. On executing an I block in the

{
I

sort list, the function / is calculated so that y may be derived at the beginning of the next ha'f
time step as described above.

The first order lag (T1) block, described in Section 6.3, uses the same integration procedure
as the 1 block. These blocks together are numbered in the order in which they appear in the sort
list: this number is placed in the integer parameter M for each of these blocks, thus providing
an order for the evaluation of v prior to entry to the sort list at each half time step.

The facility to reset v to its initial condition or hold it atits current value has been included
in the 1 block by using the values X2 and X3 as switches” (see Table 1). For the reset operation,
the value of v calculated prior to execution of the sort list is overwritten with the reset value.
It may therefore be important to ensure that the integration block will be sorted before being
used as an input to another block (see Section 3.2). For the hold operation, the value of dy dr
is set equal to zero so that the current value of y is unaltered.

6.3 First Order Lag

The output of the first order lag (T1) block is the solution of the differential equation
y+P2dyldr = X1+X24X3

for an inttal value of v equal to P1. Except for the hold and reset capability, which the T1 block
does not have, T1 blocks are treated in exactly the same way as I blocks: they are sorted and
executed in the same way and use the same method of numerical integration. The use of the asso-
ciated integer parameter M is described in Section 6.2.

7. USER-DEFINED BLOCKS

Complex algebraic expressions, which may include special functions such as trigonometric
or exponential functions, can only be practicably handled in a *block oriented’ language by
use of user-defined blocks. In CSMP-10(ARL). these blocks have therefore been introduced
and are identified in the configuration statements by a block type of the form Um, where m is
an integer not exceeding fifteen: this number may be increased by simple coding alterations to
the modelling program. Each block may have up to three parameters and three sorted block
inputs (as declared in the configuration statement), but may have any number of unsorted block
mputs. When reference is made to a block of type Um, the quantities required to be calculated
must be defined in a FORTRAN subroutine named USERm. However. each of these sub-
routines may refer to other FORTRAN subroutines or functions. All “user-defined’ sub-
routines and ‘other” associated subroutines and functions are compiled and loaded into core
with the compiled modelling program (see Section 4.1.1).

As well as the output value X of the user-defined block (referred to as the ‘principal’
output), ‘additional” outputs may be specified within the subroutines by use of ‘user output’
blocks. These are identified in the configuration statement by a block type ‘UO" and an input
Bl that i1s the associated user-defined blaock number. They are not entered in the sort list, but
are listed following their associated user-defined block when storing the model (see Section 3.2).

Because use may be made in these subroutines of variables stored by the modelling program
in labelled COMMON storage areas, a description of these variables in given in Appendix F.

For an understanding of the rest of this section, the reader should refer to the subroutine
example given in Appendix G. A model incorporating this subroutine is described at the
end of this section,

The same user-defined block type may be used in more than one configuration statement.
Within user-defined subroutines therefore, it is advisable to avoid referring to specific block
numbers for both the principal and additional outputs. This may be achieved in the following
manner. When reference s made to a user-defined subroutine, the block number B of the
appropriate user-defined block is stored in *L°, which is one of the subroutine arguments (see
Appendix G). Outputs of each block used in the model are stored in the array *C’ so that the
principal output should be set in the array element C(L). Additional elements should then be
set in consecutive elements C(L - 1), C(L +2), ... C(L - NUO), where NUO is the number of

29

these additional outputs. An examples of a set of appropriate configuration statements (for
NUO - 3)is as follows:

12 Uz 8§ 5 Principal output of subroutine USER2

13 UO 12 First additional output of subroutine USER2
14 UO 12 Second additional output

15 UQ 12 Third additional output

User-defined subroutines enable the user to overwrite the output X, inputs Bl, B2, B3, and
parameters P1, P2, P3 of any block. As an important safeguard in using UO blocks, it is there-
fore important to test for compatibility between the user-defined subroutine and appropriate UO
configuration statement so that the output of another block is not inadvertently overwritten.

For UO block number N, the tests are:

(1) the block is defined as a UO block, i.e. MTRX(5*N 4) — 3 (the type number of a UO
block, see Table 1); and

(2) Bl is the associated user-defined subroutine block number, i.e. MTRX(5*N—3) = L
(i.e. block number B).

These tests need only be performed at the initial time step, i.e. when TEST(5) = 1 (see
Appendix F), and are performed in subroutine UOTEST (see Section 9.1), which is part of the
basic modelling program. For NUO consecutive UO blocks, the appropriate statements are given
in the example of Appendix G: for a non-consecutive UO block number N, the test statement is

IF(TEST(5).EQ.1)CALL UOTEST(N,L,MTRX)

The first four FORTRAN statements in Appendix G would generally be included in all
user-defined subroutines, with the appropriate value for m in the subroutine name ‘USERm’.
For convenience. Bi, B2, B3, X1, X2, X3, PI, P2, and P3 are obtained in Appendix G from the
appropriate arrays for the particular user-defined block.

Though only three inputs and three parameters are allowed in each user-defined block, for
all other blocks, the output X, inputs BI, B2, B3, and parameters PI, P2, P3 may be obtained
from the arrays ‘C’, ‘MTRX", and ‘PAR’ (see Appendix G for definition of arrays). However,
a knowledge of the sorting process (see Section 3.2) is necessary to determine whether the block
output values are at the present or previous half time step. For each UO block, the parameters
P1, P2, P3 and the inputs B2 and B3 may be used. but the latter inputs are not required to be
sorted, since UO blocks are not entered in the sort list.

When large user-defined subroutines are envisaged, it is advisable to construct a small user-
defined subroutine that refers to other normal FORTRAN subroutines and functions. Any
block number changes may then be confined to the small user-defined subroutine, thus avoiding
time consuming recompilation of large subroutines.

The user-defined subroutine in Appendix G enables the divider, constant, and weighted
summer blocks used in the model of the non-linear spring problem to be replaced by a user-
defined block of type Ul (see Figure 3). In addition, a user output block provides an additional
output whose value is the same as the replaced weighted summer block. It is not suggested that
the above replacement is necessarily desirable: it is made solely for the purpose of presenting
a simple example of the use of user-defined subroutines. Given that the model for the non-
linear spring problem has been set up and that the integration and output control parameters
have been specified (i.e. the model is at the completion of Stage 6 in Section 4.1), the appropriate
modifications are given below:

*CON

CONFIGURATIONS :

BLK, TYPE, Bl. B2, B3

——

|

4, U1, 48, 10; Y DBLE DOT
PREV BLK 4 DELETED

5 V0,4 $ B*(Y DOT) -F(Y)
6

PREV BLK 6 DELETED

17

PREV BLK |7 DELETED
“PAR
PARAMETERS :

BEK, P, P2,'P3
4,52

*FUN

FUNCTIONS :

BLK NO.

MODEL COMPLETE

*

At this stage, the model may be run using the ‘GOE’ command: the results obtained will
be identical to those obtained previously.

8. SPECIAL FACILITIES

The two special facilities described here are the solution of an implicit equation and the
representation of discrete systems such as difference equations. The two blocks, wye (Y) and
vacuous (V), required for the solution of an implicit equation can only be used together for that
purpose, whereas the three blocks, unit delay (U), zero order hold (Z), and time pulse generator
(T), required in discrete system simulation may be used separately in other applications (see
Table | for their definitions).

8.1 Solution of an Implicit Equation

An implicit equation (e.g. ¥ = f(»), where fis a function of y and possibly other variables,
c.g. time, that are independent of y) cannot be solved directly in CSMP-10(ARL) since the output
value of the block that calculates f is required to be its own input signal; the resulting loop
would thus lead to a failure of the sort algorithm. However, by using Y and V blocks (see Table 1),
an implicit equation may be solved. The V block ‘breaks’ the sort loop, and the Y block performs
the numerical iteration process for calculating y; the final value for y is stored as the output
value of the Y block.

Assuming that the function fis calculated in a user-defined block, U6 say, Figure 4 shows
the block structure necessary to solve the implicit equation y = f(). The appropriate block
numbers shown correspond to the following set of configuration statements:

. SR S S ¥
2 U6 7 F)
S

Any other blocks that are required to calculate / must also have the output value of the V
block as an input signal. The iterative method'® used to solve the implicit equation y = f(y)
is described in Appendix H. Included in Appendix H is a table of all the quantities printed for
each iterative cycle when using the debugging facility (see Section 5.5.3).

31

e — el S —

It should be realised that the numerical method used to solve an implicit equation will not
achieve convergence for all implicit equations. Very few numerical techniques are capable of
solving all problems of a particular type. The method used in CSMP-10(ARL), which is a sig-
nificant improvement on the somewhat crude method used in CSMP-10, should be viewed as a
useful technique that will in most cases allow the user to solve an implicit equation without
having to program his own numerical method in a user-defined subroutine.

8.2 Discrete System Simulation

Discrete systems, such as difference equations, may be modelled in CSMP-10(ARL) by
using T, Z, and U blocks (see Table I). Consider the second order difference equation

ym) = f[wm—1), yim—2)] form=2,3,...

where the values 1(0) and (1) are known, and the function fis specified in a user-defined block,
U3 say. CSMP-10(ARL) is written primarily for continuous systems with time, r, as the indepen-
dent variable. When dealing with purely discrete systems, the time step may be regarded as a
cycle step: this is achieved by setting the pulse train period (in the T block) equal to the time step.
For simplicity in the following description, these quantities will be assumed to be one second,
which corresponds to a unit cycle step.

The combination of a Z, U, and Z block in series is such that if the output value of the first
Z block is y(m), then the output value of the second Z block is y(m —1). Similarly, a Z, U, Z, U,
and Z block series combination may represent y(m), yv(m —1), and y(m-2) as the output value
of the first, second. and third Z blocks respectively. Figure 5 shows the block structure necessary
to represent the above difference equation. The appropriate block numbers shown correspond
to the following set of configuration statements:

4 T 1 $ PULSE TRAIN Block 1 = ¢

6 Z 10 4 v(m)

7 V4 12 4 y(m—1)

] 74 3 4 y(m—2)

12 U 6

13 U 7

10 U3 g 7 S v(m 1), y(m—2)]

The output value of each block used, in execution order, is described in Table 3 for each
half cycle step up to the second complete step. Following the initial step (i.e. & = 0), the output
value of each U block remains the same as the Z block that follows in the series combination of

TABLE 3

BLOCK OUTPUT VALUES FOR A SECOND ORDER
DIFFERENCE EQUATION EXAMPLE

Block Step (k)
number Type —09—————

0 1 I 3 2

12 U W m M2 »3 3

13 U W0 () W) W2
4 T I 0 1 0 l

7 z L) N () NS) N) B)|

8 i 1(0) 1(0) () jEe) ‘(2)

10 Us 32 M 3 3 x4

6 V4 2) 1(2) 1(3) (3) 1(4)

32

Z and U blocks (see Table 3). By setting the U block parameter values in the way shown in
Figure 5 this property also applies at the initial step. In order to obtain the correct output value
of the first Z block (i.e. block number 6) at k — 0, y(2) should be calculated using the difference
equation and used as the parameter Pl for the Z block.

9. DESCRIPTION OF MODELLING PROGRAM

The computer program structure and storage requirement are briefly described below.
Further information may be obtained by referring to the FORTRAN listing.

9.1 Program Structure

The computer program consists of a small main program (MAIN.) used to open the arrays
that are later expanded. a number of major subroutines, various service subroutines and functions,
and a BLOCK DATA subprogram which specifies the list of block type names (see Appendix I).

9.2 Storage Requirement

Because arrays are expanded to the required size by the modelling program (see Section
4.1.2), it may be necessary to know the storage dependence on the number of various blocks
specified. When loaded. the basic modelling program (see Section 4.1.2), without any additional
subroutines specified by the user, requires 12K words of core store (1K — 1024). On expanding
the arrays, the number of additional words required is given approximately by the formula

13 NBLK + 4 NINT : NDELAY + 31 NFUN

where the FORTRAN integer quantities NBLK, NINT, NDELAY. and NFUN are defined
in the COMMON statement labelled ‘SIZE’ in Appendix F and are the quantities typed (in the
above order) by the user in Section 4.1.2.

10. CONCLUDING REMARKS

A description of the ‘block oriented’ simulation language CSMP-10(ARL) has been
given. The language, which has been developed from CSMP-10, is written mainly in FORTRAN
1V for a PDP-10 computer. Three major improvements have been made. Firstly, ‘user-defined’
blocks written as FORTRAN subroutines have been included. These blocks may have only
three sorted inputs, but may have any number of unsorted inputs. ‘Dummy" or ‘user-output’
blocks have been created, whose output value is defined in the appropriate user-defined sub-
routine, thus allowing any number of outputs for each of these blocks. Secondly, arrays necessary
to store information on cach block used are automatically expanded to the size determined by
the user. Thirdly, the language has been divided into a modelling program, which is used to
perform the model simulation and store the output in a binary file on a specified storage device,
and an output program. which is used to print and plot the character conversion of the binary
file. Although the modelling program is designed to be run interactively from a Teletype, it may
also be run non-interactively during Batch or On-Line processing. A large number of minor
improvements have been made, many of them being corrections to errors in the available version
of CSMP-10. The Teletype messages and responses have been completely revised, and much
greater detail has been provided here than in descriptions of previous versions of the langugae

33

e — il TN T —— i

A ACKNOWLEDGEMENT
The authors are indebted to the assistance provided by T. J. Packer of the Weapons Research
Establishment, Salisbury. South Australia and to Dr. L. H. Mitchell of the Computer Centre
at ARL. Mr. Packer suggested the development of CSMP-10 to enable the simulation of heli-
copter thight manoeuvres and provided the subroutines used in the improved integration facilities.
Dr. Mitchell provided much valuable advice in the early stages, particularly in implementing the

major improvements

?

10.

. Carnegie Mellon

University

. Brennan, R. D. and

Sano, H.

. IBM Application

Program

IBM Application
Program

Carnegie Mellon
University

. Packer, T. J.

s Packer,; T. J.

. Computer Sciences

Corporation

Nankivell, P. G. and
Gilbert, N. E.

Wegstein, J. H.

REFERENCES

‘CSMP-10°. DECUS Program No. 10-122 (1971).

‘PACTOLUS —A Digital Analog Simulator Program for the IBM
1620". Proceedings, 1964 Fall Joint Computer Conference, AFIPS
vol. 26, pp. 299-312.

‘1130 Continuous System Modelling Program (1130-CX-13X)”
Application Description, H20-0209-1.

‘1130 Continuous System Modelling Program (1130-CX-13X)".
Program Description and Operations Manual, H20-0282-1.

‘Block CSMP-9. A Block Oriented Continuous System Modelling
Program for the PDP-9". User Manual (1969).

‘1130 CSMP-— Extended for 16K Configuration’. Report, Faculty
of Engineering, University of Singapore, 1967.

‘An extended Version of the 1130 CSMP'. SIMULATION, vol. 9,
no. 6, December 1967.

“F¥XCSMP Continuous System Modelling Program’. CSCX Basic
Library, Program No. 01-3199, July 1971.

‘A General Purpose Output Program for Use in Simulation'. ARL
Note 367, December 1976.

‘Accelerating Convergence of Iterative Processes’. Comm. ACM,
June 1958.

Postal Address: Chief Superintendent, Aeronautical Research Laboratories,

P.O. Box 4331, Melbourne, Victoria 3001

38

B

APPENDIX A

Time Pulse Generator Algorithm

The first pulse occurs when X1 > 0, and a pulse train of period Pl continues until X1 < 0
(if at all), but is restarted if subsequently X1 > 0. Consider the case when X1 > 0 at r = t,; then

X =0lft <it;
= 1if t,+nPl <t < t; +(n+0-5)P1
=0ift;+(n+0-5P1 <t < t;+(n+1)PI

where #n — 0, 1, 2, and provided X1 does not become negative. The parameter P2 and integer
parameter M are used in the time pulse generator algorithm, which is described as follows (his
the time interval for integration—defined in Section 3.1):

(a) Initial entry
M = 0; go to (l)

(b) Subsequent entries
(1) If X1 > 0, go to (2)
X = 0: M = 0; exit
2) If M =1, go to (3)
X = 1; M = 1:if Pl <0, print appropriate diagnostic message
(see Appendix B) and exit; P2 = (h—P1)/2+0-0001*min(h, P1); exit
(3) If P2 < 0, go to (4)
Change X (=0 or 1); P2 = P2—0-5*P]: go to (3)
(4) P2 = P2+0-5*h; exit

The quantity min(k, P1) is equal to either h or P1, whichever is the smallest: the quantity
0-0001*min (h, P1) is therefore an error term that ensures, when using floating point arithmetic
in a computer, that the equality for 1 occurs at the lower limit (see definition of X above).

36

o) idineouliaiu e Cettai i o sdaigidis - v T ﬂrzmﬁ

e

APPENDIX B

Modelling Program Diagnostic Error Messages
To distinguish the following error messages from the FORTRAN compiler diagnostics, all

the messages below are preceded by an exclamation mark (!). Integer constants are represented by
n and ‘s.e.” is used to abbreviate ‘self-explanatory’.

! ATTEMPT TO DIVIDE BY ZERO IN BLK n — when using divider block

! ATTEMPT TO TAKE SQRT OF A VE NO. IN BLK n — when using half power block
" BLK O P CANNOT GO TO TTY —since in binary form

! BLK | RESERVED FOR TIME —s.e.

" BILK n HAS AN ILLEGAL BLK TYPE (“type”) —see Table I for legal block types

"' BILK n IS NOT 4 UO BLK when attempting to define an additional output in a user-
defined subroutine

! BLK n IS NOT AN F BLK —s.e.
! BLK n NOT USED when specifying output blocks

" CODE PRIOR TO CALL TO EXPAND UNRECOGNISED —re-load the program: if error
persists, keep data files and consult originator

! COMMAND ERROR — invalid program command (see Table 2a)

P COMMAND NO LONGER VALID — for command used in earlier version
! CONFIGS ALREADY READ FROM MODEL I'P FILE —s.e.

! CONFIGS NOT COMPLETE —s:e.

" ERROR DURING MODEL EXECUTION - s.e.

! ERROR IN BLK n — invalid configuration statement (see Table 1)

! EXTENSIONS ALREADY SET — extensions. including period, should not be included in
‘channel” command

" FATAL ATTEMPT TO READ NON-EXISTENT DSK FILE “‘filename™.“‘extension™
causes program to crash: may occur only when running non-interactively

' FINAL TIME MUST NOT BE LESS THAN INITIAL TIME —s.e.
! FUNCTS ALREADY READ FROM MODEL I|P FILE —s.e.
! FUNCTS NOT COMPLETE —s.e.

PILLEGAL DEVICE NAME — must be LOGn, where n = 1 to 12 (excluding §), or TTY

37

e

! IMPROPER PARAM SPECIFICATION — s.e.

! INCORRECT RECORD “record™ **** —try again

! INTEGN CONTROL PARAMS NEEDED —s.e.

! INTEGN INTERVAL MUST NOT BE GREATER THAN TIME RANGE —s.e.
¢t INVALID BLK NO. —s.e.

! ITERATION LIMIT OF n EXCEEDED FOR V & Y BLKS n & n AT TIME t —
see Appendix H

! I/P (BLK n) TO BLK n IS NOT DEFINED —s.e.

P IP Bl FOR U0 BLK n IS NOT THE ASSOCIATED USER-DEFINED BLK n —when
the user output configuration statement is imcompatible with the corresponding user-defined
statement

'] P B2 FOR Y BLK n IS NOT A V BLK -~ see Figure 4

' LOGICAL UNIT n ALREADY IN USE — by another channel

P MAX OF n FUNCTS EXCEEDED — when specifying function coordinates

PMAX OF n F BLKS EXCEEDED when specifyving configuration statements

MAYX OF n] & T! BLKS EXCEEDED —s.e.
I MAX OF n U BLKS EXCEEDED —s.e.
! MAX OF n*15 COORD PAIRS EXCEEDED - -see Section 3.1.3

TMODEL NOT COMPLETE all configuration, parameter, and function statements must
first be set

" MORE WORK TO DO attempt to execute model before setting integration or output con-
trol parameters

P NO CORRESPONDING CONFIG STATEMENT — when specifying parameters

! NO CONFIGS IN MODEL I/P FILE —s.e.

! NO FUNCTS IN MODEL I/P FILE —s.e.

! NO PARAMS IN MODEL I|P FILE —s.e.

" NOT ENOUGH CORE TO SET UP ARRAYS — when expanding arrays in ‘EXPAND’
! O/P CONTROL PARAMS NEEDED —s.e.

' PARAMS ALREADY READ FROM MODEL I/P FILE —s.e.

" PERIOD (P1) FOR T BLK n MUST BE GREATER THAN ZERO —see Appendix A

" PNT WITH ABSCISSA ‘real constant’ DOES NOT EXIST —when attempting to delete
a coordinate pair

R

! SORT FAILURE AT BLK n see Section 3.2

! SYNTAX ERROR typing error or inappropriate response to Teletype message typed by the
program

P USER-DEFINED SUBROUTINE NOT LOADED FOR BLK n —when the user has not
loaded the appropriate user-defined subroutine or subroutine used for user-defined
interpolation in the function block

39

APPENDIX C

User-Defined Interpolation for Function Block

The modelling program allows the user to specify up to three separate interpolation or
curve-fitting (e.g. using least squares technique) formulae for use in the function (F) block. The
appropriate formula to be used for each F block is determined by the values set for P1. Corres-
ponding to Pl -1, —2, and — 3. the formula used must be programmed in the FORTRAN
subroutines INTRPI, INTRP2, and INTRP3 respectively. The first two statements of these
subroutines (e.g. for INTRP2) take the form

SUBROUTINE INTRP2 (L. C, MTRX, PAR, YOUT, XIN, MFIRST, MLAST, F)
DIMENSION C(1), MTRX(1), PAR(1), F(1)

where L, C, MTRX, and PAR are defined in Appendix G,
YOUT is the function output value set by the user,
XIN is the independent variable (abscissa) for which YOUT is required, and
F is an array containing the coordinate pairs X(K), Y(K)
such that X(K) ~ F(2*K - 1) and Y(K) - F(2*K)
for K -~ MFIRST, MFIRST ¢ I, ..., MLAST

For each F block. the parameter P3 is used to store MFIRST, and the integer parameter M is
used to store the number of coordinate pairs, .e. MLAST MFIRST. +/

R L

-

APPENDIX D

Block Output for Non-Linear Spring Problem

(1) Tabular Output
TIME BLK# 9 BLK? 4 BLKe a8 BLKS# 10
0.00E-0) -1.00E+0) P.PPE*O]! 0P.00E-01 -1.00E+02
1.00E*00 -3.27E+00 -1.42E+00 9.36E+00 -1.16E+01
2+.00E+P0 4.SOE*00 -6.41E+P0 5S5.52E+00 2.10E+01
3.0PE+DPP 6.P6E+00 -6.39E*00 -2.44E+00 3.68BE+0]
4. 00E*PO 1.B6E*0P0 1.10E*PO -4.62E+00 3.71E+00
S<OPE+0P0 -2.02E+00 2.01E+*00 -2.98E+P0 -4.106E+00
6.00E+DP0 -3.68BE*0P0 2.90E+00 -2.03E-01 ~-1.41E+01
T«BOE+D0 -2.69E+00 B+.95E-01 1.B4E+00 -8.15E+00
B8.P0E+00 -7.47E-01 -4.38E-01 1-BAE+P0 ~1.49E+00
9.00E+0P0® B.00E-Q01 -7.97E-01 1.19E+900 1.60E+00
1.00E+91 1.S8E+B80 -7.82E-01 3.74E-01 3.16E+00
1.10E+01 1.60E¢00 -5S.23E-01 -2.92E-01 3.20E+00
1.20E+01 1. 10E+00 -1.83E-01 -6.46E-21 2.20E+00
1.30E+01 4.17E-01 1.04E-01 -6.T76E-01 B8.33E-01
1.40E+01 ~-1.75E-01 2.63E-01 -4.81E-01 -3.51E-0Q1
1.50E+01 -S.16E-0] 2.85E-01 -1.97E-01 -1.03E+00
1.60E+@1 -5.8BPE-01 2.09E-01 S«66E-02 -1.16E+00
1.70E+01 -4.37E-Q1 9.16E-22 2.08E-01 -8.74E-01
1.B0E+0Q1 -2.02E-01 -1.64E-02 2.43E-01 -4.05E-01
1:90E+01 1.96E~-02 -8.35E-02 1.89E-01 J.92E-02
2.00E+Q1L 1+62E~B1 -1.0Q2E-81 9.25E-082 3.24E-01
(2) Graphical Output
BLK# 9 I -1.00FE+01 4040000000000 00000 1.00E+01 |
BLK# Al -2.00E+01 8888080 00¢StRstteS 2.00E+01 1
TIME 1 1
9.00E-01 + 1
1.00E+00 1 . * I
2.00E+00 1 . 1
3.00E+00 1 . . I
4.00E+00 ! * I
S.00E+20 1| . * 1
6.00E+00 1 ¥ . 1
T.00E+00 1 * |
B.00E+0Q0 1| e 1
9.00E+00 1 ! . 1
1.00E+01 1 . * I
1. 10E+01 1 . * I
1.20E+01 1 LI 4 |
1.30E+01 1 e 1
1.40E+01 1 . 1
1.50E+01 1 .o 1
1.60E+01 1 e 1
1« 70E+021 1| ‘e 1
1.80E+01 1 L4 1
1.90E+21 1 . i
2.00E+01 1 . 1
41
—_—— - A R——
_l - ""w i

C—— i

TIME

2.0000E-01

2.0000E-01

2.0000E-01

2.0000E-01

2.P000PE-01

2.5000E-01

2.5000E-01

2. 50P0E-01

2.5000E-01

2.5000E-01

3.0000E-01

3.0000E-01

3.0000E-01

3.0000E-01

3.0000E-01

10

&

48

P8

N=O\NDE=TN=r= N=D\NO =T

N=D\N®E =" =

APPENDIX E

~9.6097E+00
~9.2975E+01
=B« S5430E+01

1.7086E+01

3.7726E+00

~9.4211E+00
~B+95B0E+01
~B.0326E+01

1.6065E+01

4. 6269E+00

~9.147PE+ 00

-Be4647E+01

-7.3888E+01

1.4778E+01

S«3791E+00

X1
E

3.7726E+ 00
-1.0000E+01
-9.6097E+90

0.0000E-01

3.7726E+080
2.0000E+00

-8.5430E+01

8.0000E-01
1.79086E+@1
0.0000E-0!

4.6269E+00
-1.0000E+0!
-9+« 4211E+00
P.PPROE-Q1
4. 6269E+00
2.0000E+00
~B.0326E+Q1
0.0000E-01
1.6065E+01
0.0000E-01

S.3791E+00
-1.0000E+01
~9.1470E+ 00

P.APORE-01

S«3791E+00

2.0000E+00
~T7.388BBE+0Q1

P.0P000E-01

1.4778E+01

0.0000E-021

Debugging Output for Non-Linear Spring Problem

X2
pe

0.0000E-21
0.0000E-01
0.0000E-01
0.0000E-0Q1
=9.2975E+01
!«P00POE+0B0
-5.0000E+00
0.0000E-01
P.0000E-01
0.0000E-01

0.0€00E-01
0.0000E-01
0.0000E-01
0.0000E-01
~8.9580E+01
1.0000E+Q0
-5.0000E+ Q0
0.0000E-21
0.0000E-01
0.0000E-01

0.0000E-01
0.0000E-21
2.0000E-0!
0.0P00E-0!
-B.4647E+01
1.0000E+020
-5.0000E+00
0.0000E-01
0.0000E-01
0.0000E-01

X3
P3

0.0000E-01
0.0000E-01
0.0000E-01
1.0000E+ 00
0.0000E-01
0.0000E-0!
0.0000E-01
0.0000E-01
9.0000E-01
0.0000E-01

0.0000E-01
0.0000E-0!
9.00Q0E-0!
1.0000E+00
0.0000E-01I
0.0000E-01
0.0000E-01
0.0000E-01
0.0000E-01
0.0000E-2!

9.0000E-D1
0.0000E-01
0.0000E-01
1.0000E* 00
9.0000E-01
0.0000E-01
0.0000E-01
0.0000E-01!
0.0000E-01
0.0000E-0!

APPENDIX F

Modelling Program Common Variables

For each labelled COMMON statement, the FORTRAN variables appear in the order in
which they are described: e.g. for COMMON storage area labelled ‘*ODEVIM’, the COMMON
statement is COMMON ODEVIM/ONUM, ODEV, IDEV.

COMMON FORTRAN Declared Description
label identifier type
BATCH BATCH logical BATCH - .TRUE. if a file named ‘BOMMP.

IN" is found on the disk
.FALSE. otherwise

T T H T R ————

BUFF NBUFF integer Last word number filled in array ‘BUFFER"
BUFFER(126) real Block output buffer which is written into a binary
file only when NBUFF > 127
NFLAG integer NFLAG | prior to output of first block value
0 otherwise
XPC real Percentage change required for output, divided
by 100 (i.e. relative change)
DEBUG DEBUG logical DEBUG .TRUE. if debugging in operation
.FALSE. otherwise
DMAX real Upper time limit for debugging
DMIN real Lower time limit for debugging
LOGIND integer LOGIND "Y' for debugging output directly
on the teletype
EXTRA2 TY(48) real List of block type names (including Ul to U15)
FILE PDEV integer Model output device name
IFILNA(2) integer Model input filename
OFILNA(2) integer Block output filename
PFILNA(2) integer Modei output filename
FIRST FIRST logical FIRST - .TRUE. for block output at initial
time
.FALSE. subsequently
LINESP LINESP(1) integer LINESP(l) — *(IH)": array containing format

specification to correct line spacing following
the change in the FORTRAN operating system
from ‘FORSE’ to ‘FOROTS’

NEWFIL NEWFIL integer NEWFIL -~ 0 if block output file has not been
written onto
I otherwise

NUMB NOD integer Number of U blocks used
NEQ integer Number of I and T1 blocks used
NFG integer Number of F blocks used
NCON integer Number of K blocks used
NLIST integer Total number of blocks used
43

RS

-

APPENDIX F (continued)

(OMMON FORTRAN Declared Description
label identifier type
NUMBA NUMBA integer Number of blocks to be output
ODEVIM ONUM integer Block output logical unit number
ODEV integer Block output device name. re LOGn
IDEV integer Model input device name
PDEVIM PNUM integer Model output logical unit number
SIZE NBLK integer Maximum block number
NINT integer Maximum number of I and T1 blocks
NFUN integer Maximum number of F blocks
NDELAY integer Maximum number of U blocks
NPNTS integer Number of coordinate pairs used in F blocks
TEST TESTI integer TESTI I 1t model input file not opened
21f opened. but not completely read
0 1f completely read
TEST2 integer Model input logical unit number. if equal to §,
Teletype used as model input channel
TEST3 integer TEST3 2.f funcuons have been read in
I otherwise
TEST4 integer TEST4 1 if no F blocks in the model
20t data for F blocks not completely
read in
3f completely read in
TESTS integer TESTS | for initial time step
2 for each half time step
3 for each complete time step
4 for error during execution
S for run terminated by typing “*"
o for run terminated by a Q block
TEST6 integer Number representing location of last character
in input record read in: when TEST6 = 0 or
TEST6 72, new input record is read in
TEST7 integer TEST?7 1if integration parameters not read in
2 otherwise
TEST8 integer TEST8 | f output control parameters not
read in
2 otherwise
TEST9 integer TEST9 1 .1f sort process not completed
2 af sort process successfully com-
pleted
TIM DT real Integration interval A
DTS2 real h/2
TTOT real Final time
TZERO real Initial time
TITLE TITLE(12) real Title (up to 60 characters)
\% TSAMP real Output time interval
T real Time value, ¢

ey ™ - - ——— v AR o <

OO0 O0O000O0OO0

s XeNeNe]

APPENDIX G

Example of User-Defined Subroutine

SUBROUTINE USER1 (L,CsMTRX,PAR)
INTEGER TEST,B1,B2,B3

COMMON/ TEST/TEST(9)

DIMENSION CC1),MTRXC1)sPARCI)

PEELPLP2 2200050000000 000008 0400000000040 000800000000002800%0000%0 0

L IS THE BLOCK NUMBER OF THE USER-DEFINED BLOCK3 THE SAME
SUBROUTINE COWD BE USED BY OTHER BLOCKS.

C(N) IS THE OUTPUT OF BLOCK N AT THE CURRENT TIMEs C(L) MUST
THEREFORE BE SET EGQGUAL TO THE PRINCIPAL OUTPUT OF THE
USER-DEFINED SUBROUTINE. SINCE TIME IS STORED IN
BLOCK 1, CC1) IS THE TIME VALUE.

+
+

*

.

.

-

.

.

.

¢ MTRX IS AN ARRAY SUCH THAT FOR BLOCK N

. MTRX(S#N-4) = TYPE NUMBER

. MTRX(S*N-3)

. MTRX(S*N-2)

. MTRX(SeN=-1)

+ MTIRX(S2N) QUANTITY DEPENDENT ON BLOCK TYPE AND
* INSERTED BY THE MODELLING PROGRAM
*
.
.
-
*
-
.
.
*
.
A d
.
.
.
.

wonowon
@
n

PAR IS AN ARRAY SUCH THAT FOR BLOCK N
PAR(3sN-2)
PAR(3*N-1)

PARC3*N)

P1
P2
P3

TESTCS) FOR INITIAL TIME STEP
FOR EACH HALF TIME STEP
FOR EACH COMPLETE TIME STEP

FOR ERROR DURING EXECUTION

H» WMN —

OTHER ELEMENTS IN ARRAY °*TEST® ARE NOT REQUIRED IN THIS
EXAMPLE

D e R R
NUO = NUMBER OF CONSECUTIVE UO BLOCKS
DATA NUOZ 1/

TEST FOR COMPATIBILITY OF UO BLOCKS WITH USER-DEFINED BLOCK
TEST(S) IS SET EQUAL TO 4 IN SUBROUTINE UOTEST JIF INCOMPATIBLE

IFCCTEST(S)eGTe1)eORe(NUOLT.1)2)GO TO 20
DO 18'J=1,NUO

N=L+J

CALL UOTEST (NsL»,MTRX)

IFCTEST(S)«EQ« 4)RETURN

APPENDIX G (continued)

¥ c

C INPUT VALUES AND PARAMETERS OF USER-DEFINED BLOCK

Cc

20 B1=MTRX(S*sL-3)
B2aMTRX(S=L-2)
B3=xMTRX(S*L~-1)
X1=9
X2=9Q
X3=9
IF(B1.GT.®)X1=C(B1)
IF(B2.GT.0)X2=C(B2)
1IF(B3.GT.®)X3=C(B3)
P1=PAR(3L -2)
P2=PAR(3sL-])
P3=PAR(J3sL)

OUTPUTS OF USER-DEFINED AND UO BLOCKS

aoo

AzP|

B=P2

YDOT=Xx1

F=x2
C(L*1)=BeYDOTeF
CtL)==-C(L*1)/A

RETURN
END

46

APPENDIX H
Iterative Method for Solving an Implicit Equation

The algorithm used to solve an implicit equation v f(y) 1s given below (refer Figure 4
and definitions of V and Y blocks in Table 1), where n 1s the iteration index (i.e. v(n) is the
approximation for y after n iterations and y(n) 1s an improved value of y(n)):

n=0
J#(n) = yo when t = 1,
yattr—h/2whent > ¢,

(1) v+ 1) — f(¥(n)

Ifn - 0, goto(2)
W 1) y(n - 1): go to (3)
) a -~ [vn- 1) y)[¥n)¥n- D].qg a(a N
vno 1)y gy - (1 g@)v(n 1)
(3) If ¥(n) 10 % go to (4)
If ¥(n-+1) 10 3 go to (5)
4) If ¥(n-1) ¥mn) ¥(n) Ec, go to (5)

n=ntl
If n > Ni, print appropriate diagnostic message (see Appendix B) and go to (5)

Go to (1)
(5) v = ¥+ 1); exit

All the quantities calculated above are stored either as block output values or parameters
of the blocks used. These quantities are printed at each iteration when using the debugging
facility (see Table H.1).

TABLE H.1
Description of V and Y Blocks Corresponding to Debugging Output

Block Type X X1 X2 X3 M Pl P2 P3
\ V() Nv Yo #n—1) wn)
Y Wnsly wni 1)y #nil) n Ec Niora* q

* P2 — Ni for initial and final iterations
a otherwise

47

s

APPENDIX I

(1) Modelling Program Structure: Major Subroutines

Name(s) Effect Section(s) for
Reference

MAIN Controls the flow of the program -
CSMO Zeroes appropriate quantities —
CSM1 Reads in configuration statements 3.1.1,4.14
CSM2, CSM3 Sorts configuration statements 32
CSM4 Reads in parameter statements 3.1.2,4.14
CSMS Reads in function statements 313,414
CSM6 Outputs model specification statements 4.1.5,5.1.1
CSM7 Reads in integration parameters 4.1.6
CSMSA Reads in output control parameters 4.1.6
CSM10, CSMT1 Executes the model 33,4.1.7
CSM8 Outputs block values into binary file 4.2
CSM13 Enables examination of output at final time value 5.5.2

48

h-——-—-m

(2) Modelling Program Structure: Service Subroutines and Functions

APPENDIX 1 (continued)

Section(s)
‘ Name(s) Effect for
W Reference
CHARSH* Used by ‘PRNTYP" and *BLKIN" to shift alpha-
numeric characters stored in @ FORTRAN variable
CHGIFL When model input is completed for a particular file, o8 19
used to revert the model mput channel to the Teletype
CPU+ Obtains CPU run time -
DING Sounds bell on the Teletype —
EOFCHK Checks for end of model input file 512
EXPANDT Expands an array to the defined number of elements 412
FCHECKT Searches for a file on the disk —
FINPUT., KINPUT Used to read in data in the form of individual characters —
GTITLE Reads in title 414
INBLKS Used with *CSM8A" to read in output block numbers 4.1.6
I INOUT, GETNAM Processes the ‘channel” command 5.1
E LERROR Used by dummy versions of user-defined subroutines 4.1.1
| to record error and type diagnostic error message
| OPLBF Completes block output file 4.2
ORC Used to determine whether a file may be overwritten 2.1
ouT Outputs debugging information 3:9.3
PACK Used to pack data into a binary file 42
PRNTYP, BLKIN., Used with *CSMI" and *CSM6" to output configura- —
BLKOUT, CHKTR tion statements
RETAIN For blocks requiring initial conditions, sets the first 3.5.5
| parameter equal to the last calculated output value so
‘ that execution may be continued at a later stage
RDC Used to determine whether a file may be read from the S
disk
RUN* Allows the user to run another program (e.g. TRANS) 554
SET, SETCOM Outputs titling and timing information and block labels 42
STORE., FMIN Used to manipulate function data 313,414
TAGSRC Searches model input file for a particular type of state- —
ment
TIMOUT Outputs CPU run time —-
TTYCHK® Used to cheek if '™ has been typed during a run 4.1.7
UOTEST Tests for compatibility of UO block with user-defined 7
block
* ARL Library subroutines.

+ Written in MACRO-10.

AERO NOTE 362
FIG 1

Bl——
i IR . (SR T B X
B}__La)__J

(a) Parameters P1, P2, P3 are shown left to right.
If only one is shown, parameter is P1.
If two are shown, parameters are P1 and P2

(b) Output values X1, X2, X3 of blocks B1, B2, B3 are shown top to bottom.
If only one is shown, it is X1.
If two are shown, they are X1 and X2

BLOCK DIAGRAM NOTATION (refer Section 3.1)

AERO NOTE 362

FIG. 2
(a) Block diagram (refer Fig. 1)
y v y
I 8 > 1 9
Y
b 32
by + fly)
A B ' o F
fly)
-a
A
6 K
(b) Differential equation: y=—[by +f(y)]/a (Integration interval, h = 0.1s)
(c) Parameters: a=5, b=2, ¥, = <10, §/° =0
¢y =10 -8 =6 -4 -2 0 2 % & B8 10

(d) Function f(y):

(e)

fly) —-100 -64 -36 -16 -4 0 4

Output: Y.V, y, fly) from t =0 to 20s

(Interval = 1s)

16 36 64 100 :

(Continued on next page)

rF

: AERO NOTE 362
" FIG. 2 (cont.)
(f) Configuration statements
A
4 / 17 6 y
6 K —a
9 | 48 Yy
17 w 48 10 by + f(y)
48 | 4 y
10 F 9 f(y)
(g) Parameter statements
9 -10
17 2 1
6 -5

(h) Function statements

10 block number
-10 -100 |
-8 64
-6 36
-4 -16
-2 -4
0 0 L coordinate pairs
2 4
4 16
6 36
8 64
10 100 !

NON-LINEAR SPRING PROBLEM

T e —— i il ST L ST T i

T —
AERO NOTE 362
FIG. 3
(a)
by + f(y)
. —<—48
y & 17
A / 2 —&—10
N
-a
6
(b)
\ P < 48
u1
o < 10
1]
]
|
]
|
]
L}
1
by + fly)
< uo

REPLACEMENT OF (a) DIVIDER, CONSTANT, AND WEIGHTED SUMMER

BLOCKS BY (b) USER-DEFINED AND USER OUTPUT BLOCKS

fly)

Y

O®

AERO NOTE 362
FIG 4

BLOCK DIAGRAM FOR SOLUTION OF THE IMPLICIT EQUATION y = f(y)

FIG.5

AERO NOTE 362

I

37dWVX3 NOILVND3 3ON3HY34410 H3AHO0 ANOD3IS V HO4 WYHOVIA %0018

Mo

(g—w)A

€l n

(L—w)A

Q@ ©

4

(w)A

Y

e

en

ol

[(g—w)A *(L—w)A]y

1
DISTRIBUTION
Copy No.
AUSTRALIA
DEPARTMENT OF DEFENCE

Central Office
Chief Defence Scientist 1
Executive Controller, A.D.S.S. 2
Superintendent— Defence Science Administration 3
Superintendent— Assistant to Executive Controller, A.D.S.S. 4
Controller — Service Laboratories and Trials Division 5
Controller— Military Studies and Operational Analysis Division 6
Controller— Programme Planning and Policy Division 7
Central Library 8
S.T.I.B. 9
J.L.D. 10

Aeronautical Research Laboratories
Chief Superintendent 11
Superintendent —Aerodynamics Division 12
Aerodynamics Divisional File 13
N. Gilbert . ! 14-15
P. Nankivell | CO-/Authors 16-17
L. Mitchell Structures 18
D. A. Secomb Aerodynamics 19
D. Hatton Systems 20
R Whitten Systems 21
D Bird Mechanical Engineering 22
G. Long Structures 23
B. W. B. Shaw Aerodynamics 24
D. C. Collis Aerophysics Group 25-29
Library 30

Central Studies Establishment
Library 31

Materials Research Laboratories
Library, Victoria 32
Library, New South Wales 33
Library, South Australia 34

Weapons Research Establishment
Library 35
T. J. Packer, Aerospace Division 36

P. Goddard, Systems/Analysis Division 37

-

Air Office

Air Force Scientific Adviser 38
Library, Engineering (A.M.T.S.), Canberra 39
Library. A.R.D.U., Laverton 40

Army Oftice

Army Scientific Adviser 41
M. Gardiner, Engineering Design Establishment 42
Library, Engineering Design Establishment 43
I'he Bridges Library, Royal Military College 44
U.S. Standardisation Group 45

Navy Office
Naval Scientific Adviser 46
Superintendent, R AN.R.L 47
DEPARTMENT OF INDUSTRY AND COMMERCE
Government Aircraft Factory
Library 48-49
Victorian Region
Library 50
Government Engine Works

Mr. Roberts/ Library St

DEPARTMENT OF TRANSPORT
Air Transport Group

Director-General/ Library 52

STATUTORY AUTHORITIES AND PRIVATE INDUSTRY

Australian Atomic Energy Commission 33
C.S.L.LR.O. Chief of Mechanical Engineering, H.O. 54
C.S.1.R.O. Chief, Division of Tribophysics 55
C SL.R.O. Physical Metallurgy Division 56
C.S.1L.R.O. Division of Computing Research, Mr. P. R. Benyon ot
Hawker de Havilland Pty. Ltd. (Tech. Librarian), Bankstown 58-59
Gas and Fuel Corporation of Victoria, Research Director 60
State Electricity Commission of Victoria —Library, H.O. 61
State Electricity Commission of Victoria —Herman Central Scientific Library 62
State Electricity Commission of Queensland, Library 63
West Australian Government Chemical Laboratories, Library 64
Australian Coal Association (Research) Ltd., Manager, N.S.W. 65
Broken Hill Pty. Ltd., Central Research Laboratories, N.S.W. 66
Broken Hill Pty. Ltd., Meclbourne Research Laboratories, Clayton 67
Commonwecalth Aircraft Corporation, Manager of Engineering 68
I.LC.ILAN.Z. Library 69

Shell Co. of Australia, Technical Division, Mr. Farnhill 70

-

UNIVERSITIES
Adelaide

Australian National
La Trobe
Melbourne

Monash

Newcastle

New England

New South Wales

Queensland
James Cook (QId.)
Sydney

Tasmania
Western Australia

Royal Melbourne Inst.

of Technology

CANADA

Barr Smith Library

Professor of Mechanical Engineering

Library

Library

Library, Engineering School

Library

Library

Library

Library, School of Mechanical Engineering
Library, Serials Department

Professor P. T. Fink, Mechanical Engineering
Library

Library

Professor GG. A. Bird, Aeronautics

Professor D. W. George, Mechanical Engineering
Library, Engineering Department

Library

Library

National Research Council of Canada, N.A.E. Library

Universities

McGill

Toronto

FRANCE

A.G.A.R.D. Library

O.N.E.R.A.

Library
Institute of Aerophysics

Service de Documentation et d'Information

GERMANY
D.F.V.L.R.

INDIA

Ministry of Defence, Aero. Development Est.
Department of Civil Aviation (Director)

Hindustan Aeronautics Ltd., Library

Hindustan Aeronautics Ltd., Helicopter Factory, Library
Indian Institute of Science, Library

Indian Institute of Technology, Library

National Aeronautical Laboratory (Director)

ISRAEL

Technion-Israel Institute of Technology, Professor J. Singer

ITALY

Acrotechnica —Editor

a— renty

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

88

89-90

91
9

94
95

96

97

98

99

100

101

102
103-104

105

JAPAN

National Aerospace Laboratory, Library

Universities

Tokyo Institute of Space and Aerosciences

NETHERLANDS

N.L.R., Amsterdam

NEW ZEALAND

University of Canterbury, Library

SWEDEN

Aeronautical Research Institute
Library, S.A.A.B., Linkoping

SWITZERLAND

Institute of Aerodynamics, E.T.H.

UNITED KINGDOM

Defence Research Information Centre

Acronautical Research Council, N.P.L. (Secretary)

Royal Aircraft Establishment, Library, Farnborough

Roval Aircraft Establishment, Library, Bedford

Royal Armament Research and Development Establishment, Fort Halstead
National Engineering Laboratories (Superintendent), Scotland

National Gas Turbine Establishment (Director)

British Library, Lending Division, Boston Spa

Industry

Aircraft Research Association, Library, Bedford

British Ship Research Association

Central Electricity Generating Board, Marchwood

Fngineering Science Data Unit Lid. (Royal Aero. Society), Library
Fulmer Research Institute Ltd. (Research Director)

Science Museum Library

Aircraft Companics

Hawker Siddeley Aviation Ltd., Kingston-upon-Thames

Hawker Siddeley Dynamics Ltd., Hatfield

British Aircraft Corporation Ltd., Commercial A/C Division, Filton

British Aircraft Corporation Ltd., Military A/C, Preston

British Aircraft Corporation Ltd., Commercial Aviation Division, Weybridge
British Hovercraft Corporation Ltd., East Cowes

Short Bros. & Harland, Queen’s Island, Belfast

Westland Helicopters Ltd., Yeovil

107

108

109

110

111
112

113

114-115
116-117
118-119
120
121
122
123
124

125
126
127
128
129
130

131
132
133
134
135
136
137
138

Universities

Bristol Library, Engineering Department
l Cambridge Library, Engineering Department
W Manchester Professor Applied Maths.
Professor N. Johannensen
Southampton Library

Colleges and Institutes

Cranfield Institute of
Technology Library
Imperial College Library

UNITED STATES OF AMERICA
Australian Defence Research and Development Attache
Airforce Flight Dynamics Lab., Wright-Patterson A.F.B., Ohio
Arnold Eng. Development Center, Arnold Airforce Station, Tennessee
National Technical Information Service, Springfield
Library of Congress, Gift and Exchange Department, Washington, D.C.
Library, National Bureau of Standards, Washington, D.C.
N.A.S.A. Scientific and Information Facility, College Park
Naval Ordnance Labs., Silver Spring, Md.
U.S. Army Ballistics Research Labs., Aberdeen Proving Ground, Md.
American Institute of Aeronautics and Astronautics
Applied Mechanics Reviews
Boeing Co., Head Office, Seattle
Lockheed Research Labs. (Palo Alto), Sunnyvale, Calif.
Pratt & Whitney Aircraft Division, United Aircraft Corporation, East Hartford

Universities
Cornell (New York) Library, Aero. Labs.
Carnegie-Mellon
(Pennsylvania) Library
Johns Hopkins Library
Institutes of Technology

California Library, Guggenheim Aero. Labs.

Spares

139
140
141
142
143

144
145

146
147
148
149
150
151
152-156
157
158
159
160
161
162
163

165
166

167

168-192

-

DOCUMENT CONTROL DATA

1. Security Grading Release Limitation 2. Document Type/Number
Aerodynamics Technical Note
(a) Document Content: Unclassified 362
(b) This Page: Unclassified
3. Document Date
May 1976
4. Title and Sub-Title THE SIMULATION LANGUAGE CSMP-10(ARL)

. Personal Author N. E. GILBERT and P. G. NANKIVELL
6.

Corporate Author(s) AERONAUTICAL RESEARCH LABORATORIES

ABSTRACT

A description is given of the *block oriented” simulation language CSMP-10(ARL),
which has been developed from CSMP-10 and is written mainly in FORTRAN 1V for a
PDP-10 computer. The major improvement made has been to incorporate ‘user-defined’
blocks, which are written as FORTRAN subroutines. A large number of outputs may
be defined within these subroutines by using ‘dummy’ or ‘user output® blocks. Two
other major improvements have been made, both enabling the saving of appreciable core
storage. Firstly, arravs necessary to store information on each block used are auto-
;m]][(a/[r L{\pumlt't/ to the size determined bl' the user. S(’('()H(”)'. the I(III‘L’U(I_Q(’ is divided
into a modelling program, which is used to perform the model simulation and store the
output in a binary file on a specified storage device, and an output program, which is used
to print and plot the character conversion of the binary file.

8. Computer Program(s) Titles and Language
BOMMP . .

TRANS (FORTRAN 1V)

9. Descriptors 11. Cosati Classifications
Simulation Languages 0902, 1407, 1201, 1402
Simulation
Mathematical Models
Computerized Simulation

12. Task Reference (RD/P)
RD74/22

10. Library Distribution (Defence Group) 13. Sponsoring Agency Reference
Central Office Bridges Library A.R.L. File A2/19
S.T:LB.

REQ,
AR.L.
CS.E. 14. Cost Code
M.R.L., Vic., NSW., S. Aust. 51 7740
W.R.E.
AMTS.
A.R.D.U.
E.D.E.
15, Imprint MELBOURNE AFRONAUTICAL RESEARCH LABORATORIES, 1976

