

AD

AMMRC CTR 77~19

STUDIES OF TEXTURE DEVELOPMENT IN STEEL ARMOR PLATE

July 1977

By Haun Hu

United States Steel Corporation Research Laboratory Monroeville, Pennsylvania 15146

Final Technical Report
Contract Number DAAG48-77-C-0014

Approved for public release; distribution unlimited.

Prepared for

ARMY MATERIALS AND MECHANICS RESEARCH CENTER
Watertown, Massachusetts 02172

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Mention of any trade names or manufacturers in this report shall not be construed as advertising nor as an official indorsement or approval of such products or companies by the United States Government.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return it to the originator.

AMMRO CTR-77-19

STUDIES OF JEXTURE DEVELOPMENT IN STEEL ARMOR PLATE

19 17/1-4-27

July **18**77 (

By Hsun/Hu |

/ United States Steel Corporation Research Laboratory Monroeville, Pennsylvania 15146

Final Technical Report

Contract Number DAAG46-77-C-0014

Approved for public release; distribution unlimited.

Prepared for

ARMY MATERIALS AND MECHANICS RESEARCH CENTER Watertown, Massachusetts 02172

7 7 / 1

Table of Contents

	Page
Foreword List of Tables List of Illustrations	ii iii iv
Abstract Introduction Materials and Procedures	1 2 4
Steel Composition and Ingot Dimensions	4
Hot Rolling Procedures	5
Material for the 6- by 12- by $^1/2$ -Inch Plates Having (112) + (111) Texture	5
Exploratory Specimens for Producing Nearly (111) Texture by Quenching Cross-Rolled Austenite	9
Results and Discussion	10
Texture of the 6- by 12- by ~1/2-Inch Plates	10
Microstructure and Hardness of the 6- by 12- by $1/2$ -Inch Plates	11
Ballistic Performance of the 6- by 12- by $\sim 1/2$ -Inch Plates	13
Texture of the Cross-Rolled Specimens	14
Microstructure and Hardness of the Cross-Rolled Specimens	16
Summary and Conclusions Future Work Acknowledgements References Appendix A FY PSF2 1 1728 A 2011 A 2011	17 18 18 19

FOREWORD

This report was prepared by the Research Laboratory of United States Steel Corporation under U. S. Army Contract No. DAAG-46-77-C-0014. The contract was administered by the U. S. Army Materials and Mechanics Research Center, Watertown, Massachusetts, Anthone Zarkades-Contracting Officer Representative. This is a final report and covers work conducted from January 20 to June 20, 1977.

List of Tables

Chemical Composition of Armor Steel in Weight Percent Hardness of the Plates Rolled to Various Reductions at 1500°F then Quenched and Tempered Ballistic Performance of the Plates Rolled to Various Reductions at 1500°F then Quenched and Tempered. Texture Type (112) + (111) V Summary of Information on Exploratory Specimens Cross-Rolled to Various Reductions at 1500°F then Quenched and Tempered

List of Illustrations

Figure

- 1 (110) Pole Figures of the Plates Rolled to Various Reductions at 1500°F then Quenched and Tempered (Ingot 705). A. 60%; B. 70%; C. 80%; and D. 90%.
- 2 (200) Pole Figures of the Plates Rolled to Various Reductions at 1500°F then Quenched and Tempered (Ingot 705). A. 60%; B. 70%; C. 80%; and D. 90%.
- Microstructure of the Plate Rolled 60% at 1500°F then Quenched and Tempered (Ingot 705). Nital Etch. X500.
- 4 Microstructure of the Plate Rolled 90% at 1500°F then Quenched and Tempered (Ingot 705). Nital Etch. X500.
- 5 Correlation of the Ballistic Limit with the Intensity of (112) + (111) Texture.
- 6 (110) Pole Figures of the Specimens Cross-Rolled to Various Reductions at 1500°F then Quenched and Tempered. A. 60%; B. 70%; C. 80%; and D. 90%.
- 7 (200) Pole Figures of the Specimens Cross-Rolled to Various Reductions at 1500°F then Quenched and Tempered. A. 60%; B. 70%; C. 80%; and D. 90%.
- 8 (222) Pole Figure of the Specimen Cross-Rolled 90% at 1500°F then Quenched and Tempered.
- 9 Microstructure of the Specimen Cross-Rolled 60% at 1500°F then Quenched and Tempered. Nital Etch. X500.
- Microstructure of the Specimen Cross-Rolled 90% at 1500°F then Quenched and Tempered. Nital Etch. X500.

Studies of Texture Development in Steel Armor Plate

by

Hsun Hu

Abstract

The present research program consisted of two parts. (1) To produce a number of 6- by 12- by $\sim 1/2$ -inch armor plates having strong (112) + (111) texture with various degrees of intensity by the thermomechanical processing treatments of essentially the same mediumcarbon, 5Ni-Si-Cu-Mo-V steels used previously, and to establish the reproducibility of texture, microstructure, hardness, and ballistic performance of these steel armor plates. Results indicated that the reproducibility of the structure and properties of these steel armor plates was excellent. The ballistic limit increased with the texture intensity in nearly the same manner as observed previously. (2) To explore the possibility of producing a nearly (111) texture with various degrees of intensity in small-size specimens cross-rolled at 1500°F to various reductions then quenched, and to establish a procedure for optimizing this texture in larger 6- by 12- by 1/2inch plates. Results indicated that the texture obtained was (223) <032>, which is about 11 degrees from {111}(011), close to that predicted. The development of this texture should be possible in larger 6- by 12- by $\sqrt{1/2}$ -inch plates that can be used for the testing of mechanical and ballistic properties.

Introduction

Results from a recent investigation 1)* on the effect of crystallographic texture on the ballistic performance of a medium-carbon 5Ni-Si-Cu-Mo-V steel indicated that the V₅₀ ballistic limit of the (112) + (111) textured plates was substantially higher than that of random-textured plates at approximately the same hardness. Furthermore, the improvement in the ballistic limit increased with the texture intensity. To assure reproducibility of the results, and to enable more extensive studies with these textured plates, it would be desirable to produce a number of additional 6- by 12- by -1/2-inch armor plates with various degrees of the (112) + (111) texture. These plates could be used for a variety of additional studies of the mechanical and ballistic properties not comprehended in the earlier investigation 1) so that such textured plates could be fully characterized.

It is well known that the Young's modulus, E, of iron or steel is the highest in the [lll] direction, 2 and that the stress intensity of the reflected tensile wave upon impact deformation is proportional to $E^{1/2}$, 3) whereas the cleavage stress if roughly proportional to E^{4} . Thus, a strong (lll) texture in the plane of the plate may further improve the ballistic performance of the plate. From the available data on the texture behavior of common

^{*}See References.

fcc metals, and the orientation relationship of austenite to martensite in steels, it appears feasible to produce a nearly (111)-textured steel armor plate by appropriate thermomechanical processing treatments.

As is well known, the orientation relationship between the austenite and the martensite resulting from phase transformation is that of the Kurdjumov-Sachs, 5) which has 24 crystallographically equivalent variants. These can be expressed in the generalized form:

$$\{111\}_{\gamma}^{\gamma} = \{110\}_{\alpha}^{\gamma} = \{111\}_{\gamma}^{\gamma} = \{110\}_{\alpha}^{\gamma}$$
 or $\{110\}_{\alpha}^{\gamma} = \{110\}_{\alpha}^{\gamma} = \{110\}_{\alpha}^{\gamma} = \{111\}_{\alpha}^{\gamma}$

since, for cubic lattices, the indices of planes and directions are identical. Thus, to produce a plate nearly (lll) oriented in the plane of the plate (or a [lll]-textured plate with a [lll] axis normal to the plate), a strongly (ll0)-oriented austenite will have to be produced. It was recently shown by Davies et al. (b) that such orientation-related transformation textures can be predicted satisfactorily without variance selection by using the crystallite orientation distribution functions of Roe. (7)

Some time ago Merlini and Beck⁸⁾ showed that the texture of heavily cross-rolled copper is predominantly (110) (223). The same kind of cross-rolling texture should be developed, and was observed, in fcc alloys of low stacking-fault energies, such as the 70-30 brass.⁹⁾ Thus, heavy cross rolling of the armor steel in the

austenite region without concurrence of recrystallization, for example at 1500°F (816°C), should develop a strong (110) texture in the plane of the plate. Upon immediate quenching of the cross-rolled austenite, it should be possible to produce a strongly (111)-textured martensite in the armor plate.

The present research program, under a five-month interim contract awarded by the Army Materials and Mechanics Research Center to the United States Steel Research Laboratory (Contract No. DAAG-46-77-C-0014), consisted of two parts: (1) To produce a number of 6- by 12- by >1/2-inch armor plates having a strong (112) + (111) texture with various degrees of intensity, and to check the reproducibility of earlier results in texture, microstructure, hardness, and ballistic properties; and (2) to explore the possibility of producing a strong (111) texture with various degrees of intensity in small-size specimens, and to establish a procedure for optimizing this texture in 6- by 12- by 1/2-inch plates.

Materials and Procedures

Steel Composition and Ingot Dimensions

For the first part of the research program, namely, to produce a number of 6- by 12- by 1/2-inch armor plates having a strong (112) + (111) texture of various intensities and to establish the reproducibility of earlier results, three 500-pound (227 kg) heats of nominally the same chemical composition as that of the steel used previously, were vacuum-melted and cast at the Laboratory. The incots, one from each heat, were of the same dimensions

as those in earlier investigations, 7 by 12 by 24 inches (180 by 300 by 600 mm). Check analyses of samples taken from the hot-rolled plates, 0.55 inch (14 mm) thick, are shown in Table I. Within narrow variation limits, these compositions matched closely with those of earlier steels. 1)

For the second part of the present program, that is, to explore the possibility of producing a strong (111) texture with various degrees of intensity in small-size specimens, some of the trimmed-off edge material from the intermediate plates (2-1/8-in. thick) left over from the earlier investigation was used. Hot-Rolling Procedures

Material for 6- by 12- by ~1/2-Inch Plates Having (112) + (111) Texture. For producing the (112) + (111) textured plates of various intensities, the preliminary hot rolling of the ingot to the various intermediate thicknesses and the final isothermal rolling to a common plate thickness after various reductions were conducted in exactly the same manner as described previously. However, some minor modifications were employed for one or all three ingots in the method of cooling of the intermediate pieces and in the reheating temperature for final isothermal rolling. These modifications were adopted mainly to improve the processing conditions, and produced no significant effects on the texture and properties.

For preliminary hot rolling to the various intermediate thicknesses, namely 5.50, 2.75, 1.85, and 1.40 inches (140, 70, 47, and 36 mm), the ingots were hot-charged into a preheating furnace

at 2250°F (1230°C), soaked for two hours, and then rolled from the 7 inches of the ingot thickness to a sl 5 of 5.50 inches. A predetermined length was torch-cut from the bottom end of the slab, and the remaining slab was then reheated to temperature in the furnace. After about 15 to 20 minutes reheating, the slab was again rolled to the next intermediate thickness (2.75 inches) and another predetermined length was torch-cut from the previously cut end of the piece. The reheating, hot-rolling, and torch-cutting procedures were repeated until the piece was finally rolled to

these intermediated pieces were all cooled in air, the practice employed in the previous investigation. When the intermediate pieces were later cut by abrasive cut-off wheel along the midwidth line so that each piece became two 6-inch-wide halves, hairline cracks were always observed on the cut-off faces. As will be described later, these hairline cracks may have been responsible for some edge cracking during the next rolling. To control the temperature in final rolling, a small hole (5/32 inch or 3 mm in diameter) for insertion of a thermocouple was drilled in each piece on the cut-off face at approximately the midposition of thickness and width by electrical discharge machining (EDM), because the material was too hard to be drilled in an ordinary drill press.

The hairline cracks and the high hardness of the intermediate pieces indicated that the steel was practically hardenable by cooling in air, and that the volume change in phase transformation was probably responsible for the hairline cracks observed on the cut-off faces. It was noted that in the finally rolled and quenched plates some edge cracking (mostly about 0.5 inch in 1. jth) occurred on the prior cut-off side of the intermediate pieces. This suggested that the hairline cracks in the intermediate pieces had induced edge cracking in the final plates.

In an attempt to eliminate the hairline cracks in the intermediate pieces, hence the occurrence of some edge cracking in the final plates, the intermediate pieces from the third ingot (No. 717) were cooled in vermiculite. No hairline cracks were observed on the cut-off faces and the thermocouple holes were drilled in an ordinary drill press without difficulty. It was obvious that cooling the steel slowly in vermiculite resulted in the formation of the high-temperature transformation products together with some tempered martensite and bainite in the intermediate pieces.

是国际企业的特色的数据是国际企业的设计中央企业的经验的基础,并将的企业中的企业的企业的企业,但是是国际企业的企业的企业的企业,但是是国际企业的企业,并不是一个人

In the final rolling treatment, the intermediate pieces from all three ingots were reheated for two hours at 1650°F (900°C)*, rolled isothermally at 1500°F (816°C) to a final thickness of 0.55 inch (14 mm), and water-spray-quenched to room temperature. This procedure resulted in reductions in thickness of 60 to 90 percent

^{*}This reheating temperature was slightly lower than that used previously (1700°F). It was adopted purposely to reduce the cooling time required to the isothermal rolling temperature of 1500°F. For the slowly cooled intermediate pieces of Ingot 717, this reheating time and temperature were found adequate to reaustenitize the steel.

1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1

for the intermediate pieces 1.40 to 5.50 inches thick, respectively. As was the case in the previous investigation, 1) for the intermediate pieces of small rhicknesses (1.40 and 1.85 inches) no difficulty was encounted cooling the piece on the run-off table from the reheating temperature of 1650°F to the isothermal rolling temperature of 1500°F before starting to roll. Isothermal conditions were closely approximated by using a predetermined program of varying amounts of reduction per pass so that the heat lost by radiation and convection was nearly balanced by the heat generated during deformation. For the more massive pieces (2.75 and 5.50 inches thick), it was necessary to start rolling at a somewhat higher temperature than the desired isothermal rolling temperature of 1500°F (rolling started at around 1575 and 1600°F as indicated by the inserted thermocouple) so that the corners and edges of the piece would not be cooled excessively in comparison with the interior, resulting in nonuniform deformation or severe difficulties in the rolling operation. However, the somewhat higher start-rolling temperature was gradually reduced to the desired rolling temperature in the first few passes. The slightly lower reheating temperature used in the present investigation, hence shorter waiting time for start of rolling, should have assisted in attaining more uniform deformation in the final plates.

Whereas the plates from the first two ingots (No. 705 and 706) showed some edge cracking on the prior cut-off side of the intermediate pieces, those from the third ingot (No. 717) were free

from such defects. The slower cooling rate (cooled in vermiculite vs in air) applied to the intermediate pieces of the third ingot was apparently responsible for this improvement.

Exploratory Specimens for Producing Nearly (111) Texture by Quenching Cross-Rolled Austenite. Small blocks having dimensions of approximately 1.5 by 1.5 by 0.5 or 1.0 inches (~38 by 38 by 13 or 26 mm) were cut off from the edge material left over from the earlier investigation. The 0.5-inch-thick blocks were used for cross rolling to 60 and 70 percent reductions in thickness, whereas the 1.0-inch-thick blocks were used for 80 and 90 percent reductions. The final thicknesses of these exploratory specimens produced for texture, microstructure, and hardness examinations were thus 0.20 to 0.10 inch (5.1 to 2.5 mm).

For isothermal cross rolling at 1500°F, the steel block was heated in a preheating furnace at 1700°F and held at temperature for 15 minutes. The piece was then transferred to another furnace set at 1500°F. When the specimen reached this temperature, it was taken out and rolled in the first rolling direction (designated as RD₁) with a predetermined amount of reduction. The specimen was put back into the furnace to restore the temperature. For the second rolling pass, the specimen was rotated 90 degrees from the initial orientation before entering the rolling mill. The amount of reduction in the second rolling direction (designated as RD₂) was the same as in the previous pass in the first rolling direction. These procedures were then repeated until the final

thickness was reached. The total reduction in RD_1 and RD_2 was made the same in each specimen. Immediately after the final pass in RD_2 , the specimen was quenched in water.

As a standard practice in the previous and present investigations, all the quenched materials were given a tempering treatment of 1 hour at 350°F followed by cooling in air before examinations for structure and properties. For ballistic tests, the tempered plates were surface-ground to 0.5 inch or less in thickness to remove oxide scale and decarburized material in the subsurface layers. Sixty-six 6- by 12- by ~1/2-inch plates, identified in Appendix A, were shipped to the Army Materials and Mechanics Research Center for ballistic testing and other mechanical and metallographic studies by the Army.

Results and Discussion

Texture of the 6- by 12- by 1/2-Inch Plates

1996年代,19

The crystallographic textures of the plates were examined by X-ray pole figures determined from the midthickness section. Specimens of plates rolled to various reductions from the three ingots were all examined. For the first two ingots (No. 705 and 706), both the (110) and (200) pole figures were determined by the Schulze reflection technique up to a tilt angle of 80 degrees from the rolling-plane normal, using filtered MoK_a radiation. For the third ingot (No. 717), only the (110) pole figures were determined. The nature and degree of intensity of the textures were similar to those in the plates processed in the earlier investigation. 1)

In fact, the intensity maxima, as shown by the (110) pole figures of the present plates, particularly those rolled to high reductions, were appreciably higher than those observed previously. The reason for this observed increase in texture intensity for the present plates is not clear. The somewhat higher inclusion contents (as shown by the microstructures to be described in the next section), which could be an indication of higher oxygen contents actually present in the steels, may have retarded the rate of recovery during hot rolling; this resulted in higher X-ray diffraction intensity.

In Figures 1 and 2, the (110) and (200) pole figures, respectively, of the plates rolled 60 to 90 percent from Ingot 705, are presented. Those of correspondingly rolled plates from Ingot 706 or 717 were quite similar except that the intensity maxima were somewhat lower. As can be noted from these pole rigures, the nature of the texture was a strong (112) + (111); and the texture intensity, as indicated by the average intensity maxima of the (110) pole figures, increased with rolling reduction from 3.75 at 60 percent reduction to 9.05 at 90 percent reduction.

Microstructure and Hardness of the 6- by 12- by ~1/2-inch Plates

The microstructures of the 6- by 12- by ~1/2-inch plates rolled to various reductions from the three ingots were examined on the longitudinal and transverse sections by light microscopy. In accordance with previous observations, the structure is all martensitic and consists of bands lying nearly parallel to the rolling plane, elongated most prominantly in the rolling direction.

Figures 3 and 4 show the photomicrographs of the plates rolled 60 and 90 percent, respectively, of Ingot 705. The plates rolled to 70 and 80 percent reductions had similar structural features, as did the corresponding plates from the other two ingots (No. 706 and 717). Such structural bands were believed to represent the textural components and not the reduced thicknesses of the prior austenite grains after rolling reductions. The thickness of the structural bands was nonuniform, and the average band thickness appeared to decrease slightly with increasing reduction.

Upon examination of the microstructures of the various plates rolled from the present three ingots, it was noticed that the inclusions were apparently more numerous than in the steels used in the previous investigation. These inclusions were particularly evident when the polished surfaces were examined before etching. Even on the etched surfaces, such as the photomicrographs shown in Figures 3 and 4, scattered dark patches where inclusion particles were located can be noticed. However, these structural features were not indicated by the results of chemical analysis (Table I), except for the unusually high oxygen content reported for one of the samples (Footnote under Table I).

The hardness of the various plates was measured on the metallographic specimens. Ten measurements of the DPH numbers were made (5 on the longitudinal and 5 on the transverse sections) for each plate. The average values of these measurements, converted to the $R_{\rm C}$ scale, are shown in Table II. The hardness values measured

on the longitudinal section of the specimens were slightly but consistently higher than those on the transverse section, suggesting anisotropy due to preferred orientations. These hardness values agree well with those observed for the armor-steel plates processed previously. 1)

Ballistic Performance of the 6- by 12- by √1/2-inch Plates

One plate for each rolling reduction from each of the three ingots processed was tested for the V_{50} ballistic limit with 0.50 caliber projectiles at zero degree obliquity. The results, together with the texture intensity, hardness, and thickness of the plates, are summarized in Table III.

that the ballistic data of textured plates obtained in the previous investigation $^{1)}$ could be shown more meaningfully as a function of texture intensity, including random-textured plates (texture-intensity parameter being equal to 1.00), after corrections were made to a uniform plate thickness. The thickness correction factor was 10 fps in ballistic limit per 0.005 inch of plate thickness (taken from MIL S-12560). Abbott showed that the corrected ballistic limit had a linear dependence on the texture intensity, with a scatter band of about 100 fps on either side of the mean ballistic limit, which is roughly equivalent to a standard deviation of $\sigma = 30$. As pointed out by Abbott, this is an important point because ballistic-limit data that have been subjected to statistical analysis by the Test and Evaluation Command at APG for homogeneous

March . 4

apm2 at 0° obliquity had a standard deviation on the order of 30 fps.

Following the same procedures for plate-thickness corrections, the V₅₀ ballistic limits of the present textured plates were plotted against the texture-intensity parameter. The results are shown in Figure 5 together with the ballistic test results of previous investigations after corrections for plate thickness. Most of the data points are within the scatter band. Only a few data points fall slightly outside the band, indicating somewhat wider scatter of the textured plates. However, the trend for the ballistic limit to increase substantially with the intensity of the (112) + (111) texture is clearly indicated by these results.

As observed previously, back spalling appears to occur frequently in strongly textured plates upon ballistic testing. Structural banding along the thickness direction and parallel to the rolling plane of the plate (see Figures 3 and 4), which is believed to be associated with the texture components present in the plate, may have been responsible for the low back-spalling resistance of the textured plates.

Texture of the Cross-Rolled Specimens

The crystallographic texture of the small-size specimens cross-rolled to various reductions at 1500°F then quenched and tempered were examined on the midthickness section. Figures 6 and 7 show, respectively, the (110) and (200) pole figures. As

expected from cross rolling to nearly equal strains in both rolling directions (RD₁ and RD₂), the pole figures show approximately the same symmetry with respect to either rolling direction even though the texture, as shown, is that of the martensite transformed from the cross-rolled austenite.

As a consequence of this apparently high symmetry of the pole figures, one may easily be misled to a first impression that the texture is of a (100) or (110) type since the rolling plane has a four-fold or a two-fold symmetry with the reflection planes. That the texture of these cross-rolled specimens actually had a high concentration of approximately (111) planes in the plane of rolling is shown more convincingly by the (222) pole figure in Figure 8. The texture is mainly (223)[032], which is only about 11 degrees from (111)[011] with respect to either of the two rolling directions. Hence, the prediction of the texture of the martensite that is produced by transformation of cross-rolled austenite, based simply on the Kurdjumov-Sachs orientation relations, was confirmed.

The intensity of the texture of all these cross-rolled specimens was low. This is believed to be due to the reheating of the specimen between passes during rolling, a procedure necessary for isothermal rolling of small-size specimens. It is obvious that during this reheating extensive recovery, and hence a reduction in the dislocation density, occurs. Consequently, as the perfection of the crystallites increases, the intensity of the diffracted X-ray decreases because of increased primary extinction.

When the isothermal condition can be controlled in rolling larger pieces, such as the 6- by 12-by ~1/2-inch armor plates, the intensity of the texture should be substantially increased. Even with the relatively low texture intensities of the present cross-rolled specimens, the intensity of the texture showed increases with rolling reduction (see Table IV).

Microstructure and Hardness of the Cross-Rolled Specimens

The microstructures of the two cross sections of the small-size specimens cross-rolled to 60 and 90 percent reductions in thickness are shown in Figures 9 and 10, respectively. As a consequence of the approximately equal amount of reduction in each of the two orthogonal rolling directions, the microstructures of the two cross-sections are almost indistinguishable. The structural banding, even in the specimen cross-rolled 90 percent (Figure 10), is much less markedly defined than in the straightaway-rolled specimen (Figure 4). As was postulated earlier, the low resistance to back spalling in strongly textured armor plates (produced by straightaway rolling to high reductions then quenched and tempered) is believed to be due to the structural or textural banding. It would therefore be interesting to see Whether the heavily crossrolled 6- by 12- by $^{\circ}1/2$ -inch plates, when produced in the future, would show higher resistance to back spalling upon ballistic testing.

The hardness and other technical information of the crossrolled specimens is summarized in Table IV. The average hardness of the cross-rolled specimens appears to be somewhat higher than that of straight-rolled 1/2-inch-thick armor plates at the same amount of rolling reduction. However, these differences may have been a consequence of effective quenching because the thicknesses of the cross-rolled exploratory specimens (0.10 to 0.20 inch) were substantially less than those of the 1/2-inch-thick armor plate.

Summary and Conclusions

The first part of the present research program was to produce a number of 6- by 12- by $^1/^2$ -inch armor plates having strong (112) + (111) texture with various degrees of texture intensity by the thermomechanical processing treatments of essentially the same medium-carbon, 5Ni-Si-Cu-Mo-V steels as used previously, 1) and to establish the reproducibility of texture, microstructure, hardness, and ballistic performance of these steel armor plates. Results indicated that these structures and properties of the present plates were all comparable to those reported previously. In agreement with the earlier findings, 1) the ballistic limit of the present plates increased with the intensity of the (112) + (111) texture. When the observed ballistic limits of all the plates, including those with nearly random texture, were corrected to a common plate thickness, the corrected ballistic limit data nearly all fell within a scatter band of :100 fps. The median of the scatter band, which increases linearly with the texture intensity, thus corresponded to a standard deviation of roughly ± 30 fps.

For the second part of the present program, that is, to explore the possibility of producing a nearly (111) texture with various degrees of intensity in small-size specimens cross-rolled at 1500°F to various reductions then quenched and tempered, the textures produced were {223} <032>, which is close to (about 11 degrees from) the predicted {111} <011> texture.

Future Work

Results from the second part of the present investigation indicate that a nearly (111) texture with various degrees of intensity can be produced by isothermal cross rolling at 1500°F to various reductions in thickness then quenched. To produce 6-by 12-by ~1/2-inch armor plates with this texture and to study their structure, mechanical properties, and ballistic performance in future investigations should prove worthwhile.

Acknowledgements

Sincere appreciation is hereby extended to S. Gilbert,
R. C. Adams, and R. J. Williams for making the melts, to G. E.

Kennedy and C. J. Jennings for conducting the rolling, to R. W.

Vanderbeck, S. J. Manganello, and S. Brejda for the tempering and the ballistic testing of the plates, and to R. P. L. Hartley for the chemical analysis of the steels. Competent assistance of R. E.

Stecik and P. E. Toohill in making X-ray and metallographic measurements is sincerely acknowledged. Frequent discussions with L. F.

Porter during the course of the work were most helpful and appreciated.

References

- 1. H. Hu, G. R. Speich, and R. L. Miller: "Effect of Crystallographic Texture, Retained Austenite, and Austenite Grain Size on the Mechanical and Ballistic Properties of Steel Armor Plates," AMMRC CTR 76-22, July 1976, Contract No. DAAG46-75-C-0094.
- 2. E. Schmid and W. Boas: Plasticity of Crystals, Hughes and Co., Ltd., London, 1950.
- 3. N. Goldsmith: The Theory and Physical Behavior of Colliding Solids, E. Arnold, London, 1960.
- 4. A. Kelly: Strong Solids, Clarendon Press, Oxford, 1966.
- 5. G. Kurdjumov and G. Sachs: Z. Physik, 1930, Vol 64, pp 325-343.
- 6. G. J. Davies, J. S. Kalland, and P. P. Morris: "The Quantitative Prediction of Transformation Textures," <u>Acta Metallurgica</u>, 1976, Vol 24, pp 159-172.
- 7. R. J. Roe: "Description of Crystallite Orientation in Polycrystalline Materials, III, General Solution to Pole Figure Inversion," <u>Journal of Applied Physics</u>, 1965, Vol 36, pp 2024-2031.
- 8. A. Merlini and P. A. Beck: "Study of the Origin of the Cube Texture" Acta Metallurgica, 1953, Vol 1, pp 598-606.
- 9. H. Hu: "Texture of Metals," Texture, 1974, Vol 1, pp 233-258.
- 10. K. H. Abbott: "Review of AMMRC CTR 76-22," Army Materials and Mechanics Research Center, March 18, 1977.

Table 1

Chemical Composition of Armor Steel in Weight Percent

Mn P S Si Si Ni Mo V Al N O, ppm*	26	31	41	
Z	0.004	0.005	0.004) - -
Al	0.083	0.084	0.072	4
>	0.073	0.090	0,095	
Mo	0.44	0.51	0.51	i }
, d	5.50	5,60	r C	0.0
ē,	0.70	0.81		L . U
Si	1.06	ار بر) [1.27
လ	0.004			0.004
Д			0.003	0.003
M	1 6	٠ د	0.62	0.63
C		0.4 0.4	0.35	0.38
- C C C	x I	705	706	717

various hot-rolled plates of each steel. For Ingot 705, an initial analysis of one of the plates showed an oxygen content cf 405 ppm, which was excluded *These oxygen contents were the average value of four determinations on the

in averaging.

Table II

Hardness of the Plates Rolled to Various Reductions at 1500°F then Quenched and Tempered

| 東京教育の大学 相談に おき あるのは med the contract for the section of the terms

	Plate	Rolling Reduction	Hardne	ss, ^R C	Average
Ingot No.	Identification	at 1500°F, %	L	T	RC
705	A	60	56.5	55.4	56.0
	В	70	56.5	55.1	55.8
	С	0.8	55.9	54.3	55.1
	D	90	55.9	54.6	55.3
706	A	60	55.9	55.6	55.8
	В	70	56.5	55.6	56.1
	С	80	5′ -	54.9	55.6
	D	90	55.	55.1	55.3
717	В	70	54.9	54.6	54.8
	С	80	54.9	54.6	54.8
	D	90	55.1	5 4. 1	54.6

是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是 第一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就

Table III

Ballistic Performance of the Plates Rolled to Various Reductions at 1500°F, then Quenched and Tempered Texture Type (112) + (111)

V50 Ballistic Limit, fps**	Increasing	Increasing	Increasing
Hardness, RC	56.0 55.8 55.1	55.8 56.1 55.6	54.8 54.8
Test Plate Thickness,	0.460 0.465 0.498 0.491	0.495 0.494 0.495 0.495	0.496 0.498 0.500
Texture Intensity*	3.75 5.10 6.60 9.05	3.85 5.00 6.00 7.85	4.45 6.10 7.20
Rolling Reduction,	60 70 80 90	60 70 80 90	70 80 90
Plate Identification	ୟ ୩ ୦ ୦	4 0 0 0	αυα
Ingot No.	705	706	717

*Based on the intensity maxima of the (110) pole figure.

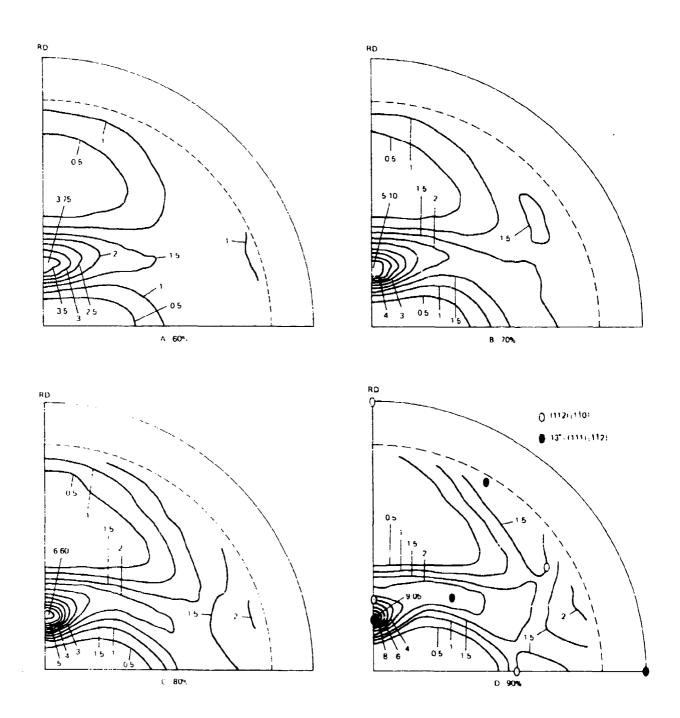
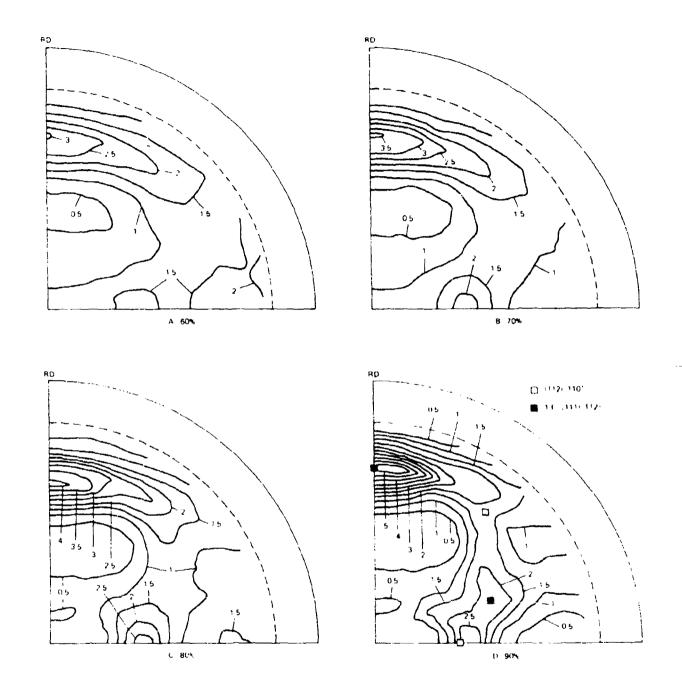
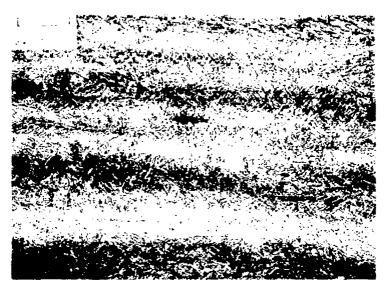
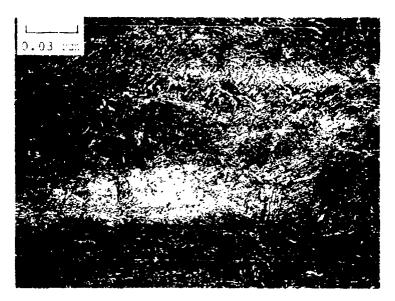

**With 0.50 caliber projectiles at 0° obliquity.

Table IV


Summary of Information on Exploratory Specimens Cross-Rulled to Various Reductions at 1500°F then Quenched and Tempered

Ş	Average	56.8	56.8	56.7	57.4
rdness, I	RD2	56.7	56.7	56.7	57.4
Ha	Section to Ave	57.0	57.0	56.7	57.4
	Texture Intensity*	2.10	2.60	2.70	2.80
	Texture		(223) or	11° from	(111)
	Cross-Rolling Reduction, 8	09	7.0	08	06
	Specimen Identification	PX-1	PX-2	. XQ	PX-4


*Based on the intensity maxima of the (110) pole figure.

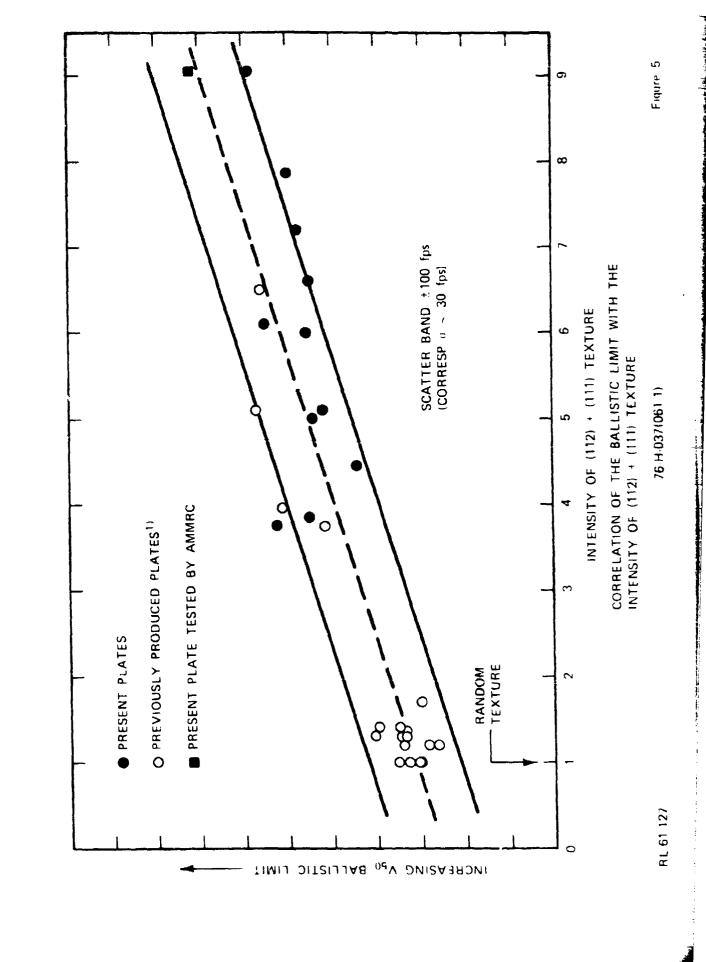

(110) POLE FIGURES OF THE PLATES ROLLED TO VARIOUS REDUCTIONS AT 1500°F THEN QUENCHED AND TEMPERED (INGOT 705)

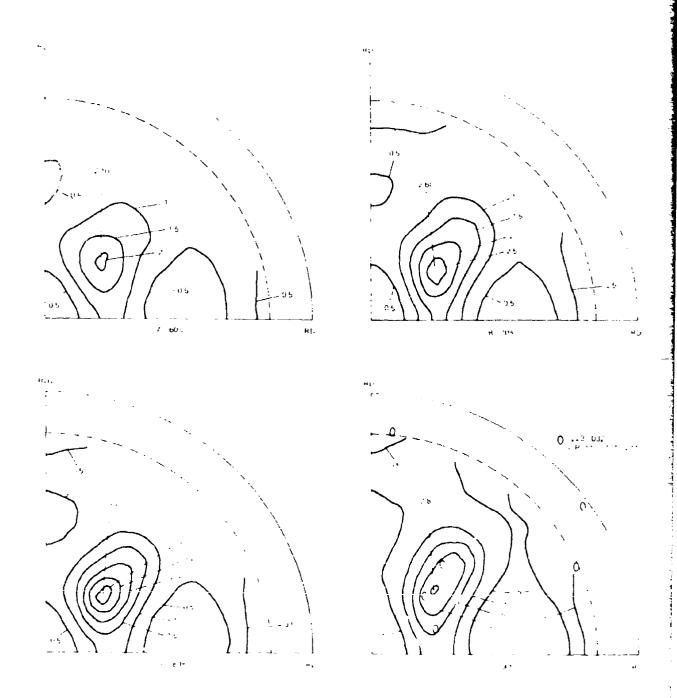
(200) POLE FIGURES OF THE PLATES ROLLED TO VARIOUS REDUCTIONS AT 1500°F THEN QUENCHED AND TEMPERED (INGOT 705)

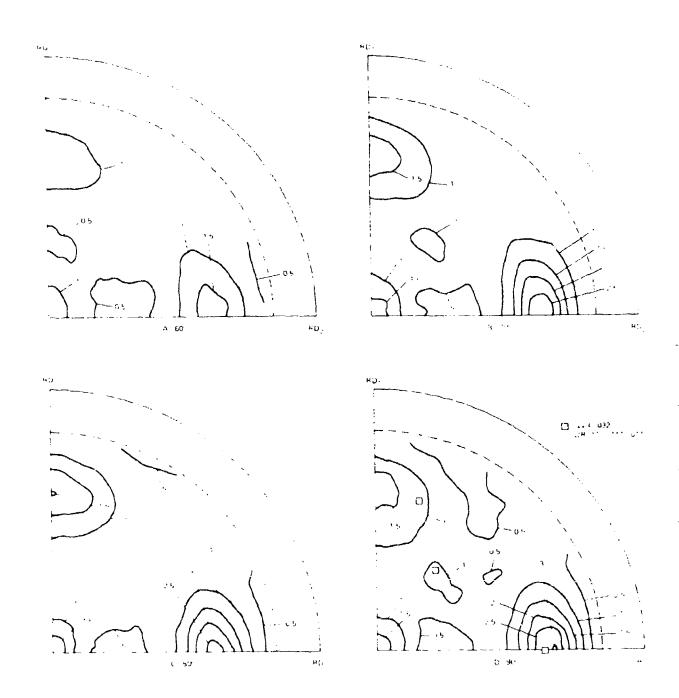
A. Longitudinal

B. Transverse

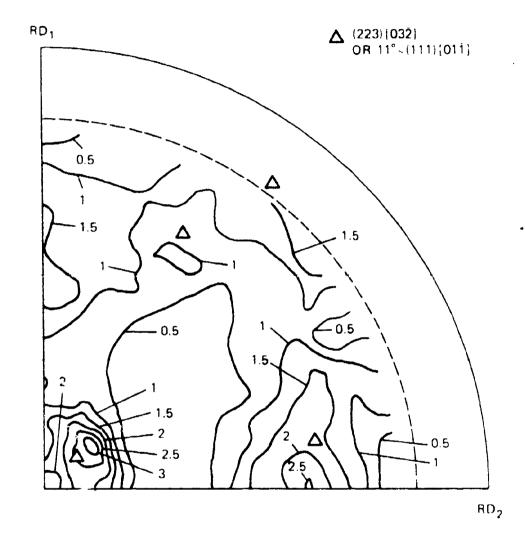
Microstructure of the plate rolled 60 percent at 1500°F then quenched and tempered (Ingot 705). Nital etch. X500.

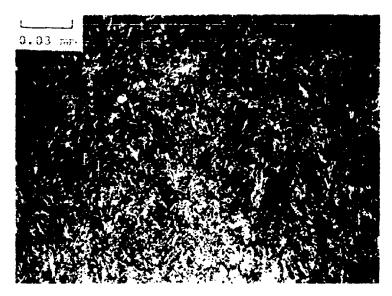


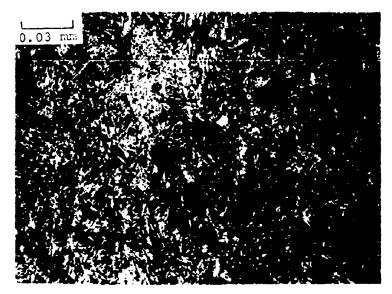

A. Longitudinal


B. Transverse

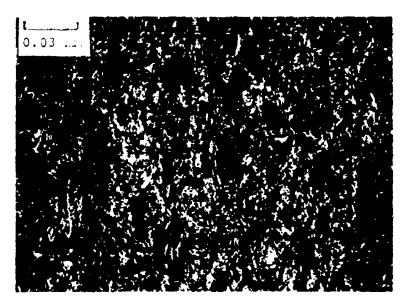
Microstructure of the plate rolled 90 percent at 1500°F then quenched and tempered (Ingot 705). Nital etch. X500.




(110) POLE FIGURES OF THE SPECIMENS CROSS-ROLLED TO VARIOUS REDUCTIONS AT 1500°F THEN QUENCHED AND TEMPERED


(200) POLE FIGURES OF THE SPECIMENS CROSS-ROLLED TO VARIOUS REDUCTIONS AT 1500°F THEN QUENCHED AND TEMPERED

(222) POLE FIGURE OF THE SPECIMEN CROSS-ROLLED 90% AT 1500°F THEN GUENCHED AND TEMPERED



A. Sectioned perpendicular to the first rolling direction (RD₁)

B. Sectioned perpendicular to the second rolling direction (RD_2)

Microstructure of the specimen cross-rolled 60 percent at 1500°F then quenched and temperod. Nital etch. X500.

A. Sectioned perpendicular to the first rolling direction (RD_1)

B. Sectioned perpendicular to the second rolling direction (KD_2)

Microstructure of the specimen cross-rolled 90 percent at 1500°F then quenched and tempered. Nital etch. X500.

Appendix A

The sixty-six 6- by 12- by ∿1/2-inch plates

that were shipped to the Army Materials and Mechanics Research

Center for ballistic testing and other mechanical or metallographic studies by the Army were identified and summarized as follows:

Ingot No.	Rot-Rolling Reduction, %	Pla	te Ide	ntifi	.cat	ions	
705	60	Al Al			A2 A2 A2	(0.47	in.)
	70	Bl Bl Bl Bl			B2 B2 B2		
	80	Cl Cl			C2 C2 C2 C2		
	90	D1 D1 D1			D2 D2 D2		in.)* in.)*
706	60	Al Al			A2 A2 A2		
	70	Bl Bl Bl			B2 B2 B2		
	80	.C1	(0.47	in.)	C2 C2 C2		
	90	D1 D1 D1 D1	(0.25	in.)	D2 D2 D2	(0.47	in.)

Ingot No.	Hot-Rolling Reduction, %	Plate I	denti	ficati	ons
717	70		B 2		
	80	Cl	۰		
		Cl	C2	(0.47	in.)
		Cl			
	90	Dl	D2		
		Dl	D2		
		D1	D2		
		Dl	D2		
		D1	D2	(C.25	in.)*
		Dl	D2	(0.25	in.)*

*Plates ground to 1/4 inch thickness by special request of AMMRC.

「日本のでは、大学である。」というできた。これは、日本のでは、日本

Notes to Identification Codes: The letters A, B, C, and D indicate the rolling reductions. These letters also indicate the relative locations of the ingot, D being the bottom portion of the ingot. The numbers 1 and 2 indicate the two halves of the ingot after preliminary rolling to intermediate thicknesses and cutting longitudinally along the centerline of the slab width. Individual plates from the same heat and the same rolling reduction are not distinguished among themselves otherwise.

U. S. Steel Research Laboratory make a total of 77 plates produced under the present contract. The 11 plates used for ballistic testing at U. S. Steel consisted of one plate for each rolling reduction from each of the three ingots, except that no plate was made by rolling to 60 percent reduction from the third ingot (No. 717).

No. of Copies

Tο

- 1 Office of the Director, Defense Research and Engineering, The Pentagon, Washington, D. C. 20301
- 12 Commander, Defense Documentation Center, Cameron Station, Building 5, 5010 Duke Street, Alexandria, Virginia 22314
- 1 Metals and Ceramics Information Center, Battelle Columbus Laboratories, 505 King Avenue, Columbus, Ohio 43201

Chief of Research and Development, Department of the Army, Washington, D. C. 20310

2 ATTN: Physical and Engineering Sciences Division

Commander, Army Research Office, P. O. Box 12211, Research Triangle Park, North Carolina 27709

1 ATTN: Information Processing Office

Commander, U. S. Army Materiel Development and Readiness Command, 5001 Eisenhower Avenue, Alexandria, Virginia 22333

1 ATTN: DRCLDC, Mr. R. Jentner

Commander, U. S. Army Electronics Command, Fort Monmouth, New Jersey 07703

1 ATTN: DRSEL-GG-DD

1 DRSEL-GG-DM

Commander, U. S. Army Missile Command, Redstone Arsenal, Alabama 35809

ATTN: Technical Library

DRSMI-RSM, Mr. E. J. Wheelahan

Commander, U. S. Army Armament Command, Rock Island, Illinois 61201

2 ATTN: Γechnical Library

DRSAR-PPW-PB, Mr. Francis X. Walter

Commander, U. S. Army Natick Research and Development Command, Natick, Massachusetts 01760

1 ATTN: Technical Library

Commander, U. S. Army Satellite Communications Agency, Fort Monmouth, New Jersey 07703

1 ATTN: Technical Document Center

Commander, U. S. Army Tank-Automotive Research and Development Command, Warren, Michigan 48090

2 ATTN: DRDTA, Research Library Branch

Commander, White Sands Missile Range, New Mexico 88002

1 ATTN: STEWS-WS-VT

Commander, Aberdeen Proving Ground, Maryland 21005

1 ATTN: STEAP-TL, Bldg. 305

Commander, Dugway Proving Ground, Dugway, Utah 84022 1 ATTN: Technical Library, Technical Information Division

Commander, Edgewood Arsenal, Aberdeen Proving Ground, Maryland 21010 1 ATTN: Mr. F. E. Thompson, Dir. of Eng. & Ind. Serv., Chem-Mun Br

Commander, Frankford Arsenal, Philadelphia, Pennsylvania 19137

1 ATTN: Library, H1300, B1. 51-2

1 SARFA-L300, Mr. J. Corrie

Commander, Harry Diamond Laboratories, 2800 Powder Hill Road, Adelphi, Maryland 20783

1 ATTN: Technical Information Office

Commander, Picatinny Arsenal, Dover, New Jersey 07801

1 ATTN: SARPA-RT-S

Commander, Redstone Scientific Information Center, U. S. Army Missile Command, Redstone Arsenal, Alabama 35809

4 ATTN: DRSMI-RBLD, Document Section

Commander, Watervliet Arsenal, Watervliet, New York 12189 1 ATTN: SARWV-RDT, Technical Information Services Office

Commander, U. S. Army Foreign Science and Technology Center, 2:0 7th Street, N. E., Charlottesville, Virginia 22901

1 ATTN: DRXST-SD2

Director, Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia 23604

1 ATTN: Mr. J. Robinson, SAVDL-EU-SS

Librarian, U. S. Army Aviation School Library, Fort Rucker, Alabama 36360 1 ATTN: Building 5907

Commander, U. S. Army Environmental Hygiene Agency, Edgewood Arsenal, Maryland 21010

1 ATTN: Chief, Library Branch

Commandant, 9. S. Army Quartermaster School, Fort Lee, Virginia 23801 1 ATTN: Quartermaster School Library

Naval Research Laboratory, Washington, D. C. 20375

1 ATTN: Dr. J. M. Krafft - Code 8430

2 Dr. G. R. Yoder - Code 6382

Chief of Naval Research, Arlington, Virginia 22217

1 ATTN: Code 471

Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio 45433

2 ATTN: AFML/MXE/E. Morrissey

AFML/LC

1 AFML/LLP/D. M. Forney, Jr.

1 AFML/MBC/Mr. Stanley Schulman

National Aeronautics and Space Administration, Washington, D. C. 20546

1 ATTN: Mr. B. G. Achhammer

Mr. G. C. Deutsch - Code RR-1

National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama 35812

1 ATTN: R-P&VE-M, R. J. Schwinghamer

SEE-ME-MM, Mr. W. A. Wilson, Building 4720

- 1 Ship Research Committee, Maritime Transportation Research Board, National Research Council, 2101 Constitution Ave., N. W., Washington, D. C. 20418
- 1 Materials Sciences Corporation, Blue Bell Campus, Merion Towle Building, Blue Bell, Pennsylvania 19422

Wyman-Gordon Company, Worcester, Massachusetts 01601

1 ATTN: Technical Library

Lockheed-Georgia Company, Marietta, Georgia 30063

1 ATTN. Advanced Composites Information Center, Dept. 72-34 - Zone 26

General Dynamics, Corvair Aerospace Division, F.O. Box 748, Fort Worth, Texas 76101

- 1 ATTN: Mfg. Engineering Technical Library
- 1 Mechanical Properties Data Center, Belfour Stulen Inc., 13917 W. Bay Shore Drive, Traverse City, Missouri 49684

Director, Army Materials and Mechanics Research Center, Watertown, Massachusetts 02172

2 ATTN: DRXMR-PL

DRXMR-AP

1 DRXMR-X

1

1 DRXMR-XP

1 DRXMR-E

30 DRXMR=EM

1 DR XMR - CT

1 Author

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1 REPORT NUMBER 2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
AMMRC CTR 77-19	
4 TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
STUDIES OF TEXTURE DEVELOPMENT IN	Final Report
STEEL ARMOR PLATE	1/20/77 - 6/20/77 -
	5. PERFORMING ORG. REPORT HUMBER
7. AUTHOR(s;	76-H-037 CONTRACT OR GRANT NUMBER(s)
	1
Hsun Hu	DAAG46-77-C-0014 2000
9 PERFORMING ORGANIZATION NAME AND ADDRESS	13. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK JNIT NUMBERS D/A Proj. 1T162105AH84
	AMCMS Code: 612105, 21. H840 Agency Accession:
11 CONTROLLING OFFICE NAME AND ADDRESS	12 REPORT DATE
Army Materials and Mechanics Research	July 1977
Center, Wattertown, Massachusetts 02172	13 NUMBER OF PAGES
14 MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office)	15 SECURITY CLASS. (of this report)
	Unclassified
	15a DECLASSIFICATION DOWNGRADING SCHEDULE
17. DISTRIBUTION STATEMENT 'of the obstract entered in Black 20, if different its	son Report)
18 SUPPLEMENTARY NOTES	
19 KEY WORDS (Continue on reverse side if necessary and identify by block number	
Armor Mechanical properties	
Steel armor Ballistics	
Armor plate Texture	
Austenite	
20 ABSTRACT (Continue on reverse side if necessary and identify by block number)	
The present research program consisted of	
duce a number of 6- by $12-$ by $\sim 1/2-$ inch ar	
(112) + (111) texture with various degrees	
thermomechanical processing treatments of	
medium-carbon, 5Ni-Si-Cu-Mo-V steels used	-
lish the reproducibility of texture, micro	
ballistic performance of these steel armor	plates. Results >

DD - FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE 8 8 0102-014-6601

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

THE THE PERSON AND THE PERSON AND PERSON AND

SHITY CLASSIFICATION OF THIS PAGE(When Date Entered)

+ Par .

indicated that the reproducibility of the structure and properties of these steel armor plates was excellent. The ballistic limit increased with the texture intensity in nearly the same manner as observed previously. (2) To explore the possibility of producing a nearly (111) texture with various degrees of intensity in small-size specimens cross-rolled at 1500°F to various reductions then quenched, and to establish a procedure for optimizing this texture in larger 6- by 12- by \lambda1/2-inch plates. Results indicated that the texture obtained was \{223\lambda032\rangle}, which is about 11 degrees from \{111\lambda011\rangle}, close to that predicted. The development of this texture should be possible in larger 6- by 12- by\lambda1/2-inch plates that can be used for the testing of mechanical and ballistic properties.

IEE. AMONG C-dm 612175.51,8845. 1. Thermonianical treatment IL. Contract DAM:46-77-C-0014 4. Preferent ortentation UNLIMITED DISTRIBUTION i. Belilstic prope time 5. Retained austenate 2. Steel Armir I. Nu. Heun 6. Tonture The present research program consisted of two parts. (1) To produce a number (6 - by 1.12 + 1.12) and of the parts. (1) To produce a number (6 - by 1.12 + 1.12) and to the same and the same section of the same medium-carbon, Mittanger Warting degrees of inferming by the thermomerbranes in greatering of semantially and to seablish the respondentially proceeding the same medium-carbon, Mittanger Methods the fathers, respondentially of the same medium-carbon, Mittanger Methods of the same appropriate of the same armonic places, menules and properties of these serial armony places are accident. The balishing the same armonic and places was seculated. The balishing the same armonic and places was seculated. The balishing of production a negative was seculated and to establish a procedure for optimizing the general and creater obtained and to establish a procedure for optimizing the devices and intensity of production and the seatles of intensity of production the seatle of the seatles o Final Technical Report ANNAG CTR 77-19, July 1977, 50 pp. - Illue, DAMG Project 46-77-C-0714 ANCAS Code 612105.11.H8400, Enclassified Report Atmy Materials and Machanica Massacch Center, Naturecon, Massachusatts 03/72 STORES of TAXING DIFFLOWERY IN STEEL ANNOW PLATE. UNLIMITED DISTRIBUTION III. AMONS Code 612105.11.H840A 3. Thermomichanical treatment II. Contract DARG45-77-C-3014 4. Preferred ottentation UNCLASSIFIED UNLIMITED DISTRIBUTION Ballistic properties Metained augienite Rey Words 2. Steel armor 6. Texture 1. Nu. Haun .: ,, The present research program consisted of two parts. 11) to produce a number of 6 to 14 by 12/2-the same place having strong sizes a number of 6 to 14 by 12/2-the same place and the same bedieve the programmer of the same residual call processing transmissions of presentially the same residual-cathon, Martin-Cardon, steels used prestounly the same residual-cathon, Martin-Cardon, steels used prestounly structure and carbonish the respondability of tracture, at Richard and the same residual properties of the performance of these steels are processed as the posterior of the same and carbonish the factor in the ballistic land increased with very the same and the same of the Final Technical Amport AMMHC CTN 77-19, July 1977, 50 pp - Lilus, DAMG Project 46-77-C-0014 AMCMA Code 412105-11.98400, Unclassified Report Metatials and Mechanics Research Centre, Metatoom, Messchushte 02172 ETUCIES OF TEXTURE DEVELOPMENT IN STEEL ARMOR PLATE Meun Nu NALINE DISTRIBUTION

Rey Words

the second of th

The present research program consisted of two parts. [1] To dispose to number of 4 by 1/2 high same pieces before a number of 4 by 1/2 high same pieces of intensity by the the transmentational processing treatment of ease hearthly the same sedim-cerbon. Mil-6; Cu-Mo-V sheats used presidually and to stabilish the representability of textures, nated on anablish the representability of textures, nated on a stabilish the representability of textures, nated on a stabilish the properties of thems are accordingly to see acceler. In ballistic lant increased with the resture interactive in the ballistic lant increased with the resture of the structure and properties of thems along a section. The ballistic lant increased with the resture interactive with various degrees of interactive manual lasts expectable the possibility of productive and and or establish a procedure for optimization this watter in latifier the texture obtained was 1231 (002) which is about 11 degrees from (11: '601), close to that preducted the two texture obtained we constitute the about 11 degrees from (11: '601), close to that preducted the two texture obtained we constitute the about the about 12 degrees from (11: '601), close to that preducted the two textures obtained we can be preducted. The development of the texture should be possible in larger to by 12- by 17- by 12- Fins; Technical Naport AMONG CTR 77-19, Jul. 1977, 50 pp - 13lus, DAAG Project 44-77-C-0014 AMONG Code 612125.11.88400, Unclassified Daport Materials and Mechanide Remearch Center, Matericom, Messachimetts 22172 STUDISE OF TEXTURE DEVELOPMENT HIS STELL ANNOR PLATE Neun Nu III. AMONG COMP 512105.11.HB400 3. Thermomechanical trestment II. Contract DAAGG6-77-C-0014 4. Preferred orientation UNCLASEIFIED JALIMITED DISTRIBUTION 1. Ballistic properties 5. Metained austenite Fey Words 2. Steel ermon 1. Bet. RBuf. 6. Texture The present remearch program consisted of two parts. (1) To produce a number of 4 by 1 2 the amount of the seas having strong district of 4 by 1 2 the amount of the seas amount of the consistence of intensity by the thermomental of produces with various degrees of intensity the same medium combin. (Mistinguish stature, metalling of and to an ambibility to reproducibility of structure, includes, and bailitate performance of these stature structure, and the same medium to reproducibility of the structure, and the same and projections of these stature, are structure and projections of these stature intensity in meaning the same intensity to meaning the same amount is to be stature and projections of these stature of the stature of the stature of the same intensity and degrees of these stature of the same intensity and degrees of these stature of the same stature and the same stature in the stature of the same stature in the order of the same stature and the same stature and the same stature and the same stature and the same semi-same stature. The degree is an additional part of the same stature and so the sam First Technical Napuri ANGNC CTR 77-19, July 1977, 50 pp. - illus, DAKG Project 46-77-C-001s ANGNS Cole 6/210/11/84400, Unclammified Napuri

111. AMONS Gode 612105.11.884()

il, Contract Daakies-77-C-0014

1. Thermomechanical transment

I. Ballistic properties

4. Steel armer

Rey Mords

UNCLASSIFIED UNLIMITED DISTRIBUTION

Makestidia and Mechanica Research Center, Meteritorn Wessershaerte 2212 de 25TULIS OF TERTUE DENEMBRY IN STELL ARMON FLATS HENN H.

4. Preferred orlentation

Metaland austenite

6. Tmatura 1. Mu. Maun

UNLIKITE DISTRIBUTION

PATHELIA AND MECHANICA NAMESCA CANTER. MATHELOW. MARSACHURSTE 02172 STUDIES OF TEXTIES DEVELORED. IN STEEL ANNUM PEATE. MACH NI.

A. Technical Majort ANGKE CEM 77-19, July 1877, 15 pp. - Lilian, Wand Project 48-77-C-0114 ANCH 10-1416 Like Web Uncharatied Majort

The present seesach program consisted of two parts. (1) to produce an order of the by 11-2 p. 12-2 p.

111. AMCMS Code A12105.11.N4100

11. Contract DAAGE6-77-C-0014

I. Hu. Paun 7627.158

ċ

UNLIMITED DISTRIBUTION

Materials and Motherine Research Centur. Materians, Materials 174
STUDIES OF TRITUPE SAVEDUMENT
IN STEEL ABOVE PLATE.

UNLIMITED DISTRIBUTION

Pinal Teltorial Mejort AMMHO CTP 77-19, July 1977, 16.54, 16.54, 111.04, URAN Project 46-77-0-0044 AMMHO COOR 6.2107.11.084.06, Tocament en Project

1. Therr.mechan cal treatment

A. Steel armor

Bell'stic properties

Fmy Words

4. Breferrad primetacton

Seculation occupants

÷

Textore

METHER BEFORE

III. AMCHIS Gode 612105.11.H9800

:1. Contract DAAG46-77-C-6614

UNCLASEIFIED
UNLIMITED DISTRIBUTION

Shernomechanical treatment

ball, wite properties

.:

Stee. Armor

-;

Fey Words

Preferred orientation

Retained austenite

Charminer ter a. treatmer?

÷

Patriage of the parties

5 mm : 188 c

.;

Re / North

WITH THE DESCRIPTION

4. Freferind of terlain

Retained topics.

\$111, AMACHIO Code fact Physics Prof. \$2 contain the second section of

1. No. 85.0 Tone are

The present research program consisted if two parts. (i) To produce a number of 6 to 12 to Final Technical Report ANNUC CTN 75-19, July 1977, 50 pp. - 11Jus, DAAG Project 46-77-C-0014 ANUMS Code 612105.il.W8460, Unclassified Report Materials and Mechanics Research Center, Materican, Massachusetta 0.172 STOLES OF TEXTURE DEVELOWENT IN STEEL ARMON PLATE Keen Xc

UNLIMITED DISTRIBUTION