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eylinders or liners to compress plasma

tention~. A basic problem inherent in such dynamic com-

~3 -~ S S~ Ta &) War ~A v = wsy 3 ~na - o
pression techniques is the growth of hydrodynamic perturbations at the
E L £

ey Y loar ~3 &.r 3 A4 3 Y el s e e - ~~aa & AF + A el > 71149 3
mass density liguid in response to the pressures of the driving fluid

.
nE e T - & s S A
(gas or magnetic field) and the payload plasma and/or field. Such
growth is completely analogous to the phencmenon of Rayleigh-Taylor in-

stability™ in a gravitaticnal field, and can result in both the disrup-

tion of the outer surfac

(D

plosicn and the destruction of the high temperature plasme paylocad by
inner surface material near peak ccmpressicn. The latter effect can
eliminate the liner implosion technique as a method of achieving fusion
plasmas, while the former process severely limits the possibility of con-
trolling and recovering the liner kinetic energy which is important in

fusion reactor applications®.
x 4.5 13

3 . - 1 . - (o
It has been shown theoretically s~ and demonstrated experimentally s

that the Rayleigh-Taylcr instability at the inner surface near peak

Note: Manuscript submitted May 31, 1977
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r The analysis of the following section is similar in spirit to the

2P0

classical Rayleigh-Taylor analysis but differs in that the interface be-

-

o

tween the heavy and light fluids consists of a stiff, thin plate dis-
placed normal to its surface. A succession of such plates or pistons is
displaced in a periodic manner to provide the initial condition of the

ooundary between the two fluids. In the classical Rayleigh-Taylor

analysis, for each mode the interface is a sine or cosine wave. In the
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present work, the interface at any time appears as a train of square

ayleigh-Taylor instability of a surface
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comprised of finite elements, To isolate the main physics of this prcblem
in its most simplified form, we neglect curvature and consider the situ-

ation depicted in Fig,2. That is, we treat an infinite fluid slab of
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finite rigid element
This then represents a variation of the classical Rayleigh-Taylor in-
stability prcblem where for a continuous free surface at 2 =-d the sur-

face perturbation growth rates, w, satisfy®

where k is the horizontal wave number ¢f the disturbance

s its wavelength. sho wavelength disturbances grow

the longer ones.
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For the finite element surface configuration of Fig. 2, the situ-
ation is drastically changed. Now a constraint is imposed on the
Fourier harmonics of the surface displacement to insure that the re-
sultant surface is always consistent with the rigid finite elements of
which it is composed. The dispersion relation for the free surface
given by Eq. (l) is clearly not acceptable in this case.

We assume that the fluid slab is incompressible and inviscid and
the region z < «d is an extremely low density fluid so that hydrostatic
pressure effects there are negligible. Consistent with the assumption
of zero viscosity, we take the slab fluid motion to be irrotational.

III. Analysis

Since the flow field is irrotational, 7 x q¢ = O, the velocity

field is derivable from a potential
q = 70(x,z,t) @)

Fluid incompressibility (° = constant) requires that
7 ..q=0 (3)
or 92 9 =0 (L“)

Therefore, the velocity potential satisfies Laplace's equation within
the slab., Equation (4) must be supplemented by the associated boundary
conditions in order to solve for ©, At z =0, rigid wall, the vertical

component of velocity must vanish

2 (,=0)=0 (5)

At the lower surface, z = -d, we must proceed with care. The kinematic
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cundary ccndivicn is determined by reguiring that bdoundary points re-
: R e Mrarafare Af = Nl ) :
main boundary points. Therefore if 2 = 'i(x,t)-d is the form of the
displaced lower surface,
- - e, S n £
= b= T l(-'-a#/ = v (

is the material derivative defined by

am o A
W= —— = S; at 2 = -d (&)

lements separate the slab from
2 cconstant pressure reservoir. If an individual surface element has
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a mass, m, then the vertical momentum equation for each of th
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takes the follcocwing form
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(p. - p) dx - mg (

Without any loss of generality, we may take the reservoir pressure,
By 0. This pressure merely establishes a reference level for the
entire pressure field.

To determine the pressure field from the velocity field we apply

orm of Bernculli's aquation for unsteady irrotational

Ui
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This eguation is in the slab. In particular, applying

it at the fluid side of the finite elements z = T(x,t)-d and neglecting

second order terms, consistent with a linearized treatment, we obtain
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applied at
i 7 1, we have the follcwing equations to be solved for
the slab O 2 z 2 -d. The differential equation for the velocity po-

tential is Eq. (&)

V=@ =0 (315 )
7ith the boundary conditions
3¢

=_-0atz=0 (14)

O
2
£,
(0%
-6
Q
=3
b
ot
—
e !
}—
\J1
)

M

(5]
<
%
3
3
|4
5
5’,4‘
1]
=
m
+
oYITeY]
ctl
=3
)
T
N
Il
(=%
r ==
=
\un
(o3

The sclution tc Eq, (13) which satisfies boundary condition




w(x,2,t) =Z=An(t) sin (knx) + Bn(t) cos (knx)
n=1

lcosh(knz) (17

$

" \ o o . 1 - . e - = - oy
z = MN(x,0) of period 24 (twice the finite surface element length) as
depicted in Fig. 5. The Fourier representation of this dnitialization i
iven as
5 <
= LMe ! N
M\ ined —_— - .- g
1(x,0) = E = 3in |—— 17
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By symmetry, the full time dependent surface perturbation must remain
2 square wave given by
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is determined from Eq. (l5a) as

Zguaticns (20) and (21) therefore represent a solution to Eq.
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J satlsly the gynamlc boundary conditicn, Eg, (15b).

Orming the integrand of Eq. (15b) we have
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15iles tae buundary ceonditions Egs, (14) and (l5a). We must

el h

e 2t 1f this series vanishes term by term., we recover the
-
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2lassical Ra =Tayl growth rate dispersion relation
2 T ‘ nna

ol T3 Rl

for the tehavior of To(t). This implies a growth rate which is de-
1 3 " " X 4p¢!

pendent upon the particular harmonic wave number {—=—)]. If each har-

monic evolved with a growth rate given by Eq. (23), a square wave

initial profile would not remain a square wave.

Applying the full integral form cf dynamic condition, Eq. (15b),

halansas +) o o8 i 3 ’ - RS " e
hich balances the vertical force and acceleration for each surface
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For = >> 1, we have
2T mr= } . fEmY . . T 5
e <B’ ::1‘) (f. > Ao Sco= 8 (25)
where A = l: o 11,2268
: : n
=l 5 5.
il
and B = == ~ 1,0518
n
n=1,3,5
This provides a growth rate for To(t) satisfying
(26)

The growth rate scales as <g§> ‘ like the Rayleigh-Taylor rate corres-

ponding to the finite element wave length 20, The finite element mass,
m, is seen to reduce the growth rate inertially as we would anticipate.
Assuming the finite elements to be of a material of density o* and

thickness d ° ,
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For an arbitrary surface initialization discretized by finite elements

of size £,it is anticipated that the maximum growth rate would scale

ol

as (%} . To demonstrate this, below we consider a few examples.

For an initial symmetric surface perturbation as indicated in

Fig. .+ where each wave length (A) corresponds to three pistons we would
anticipate a maximum growth rate w corresponding to A/3 = L which would

scale as
) T . "_T'

When each wave length corresponds to “ pistons as indicated in Fig. 5,

we obtain a maximum growth rate of

Lo

& 0/2)

w® ~ (30)

as by symmetry it is not possible to populate disturbances of wave-
length 2/,

The first non-trivial situation associated with the previous re-
sults is for the case where the wavelength of the initial perturbation
= &2, This case is illustrated in Fig. € where, in addition, it is
shown that the surface displacement at any time may be represented as

the sum of two symmetric square waves of wave lengths 20 and 64,

respectively.

10




That is, the surface perturbation is

1,,',/...

o
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As before, the velocity potential in the region O £ z < -d satisfies

2

7= = 0. (32)

The boundary conditions are

%7 %) way (5
T e (33b)
}
/ (o + 80 )dx = C)(z e (33¢)
5
and / (o + 80 )ax = 0), L 4. (33d)

o

Two dynamic conditions, Eq. (532c) and (33d) are now required to specify
the surface pressure balance for the finite elements., We have con-
sidered only the case of massless pistons here (m = O0). Proceeding as
before the solution for the velocity potential which satisfies the
differential equation (32) and boundary conditions (33a) and (33b) con-

sistent with the displacement of Eq. (31) is given as

11




miz m'x
e cosh <;——)sin :i—>
©(x,2,t) = = = (i) ‘ "l(mz L -

Applying the dynamic conditions (33c) and (32d), after some algebraic

manipulation we obtain

e (B)EE )

b
|

and
T = A (2% o 26
-4 (-) B (25) i )
It is seen that there are now two growth rates wl and w_. mi = 5%
- 7

for the fundament:l and wg ~'%: ~'?wi for the smaller wavelength square
wave. Each above growth rate is seen to scale in a Rayleigh-Taylor

sense (Eq. (1)) with its wavelength.

IV. Conclusions

From the preceding analyses, it is seen that the use of a plurality
of free-pistons to drive a liquid liner, while eliminating high fre-
quency Rayleigh-Taylor instability at the outer edge of the liner, is
still subject to low-frequency positional-instability. The growth of

variations in piston positions occurs at rates similar to those that




would be calculated based on the classical Rayleigh-Taylor analysis

for wavelengths equal to multiples of twice the piston size; signi-
ficant quantitative differences, however, do exist. The result of such
instability is to provide a nonuniform, asymmetric distribution of fluid
momentum, which can have serious consequences for both the quality of
the inner surface implosion and the mechanical behavior of the rotating
liner implosion system.
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Fig. 1 — Captive liner with radial free pistons
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Fig. 2 — Finite element slab model
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