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L- : 1. Introduction and Summary

In this paper we treat the topic of incomplete information regarding the

parameter a of a Dirichlet process prior. Ferguson [4] introduced the Dirichlet

process for the incorporation of prior information into the analysis of
nonparametric problems. The process can be viewed as a prior on the set of
all distributions on a measureable space (X,A). The process is parametrized
by a, a non-negative, non-null finite measure on (X,A). (In this paper we
restrict to situations where X = R, the real line, and A = B, the Borel
o-field.) Typically, to use estimators which are Bayes with respect to a
Dirichlet process with parameter a, the statistician must provide a complete
specification of the measure a. This paper develops some estimators that rely
only on partial information concerning a.

One approach to incomplete information concerning o is that initiated
by Doksum {3]. Doksum assumes that °(ti’ti+l]' i=1,...,k-1 are known with
u(R-(tl,tk]) = 0, That is, the values that a assigns to the k-1 intervals
(tl’tzl""’(tk-l'tk] are known, and a(R) = a(tl,tk]. In Zection 3 of this
paper, Doksum's technique for obtaining a mixed rule (Definition 3.1) is
considered and shown also to yield a G-minimax rule (Definition 3.2) for a

suitable choice of G.

*Research sponsored by the Air Force Office of Scientific Research, AFSC, USAF,
under Grants AFOSR-74-2581B and AFOSR-76-3109. The United States Government
is authorized to reproduce and distribute reprints for governmental purposes.
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Section 4 considers the estimation of A = Pr{X<Y}, when xl,...,xm is a

sample from a Dirichlet process with parameter o and Yl,...,Yn is a sample
from a second, independent Dirichlet process with parameter B. A mixed

rule is found to be
k-1
) {laty,tg] + MpeoooaM & Ba(ty,t, o] « M, LT8Gt )] ¢ N;}

~ i=1
v T ORI GGREED , Q.1

where Mj and Nj denote the number of X's and Y's, respectively, in the interval

(tj,tj+1].

In Section 5 the problem considered is the estimation of the rank order
(Definition 5.1) of X1 among xl,...,xn based on xl,...,xr (r<n), where
XI,...,Xn is a sample of size n from a Dirichlet process on (R,B) with parameter
a. For the case where a is completely specified, a Bayes estimator was
developed by Campbell and Hollander [2]. Here a mixed rule is obtained for
the case where a is not completeiy known but instead only the a(ti’ti+1]
values, i=1,...,k-1 (with a(R) =.ilu(ti,ti‘1]), are specified.

Section 2 contains some Dir;;;Iet process preliminaries.

2. Dirichlet Process Preliminaries
Let G(a,B) denote the gamma distribution with shape parameter a 2 0 anc

scale parameter 2 > 0. If a = 0, the distriburion is degencrate at 0. If

a > 0, it has a density with recnoct to Lebescie measure on the real line given by

f(z|a,B) = (F(G)Ba)-l 2 exp(-2/8) I(O,w)(z)’ (2.1)

where IA(-) denotes the indicator function of the set /.
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Definition 2.1. The Dirichlet distribution with parameter (a

,+..,0. ) where
K 1 k

aj 2 0 for all j and Z °j > 0, denoted U(al,...,ak), is defined as the
j=1
distribution of (Yl""’Yk)’ where
k
Y. = Z. FAT sl sk
j J/ggl 9 ] ’

and the Zi's are independent random variables with gamma distributions
G(ai, 1), for i = 1,...,k.
If aj > 0 for all j = 1,...,k, the (k - 1)-dimensional distribution of

(Y "Yk-l) is absolutely continuous with respect to Lebesgue measure on

1’0"

the (k - 1)-dimensional Euclidean space with density

f(yl,...,yk_llal,...,ak)

F(al+...+ak) k-1 ai-l k-1 %]
" T, Tlay) Lt 1- 1y IgOyseeesyg )y

1=1
where S is the simplex

k-1

8 = {0ryunes Wyl 7: 20, & & L.k, g

y. S 1}.
= ji=1 1

For k = 2, (2.2) becomes the density of a beta distribution with parameters

a and ay.

Proposition 2.2. (Wilks, [6] p. 179). The r ,r, moment of the Dirichlet

1700 Ty

.,ak) is, for £ < k - 1 and r; a non-negative integer

distribution D(al,..

such that ry positive implies ay positive, for i

) PEEI

§ r‘(a1 + rl)...r'(a2 + rz)r(a)
170ty r(al)...r(az)r(a + 1) .

(2.2)

(2.3)
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k 2
where a = [ @, and r = Ir,.
; dwl j=11
%

For k a positive integer, let y[k] denote the ascending factorial
y(y +1) ... (y + k - 1) and define yfﬁﬂ = 1. Then it is convenient to

rewrite (2.3) as

(r,] il kol
url B ai"; ceely 2 /a .
seenaTy

For a more complete treatment of the Dirichlet distribution, the reader
is referred to Wilks [6].
Let (X, A) denote a measurable space. A particular stochastic process

{P(A): ¢ is defined.

Def ~2.3. (Ferguson, [4]). Let a denote a non-negative, non-null,
finite measure on (X,A). P is a Dirichlet process on (X,A) with parameter
a if, for every k = 1, 2, ..., and every measurahle partition (Bl""’Bk)
of X, the distribution of (P(Bl),...,P(Bk)) is Dirichlet with parameter
(a(Bl),...,a(Bk)).

Ferguson [4] shows, using the Kolmogorov extension theorem, that there
exists a probability measure, call it Q,, on ([O,I]A, BFA) yielding the above
finite-dimensional marginal Dirichlet distributions. Here [0,1]A
represents the space of all functions from A into (0,1] (which thus includes
P, the set of all probability measures on (X,A)) and BFA is the o-field

generated by the field of cylinder sets.

Definition 2.4. (Ferguson, [4]). The collection of random variables

xl,...,xn is said to be a sample of size n from the Dirichlet process P on

(%,A) with parameter a if, for any m = 1, 2, ..., and measurable sets

——

b

(2.4)
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Pr{X; € Ci,....,X e cnlp(Al),...,p(Am),p(cl),...,P(cn)} =j

n=as

1f’(Cj).

where Pr denotes probability.

Intuitively,xl,...,xn is a sample of size n from a Dirichlet process if P is
randomly selected according to Qa and then, given P, Xl”"’xn is a sample
from the probability measure P.

Using Kolmogorov's extension theorem once again, Ferguson shows that
there exists a probability measure on (XnX[O,I]A, AanFA) with marginal
probability on ([O,I]A, BFA) given by the above Qu' Since this probability
also depends on a, it will also be called Qg. It can be shown (cf. Berk
and Savage [1]) that Qcl concentrates all its mass on (anP, A“xa(P)), where
o(P) is the inherited o-field for P from BFA. Thus, P is a random
probability measure. If F(x) = P(-»,x], then F is a random distribution

function, a sample path of the Dirichlet process.

Theorem 2.5. (Ferguson, [4]). If P is a Dirichlet process on (X,A) with
parameter o, and if Xl,...,Xn is a sample of size n from P, then the condi-
tional distribution of P given Xl,...,Xn is also a Dirichlet process on
(X,A) with parameter a + .E Gx‘, where 62 denotes the measure with mass one
at z, zero elsewhere. i
3. Mixed Rules and G-Minimax Rules

Doksum [3] considered the problem of partial prior information in the
decision theoretic framework, in particular, as applied to nonparametric
problems with Dirichlet parameters incompletely specified. It is assumed

throughout this section that a(ti, ti#l]’ i=1,...,k -1, are known and that

a(R-(tl, tk]) = 0.

e ————— e el SUD ——— G




Let @ be a class of distribution functions of (R,B), where R is the
real line and B the Borel o-field. Suppose that Q, the probability on Q,
is not completely specified but that, for fixed real numbers tl,...,tk, the
distribution of (F(tl),...,F(tk)) is known, where F is a random distribution
function from Q. Let L(F,a) denote the loss function for action a for dis-
tribution function F € 2 and d a decision rule from the observation space R
to the action space A. Then the risk function R(F,d), associated with

distribution function F ¢ Q@ when decision rule d is taken, is defined by
R(F,d) = EL(F,d(X)),

where the expectation is over X, where X has distribution F. The maximum

risk, R(d), is given by

R{d) = sup R(F,d).
FeQ

A rule (if one exists) which minimizes the maximum risk over all decision
rules is called a minimax rule. The average risk, R(Q,d), for completely

specified probability Q on @, is given by
R(Q,d) = [ R(F,d)dQ(F).

A rule (if one exists) is called a Bayes rule if it minimizes the average

risk over all decision rules.

Definition 3.1. (Doksum [3]). Let Q(q,k) = {F € Q: F(ti) = qi} for

q-= (ql,...,qk) € Rk. Let the measure A on Rk, dependent on Q, be given by

A(q; Q,k) = Q(F € Q: F(ti) < q, , (S8 (PSR




A is then the distribution of F(tl),...,F(tk) under the probability measure
Q. The average maximum risk, rk(o,d), associated with probability Q and
decision rule d, is

1 (Qd) = [ [sup  R(F,d)]dr(q).
R" Fe(q,k)

A rule is said to be mixed (or mixed Bayes-minimax) if it minimizes the

average maximum risk over all decision rules.

Definition 3.2. Let G denote a set of probability measures on Q. DNefine

the G-maximum risk for rule d as sup R(Q,d). A rule (if it exists) is said
QeG

to be G-minimax if the rule minimizes the G-maximum risk over all decision
rules.

If QF denotes the probability on @ which is the distribution function
F with probability one, then a G-minimax rule is minimax if G contains QF
for all F € Q.

A natural question is what are the relationships between ihese various

risks and their associated rules. Doksum [3] provides a partial answer.

Lemma 3.3. (Doksum [3]). For any decision rule d and prior Q on @, the

following hold:

(i) R@) 2 r (Q,d) 2 R(Q,d) (k 2 1);

}eo

wel is a sequence of partitions such

(ii) if {Hm: tm,l DR - tm,km

that each partition is a refinement of the previous one, then

T (Q,d) =2 T (Q,d) for m < 2.
m L

—— | — - .i — e




Definition 3.4. The carrier of a given distribution is the smallest compact

set whose probability under the given distribution is one. For example,
for F € @, the carrier of F, denoted C(F), is the smallest compact set on

R whose probability under distribution F is one.

Definition 3.5. The support of @, S(Q), is given by

S(Q) = u C(F).
FeQ

Proposition 3.6. If Q € G, then, for every d,

R(d) 2 sup R(Q',d) 2 R(Q,d).

Q'eG
Proof. Clearly, sup R(Q',d) = R(Q,d) since Q ¢ G. But also, for QF as
Q'eG
defined previously, if G*=G u {QF: F € @}, then sup R(Q',d) = R(d) 2

Q'EG*
sup R(Q',d). ||
G'eG
Doksum defines a rule, which, in some cases, is a mixed rule. Let

t1 = inf{t: t € S(Q2)} and let t, = sup{t: t e S(R)} and assume

oL E 0 e S Let Fq K denote the polygonal distribution function

with F(ti) - for i = 1,...,k and Fq K linear on [ti, ti+1] for

i=1,...,k - 1. Let Fk denote the random distribution function obtained

by letting q in Fq K have distribution A = A(+; Q,k), for Q a prior on Q.

’

Assume Fk is measurable. Let Qk denote the distribution of Fk and dk

the Bayes rule for Qk (if it exists).

Theorem 3.7. (Doksum [3]). If Fq K € Q for almost all q in C(A), if such

a dk exists, and if rk(Q,dk) = R(Qk’dk)’ then dk is a mixed procedure.




Theorem 3.7 provides a method for obtaining a mixed rule; i.e., one finds
the Bayes rule for prior Qk, and, if the hypotheses are satisfied, the
Bayes rule is a mixed rule.
Let Gk = {Q a probability on Q: (F(tl), F(tz) - F(tl),...,F(tk) - F(tk-l))
has a fixed, known distribution}.

Proposition 3.8. For any decision rule d and for Q e Gk’

rk(Q.d) 2 sup R(Q',d).
Q'eGk

Proof. For Q', Q"' € G, A(q; Q',k) = A(q; Q'',k) for all q ¢ R¥,

in that A depends on F at t .,tk, for F a random distribution function.

10

Therefore, rk(Q',d) = rk(Q",d) for all rules d. Taking sups over G' € Gk

on both sides of the inequality
r, @Q',d) = R(@Q',3),

obtained by Proposition 3.6, yields, for any Q'' e Gk’

r (Q'",d) 2 sup R(Q',d).
Q'eG

In particular, Q € G, and the proof is complete. ||

Corollary 3.9. If Proposition 3.8 holds and if, for distribution Q on Q,

the Bayes risk equals the mixed risk associated with mixed rule d, then d

is also a Gk-minimax rule.

Proof. For a Bayes rule §,

R) 2 r,(Q,d) 2 sup R(@Q',d) 2 "(0,d) > R(Q,6),
Q eGk
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by Lemma 3.3 and Propositions 3.6 and 3.8. Now note by assumption, rk(Q,d)

= R(Q,8), so sup R(Q',d) = R(Q,8). Therefore, d is G, -minimax. |
f Q'eG,
The significance of Corollary 3.9 is that, in certain special instances, |

a Gk-minimax rule can be found by finding a Bayes rule.

Let {m.: t, g5 mes S8 g }T_l be a sequence of partitions such that
. n » AN » !\ I

each partition is a refinement of the preceding one and such that

Itk,i+1 - tL,iI + 0 as ¥ + », Further, suppose the t's are from the space

{0,1]. Let C[0,1] denote the continuous distribution functions defined on

[0,1]. For partition N, let d, denote a mixed rule for the given
k k g

probability Q on C[0,1].

i Theorem 3.10. (Doksum [3]). Let Fq X denote the polygonal distribution
g ’
3 function with F(tk,i) = q and Fq,k linear on [tk,i’ tk,i+1] for

b L S R 3 Fq K € Q for almost all q in C(A), if dk denotes the
mixed rule for probability Q on Q associated with partition k, and if d
is a Bayes rule such that d has continuous bounded risk R(Q,d), then, for

Q < c[o,1],

lim rk(Q,dk) = lim R(Q,dk) = R(Q,d).

ko ko
Theorem 3.11. Under the conditions of Theorem 3.10, if Gk-minimax rules
dk exist for k = 1, 2,..., then, for Q € Gk for ks 1, 2,..05
lim sup R(Q',Gk) = R(Q,d).
ko Q'eGk

Proof. It follows from Propositions 3.6 and 3.8 and the definition of a

Gk—minimax rule that
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R(Q,d) < R(Q,8,) s sup R(Q',6,) < sup R(Q',d,) s r (Q,d ).
K Qe L

Thus, by Theorem 3.10,
lim sup R(Q',8,) = R(Q,d). ||
ko Q'eGk
The importance of Theorem 3.11 is that, if Gk-minimax rules exist and
the conditions of the theorem are satisfied, the associated Gk-minimax
risk approaches the Bayes risk.
The application of this development to the Dirichlet situation will
become apparent immediately. Let Gk = {Q a probability measure on
Q: (F(tz) - F(tl),...,F(tk) - F(tk-l)) has a Dirichlet distribution with
parameters (“(tl’tzl’""a(tk-l’tk]}' Then Gk-minimax rules are exactly
those rules for which a is known only on (k - 1) intervals. The search
for Gk-minimax rules will be conducted by means of Corollary 3.9. The
behavior of such rules as k + =, under the conditions enumerated, is given
in Theorem 3.11.
The remaining two sections contain applications of this development.
Section 4 treats estimation of Pr(X < Y) under incomplete Dirichlet prior
information. Section 5 considers estimation of a rank order under incomplete

Dirichlet prior information.

4, Estimation of Pr{X < Y} Under Partial Prior Information
Consider the problem of estimating Pr{X < ¥} in the two sample situation
under incomplete Dirichlet prior information. In particular, assume
xl,...,xm is a sample of size m from a Dirichlet process on (R,B) with

parameter a and Yl,...,Yn a sample of size n from a second Dirichlet process




" !

(independent of the first process) on (R,B) with parameter 8. Further,
assume that tyseeest, are fixed such that a(ti’ti+1] and B(ti'ti¢1] are
known for i = 1,...,k - 1 and that a(R-(tl,tk}) = B(R-(tl,tk]) = 0. The
parameter of interest is A(F,G) = Pr{X < Y} = deG where F is the random i
distribution function from the first Dirichlet process and G the random

distribution function from the second process. Let Fk and Gk denote the

polygonal random distribution functions with Fk(ti) = F(ti)’ Gk(ti) = G(ti)

for i =1,...,k and Fk and Gk linear on [ti’ti+1] for i =1,...,k - 1. Then

k-1
8(F,6,) = kadck =3 iZl[F(ti) + Pty III6(e ) - G(t)].

For squared error loss function, the Bayes estimate A, of A(rk’GP] is

k

B = E"(A(Fk,Gk)IXI,...,Xm,Yl,...,Yn),

where m denotes that F(t) is a Dirichlet process with updated parameter

m n
a+ ) by and G(t) is a Dirichlet process with updated parameter B + Z GY .

i1 %3 sol %3 1
Let p; = F(ti+1) - F(ti) and p{ = G(ti¢1) - G(ti) fori=1,...,k - 1. By

Theorem 2.5 and Definition 2.4, p = (pl"°"pk-1) has a Dirichlet distribution
with parameters {a(ti’ti+1] + Mi}g;; and p' = (pi,...,pi_l) has a Dirichlet
distribution with parameters {B(ti'ti+l] + Ni}g;i, where Mi and Ni denote {
the number of X's and Y's, respectively, which fall into (ti'ti+1] for

i=1,...,k-1. It is easy to see by independence of the processes,
therefore, that 4, is given by the right hand-side of (1.1).

The estimator Bk may be rewritten as
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k=1 a(t,,t,] + da(t,,t, ] . B(t;.t,,,]

o i
A = a B
koWE «(R) 8(R)
k=1 M +...+M, + 3M, Bt .t .]
sl - “m)en z 1 i i+l | i’ 7141
i=1 m 8(R)
k-1 a(t,,t.] + *a(t.,t. .] N,
vo 1 -gy ] —2 2
i=1 a(R) n
k-1 M_+...+M, + 3M, N.
1 i +1
+(1-0)1-8) ] ==
i=1 m n

where a = a(R)/(x(R) + m) and g = B(R)/(R(R) + n). lote that this estimator
with the squared error loss function is both a mixed rule (by Theorem

3.7) and a Gk—minimax rule (by Corollary 3.9) for @ = {(F,G): p and p'

are independent Dirichlet distributions with parameters (a(tl,tzl,...,
a(tk_l,tk]) and (B(tl,tz],...,B(tk_l,tk]), respectively}.

As the ti's become dense, A, is seen to approach Ferguson's [4]

k
estimator for Pr(X s Y) for complete Dirichlet prior information. As

a(R) and B(R) + 0, Bk approaches the Mann-Whitney U' statistic for grouped
data (as given in Putter [5]):

k-1 Ml+...+Mi+ §M1+1 Ni

ur= J ¢ =

i=1 m n

As a(R) and B(R) get large,

k-1 a(tl,ti] + }a(ti,ti‘l] . B(ti,ti¢l]

Zk n
i=1 a(R) 8(R)

4.1)
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The estimator Bk would be useful, for example, in the following situation.
Suppose there are two middle-sized towns for which one wishes to compare the
cholesterol rates, in particular to estimate Pr(X < Y) where X is the
cholesterol level of a randomly selected person from town A and Y is the
cholesterol level of a randomly selected person in town B. Town B could
be undergoing a program designed to lower cholesterol rates with town A
serving as a control. There is prior knowledge about the cholesterol levels
in the two towns. The prior knowledge is quantified by specifying the
weights G(ti'ti+1] and B(ti’ti+1] fori=1,...,k - 1. The values a(R) and
B(R) reflect the degrees of confidence held in these weights. The estimator
Zk is then a combination of the priors and the actual data tabulated by

intervals.

5. Rank Order Estimation Under Partial Prior Information

Let xl,...,xn be a sample of size n from the distribution F. Assuming
F is a random distribution function chosen according to the Dirichlet process
prior with parameter a, Campbell and Hollander [2] derive the Bayes estimator
of the rank order G of X1 among xl,...,xn based on knowledge of r(<n)
observed values xl,...,xr. In this Dirichlet model, care must be taken in
the definition of a rank order since the distribution chosen by a Dirichlet
process is discrete with probability one, c.f. Berk and Savage [1]. To resolve

the issue of ties with regard to the rank order, average ranks are used.

Definition 5.1. Let K, L, and M denote the number of observations of

xl, xz,...,xn that are less than, equal to, and greater than xl, respectively.

Then the rank order G of X1 among Xl, xz,...,xn is the average value of the
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ranks that would be assigned to the L values tied at xl, in a joint ranking
from least to greatest, if those values could be distinguished; namely,
G={(K+1) + (K+2)+,..+ (K+L)}L= 1K+ {(L+ 1)/2}].

Similarly, for K', L', and !1' defined, respectively, to be the

number of observations of Xl, xz,...,xr less than, equal to, and greater
than Xl, the rank order G' of X1 among Xl, xz,...,xr is given by G' = K' +
(L' + 1)/2.

For squared error loss, the Bayes estimator is (see equation (1.2)

of [2])
G=G"+ (n-r)a'(-=, X)) + da' (X, DVa'®R) , (5.1
r
where R is the real line and o' = a + ] 6§ , where §, is that measure
i=1 7i

which concentrates its entire mass of one at the point z.
In this scction it is assumed that a is not completely known; instead a
is specified only on k-1 intervals (ti’ti+1] for i = 1,...,k = 1, with

a(R) =.Zla(ti, ti+1}' Let Fk denote the polygonal random distribution function with
Fk(ti)1= F(ti), i=1,...,k, for F a random distribution function from the

Dirichlet process. What is the Bayes estimate for the true rank order g if

F is known and KpseeesXy have been observed? It is easy to appeal to equation

(3.3) of [2] for Pr{(K, L, M) = (k, %, m)le,...,Xr.F}. The mean G of G,

given Xl""’xr and F,is obtained from the mean of a multinomial. We find

Gp = G' « (n-r){F(X)) + 3[F(Y)) - (XD},
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Restricting just to polygonal distribution functions, it is clear that G_ using

F
the squared error loss function depends on Fk not just at Fk(ti)’ i=1,

..,k. This makes finding a mixed rule for the rank order problem most
difficult.

Suppose the observations have simply been grouped into intervals where
the values a assigns to these intervals are known. Rather than take the
loss function L(g,d) = (g-d)z, we use the following modified loss function.
For g(F, Xl,...,Xr) =g' + (n-r)F(ti) + é(n-r)[F(ti+l) - F(ti)L if
X1 € (ti'ti+1]’ the loss is given by [g(F,Xl,...,xr)-d]Z. The mixed Bayes

minimax rule is then easily shown to be
a = i) [ ' 1
G=G"+ (n-r)fa'(t),t,] + da'(t,,t, ;11/a'(R)

if X1 € (ti'ti+1] for i = 1,...,k - 1. Note that this rule is really just
the Dirichlet estimator with complete information concerning the parameter

@, but where a is concentrated at (k - 1) atoms {ti}:-z
: =

) a({t,}) = a(R).

i=2

so that

An example in which such an estimator could be of use is as follows.
An automobile driver is passing through a town in need of regular gas.
The driver knows there are n stations in town and all n clearly post their
prices for gas. From past experience at the gas pump, the driver has some
idea of the distribution of prices in the region. The model tends to be
contagious in that if one station advertises a particular price, competition
(or lack of it) will cause others to be more likely to adopt that price also.

Hence the Dirichlet model is not unreasonable here. The problem is for the

(5.2)
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driver to estimate, as he passes the 1‘-t-'l station, the rank of that station's
gas price among all n stations, on the basis of the prices at the first r
stations and his prior information. Then, the estimator é could be used,
with the parameter a(R) reflecting the weight or confidence attached to

the driver's prior knowledge of regional gasoline prices.
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