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I. INTRODUCTION

Positive ion cluster reactions in the daytime n~regi9n of the
atmosphere fall into tyo dominant sequences;” one with O, as a precursor
ion, the other with NO as the precursor ion. Recently, weakly bqund
cluster ions formed from O, have been found to photodissociate“’J readily
in the presence of visible“light. Reported here are photodissociation
CTrQss section measurements for two weakly bound clusters, NO (NO) and
NO (H,0) formed from NO . For some cases these measured cross sections
exhibit a dependence on photon flux, pressure, drift distance, and
E/N. Two simple mechanisms which couple clustering reactions into the
photodissociation measurement technique are employed to explain quali-
tatively this cross section dependence, and arguments are made support-
ing the acceptance of the reported cross sections as the actual values.

IT. EXPERIMENTAL

Details of the,eyperimental apparatus and data analysis have been
described elsewhere” ' and thus only a brief summary will be presented
here. The experiment consists of a drift tube mass spectrometer coupled
with a continuous duty ion laser or dye laser photon sources. Either
positive or negative ions can be extracted from the source region in
which gases are bombarded by electrons produced from a hot filament.
These ions drift toward a sampling aperture under the influence of a
weak, uniform electric field. During this drift the ions make many
thermalizing collisions with the neutral gas. Just prior to the sampling
aperture the ions are intersected by a chopped laser beam. After passing
through the aperture the ions are accelerated to a mass spectrometer
which is tuned to transmit ions of a specified mass. Transmitted ions
are detected and gated to one of two counters depending on chopper
position. The following equation is used to extract a photodissociation
cross section from experimentally measured parameters,

¢gn|N /N(A )|+ P v,+
L s Ll B [NO/N AIJA == - e
nN/NO o~ Vor

0

1E. E. Ferguson, '"D-Region Ion Chemistry,'" Rev. Geophys. and Space

Phys. 9, 997-1007 (1971).

J. A. Vanderhoff and R. A. Beyer, '"Photodissociation of 07+(H20),"
Chem. Phys. Lett. 38, 532-536 (1976). N

R. A. Beyer and J. A. Vanderhoff, "Cross Section Measurements for
Photodetachment or Photodissociation of Ions Produced in Gaseous
Mixtures of 02, COZ’ and HZO," J. Chem. Phys. 65, 2313-2321 (1976).

J. A. Vanderhoff and R. A. Beyer, "Experimental Photodissociation
and/or Photodetachment of Atmospheric Negative Ions: Initial
Results on O, and CO, ." BRL Memorandum Report No. 2594 (USA BRL,
Aberdeen Proving Ground, MD, 1976). (AD #A021935)
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o +(xl) is the photodissociation cross section for a positive ion (A+)

at a photon wavelength Al. 00—(A ) is the photodetachment cross section
for O at the same wavelength. _The value for 00-(A ) is obtained from
the results of Branscomb et al.” and ysed for normaiization purposes.
I'he ratio of the number of detected A counts for laser off (N ) and

laser on (N(Al)) is given by (NO/N(AI))A+. This ratio for detgcted 0
counts 1is (NO/N(AI))O-. The ratio of the laser powers for the O and

A" measurements are given by P = PO-(A )/PA+(A1). The laser power in
most cases is held constant and hence éoes not affect Equation 1.

A geometric factor describing the overlap between the ion beam and

photon beam is normally required to calculate a photodissociation cross
section; however, it has been assumed that this overlap factor remains the
same for the measurement of O~ and A*. Thus this factor does not appear
in Equation 1. Values for the ion velocities, v,+ and v.-, are obtained
from published mobilities where possible. %f puélished values are not
available a mass scaling procedure is used.’

Discrete lines available from argon ion and krypton ion lasers as
well as lines from a tunable pumped dye laser have been used for the
present expeggments. The prism selected photon energies have a, resolu-
tion of ~ 10 © eV and the dye laser lines a resolution of ~ 10 ~ eV.

With proper otpics a krypton ion laser can be made to lase on at least

13 discrete lines. All lines except four were prism selected; the violet
lines, 415.4 and 4.3.1 nm, were made to lase with mirror coatings only,
hence both lines lased simultaneously. The same situation applies for
the 356.4 and 350.7 nm lines.

Relative and absolute uncertainties are associated with the data
reported in this paper. The total relative error is given by the error
bars on the various figures. This relative error is composed of
statistical counting error, variations in parameters that determine the
ion drift velocity (pressure, temperature, and the drift field), and the
uncertainty in the relative laser power measurement. The statistical
counting error is taken as +/N and the root mean square error of the
other contributions results in a * 5% estimate. These two numbers are
then combined (root mean square) to give an estimate of the total rela-
tive error. Ip addition to the relative error there exists an absolute
error of + 10%  in the photodetachment cross section value for O . An
absolute error also exists in the reduced mobilities used to gompute
the ion drift velocities. These errors are = 5% for O in 0," and ¢ 3%

5L. M. Branscomb, S. J. Smith, and G. Tisone, ''Oxygen Metastable

Atom Production Through Photodetachment," J. Chem. Phys. 43, 2906~
2907 (1965).
6

R. M. Snuggs, D. J. Volz, J. H. Schummers, D. W. Martin, and E. W.
McDaniel, "Ion Molecule Reactions Between O and O, at Thermal
Energies and Above,'" Phys. Rev. 178, 240-248 (19697.




for NO’(NO) in NO.7 The mobilities for NO+(H,0) in NO and in Ar were
obtained by mass scaling and a conservative absolute error of * 20% was
assigned to mobilitie§ obtained in this fashion. The root mean square
absolute error for NO (NO) is * 12% and + 23% for NO (HZO). The total
error must be computed point by point.

IIT. RESULTS
A. NO'(NO)

N0+(N0] cluster ions were formed in 40.0-46.6 N/m2 (125.3 N/m2 =
1 Torr) nitric oxide gas (minimum specified purity of 99.0s) by the
following reactions:

NO + e — NO+ + 2e I
and NO* + 2NO < NO*(NO) + NO. 11

The photodissociation cross section for NO+(NO) was measured as a func-
tion of laser power, E/N, drift distance, pressure, and photon energy.
All of these measurements were made at room temperature, ~ 300°K. By
normalizing the photodissociation cross section to the known cross section
values for the photodetachment cross section of 0 (see Equation 1), the
measured cross sections were placed on an absolute scale. The only changes
in experimental conditions made between the O and NO (NO) measurements
wer: 'rsing appropriate voltages, tuning the electron energy in the
S r optimum production of O , and replacing the NO gas with an
sure of research grade O, gas. The ion velocities for O6 ;n
(NO) in NO were obtained™ from published mobility values. ’

, llgure 1 shows the measured photodissociation cross section for
NO (NO) as a function of laser power for two different phot9?7wavele3gths
(647.1 and 530.9 nm). The E/N was held constant at 15 x 10 'V - cm” and
the drift distance from the exit of the source to the sampling aperture
was fixed at 7.5 cm. It is readily observed that the cross section is
not independent of laser power for either photon wavelength. These two
discrete wavelengths are the most intense lines produced from the krypton
ion laser and the fraction of NO (NO) ions destroyed can be substantial,
approaching 80% for the 647.1 nm line at high laser power.

The photodissociation of N0+(NO) is also observed to be dependent
on E/N as can be seen on Figure 2. The photon wavelength was fixed at
530.9 nm and the open circles represent data obtained at approximately
half the laser power as that for the open triangles. The photodissocia-
tion cross section decreases with decreasing E/N. It can also be observed

7Volz, b. J., 4. H. Schummers, R. D. Laser, D. W. Martin, and E. W.

McDaniel, '""Mobilities and Longitudinal Diffusion Coefficients of
Mass-Identified Potassium Ions and Positive Nitric Oxide Ions in
Nitric Oxide," Phys. Rev. A 4, 1106-1109 (1971).

2,
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from Fig. 2 that the open triangle values obtained with the higher laser
power start decreasing at a higher E/N than those for the lower la§?§
power measurements; nonetheless, both data sets merge at ~ 30 x 10 \Y

, Both pressure and drift distance affect the relative populations of
NO and NO (NO) incident at the laser beam interaction zone by changing
the number of collisions made prior to irradiation. Both of these
parameters were varied independently while wagching for possible changes
in the photod}f§ociation cross section for NO (NO). With 2 = 730.0 nm,
E/N = 30 x 10 V-cm™, and a drjift distance of 5.6 cm the NO gas pressure
was varied from 33.3 to 66.6 N/m“ in six increments. The photodissociation
cross section for NO (NO) was measured at each of these pressures. This
cross section was slightly smaller at the lowest pressure, however well
within experimgT531 eryor (see Fig. 3). Another test was made using an
E/N of 15 x 10 V-cm™ and the results show an enhanced decrease in the
photodissocia§}9n cross section. Using a photon wavelength of 647.1 nm,
E/N = 30 x 10 V-cm“,+and fixing the NO gas pressure at 40 N/m~ the
photodissociation of NO (NO) was observed for 6 different drift distances
ranging from 1.88 to 11.3 cm. No variation exceeding the total relative
error of ~ * 15% was observed.

In the following section a simple interacting two ion model is
deyeloped in an attempt to account qualitatively for the observed
NO (NO) photodissociation cross section dependence on laser power and
E/N.

: i ; + +

The model consists of two positive ions, NO and NO (NO), that are
drifting together coupled by reaction II.* Neglecting diffusion, the
time rate of change for these two ions can be written as

+
d [NO & W
‘LE_L = - v [NO] + v,[NO"(NO) ] (2)
v + 1
and d[NOdt(NO) = v, [N0"] - v,[No"(NO)] (3)
\) \)
where kl = : 5 and kz = :
[NO]“ [NO]
The brackets denote the concentration of the enclosed species. v, and vy

*

It has been experimentally observed that the NO+(N0) photodissociation
cross section will decrease when amounts of H,0 giving substantial quan-
tities of NO (H,0) are present. In this case three ions instead of two
require con;lde?ation. The reaction sequence goes from NO to NO (NO)
and then NO (NO) reacts with H,0 to form NO (H,0). However, when N0+(N0)
is photodissogiated the collisional dissociation rate of NO (H,0) can
repopulate NO (NO) very fast under certain conditions. Here, the photo-
dissociation measurements for NO (NO) were made where the NO (H,0)

ion was present only in trace quantities. -
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+ +

represent the loss rates for NO and NO (NO), respectively and k, and k.
are the respective reaction rate coefficients. The total ion concentra-
tion is held constant,

[N0'] + [NO*(NO)] = constant = [N] @)

Equations 3 and 4 can be substituted into Equation 2 to give
+
d[NO ] + ?
—Tlt +C1[NO] —c._,—O,

which can be integrated to give

-C

[NO'], = [NO']_ e 1" 4 (cp/e) (L - eF1% (5)

+ 0 o .
g%e;g+cl =Vt Vv, Cy S vz[NT], and [NO ]o is the initial concentration

Equation 5 can be applied to the experimental conditions for
which the photodissociation cross section of NO (NO) exhibits a depen-
dence on laser power. The §8 gas pressure is 46.5 N/m”~ which gives an
NO gas density of 1.13 x 107~ NO molecules per c¢m . In order to compute

the constants Cl and ¢, the reaction rate coefficients, k1 and k,, are

required. Stationary afterglow results of Puckett and Teague give

k, = 8 x 10720 cmb/s and k. = 9 x 1000 cms/s. These rate coefficient
correspond to E/N ~ 0 conditions. Experimental data of Gatland et al.
have indicated that three body association rate coefficient§38re gela-
tively insensitive to E/N for low field values; hence 5 x 10 cm /s
was used for k,. The experimental data for the breakup of Li*(N,)
obtained by Gu%land et al. show sensitivity to E/N. They find the
breakup rate coefficient to increase by about a factor of two when
increasing the E/N from 9 to 24 Td. Since the binding energy for

: 5 . . 5
L1+(N,), 0.54 eY,l( 15 not greatly different from the binding energy

of NO+(N0), 0.63 + .09 eVll a value of 2 x 10-15 em’/s was picked for

k,. However k, can change an order of magnitude in the analysis without
* significantly dltering the results. Using these values for k, and k.,

and setting [NT] = 1 the computed values for <
respectively.

and ¢, become 640 and 23 g,

8L. J. Puckett and M. W. Teague, '"Production of H30+-nH 0 from NO*
54, %564-2572 (1971).

Precursor in NO-H,0 Gas Mixtures,'" J. Chem. Phys.

I. R. Gatland, L. M. Colonna-Romano, and G. E. Keller, "Single and
Double Clustering of Nitrogen to Li ," Phys. Rev. A 12, 1885-1894 (1975).

i ', G. spears, "lon-Neutral Bonding," J. Chem. Phys. 57, 1850-1858 (1972).
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The time frame of interest can be approximated by the time it takes
for an ion to traverse the laser beam. The laser beam diameter,is approx-
imately 0.3 cm and the ion velocity ranges from 0.3 to 1.9 x 10. cm/s,
depending on E/N, which gives a time frame of 1.5 to 12.5 x 10"~ s. For
this time frame Equation 5 reduces effectively to

TR X
[No*], = [N0"] el

or [NO*(NO) ] = 1 - [NO"] e™1"

Since c,t << 1, [NO'(NO)]. =~ 1 0] + N0t ¢ 6

Since ¢t << 1, [NO"(NO)], ~ 1 - [NO'], + [NO'], ¢t . (6)

Typical condjtions in the viginity of the sampling aperture for '"laser
off" are [NO ] = 0.5 and [NQ (NO)] = 0.5. During 'laser on'" conditions
the apparent fraction of NO (NO) ions photodissociated has been experi-
mentally observed to increase from about 10 to 80% by increasing laser
power (X = 647.1 nm). Thus th concentrations of NO can range from
0.55 to 0.90 while that of NO (NO) ranges from 0.45 to 0.10. The model
can be used to determine the relative extent to which reactions repopu-
late the NO ‘NO) ion for the two extremes of photodissociation fraction.
Using both 0.10 and 0.45 as initial conditions, values for NO (NO) as a
function of time are computed from Equation 6 and plotted on Figure 4.
It can readily be seen from Figure 4 that the larger photodissociation
fraction of NO (NO) results in a greater deviation of [NO (NO)], from
that of [NO (NO)]O. This in turn results in a smaller value for the
photodissociation cross section. The model thus predicts that the apparent
photodissociation cross section for NO (NO) can decrease with increasing
laser power in agreement with experimental data.

" The sampling time which shall be defined as the time it takes an
NO (NO) ion to traverse a laser beam diameter is inversely proportional
to E/N. E/N values corresponding to different sampling times are desig- |

- nated on the upper abscissa of Figure 4. The plot of [NO (NO)], as a
function of E/N shows that the model also predicts the correct Bependence
for the photodissociation cross sections with E/N.

L .

1 Predictions of pressure and drift distance dependences are more

_ complicated and require a detailed knowledge of ion concentrations.

* Since this model neglects the actual laser beam intensity profile as

well as diffusion, further extension of the model was felt unjustified.

The photodissociation cross section was experimentally observed to decrease
slightly at low pressures and this effect was more apparent at the lower
E/N value. These trends are consistent with diffusion effects that might
occur iglyhe liser beam interaction zone, nonetheless, at an E/N of

30 x 10 " V-cm~ the pressure dependence of the photodissociation cross
section is well within errors.
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Figure 4. Concentration of N0+(NO) versus time and E/N for conditions when N0+(N0)
has been greatly perturbed by the laser beam. The solid line represents
the case where 80% of the NO (NO) ions have been initially photodissociated.
The dashed 1ine is for 10% initial photodissociation of NO (NO).
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The generated model illustrates that there can be a substantial
coupling between the photodissociation process and clustering reactions.
This model taken along with the experimental data suggests that this
coupling can be minimized at low laser power and high E/N, since the
perturbation on the ion concentrations of NO and NO (NO) increases
with increasing laser power or decreasing E/N. Under experimental
conditions of low laser power (less tBan 10% of the NO (NOll}Ons paoto—
dissociated), NO pressure of 46.5 §/m , and E/N of 30 x 10 V-cm~ photo-
dissociation cross sections for NO (NO) at other photon wavelengths were
measured. These photodissociation cross sections are displayed on
Figure 5. The photon energy range covered extends 1.5 to 3.5 eV over
whigh thg photodissociation cross section peaks to a value of 1.95 x
10 cm- at about 1.96 eV. Although the cross sections were measured
at discrete wavelengths they appear to vary ST?othly with wavelength.
With the bond energy of NO (NO) being 0.63 eV~ the reaction

NO'(NO) + hv » NO' + NO 11

is highly exothermic for the photon energies used in this experiment.
Furthermore no other photodissociation process is energetically possible.
An increase in the NO ion during laser-on conditions observed at

several photon energies suggests the occuryence of Reaction III. As

the photodissociation cross section for NO (NO) appears unstructured

the photodissociation process is probably occurring between thermal

NO (NO) and one or more repulsive states of this cluster ion analogQus
to ;he phgt?gissociagion ogserved for other '"homonuclear' ions, Ar2 :

Kr2 ¢ Xe2 and 02 (02).

B. N0+(H20)

Cluster ions of N0+(H 0) werg proguced in 46.5 N/m2 of NO gas with
a trace of H,0 added (< 6.% x 10 © N/m”). The dominant reaction path
proceeded via Reactions I and II followed by

No*(NO) + H,0 - N0+(H20) + NO v

2
Measurements for the photodissociation cross section of N0+(H 0) produced
by this method were obtained by again using O for normalizatlon and the
drift velogi;y of NO (H,0) in NO was calculated by mass scaling to the
value of K drifting In NO gas. The reduced mobility computed in this
manner was 2.15 cm”/V-s. The measured cross section for the photodis-
sociation of NO (HZO) was found to be dependent on drift distance as

11

D. B. Dunkin, F. C. Fehsenfeld, A. L. Schmeltekopf, and E. E. Fer-
guson, '"Three Body Association Reactions of NO with O,, NZ’ and
C02," J. Chem. Phys. 54, 3817-3822 (1971). b

T. M. Miller, J. H. Ling, and J. T. Moselgy, "Agsolutg Total Cross
Sectiong for the Photodissociation of Ar, , Kr, , Xe, , ArN, , KrN, , ‘
and KrN from 565 to 695 nm,'" Phys Rev. i i3, 5171-2%77 (19%6). =
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is shown on Figure 6. The open triangles represent data taken at
647.1 nm and the open circles data taken at 530.9 nm. The E/N was held

: - -17 2 L : ) ) b
fixed at 30 x 10 V-cm“. A decrease in cross section with increasing

drift distance is observed and the rate of decrease appears to be the
same for both photon wavelengths.

Vibrational excitation of the N0+(H 0) cluster ion might account
for this behavior if some vibrationally €xcited state or states which
can be photodissociated are relaxing as a function of drift distance.
However, it is not clear why this dependence should be so similar for
two substantially different photon wavelengths.

Further 1nves£1gat10ns of the drift distance behavior were Londucth
by creatlng the NO (H 0) cluster ions in a buffer gas of argon (19.9 N/m”

.66 N/m NO, and ~ 66 N/m H,0). In this case the dominant reaction
path is Reactlons I and II along with

Ar + e - Ar+ + 2Ze, vV
A’ + NO > NOT + Ar VI
and NO" + H)0 + Ar > NO'(H,0) + Ar. VIT

Photodissociation measurements of NO+(H 0) produced by this method indi-
cated that the cross section was small Or zero at 647.1 nm for all drift
distances.

An explanation for this difference in the NO+(H,O) photodissociation
cross sections is necessary before either set of meaSurements can be con-
sidered as valid. One principal difference in the two methods of produc-
ing NO (HZO) is that in one case NO (NO) is formed prior to the formation

of NO (H,0). Since NO+(NO) has a large photodissociation cross section
at 647.1"nm this cluster ion is substantially depleted during ''laser on'
conditions. This effect causes Reaction IV to be inhibited in the ion
swarm volume intersected by the laser beam. NO (H,0) is being formed
throughout the drift distance;therefore inhibiting Reaction IV will
result in a decrease of the NO (HZO) signal irrespective of possible
photodissociation of the ion.

This effect can also qualitatively explain the drift distance
dependence. The fractional decrease in the NO© (H,0) signal should be
proportional to the laser beam diameter divided by the total formation
distance for NO (H,0). As the drift distance increases, this ratio
becomes smaller. & plot of this ratio versus the drift distance is
shown on Figure 6 as the solid line. Since the ion source is of finite
tength, estimated as ~ 2 cm, this distance was added tQ the drift dis-
tance in computing the total formation distance for NO (H,0). The shape
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of this solid line tracks extremely well with the photodissociation
cross section dependence on drift distance and thus adds validity to the
mechanism proposed.

en the argon buffer is used to create N0+(H 0) the intermediate
ion NO (NO) is no longer in the dominant reaction path and hence the
measurements rade in this way are believed to reflect the actual photo-
dissociation crgss section values. No actual photodissociation was
observed for NO (H,0) at the various photon energies studied. Upper
limits for the pho%odissociation cross sections for NO (HZO) were com-
puted and are listed in Table I.

TABLE 1. UPPER LIMITS FOR THE PHOTODISSOCIATION CROSS SECTIONS
OF No*(HZO).

Photon Energy Cross Section

: (eV) (10728 ot
1.5510 0.1
1.6474 0.1
1.9158 0.05
2.032 05 1
2.175 0.3
3.0 0.15

4 3.5 0.15

o

i IV. SUMMARY

Two atmospheric ions N0+(NO) and N0+(H20) have been investigated

P

for possible photodissociation reactions. N0+(NO) was observed to
readily photodissociate while the photodissociation cross section for
NO (HZO) was small or zero for the photon energies studied.

A _simple model has been used to explain the observed behavior of
the NO (NO) photodissociation ¢ross section with respect to laser power
and E/N. In the studies of NO (H,0) a mechanism that can result in an
"apparent'" photodissociation cross section was observed. Measurement of
the photodissociation of an ion formed through an intermediate ion of
large photodissociation cross section can be misleading because of the
inhibition of reactions linking the two ions.
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