
*D—A043 271 BOLT BERAPEK *110 N[~M*Pl INC CAMBRIDGE MASS F/S 5/9
ASPECTS Off A THEORY ICR AUTO IATED STUDE NT MODELLING, (1’)
MAY 77 I S •ROfl. R R BURTON . C HAUSNANN MDA903 76 C—OlOe

UNCLAS SIFIED BN—35*9 pit

I
_ _

PEN :
__________i

~

E• U I

IL _

-

~~~~~~

Bolt Beranek and Newman Inc. 7’
• I

/

i ~~~ 
_ _ _ _ _ __ _ _ _ _ _ __ _

I ~~ BBN Report No. 3549
ICAI Report No. 4

Ic

Aspects of a Theor y for Automate d Student Modelli ng
John Seely Brown, Richard R. Burton, Catherine Hausmann, Ira Goldstein, Bill Huggins, Mark Miller

I
I ç~r~~ ~~~• I U ~~ 15 1971 F !

~~~~I May1977

I p

I >-
I C-)

— LiJ

I
~~

I~~H

~~~~ ~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ,~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~ .
~~~~~~~~~~~~~~~~


~
::. 7iiui ..

BBN ~~~~~~~,._ ~q—~~~ 3549
ICAI R~~o~tRo. 4

/
7~

/ / (I

Aspec ts of a Theory for Automated Student Modelling ,

- •
~~

. ~
‘

~~~
,,  

r . 
, - /

John seely/Brown , 
- 

-

Richard R. Burton1 - -

Catherine Eausmann
Ira Golds tein
Bill Huggins
Mark Miller

/

~~ //  2- 

__ 

-- 
-

~~

I ~ 

I j  —_ .

~~~~~~ 

,
. .

May 1977 A uG i5 ~~

I

Acknowledgements
We are indebted to Dr. Beatrice Farr for her many suggestions on how

to improve the initial draft of th•is report.

This res earch was suppor ted in par t , by the Advanced Research Projects Agency ,
Air Force Human Resources Laboratory, Army Research Institute for Behav ioral
and Soc ial Sc iences , and Navy Personnel Research & Development Center.

The views and conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the official policies .
either expressed or implied , of the U.S. Government.

/ /

‘1
- ‘,... .- ., -

-
• r -

~~~~~~~ -“ ~~
- “—‘- _k - 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ... . . . 
~ .~ ~~ - . .~ ,.~~~.., ~

--

• Unclassified
SECURITY CLASSIFICA T ION OF THIS PA G E (W~l•fl pal. En#.~.d) -

~~~~~ 
W11 ~ T h 1 ~~1 READ INSTRUCTIONS

u~ r~~.rnu wu~..uMcri I ~~ I RJII r ~~~ • BEFORE COMPL ETING FORM,
I. NEPO~~T N U M B E R  ~ GOVT ACCESSION NO. 3- REC,PIENt~S CATALOG NUMBER

BBN Repor t No. 3549~
4. TITLE (and SubttIl.J 5. TYPE OF REPORT S PERIOD COVERED

Aspects of a Theory for Automated Student Technical Report
Modelling

L PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) 9. CONT RACT OR G~~A NT NUMBER(S)

John Seely Brown , Richard R. Burton , MDA9O3—76—C—C )108
Catherine Hausmann , Ira Golds tein , Bill  Hugg in~Mark Miller ____________________________

9. PERFORMING ORGANIZATION NAM E AND ADDRESS 10. PROGRAM ELEMENT. PROJECI . TASK

Bol t Beranek & Newman Inc. .~

• -

50 Moulton Street
Cambridge . Massachusetts 02118 ___________________________

I I .  CONTROLLING OFFI CE NAME A NO ADD RESS 12. REPORT DATE

Defense Advanced Research Projects Agency May 1977
1400 Wil so n Boulevard 13 NUMBER OF PA GE~
Arlington , VA 22209 85

14. MONITORING AGENCY NAME & AOORES S(i1 dIll.cWI irons Cc.I~~oIIIn4 Offit~.) IS. SECURITY CLASS. (.1 thu c.pe,t)

• Arm y Research Institute for Behavioral and Unclassified
Social Sc iences _________________________ —IS.. OE CLASS $F ICAT IO N ’ DOWNGRA DING5001 Eisenhower Avenue , Alexandria , VA SCHEDULE

15. DISTRIBUTI ON STATEME NT (of this R.pori) 
_______ ___________________

- 
. DJ IJPP T :QN ST?~T~ ~ fl’ A I

• App:  - . .:i p.: :~ lease;
. .~~n

I?. DISTRIBUTION STATEMENT (ol Sh. abstract .ni.,.d in Block 20. Ii dllI.,anI tro.s R.poil)

~~ I 

Approved for public release ; distribution unlimited

1$. SUPPLEMENTARY NOTES
• This research was supported in part , by the Advanced Research Projects

• Agency, Air Force Human Resources Laboratory, Army Research Institute for
Behavioral and Social Sciences , and Navy Personnel Research & Development
Center.

IS. KEY WORDS (Co.,?Inu. on ,.r.,1a aid. Ii n.e..wy and td.nUiy by block nsanb .r)

diagnos tic models , student modelling techni que s, procedural sk ills ,
procedural network , automated intelligent tutor

20. ABSTRACT (Continua on ,sr.ra• aid. IV n.c....1’y and id.nlIIy by block 111.11k.?)

This report documents some of our recent investigations into a theory for
automatically inducing and using (structural) models of a student which
explicate his reasoning strategies , his representation of procedural skills
and his underlying m isconceptions as manifested in his errors.

The first chapter discusses a diagnostic model based on the concept of a
~~~~~~~~~~~ network”~~ a network having many of the properties of the
older style semantic networks but which captures both the inter sional and

DO
~~~~~~ ~473 EDITION OF I NOV 99 IS OBSOLETE 

Unclassified
SECURITY CLASSIF ICATION OF THIS PAGE (BIson pal. f n~.F.d)

~~~ 
~a-ok .. ~, rn -

— -

_~~~~
-

~~~~~~~~~~~~~~~~~~~~~ _~~~~~~~~~~ ____



E l n i - l a s s i t  led
SECURITY CLASSIFICATION OF THIS PAG E I1Th1., Data Enl.r.d)

e x t e n s i o na l  (or e x c i u t a b l e )  as p e c t s  of p r o c e d u r a l  sk i i  I s .  Ih ese  d i  iignusL ic
node I s  p r ey  ide not  on! y a t e c h n i q u e  fo r  mod e]  I I ug the u n d e r l y i n g  or deep
s t r u c t u r e  as p ect s  i i i  a procedur a l  s k i l l  bu t  they a l s o  suggest  t h a t  an
impo rtan ~. er i t  er iou f o r  mode 11 i I I~~ co gn it ive pr ~a - t - s s&-s  and t h e i r  r e l a t e d
k n o w l e d g e  r ep re sent  at ~on is t h a t  ~if f i n d i n g  a n.1 t~ ra I way to  a c c o u n t  f o r

• ~• a I I possible manifested e r r o r s  in human p e r f o r m a n c e  of t h a t  s k i l l .  The
second ch a p t e r  d e s c r i b e s  :i c o n s i d e r a b l y  more  iomp Lex theory/techni que
f o r  ana l yz i ng the p r o b l e m  s o l v i n g  t r a c e  or p r o t o c o l  of a s tuden t  and
then  au t o m a t i i . a l I v  s y n t h e s i z i n g  a model  of h i s  p r o b l e m  solving s t r a t eg ies
as w e l l  as the  m o t i v a t i o n s  o~~ ”p 1ans”~~~hat  he used to guide him in his
s o l u t i o n .  T h i s  t heory  c a p t u r e s  t h e  sub t l e  r e a s o n i n g  powers of a master
t u t o r  and as such ac t s  as a p o w e r f u l  m o d e l l i n g  t echn ique of a learner
w h i c h  is needed f o r  g u i d i n g  our computer—based  l a b o r a t o r y  t u t o r  as wel l  as
p r o v i d i n g  a new methodology  for measuring how a student ’s pr oblem solv ing
p e r f o r m a n c e  is evolving. This theory also forms ii cornerstone for

• build ing information processing models ot ma ster tutors. .

The instructiona l parad i gm be i ng developed is q u i t e  different from the
classica l CAl or CMI approaches .  Here , we ir e  f ocu s i n g  on t echn iques
for  t e ach ing  procedura l k n o w l e d g e  and r e a s o n i n g  s t r a t e g i e s  w h i c h  are best
learned t h r o u g h  h a n d s — o n  l a b o r a t o r y  or p r o b l e m — s o l v i n g  t asks  in wh ich  the

• s t u d e n t  g e t s  a chance  to e x e r c i s e  his knowle d ge wide r  the  w a t c h f u l  and
critical eye of an automated intelligeut tutor. Our instructional systems
attempt to mimic the capabilities of a laboratory instructor who works
on a one—to—one basis with a trainee and who can carefull y diagnose what
the trainee knows , how he reasons , what kinds of deficiencies exist in
his ability to appl y his factual knowledge and so on.

ft
~ ~~~~~~ 

t~~FS 
-

- ,.

j~~c l n s s i  t i e d
SECU RIT ,  CLASSIFICATION OF THIS PAGE(WIs .n Data Fns.. .d)

~iiI__ -

~~ ~~~~~ 

* %. -.-—~~
- . ,. .

~ - • r - -• 
~~~~~~~~~~~~ 

.. 0~ ~.. - .
~ ~~~ h~. ~~ -~~~ M ’----- -- - - - - -—- 5- ——

• -~~~~ -- • - •--- _ - -

Preface

Th is is the f irst of three repor ts [I CAI~ ,6,7] which document our

recent investigations into a theory for automatically inducing and using

• (structural) models of a student which explicate his reasoning strategies ,

h~s representation of procedural skills and his underlying misconceptions

as manifested in his errors. Our basic methodology has -been to explore

segments of the modelling problem in the context of particular knowledge

domains , and to imp lement tentative theor ies in the form of protot ype

intelligent instructional systems. This methodology not only provides us a

test for the completeness and usefu lness of our theories, but equally

important it provides us an opportunity to develop and experiment with

tutorial strategies which utilize the kind of deep structure model of’ a

learner which was, heretofore , impossible to draw upon .

Before proceeding , we should comment on why structural student models

(as opposed to simpler , parametric models) are critical to the kind of

instructional parad ign*being developed under this Tn —service contract.

One of the classical goals of CAl has been to produce adaptive

instructional systems wh ich transform textbook and classroom type learning

into self—paced individualized instruction. Learner models for directing

this kind of instruction require very little detail with respect to the

reasoning capabilities and underlying knowledge representations of’ the

particular learner. For example , parametric models based on a factor

• analysis of’ a student ’s performa nce , or Markov models based on observ ed

transition probabilities , often capture all the information that is needed .

Note , howev er , that the parameters of such models don ’t revea l very much

about the infinite variety, subtlety and structure of’ the reasoning

strategies and problem solving heuristics of the students; nor do they , in

• themselves , reflect any of his deep—seated misconceptions. In part this

fundamental limitation arises from the fact that there are only a finite

(and usually small) number of parameters which can represent only a finite

num ber of oredetermined “entities ”. In other words , these models are

basically extensional with no generative capabilities.

i

- -.- -
~~~~~

- -
~~~~~~~~

- -:

45

~~~~~~~~~~ •~~ •~~ ~~~~ ~~~~~~~~~~ ~~~~~~~.•~~~~•• 
._ - ~~~~~~~~~~~~~~~~~~~~~~~~~ .~~ .~ - •

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . -~~~~~~~~~~ - —-- --~


The instructional paradigm being developed here Is quite different

from the classical CAl or CMI approaches. In particular , we are not

focusing on techniques for teaching factual , textbook knowledge (which can

often be competently handled by the frame—oriented CAl or CMI systems).

• Instead , we are focusing on techniques for teaching orocedural knowledge

and reaspni.n~ strategies wh ich are best learned through hands—on laboratory

or problem—solving tasks during which the student gets a chance to exercise

his knowledge under the watchful and critical eye of an automated

intelligent tutor. Our instruc tional systems attempt to mimic the

capabilities of a laboratory instructor or “coach” who works on a

one—to-one basis with a trainee and who can carefully diagnose what the

trainee knows , how he reasons , what kinds of’ deficiencies exist in his

ability to aoolv his factual knowled ge and so on. The instructor then uses

this inferred knowledge of the trainee to determine how best to critique

and/or kibitz with him .

This report describes some techniques and a beginning theory for how a

computer—based “intelligent” laboratory instructor (or on—the—job—site

trainer) can extract and use such information about the learner. The first

chapter discusses the concept of a diagnostic model , which is based on the

concept of a “procedural network” - a network having many of’ the properties

of the older style semantic networks but which captures both the

intensional and extensional (or executable) aspects of procedural skills.

These diagnostic models prov ide not only a technique for modelling the

underlying or deep structure aspects of a procedural skill but they also

suggest that an important forcing function for modelling cognitive

processes and their related knowledge representation is that of finding a

natural way to account for all possible manifested errors in human

performance of t h a t skill.

The second chapter describes a considerably more complex

theory/technique for examining the problem solving trace or protocol of a

student and automatically synthesizing , from the trace , a model of’ his

problem solving strategies as well as the motivations or Il pians Il that he

ii

...~~~~
~~~~~ .. ~~~ 

..
~~~ ‘. ,, • 

- ~~~~~ - . •- • — ~~~~
.•

-• * • .~~ - - ~~~~~~~~~~~~~~~~~~~~~ . . — . —— • • -~~ 0 ~~ - 5

I

used to guide h~m in his solution. This theory begins to capture the

subtle reasoning powers of’ a master tutor and as such not only acts as 1) a

• powerful learner modelling technique (useful for guiding our computer-based

lab instructors as well as providing a methodology for measuring how a

student ’s problem solving performance is evolving as a result of’ some

instruction) but also as 2) a cornerstone for building information

processing models of’ the skills of’ a master tutor.

F
8

iii

a
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~ T~mIiir ~j . -• - • —Ivo;;t9~e ~~~~~~
TABLE OF CONTENTS

Page

Preface i

CHAPTER 1 - DIAGNOSTIC MODELS FOR PROCEDURAL SKILLS 1

Problems for a Diagnostic Model of Procedural Skills 2
A First Approximation to Representing Procedural Skills 3
Inferring a Diagnostic Model of the Student 7
Relationship of Diagnostic Models to Other Kinds of Structural Models . . 9
Procedural Knowledge Used in Sub trac tion 10
Exhaustive Evaluation of the Network 13
BUGGY — An Instructional Activity 14
Protocol of a Team Using BUGGY 15
Pedagogical Issues 17
An Experiment using BUGGY 
Results 
Qualitative Impressions 30
Conclusion and Extensions 31

CHAPTER 2 — AUTOMATED PROTOCOL ANALYSIS — A TECHNIQUE FOR MODELLiNG
AND MEASURING STUDENT PERFORMANCE 34

Technical Statement of the Problem 35
Determining the Validity of Theoretical Interpretation 36
Review of the Synthetic Theory 36
Design Cons idera tions 39
Overv iew 43
A Grammatical Approach to Protocol Analysis 43
An Example Problem Solving Protocol 44
S truc tural Descrip tions 
Semantics and Pragma tics 52
Discussion 57
Organization of the PAZATN Protocol Analyzer 58
General 38
Augmented Transition Network (ATN) 60
The PLANCHART 61
Th e Represen tation of In terpre tations 63
The DATACHART 65
Incremental PLANCHART Expansion 

• Markers and Marker Propagation 69
The Event Class ifier 73
The Event Interpreter and Even t Specialists 74
The Scheduler 75
Ref ining the Analyzer 77
Overview of Ref inements 77
Lookahead and Least Commitment 78
Differ ential Diagnosis 84

• Tailoring the ATN to the Individual 86
Further Improvements in Applicability to Dynamic Tutoring 88
Des ign Issues and Al terna tives 91
Tentative Conclusions and Plans for Future Work 93
Recapitulation 93
Generality of PAZATN 95

REFERENCES 

APPENDICES

L_ _.~_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.
~~~
, 

~~~~~~~ _ • _ ;~~~~~~~•~~~~
‘
~~ _~~~~~~~~~~~~ 0

T
.’ ,Is .~

- —- -- .-——---.--- - -‘ - — • —~~~- — — •ia.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

CHAPTER 1

DIAGNO STI C MODEL S FOR PR OCEDURAL SKILL S’

“If’ you can both listen to students and accept their answers not as
things to just be judged right or wrong but as pieces of information
which may reveal what the student is thinking you will have taken a
giant step toward becoming a master teacher rather than merely a
disseminator of’ information.” ——— J.A . Easley , Jr. & Russel E. Zwoyer

Until recently our efforts in constructing “intelligent ”

knowledge—based instructional systems (ICAI) have been primarily focussed

on endowing computers with sufficient expertise to answer a student ’s

questions , critique his ~“havior , and in some cases , help him debug his own

understanding . Although such expertise is necessary for sophisticated
1.

training systems, it is by no means the whole story. Master tutors have

skills that transcend their particular field of expertise . One of their

greatest talents is the artful synthesis of an accurate “picture” of a

ient ’s misconceptions from the meager manifestations reflected in his

rs. An accurate picture of a student ’s capabilities is a prerequisite

o any attempt’ at direct individual remediat ion. The pictures of students

that teachers develop (in whatever form) are often called “models” . The

form , use and induction of’ such models for procedural skills is the topic
-

•

of this chapter. In particular , we shall describe some initial efforts in

the development and use of’ a representational technique called “procedural

networks” as the framework for constructing diagnostic models of procedural

• skills. A diagnostic model attempts to capture a student ’s common

misconceptions or faulty behavior as simple changes to (or mistakes in) a

correct model.

This chapter consists of four sections. The first describes a domain

of’ application and prov Ides examples of the problems which must be faced

with a diagnostic model. The second introduces procedural networks as a

general framework for representing procedural knowledge underlying a skill

(1) A version of this chapter has been accepted for publication in the
Proceecings of’ the National Association of Computing Machinery , 1977.

1

~~~~~~~~~~~~~~~~~~ 1T~~~ 
~~~~~~~~~~~~~~~~~~~~~


in such a way as to facilitate discovering or inferring misconceptions or

bugs existing in a particular student ’s encoding of this knowledge . The

third discusses pedagogical issues that emerge from the use of diagnostic

models or’ procedural skills. This discussion is framed in the context of’ a

computer—based tutoring/gaming system that was developed to explore the

characteristics of our models. The final section describes the results of

an experiment probing the pedagogical effectiveness of this tutoring/gaming

system .

Problems for a Diagnostic Model of Procedural Skills

In our research we have been investigating how to teach , learn and

model procedural skills. Our approach has been to focus our initial

efforts on a knowledge domain in which the procedural skills can be

accurately modelled and tested . Consequently, we have selected the task

domain of “doing” high school algebra. (Choosing this domain has the

by—product of letting us test our theories in the increasingly important

arena of remedial high school algebra.) This includes not only the

generally recognized rules of’ algebra , but also such normally implicit

skills as reading formulas , parsing expressions and determining which rule

to apply next. [Brown and Burton 1975, Brown and Collins 1977]. For this

chapter , however , we will limit our discussion to examples encompassing

arithmetic skills. This will allow us to concentrate on the critical ideas

of’ diagnosis, without the need for a large number of’ algebraic rules.

Limiting our examples to arithmetic also provides a compelling

demonstration of how much more difficult it is to diagnose what is wrong

with a student ’s method of performing a task (i.e. to form a diagnostic

model) than it is to simply perform the task itself. In particular , it -

‘

seems fair to assume that it is no great challenge to add or subtract two

numbers. Let us consider some examples of’ attempts to use this competency

to diagnose what is wrong with the internalized representations of these

arithmetic skills (procedures) in some students. We shall start with a

case study in which we examine five “sna p shots ” of a student ’s

performance during addition (as might be seen in a homework assignment).

The task is to discover the student ’s misconception or bug .

2

~~~~~~~~~~~~~~~~~~~~~ ~ y ’ --

~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~ - - .  - —~~~~~~~~~~~~~~~~~~~~ • - . • - - .— -- .~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~ 

Sample of the student ’s work:

~41 328 989 66 216
+9 +917 +52 +887 +13

-

~~~~~ 13~5 iT~ 229

Once you have discovered the bug , try testing your hypothesis by

“simulating ” that bug and predicting the results on the following two test

problems.

201

The bug is really quite simple. In computer terms , the student , after

determining the carry , forgets to reset the “carry register” and hence the

amount carried is accumulated across the columns . For example , in the

second problem 8+7:15, so he writes 5 and carries 1; 2+1:3 plus the one

carry is ~I. Lastly 3+9:12 but that one carry from the first column is 1:

still there —— it hasn ’t been reset —— so adding it in to this column gives

13. If this is the bug , then the answers to the test problems will be

1361 and 700. This “bug ” is not so absurd when one considers that a child

might use his fingers to remember the carry and forget to bend back his

fingers, or counters , after each carry is added .

A common assumption among teachers is that students do not f o l l o w

procedures well and that erratic behavior is the primary cause of’ a

student ’s inability to perform each individual step correctly. Our

experience has been that students are remarkably able procedure followers ,

but that they often follow the wrong procedures. One case encountered

last year is of’ special interest in this regard . The student proceeded

through a good portion of’ the school year with his teacher thinking that he 4
was exhibiting random behavior in his performance of’ arithmetic . As far

as the teacher was concerned there was no systematic explanation for his

errors ; an d , we must admit that before we had “discovered” his bug we , too ,

thought that he was erratic. Here is a sample of his work : :

~~~~~~~~~~ ~~~~~~~~~~ -- :~
_ -

~~L~



r ~~~~~~

--

~~~~~

-

~~~~~~~~~~~~~~

- - - -

~~~~~~~~~~~

- - - - - - -

~~~~~~~~~~~

7 9 8 6 8 9 17 19
ñ j~j  +8 +8 +14

15 114 11 13 T~ i~~~ 

-

87 365 679

923 27,1493 797
÷1481 ÷1 ,509 ÷148,632

11 14 28,991 14b , 119 -

There is a clue to the nature of his bug in the number of ones in his

answers. Every time the addition of’ a column involves a carry , a one

mysteriously appears in that column ; he is simply wr .~~ing down the carry

digit and forgetting about the units digit ! One might be misled by 17+8

which normally involves a carry yet is added correctly. It would seem

that he is able to do simple additions by a completely different procedure

—- possibly by counting up from the larger number on his f;~ gers.

The manifestation of this student ’s simple bug carri s over to other

types of problems which involve addition as a subskill . What answer would

• he give for the following?

A family has traveled 2975 miles on a tour of the U.S. They have 1828
miles to go. How many miles will they have traveled at the end of their
tour? j
He correctly solved the word problem to obtain the addition problem 2975 +

~ 

1625 to which he answered 3191. Since his work was done on a scratch

sheet , the teacher  only  saw the answer wh ich  is , of course , wrong . As a

result , the teacher assumed that he had trouble with word problems as well

as arithmetic .

When we studied this same student ’s work in other arithmetic

procedures , we discovered a recurrence of the same bug . Here is a sample

of his work in multiplication:

68 73 14 514 3
x 146 

~~~ 
x206

~~ 792 1 l41

758 27614
x296 ~~~T~ 2731

4

~~• •~~~~~~~•, ~~ _~~~~~~~~ :•. ~~~~~
-

-. • :. -
- - .—- - •~ •~~-~~- ---

• -~~~~ -~~- - - ~— —~~--- - • ‘ — .------ —~~ --- - — -- —

There are really several bugs manifested here ; the most severe one being

that his mult iplication algorithm mimics his addition algorithm . But

notice that the bug in his addition algorithm above is also present in his

multiplication procedure. The “carry unit” subprocedure bug shows up in

both his multiplication and addition . For example , to do 68x146, in the

first column he performs 8x6, gets 148 and then writes down the “carry ”

which in this case is 14 , ignoring the units digit. Then he multiplies 6x Ll

to get 2 for the second column . All along he has a complete and consistent

procedure for doing arithmetic. His answers throughout all of his

arithmetic work are far from random . In fact they display near perf’ection

with respect to his way of’ doing it.

A First Approximation to Representing Procedural Skills

In order to build a computer system capable of diagnosing aberrant

behavior such as the above , the skill being taught must be represented in a

form amenable to modelling incorrect as well as correct procedures.

Add itionally, the model should break the skill down into shared sub—skills

in order to account for the recurrence of similar errors in different

skills. We use the term diagnostic model to mean a representation that

depicts a student ’s internalization of a skill as a variant of’ a correct

version of the skill. For a representation of a correct skill to be useful

as a basis for a diagnostic model , it must make explicit much of the tacit

knowledge underlying the skill. In particular , it must contain ~Jj..
of the

knowledge that can possibly be misunderstood by a student performing the

skill , or else some student misconceptions will be beyond the diagnostic

modelling capabilities of the system. For example , if the model of

addition doesn ’t include the transcription of the problem , the system would

never be able to diagnose a student whose bug was to write 9 s which he

later misread as 7’s.

5

-
~~~~ 

.
- — .

~~• . - - - .-. •- 
- , -  .-. 

- 
.

— - 
-.-~~~~~ 

- — —
~~ 

- 
~~~~~ ‘

_.
‘

The technique we use to represent diagnostic models is c. procedural

network.
2

A procedural network consists of a collection of’ procedures

(with annotations) in which the calling relationships between procedures

are made expi icit by appropriate links in the network. Each procedure node

has two main parts: a conceptual part representing the intent of the

procedure , and an operational part consisting of’ methods for carrying out

that intent . The methods (also called implementations) are programs that

define how the results of’ other procedures are combined to satisfy the

intent of’ a particular procedure .
3 Any procedure can have more than one

implementat ion which provides a way to model different methods for

• performing the same procedure (skill). For most skills , the network

representation takes the form of a lattice. Figure 1 presents an example

of how a part of the addition process is partially broken down into a

procedural network . Conceptual procedures are enclosed in ellipses. The

top procedure in the lattice is addition.4 Two of the possible

algorithms for doing addition are presented as alternative methods. In

method 2, the columns are added from left to right with any carries being

written below the answer in the next column to the left. If there are any

• carries , they must be added in a second addition . In method 1 , (the

(2) This term has been used by Earl Sacerdoti [1975) to describe a’~interesting modelling technique for a partially ordered sequence ot’
annotated steps in a problem solving “plan”. Our use of procedural net..
differs from , and is less developed , than his. The extensive treatment of
the structure and use of our networks is being reported in a companion
paper. [Burton and Brown , forthcoming]
(3) The language we have used is LISP. The particular programming language
is unimportant from a theoretical standpoint because an implementation is
non—introspectable. The modelling aspects of’ the network must occur at the
conceptual procedure level. For example , the implementation of’ the
subtraction facts table look up procedure in the computer is necessarily
different from that in the student. However , the conceptual properties of
the facts table procedure are the same in both. Those aspects which are
the same (e.g., the invoking of other procedures , the values returned , the
relevant side effects) are included in the network , while the
implementation details , which may differ , are “swept under the rug” into
the program . This is not a limitation , as any “implementational issue” can
be elevated to the conceptual level by creating a new conceptual procedure

• in between the existing ones. The distinction between conceptual and
implementation details can also be used to allow a single network to model
a skill efficiently at different levels.
(14) This is a simplified representation intended only to demonstrate those
features of’ the procedural network particularly relevant to the diagnostic
task . The actual breakdown into subprocedures may be different in a
particular network , and will be considerably more detailed .

6

LA~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
- -

r -

~~~~

-
• •~~~~~~~~~~ ~- =•~~~~~~~~~~~~~~~ 

-

standard algorithm ) the columns are added from right to left witI~ any

carries being written above (and included in the column sum of) the next

column to the left. Notice that these two methods share the common

procedures for calculating a column sum and writing a digit in the answer ,

but differ in the procedure they use when carrying is necessary . One

structural aspect of the network is to make explicit any subprocedures that

can be potentially shared by several higher level procedures.

[insert Figure 1]

Th-e decomposition of a complex skill into all of its conceptual

procedures terminates in some set of primitives that reflects assumed

elements of an underlying computational model. For addition , typical

primitives are: recognizing a digit , being able to write a digit , and

knowing the concepts of right , left , etc. The complete procedure network

(explicitly specifying all the subprocedures of’ a skill) can be evaluated

or “executed ”, thereby simulating the skill for any given set of inputs.

By itself , this merely provides a computational machine which performs the

skill and is not of’ particular import . However , the possible

• “misconceptions” of this skill are represented in the network by “buggy ”

implementations associated with procedures in the decomposition . Each

buggy version contains inc-.wrect actions taken in place of the correct

~ ones. An extension to the network evaluator enables the switching in of a

bu&gv version of a procedure , thereby allowing the network to simulate the

beha’~ior of that buggy subskill. This provides a computational method for

determining the ex ternal behav ior of the under lying bugs.

• - inferring. a Dta&nostic Model of the Student

The problem of d iagnosing a deep structure failure in a student ’s

• knowledge of a procedural skill can now be accomplished , at least

theoretically, in a straightforward manner. Suppose , as in the examples on

page 4, we are provided with several surface manifestations of a deep

structure misconce ption or bug in the st udent ’s addition procedure . To

7



I’,- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- ~~• _

-- --—----—

ci~~ 

ADDITION

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

I,

Method I Method 2 ¼)

Right to lef t Left to right

SUM A ~ / 
CARRY TO

COLUMN 4.- OPERAND

-
• 

Method Method CARRY BELOW

A N S W E R
_____ 

____ Method
$ ____W R I T E  I N  THE ~~~ Uit] i I

COLUMN ANSWER Me thod
M e t h o d

FIGURE 1

A Simp fl fied Piece of a Procedural Network for Addit ion

8

~~1~. ~~~~ ~ 1 - ~
‘+

~
-
~~~~‘ ~~~~~~~~~~~~~~~~~~~~~ 4


uncover which possible subprocedures are at fault , we us. t !e network to

simulate the behavior of buggy subprocedures over the set of problems , and

note those which generate the same behavior as exhibited by the student .

Tc catch a student ’s misconceptions that involve more than one faulty
5

subprocedure , we must be able to simulate various combinations of bugs.

For example , a student may have a bug in his carrying procedure as well as

believing that 8+7 is 17 (a bug in his addition facts table). To model his

behavior , both buggy versions must be used together. A deep structure

model of the student ’s errors is a set, of buggy subprocedures which , when

invoked , replicate those errors. Each buggy version has associated

information , such as the underlying teleology of’ the bug , specific

remediations , explanations , examples and so on. These may be used by a

tutoring system to help correct the student ’s problem .6

Relationship of Diagnostic Models to Other Kinds of Structural Models.

It is beyond the scope of this paper to discuss all the past and

current work or~ structural models of stu~ients and how it relates to

diagnostic models based on procedural networks. However , a few words are

in order. Most previous and current research on this subject has been

focussed on the intuitively appealing notion which postulates that if one

has an explicit , well formulated model of the knowledge base of’ an expert

(for a given set of skills or a problem domain) then one can model a

particular student ’s knowledge as a contraction or simplification of the

rules comprising the expert [Collins , Warnock and Passafiume 1975, Brown ,

L ~~rton and Bell 19714 , Burton and Brown 1976 , Carr and Goldstein 1977].

Recently, Goldstein has articulated this concept in his Computer Coach

(5) Additional structure in the network helps resolve what combination of’
bugs are worth considering . In general , simulating or evaluating all
simple and multiple bugs takes approximately 2 cpu seconds for the addition
and subtraction procedural nets.
(6) West [1971] has broken down the diagnostic teaching task into four
steps: 1) distinguish between conceptual and careless errors; 2) identify
the exact nature of the conceptual error (bug); 3) determine the conceptual
basis (caust) of the bug; and 4) perform the appropriate remediation . The

L system we describe has been directed towards problems (1) and (2). The
buggy implementation nodes in the network provide the proper places to
attach information relevant to problems (3) and (LI).

9

research and has coined the term “overlay model” for capturing how a

• student ’s manifested knowledge of skills (rules) relates to an expert ’s

knowledge base [Goldstein 1977]. In all these cases , the primary problem

has been to develop techniques to discover 1) which skills were employed by

the student In solving problems , 2) which skills were not used , and 3)

which skills an expert would have used which the student did not.

The work reported in this paper differs in emphasis from such

approaches in that the basic modelling technique focuses on viewing a

structural model of the student not primarily as a simplification of’ the

expert ’s rules but rather as a set of’ semantically meaningful dev iations

from an ex pert ’s knowledge base.7 That is, each subskill of the expert

is explicitly encoded , along with a set of potential misconceptions of that

subskill. The task of inferring a diagnostic model then becomes one of

discovering which set of variations or deviations best explains the surface

behavior of the student . This view is in concert with (although more

structured than) the approach taken by Self [19714) in which he models the

student as a set of modified procedures taken from a procedural expert

problem—solver.-

We shall now consider examples of procedural skills in arithmetic ,

evaluations of the networ ks for these skills , and then we shall shift our

focus to some pedagogical uses of the procedural network notion .

ft Procedural Knowledge Used in Subtraction

To provide an example indicative of the surprising amount of’

procedural knowledge needed to perform a simple skill , let us consider a

more complete network representation of the subtraction of two numbers .
8

Figure 2 shows the links of the procedural network for subtraction that

(7) Because these deviations are based on both the student ’s intended goals
and underlying teleology of the subskills, we have no automatic way to
generate them (as opposed to what could be done if the deviations were
based on the surface syntax of’ the rules). However , ongoing work by
Goldstein and Miller [1976) , R ich and Schrobe [1976) and Burton and Brown
[forthcoming) will eventually help overcome this limitation .
(8) We have chosen just one of the several subtraction algorithms (the
so—called “standard” algorithm) but the ideas presented here apply equally
to others.

10

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
t _

~~
_
~~~~~~~~~~~~~~~~’


- -

indicate which procedures a procedure may use . The network has been

simplified by showing only one implementation of each procedure (i.e., the

one taught in the “standard ” algorithm).

[insert Figure 2]

The top most node represents the subtraction of two n—digit numbers.

It may use the procedure for: setting up the problem , transforming it if

the bottom number is greater than the top, and sequencing through each

column performing the column subtraction. The implementation of the latter

has to account for cases where borrowing is necessary and may call upon

many separate subprocedures including taking the borrow from the correct
- - place , scratching 0 and writing 9 if that place contains a zero, and so on.

An important subprocedure is the facts table look—up where any of the

simple arithmetic facts can be wrong, including the addition of’ 10 to a

column digit , the subtraction of 1 during a borrowing operation , or any

subtraction facts used during the processing of a column .

In principle , each of’ these subprocedures could have many buggy

versions associated with it.
9

An example of’ a common bug is to calculate

the column difference by subtracting the smaller digit from the larger

regardless of’ which is on top. In another bug , the set-up procedure

left—justifies the top and bottom numbers so that when the student is told

F to subtrac t 1 3 from 185, he gets 55. One interesting thing about the left

justification bug is that the student will be faced with seemingly

impossible problems (185—75) and may be inclined to change the direction in

which he subtracts , borrowing from left to right instead of from right to

left or to change his co lumn di fference procedure to larger minus smaller ,

thereby eliminating the need to borrow. Thus, there can exist

relationships between bugs such that one bug suggests others. A major

• challenge in identifying the procedural breakdown or description of a skill

is to have the network naturally handle ramifications and interactions of

(9) On the average our network has two to three buggy versions for each
correct version of’ a subprocedure .

11.

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
~~~~~

±::----
~ 

. .,1 . , l ’ ’ - .  -~ - . -~~~~- •



______ ________ - -~~~~~~~~~

Suu,

~~

c r  

— - 

-

-

Co~,.rn1 aJ

• 
—

_

~~~~~~~~~~
_ - ~~~~~~

I ~~~ -
~~ - 9 b- r

• —
~~

- —~~~~
- ~~~~ - -

-
- (

~~~) ~~~~~•

1: 

~~ ,G’ f  ~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~

S~~~ro.

9

F I G U R E 2

A Procedural Network for Subtraction

~~~~ - * ~~ _• _s ,.~• ~~~~~~~ .
‘ - - 

,.- - - - ~~_ -,,

- ---— -- --
~
.-

~~~~ . —
~~
,

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 

- ,

~~~

-‘- -, — •- . — - , • - - * . - -

-

- -----

~~~~ ~~~~~~~~~~~ 
--- --•-----.-- -,-- -----—-=---- =-

--—- -- — ---—- —

multiple bugs , as well as to provide a natural way to define and handle all

common bugs .

Exhaustive Evaluation Qf the Network

Given a procedural network like the one in Figure 2, it is not always

obvious how bugs in any particular subprocedure or several subprocedures

will be manifested on the surface (i.e. in the answer) —- especially

since bugs can have serious interactions or since a single buggy

subprocedure can be used by several higher—order procedures in computing an

answer. In fact , if asked to make predictions about the symptoms of a

given bug , people often determine the symptoms by considering only the-

skills or subprocedures used in solving ~~~ particular sample problem. As

a result they often miss symptoms generated by other procedures that can ,

in principle , use or call on the given buggy subprocedure but which ,

because of the characteristics of the particular problem , weren ’t called .

Yet If another sample problem were chosen , it would have caused t r E -

particular faulty subprocedure to have been used for a different purpose or

in a different way , thereby generating different symptoms. Determining the

complete set of symptoms for a bug is further complicated by the fact that

sometimes a bugg y subprocedure can be called by several higher order

J procedures in the midst of solving just one problem . It was this

observation that first led us to consider the diagnostic value of this

scheme for systematically verifying a conjectured bug.

In order to provide a feeling for the range of “answers” that can come

from simple underlying bugs, we have included in Figure 3 the “answers” to

a subtraction problem (15300—9522) using some of’ the bugs in the

procedural network for subtraction. For example , the answer 14222 was

generated by the bug which subtracts the smaller digit , in each column ,

from the larger. Appendix LI gives one brief explanation of a bug that

would generate each of’ the answers in Figure 3.

13

- - -‘ 
-
~~~~

-- •
~~• -~~~.—~~•

- •- -, ., - -
- — .- • .- - -‘ - - •-.-‘ . .-—- -

~
- .-

~~
-
~~

- - -
~~

—- -

~ -—--- - ——— —- - -- — •----- — -——---- - --
~.__--.

~~
. —-- ---

:~~~~~~~~~~~
—

~~~~~~~~~~~ :
- -—---

Figure 3

Mani fes ta t ions  of Some Subtraction Bugs

15300 15300 15300 15300 15300 15300 15300
-9522 —9522 — 9522 ~9522 —9522 —9522 -9522
95778 27998 2 14822 16888 16778 114822 i1487~

15300 15300 15300 15300 15300 15300 15300
—9522 —9522 — 9522 —9522 —9522 — 9 522 -9522
114222 14222 114200 10022 10000 87148 7998

15300 15300 15300 15300 15300 15300 15300
-9522 — 9 522 — 9522 — 9522 —9 522 — 9522 ~9522
6888 6822 5878 ~~~~~~~~~ 5800 5798 5788

15300 15300 15300 15300 15300
—9522 —9522 —9 522 ~ 9522 — 9522

5678 5372 ~t822 14222

Of’ course , a par t icular  “answer ” to a given problem can have more than

one explanation or cause since there can be several distinct bugs that

generate the same “answe r ” . For example , a s tudent  may harbor many

misconceptions and s t i l l  get the correct answer to a par t icu la r  problem.

The need for teachers to thoroughly appreciate and s trategically cope wi th

the possible range of s tudent  bugs led us to construct a game called

F BUGGY.

BUGGY — A~ Lnst ruct ional  A c t i v i ty

BUGGY is a computerized game based on the diagnostic interact ions of a

teacher and a computerized s tuden t .  The teacher ’s role may be played by

one or more persons. The teacher is presented with  an ari thmetic homework

problem that  the “student” has done incorrect ly .  The “student ’s” behavior

is generated , using a procedural network , and manifes ts  an under ly ing  bug

in one of’ the ar i thmet ic  subprocedures.  The teacher ’s job is to diagnose

the computerized student  by providing strategic test ~rob1ems for the

“s tuden t”  to solve in order to discover exact ly  what the under ly ing  bug or

14

~~~~ 
_~~~~~~~~~ •~~~~~-~~;

-

misconception is. The problems given by the teacher are answered by the

“ student” using the bugged procedure . When the teacher th inks he knows the

bug, he signals the computer program by pressing a “got i t” key. BUGGY

then asks the teacher to describe what he thinks the bug is. To make

certain that he real ly has found the bug , a f ive—problem test is given in

which the teacher must answer the problems in the same way that the student

would do them , i.e. he must simulate the “student ’s” bug . Success is

achieved when all five problems are done “correctly ”. Then the teacher

proceeds to a new bug .

The following is a protocol of a team of teachers using BUGGY . The

dialogue is interspersed with commentary about the issues that we feel are

pedagogically important. Those lines typed by the team are marked with a

vertical line in the left margin .

Protocol of a Team Using BUGGY

WELCOM E TO BUGLAND.
I HAVE CHOSEN A BUG . HERE IS AN EXAMPLE OF THE BUG .

17
+5
13

The system presents an example in which the student doesn ’t get
the right answer. At present , these initial examples are stored
in the network linked to the buggy implementation.

NOW YOU CAN GIVE ME PROBLEMS TO DETERMINE THE BUG.

18 143
+6 +79
T -

~~~~

The team generates problems that are answered by the “student” .
Notice that  the team ’s test problems are s imilar  to the initial
example generated by BUGGY . In general this is a poor diagnostic
strategy , since it may leave other symptoms of a bug
undiscovered .

Got the bug!

The team forms an i n i t i a l  hypothesis , and tells the system they
have discovered the bug. The system now asks the team to
describe the bug and then tests them on their  unders tanding .
Asking for a description forces the team to verbal ize the i r
sometimes fuzzy idea of what the bug is and often makes them
realize how i l l—def in ed  or vague their  idea actual ly  is.1°

( 1 0)  In the present system , the descriptions are saved but they are not
c u r r e n t l y used , since the u n d e r s t a n d i n g  of these  utterances is beyond the
c a p a b i l i t i e s  of any e x i s t i n g  n a tu r ~ul  language system .

15

iI1I_ 
-

~~~~~

- *- - . - -
~~~~~~~~~~~~~~~  ~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 

• -



- - - - - - —-- --- ~~~~~ -- - -—- - - •~~~~~~~~
- ——- -•- -

~~~~
- - — ~~~~~~~~~

- • ---
~~
-— -

PLEASE DESCRiBE THE BUG YOU THINK I HAVE.

Student adds the number to be carried into the last column
worked in.

This c r y p t i c descr ip t ion is typical of those we have observed.
Describing bugs in English is surprisingly difficult. What the
team is trying to say is that if a column adds to more than 9,
the units digit and the carry digit are added together and the
result is written as the answer. For example , in the first
column of the example problem , when 7 and 5 are added , 1 (the
carry) and 2 (the units digit) are added to get 3. The same with
8+6, 2+9, and 3+9. (This bug could easily arise if the student
were using method 2 from Fi gure 1 and mistakenly wrote the carry
under the same c o l u m n .) The hypothesis makes sense .
Unfortunately, it is not the student ’s bug. Notice the possibly
humorous , probably disastrous results that would have transpired
If the team had stopped at this point and tried to tutor the
student on the basis of their initial belief!

HERE ARE SOME PROBLEMS TO TEST YOUR THEORY ABOUT THE BUG .
WHAT IS:

To ensure that the team has found the correct bug , the system
generates several problems for the team to solve. (At present ,
BUGGY has a heuristic problem generation program that gives a
broad range of “different” problems . These are then filtered to
try to get three problems which cause symptoms and two that give
correct answers. This simple routine does surprisingly well at.
producing critical problems . So well , in fact , that a more
“intelligent” routine which used meta—evaluation to determine the
consistent set of’ bugs and then filtered the test problems to
split the set was discarded as unnecessarily time—consuming.)

21
+ 39

The team ’s hypothesis is revealed as incorrect by the first of
L

the five test problems . BUGGY presents its answer and then
allows the team to enter more test problems.

• THAT ’S NOT THE BUG I HAVE.
USING MY BUG : —

21

15

TRY GIVING ME SOME MORE EXAMPLES.

51 99 68
+1707 +99

21 23

16

ii
_

~~~ 
‘ “:~ i~::~~ E~ - 

_ _ _



Af te r  fa i l ing  the test , the team gives a greater range of
problems , specifically those using bigger numbers . How is it
that 51+1707 can add up to 21? By broadening the scope of
example problems they are able to reevaluate their  in i t ia l
hypothesis , dis m iss it , and develop another one that is complete
and consistent with  respect to the new errors.

I Got the bug!

PLEASE DESCRIBE THE BUG YOU THINK I HAVE.

The student i~ adding all the digits  together.

HERE ARE SOME PEC -BLEMS TO TEST YOUR THEORY ABOUT THE BUG .
WHA T IS:

33 109 1 8 28 90
±3~ ±l~ 

—

1 2 4  17 15 17 15

This time the team ’s hypothesis passes the test and they are
given the description of’ the bug stored in the procedural
network.

VERY GOOD. MY DESCRIPTION OF THE BUG IS:
THE STUDENT ALWAYS SUMS UP ALL THE DIGITS WITH NO REGARD TO COLUMNS .

• Peda~ o~ ica1 Issues

One application of BUGGY and the “diagnostic model” view of’ procedural

skills lies in the domain of instructor training . The realization that

~ “random ” errors are actual ly  the surface manifesta t ions of an under ly ing

bug in a procedure is a major conceptual breakthrough for many instructors.

Often behavior that appears to be random has a simple , intel l igent , and

complete underlying explanation . By proper diagnosis , remediation can be

directed towards the specific weaknesses. The importance of this notion

cannot be overstressed . Admit t ing the possibility of underlying bugs is

critical to remediation in the classroom . Without the abi l i ty to diagnose

procedural bugs , fai lure on a particular problem must be viewed as ei ther

carelessness or total algorithm fai lure . In the f i r s t  case , the

remediation consists of giving more problems , while in the second , it

17

~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r
consists of goi ng over the t-~~t ire  a lg o r i t h m .

I L  
When a s tudent ’s bug

(which may only manifest itself occasionally) is not recognized by the

instructor , the errant behavior must be explained as carelessness , laziness

or worse . This causes the instructor to adapt his m~ d&1 of the student
’s

capabil ities , thereby mistakenly lowering his expectations. From the

student ’s viewpoint , the situation is even worse . He is following what he

believes to be ~~~ correct algorithm and , seemingly at random , gets marked

wrong . This situation can be exacerbated by improper diagnosis. For

example , Max subtracts 284 from 1437 and gets 253 as an answer .  Of course ,

says the instructor “you forgot to subtract 1 from 14 in the hundreds place

when you borrowed. ” Unfortunately Max ’s algorithm is to subtract the

smaller digit in each colum n from the larger. Max doesn ’t have any idea

what the instructor is talking about (he never “borrowed”!) and feels that

he must be very stupid indeed not tO understand . The instructor agrees

with this assessment since none of his remediation has had any effect on

Max ’s performance.

BU GGY , in its present form , presents instructors with examples of

buggy behavior and provides practice in diagnosing the underlying causes of

• errors. Using BUGGY , the instructor gains experience in forming theories

about the relationship between the symptoms of a bug and the underlying bug

itself. This experience can also be cultivated to make instructors aware

that there are methods or strategies that they can use to properly diagnose

bugs. There are a number of strategy bugs that instructors may have in

forming hypotheses about a student ’s misconceptions. The development of a

good “troubleshooting ” strategy by an instructor can avoid these pitfalls.

A common mistake is to jump too quickly to one hypothesis. Prematurely

focussing on one hypothesis can cause a teacher to be unaware that there

are many competing hypotheses  tha t  are jus t  as l i k e l y ,  or poss ib ly  more

likely. A common consequence of this is t h a t  t he  i n s t r u c t o r  o n l y  generates

(11) In computer programming metaphors , this corresponds to the debugging
activities of resubmitting the program and throwing the whole program away
and starting over from scratch because the computer must have made a
mistake.

18

~~~~~~~~~~ 

-

~

—

~~~~~~

. 
• 

.- - 
- 

- 
-

~

- - - —  
- 

-

~ *



problems for the student that confirm his own incorrect hypothesis! For

example , one student teacher was given the initial example (A) (shown

following) after which he proceeded to generate example problems :

B C
— 1 9 23 81

+9 +6 +8
T~9

At this point , he concluded that  the bug was “wri tes  the bottom digi t  a f te r

the top number.” But his hypothesis failed when he was given the first

test problem:
8

to which he responded 812. The bug actually is that single digit operands

- — 
are concatenated on the end of’ the other operand , so tha t  the correct buggy

answer is 128. By presenting only examples wi th  fewer d ig i t s  in the bottom

number , he got only conf i rming  evidence for his hypothesis .

In some cases , an ins t ruc tor  may believe his hypothesis  so strongly

that  he wi l l  ignore disconfirmations that  exist or decide tha t  these

disconfirmations are merely random noise .12 One way this can be avoided

is by using the technique of’ dif ferent ia l  diagnosis [Rub in  1975) in which

one always generates at least two hypotheses and then chooses test problems

that  separate them.

~ Another important  issue concerns the relationship between the language

used to describe a student ’s errors and i ts e f fec t  on what a teacher

should do to remediate i t .  Is the language able to convey to the s tudent

what he is doing wrong? Should we expect instructors to be able to use

language as the tool for correcting the buggy a lgor i thms of’ s tudents?  Or

should we only expect instructors  to be able to understand what the bug is

and attempt remediation with the student using things like manipulative

math tools? The following are quotes of student teacher hypotheses taken

• from protocols of BUGGY , which give a good idea of how difficult it is to

express procedural ideas in English . The descriptions in parentheses are

BUGGY ’s (prestored) explanations of the bugs. • 1

(12) There is , of course s some amount  of “processor failure ” as s tu d e n t s
a re  o f t e n  all too human .

19

- • • -- • -- -

~ 

~~~~~~~~~~~~ ~~~~~~~~~ 
• • • .~~~~~~~ • .. ________


~~~~~~~
— V —

~ 
—---  —

~ 
— -—— — — -- 

- •—- - --

“Random errors in carryover. ” (Carries only when the next column in the top
number is blank.)

“If there are less digits on the top than on the bottom he adds columns
diagonally. ” (When the top number has fewer digits than the bottom number ,
the numbers are left-justified and then added.)

“Does not like zero in the bottom. ” (Zero from any number is zero.)

“Child adds first two numbers correctly then when you need to carry in the
second set of digits child adds numbers carried to bottom row then adds
third set of digits diagonally finally carrying over extra digits. ” (The
carry is written in the top number to the left of the column being carried
from and is mistaken for another digit in the top number.)

• “Sum and carry all columns correctly until get to last column . Then takes
furthest left digit in both columns and adds with digit of’ last carried
amount. This is in the sum .” (When there are an unequal number of’ digits
in the two numbers , the columns that have a blank are filled with the
left—most digit of that number.)

What does this say to us? Even when one knows what the bug is in

terms of being able to mimic it , how is one going to explain it to the

student having problems? Considering the above examples , it is clear that

anyone asked to solve a set of problems using these explanations would no

doubt have real trouble. One can imagine a student ’s frustration when the

teacher offers an explanation of why he is getting problems marked wrong,

and the explanation is as confused and unclear as these are . For that

mat ter , when t he correct proce dure is descr ibed for t he f irs t time , coul d

it too be coming across so unclearly?

• This issue is further complicated by the existence of another

~ 

important issue: there are fundamentally different bugs which cause

identical behavior! In other words , there can be several distinct bugs

that are logically equivalent and always generate the same “answers ” . For

example , here is a set of problems:

38 186 298 89
+146 +614

233 0 2357

The underlying flaw in the student ’s procedure (his bug) can be

described as “The columns are added without carries and the left—most digit

2()

~

--

~ 

~~~~~~~~~~~~~~ :~~~~~~~~~~~ 
-
~r :I~

’ - - - -

— -—-- —

• ~~~~~~• -

-

•
in the answer- is the total number of carries required in the problem. ” In

this case, the student views the carries as tallies to be counted and add ed

to the le f t of the answer. But another equal ly plausible bug also ex i s t s ;

the student is placing the carry to the left of the next digit in the top

number instead of adding it to the digit (i.e. he is actually carrying ten

t imes the carry d i g i t) . This generates the same symptoms. So even when

the teacher is able to describe clearly what he believes is the underlying

bug , he may be addressing the wrong one . The student may actually have

either one of these bugs.
13

- - - We feel that all of’ the issues discussed above are as important for

students learning procedures as they are for teachers . In particular , the

diagnostic task of a player requires studying the structure of’ the

procedural skill oer se as opposed to merely performing it. Th is can be

especially important if we are trying to get students not to just rotely

memorize the procedural skill but to encode it in some semantically

meaning ful way.

Another reason for having students develop a language for talking

• about procedures , processes , bugs , etc . is that this language enables the

student to talk about (and think about) procedures and the underlying

causes of his own errors. This is important in its own right , but it also

gives a student the motivation and the apparatus for stepping back and

~ critiquing his own thinking , as well as saying something interesting and

useful about his errors. This is especially important given the fact that

there ’s been so little success in getting students to look over their own

work (such as estimating answers) and to use this perusal to good

advantage .

(13) This leads to an interesting question concerning how one can “pre -~ ”
two d i f f e ren t descriptions of bugs entail logically the same surface
manifes ta t ions .

2 1

~~~~~~~~~~ 

~~~~,.. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — - •  -- • 

- —------------ • A



- ~~~
--

~~~~ 
- - - . . • . ----

~~~ 
•

— —
~~~~ 

—
~~

Ai
~

I .\ L * t l iflent ~~~1I~~ lC(~Y

We have conducted an exper iment to explore BUGGY ’s impact on s tuden t

teachers . In pa r t i cu la r , we wished to answer the question of w h e t h e r

exposure to BUGGY s i gn i f i can t ly improves the student teachers ’ a b i l i t y to
—

detect regular patterns of errors in simple arithmetic problems. The

subjects were twenty-four undergraduate education majors from Lesley

College in Cambridge . They were all volunteers who were not paid for their

services. The 214 subjects were divided into twelve groups of’ two each.

Their - exposure to BUGGY lasted ap~roximately one and a half hours with

most teams completing at least six different bug sessions. Both addition

and subtraction bugs were presented. The first two bugs each team

encountered were chosen from a list of simple bugs so as not to compound

• d i f f i cu l t i e s the subjects faced in just getting used to using a computer

terminal and to BUGGY .

The e f f ec t s of t he i r exposure to BUGGY were measured by comparing each

subject ’s performance on pre— and post-exposure tests. There were two such

tests , labelled Red and Blue . The twenty—four subjects were randomly

assigned to two groups. One group had the Red test before exposure , and

th~ Bl ue test a f t e r , and the other group had them in reverse order. Each

test had ten items , each i tem consisting of a set of’ four simple addition

or subt rac t ion problems wi th the i r “ solutions ” . Seven of the items in each

test contained “ pat terned” errors , such that the four solutions could all

be ar r ived at as a resul t of a single misapplied rule —- for example ,

f a i lu re to carry when a column adds to more than 10. The other three items

we re “ random ” items in which there was no single explanat ion for a l l of the

errors. (See Appendix 1 for the Red t e s t .) For the experiment , BUG G Y w a s

modif ied so tha t ~~ subjects were given bugs that occurred on t h e i r

pos t—tes t s .

Resul ts

The raw data generated by the tests are shown in Table 1. The i t em s

across the top (1P , 2P , 3 R . . .) ind ica te the problem number and whe ther the

correct problem description was random (R) or could be explained by a

single bug description or pattern (P). The subjects ’ responses were scored

22

hIlL- -• - •
- -

* - - .
~~

_ _ _ .- -_- a. . . -— •t -.--. - - • - — - - - .- -
- - -
‘

- _
~~~~~~~~ A__ -

I -
~~~~~~ 

-
~~~~~

- - --  ---  
--



- -  ~~~~~~~~~~ - -- 
_ _

and assigned to four  ca tegor ies :  PC , P1 , PW , H , p lus  one e x t r a  ca t egory  of

Not Attempted (NA). The first letter stands for the type of response the

subject made where P:pattern , and R:random . The second letter is the

quality of the explanation the subject made on that item: C:consistent or

complete (the subject ’s single explanation explains all the errors),

l~ inconsistent (the  subject ’s explanat ion is not contradicted by any of the

problems but does not expla in  a l l  e r ro r s ) ,  and W :wrong (the  subject ’s

explanat ion is contradicted by at least one of’ the problems). For the case

of “R ” , Random—Consis tent  is implied .

[ inser t  Table 1]

First , let us compare the results of Pre and Post tests , combining the

results across the two groups of subjects and across the Red and Blue

tests. The distribution of responses is shown in Table 2 together with

values for Chi—squared .

[insert Table 2]

There was a significant improvement on the patterned items. The number of’

correct responses for patterns (PC) rose (p:0.0148 by one—tailed binomial

• test). The number of pattern descript ions disconfirmed by one of’ the

solutions it was supposed to describe (PW responses fell significantlyI.
(p:O.O2 by one—tailed binomial test). The number of’ random (H) responses ,

where a patterned bug was incorrect ly described as a random error , a lso

fel l  (p :O. 0 147 by one—ta i led  binomial t e s t ) .

The resul ts  on the Random test i tems also showed improved performance

a f t e r  exposure to BUGGY , al though they f a i l  to reach s ignif icance.  The

number of’ Random ( R )  responses for random items increased ; the number of

Pattern responses contradicted by at  least one of the examples ( P W )

decreased; and the number of items not attempted (NA) fell , suggesting

that speed increased slightly. (Almost all of the reduction in the number

not attempted occurred on the final random items which were the last item

in the Red test , and the next to last in the Blue test.) The number of

pattern-inconsistent (P1) responses increased slightly in both patterned

and random items , suggesting that the exposure to BUGGY increased the

subjects ’ sensitivity to the presence of patterning.

_ _ _  

• :.~ ~~~~~~~~~~~~~~~~~ - - - -. -- — - ‘ •  - • --



• —.—-- - -.--—

~~~ - t  C) • :  ~ . j  ~~: -~~ - —~ -
• - 0.~ . - - - L - - - -

- - . -
- - (C d - --. . —~ - - ~~~

CL -

~~~~~~ . IL CI. -
- 0.. - - C d  -

.

C d

- l - ,  - i  . d  - - fl..~~~f - • - C  - :  .: . L _) - C
Cl. Li. - — Q_ I - — Cd - - - 

~~~ CL - — - — . — - — ( _ •  • — - . - — C.

0~CO Ii C) C) ~)
_
~~ :•: - C ‘C - - -~~ 3- -i: (.) -~~

- • C . - . - C i - C
0. CL CL CL CL Cd CL - -

- - CI. . C O C CC. -
- ~~ CL - - - -

Cd
0-- Cr I C - C.) - . (C .~) I • (~~) - . — — - - • - • - - •

IC . C~~ CL CL (C . CL LI. ~~ CL Cl. ~~ r— - . - -
- - - — -

-
• 3. . -

Ci
F— CL - / —
I IC) CL • CI) -~~ -: . C C - C . - C CL - (C ~

_ - - - - - C) - Ci I..) C .~)• CL C - - - • - Cd CL CL . . . C ~~— C.. . CL CL CL CC..It)
• - CD C)

CL CC 1)
Li CL - C C L CL —- ~~~ C L - : C C L <C (; C LL) <C - .—‘ C) -~~~ <C (•)

LU :-C CC. Cl. ;- CL 103- CL Cd. C C L

C)
CC 0- U -

‘r C.) CL C) -: - -i C.) C) ~ j C L - . -: CL~~~~ D C.) C) C) Ci C) C_C C.) (_) C ..) C.)
CL CL CL CC.. C C) . Cl. - ;- ~

-f Cl. C.. 0.. CL CL CL -
• CC.. CC. 0. Cl. CC—

- . CL
C’) C)

~~ CL — ‘—. :-~ - (Ci C) — i : . - CL .—. .—. - - C L CL CX) ~~~ -d <C •—. ‘--‘
CL CL Cl. 3. Cl. CL 0- C.. :: 0) 0- 0- Cd. Cl. 3. d C

CL
(‘S) (

~.) CL C_) C) : C) — C) - : C.) C) —. C L < C — (_) C.) C.) ~~ <C C_) C...) <C (_) C_.)
CL CL CL CC.. Cl. CC. 0- C CC. 0.. Cl. C’) ~~ Cl. 0.. CL CL 0- C C... 3- 0- 0..

CL

‘—l ~~ C.) C) C) C) .—. (_C ~: C) C..) Cd C) Ci CL •--. — C) -: C) C_C C_C C_C C) - • C.) C.)
0.. Cl. CL CC. Cl. 0. Cd C). CL CL 0.. CL —. CL CL Cl. Cd CL 0- CL CC. CL Cl. CL C.

1i4 — --——------ — _ _ _ _ — -_______
CL

01 CD CL <C ~ <z ‘—‘ <C - : -Ii : - -:: -
~~ .-t CL

,dd:: .—I CL
~~~ 

.— 
~~ <C C) ‘ C C L  C.. L i -

• .—‘ ~~: CL - C.. -

CL
• Ci .— <C <C <C ~~ .—. <C C - - <C <C Cx)

CL ~ ‘- ~~ ~~. 3. — - 0) — - <C -Cd~ 1
Cl. Cl. :~~~~~~ ;_ :C :-~ Cl. - -

CL
CC) CL ~ <C <C C.) ‘C - — - - <C CL

0.. 2C CL CL 0C C) C) CL <C - —C DC C.)
Cl. C).. CC CL 0.. C CC. C.-. Cl-. 0-.

CL CL
~~ N- CL ~zC <C <C — C I <C -~~~ <C CL <C N. C) C..) <C <C C..) C..) - -C —Cd C.) C) C)

~C Cl. .• C I— 0 - C L  ~~ ~~ 3 - C L  CL CL 0. C.
F— C,-)1/) Ui

F Ci CL I—- 0-
• }— CO —i <C — i.... C) r~, C) C_C C_C — I CO -C <C <C <C <C <C - :~ ‘~~ —

I CL ~~ 0 - 0 - C l .  3 - 3 - .  CL 3 - C . .  CL CL Ui .- C CL C.. CL CL EL
Ui 0)
CL 0-0- CL 0) 

-it) CL C) :T~ <C :d~ - C C.) - - I C) 1._C <C <C Ci L. C d - 1. - C  CL <C CL <C —. :
CD 0- CL ~~ CL CL c.. C... ~~~ CL 0- C - 0 -
LX)
CL

3-. 0.
<C CL CL C) 3) Cx) C) - C cx) - çj c_C c_C ._. :~ ~~ (_C -: C) - C - C

CL CL CL (I. CL CL CL C) - Cd - Cl. C.. - -. CC..

3)
C’) i—. — . 0- — . ---. CL —. - C  C). c~ - C C L  <C -C  <C CX) I C  C)

CC. CL 3 - C L  0.. C-C CL CL C TC Cd. 3- - - (I. CL

CL Cx.
• C\J CL -CC .— ~~~ 

— C_C <C C) C) Li - CIC C’J CL CL D C - - C ~~ 
.
~~ -: C.

CL 0 - C L  CL C~C 0- C.. - 0_. CE 0.. CL LI.

CL 0
~~ 1 C) C) C) C_C - 

~ C_C • C) C) ( C  C) C )  - C_C C) C) C.) ‘—. C_C C) C..) C) C C C) C.)
CC. CL CL CL C) .  CL CL CL U.. CC. CL CC. C) . CL CL CL CL Cl. CL C.. CL • . C. CL.

C.)
U.)

CC)
-
- 

~~I C...) C’) C I-C) CD N— CO /~C ~~ - I~..I C.)
It) ~~~4 C’.) C’) - C IC) CO N. CC) C)) - .- i -.. --i -- • —~ - ,—~ —~ - CL J C’) CL - -

24

~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - -

~~~~~~ ‘C ::: - .-.



r 
.-———---—------—... --

~~~~

- ..-— - - .
- - .

~~~~~~

- . - -
--_

~~~

-

~~~~~~

-—

~~~~

.-- . -

TAB LE. 2

Patterned Items
——

RCn ’~~:: I tL~~~~~~~fl
Response Pre-Test Post-Test i re -T i -s t . Post-Test

PC 55 15 - -

P 1 18 24 15 22

PW 21 13 4 .~ 2

R 16 7 9 13

NA 52 49 44 35

X 2 12.45 2 .33

BE 4 2

P P< 0 02 ~• S.

~Lo: bined for Ch i-S q u a r e t est
-

25

- -~~.-
. r. _ _ .~~.L ~~~~

•

~~~~~~~~ - 

~~~~~~~~
— - , - --“—

~~~~~~~~~~~~~~
—...

~~~~
- . . . --~ -- - —--~-~~~~~~~~~kI~ —

Iho t’orego i ng conclusions depend on two assumptions implicit in the

exper imenta l design : tha t the two groups of subjects were equivalent , and

- - tha t the Red and Blue tests were e q u i v a l e n t . To confirm that the two

groups of subjects were equivalent , the responses obtained in the Pre.-tests

were combined w i t h those from the Post—tests , for each group, as shown in

Table 3.

[insert Table 3)

The two groups yielded very similar dis t r ibut ions of responses for both

Patterned and Random items . The differences are not s ignificant by

CM—squared test , and a large portion of the obtained Chi—squared values

derive from the difference in the number of Random responses between the

two groups , which appears in both the Patterned and in the Random test

items .

The second assumption is that the Red and Blue tests are equivalent .

The Pre — and Post— test responses are combined separately for the Red and

Blue tests in Table ~~~.

[insert Table I~]

There is no d i f ference between the two tests in the R andom items , but

the pat terned items were s ign i f i can t ly easier in the Blue test than in the

Red test . The number of’ correct responses was greater for the Blue test ,

and the number not at tempted was smaller , though nei ther d i f ference is

signif icant by one—t ai led binomial test . On the other hand , there were

s ign i f i can t ly more i n t e rna l l y—incons i s t en t errors (P W) on the Blue test

(p : .OL ~ by two—tai led b i n o m i a l) . This d i f fe rence between the Red and Blue

tests is unimportant as long as the pattern of d i f ferences is similar for

both the Pre—test and the Post—teat. Table 5 shows the d is t r ibut ion of

responses to Patterned test items for Red and Blue tests separately for

Pre—exposure and for Post—exposure applications. (Note that different

groups of subjects are involved , so the va l id i ty of the conclusions depends

on our earlier finding of no difference between the two groups.)

[insert Table 5]

26

~~~~~~~~
.- ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘~~~~~ - ‘~~~~~ 



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TABI.E 3

Pa ttern ed I tems Ran dom I tems
S1-S12 S13-S24 S1-S12 S13-S24

PC 64 66 - -

P 1 21 21 17~~ 2 0 1

-~~~~ PW 18 22 1 J 5 1

R 17 6 15 1

NA 48 53 39 40

5.94 4 .06

ELF. 4 2

• P pC0 2 P~O.2

- I

*Combjned for Chi-Squared test

27

h.I.. ~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~:.. . • -. .~ - .



ABLE 4

- S ~) C U S C  - Pd t t C rflCd I t C H S  Rd ndow Items

Blue Red Blue

PC ~- 71 - —

P1 2b 17 19 i  181

-ì

10.44 0.40

OF 4 2

*Corshi ned for Ch i-S q u a r e d  t es t

i—. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
,

_
‘

.

‘

~~~~~~~~~~.

‘ - -

..-. — --, - -

-.-—-— . .-. .—

Table 5

i~CSpOnSe Pre-exposu re Post-Expo sure

Red Blue Red Blue

PC 24 31 35 40

P1 11 7 14 10

9 18

R 11 5 J 6)

NA 29 23 30 19

7.72 8.47

OF 4
—_____

3

P P~0.1 .02 < P~ .05

*Colith jned for Chi-Squar od test.

I

29

& C .~~~~~ -.~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _

An inspection of Table 5 shows that the difference between the two

tests is very similar for the Pre— and Post—exposure applications (with the

single exception of the Random responses) and is certainly not large enough

to cast doubt on the main conclusion. We can , therefore , conclude that

exposure to BUGGY significantly improved the subjects ’ ability to detect

regular patterns of errors in simple arithmetic problems .

Qualitative impressions

The next question to be investigated concerned the issue of what the

subjects (student teachers) themselves felt they gained from their exposure

to BUGGY, in order to assess their impressions , we convened the entire

group during the evening when they had finished using BUGGY. At that

gathering , we first asked them to write their responses to two questions

(discussed below) and then taped a final group discussion in which we

sought their reactions to BUGGY , and their suggestions for its deployment

with school—aged students. The following week , their professor held a

similar group discussion (he also participated in the initial experiment)

and reported back to us the consensus , which was consistent with what they

had w r i t t e n .

Appendix 2 l i s ts al l the w r i t t e n responses to the question “What d o

you t h ink you learned from th i s experience?” . All 2~I responded that they

ca me away wi th something valuable . Many stated that they now appreciated

the “complex and logical thought processes ” tha t chi ldren of ten use when

doing an a r i t hme t i c problem incorrec t ly . “I t makes me aware of problems

that chi ldren have and they sometimes th ink logica l ly , not carelessly as

sometimes teachers think they do.” “I never realized the many different

ways a child could devise his own system to do a problem. ” They also

stated that they learned better procedures for discovering the underlying

bug —- “I learned that it is necessary t o t r y man y d i f f e ren t types of

examples to be sure that a child really understands. Different types of

difficulties arise with different problems .” Several stated their mixed

feelings about working with a computer. “Trying to beat the machine can be

chal lenging . ” “I learned that computers are a very complicated piece of

a

- ~~ ~~~~~~~~~~~~~~~~~ :.: ~
‘

~~~~~~~~~~~~~~~~~ -



--

machinery. If one isn ’t experienced wi th  the mechanism , then problems

could result.” And finally, “The types of analyses necessary to ‘debug ’

student errors on the test (paper/pencil) seems more difficult than with

the computer. But that doesn ’t make any sense. The ‘analysis ’ ought to be

the same. Perhaps the computer motivated my analytical ability. ”

Appendix 3 lists all written responses to the question “What is your

reaction to BUGGY?” Many felt that “BUGGY could be used to sharpen a

teacher ’s awareness of different difficulties with addition and

subtraction .” They felt that it might be of use in grade school , high

school , or with special needs students , or even as a “great experience in

beginning to play with computers.”

Conclusion and Extensions

Although our experience shows that student teachers learn a

significant amount from their use of BUGGY , the system should still be

substantially extended . In particular , most of what the students learned

while using BUGGY they learned or discovered , in some sense, on their own.

BUGGY does no explicit tutoring. It simply challenges their theories and

encourages them to articulate their thoughts.
14 

The rest of the learning

experience occurred either through the sociology of team learning or from

what a person abstracted on his own . The next step in improving the

‘ 
educational effectiveness of’ BUGGY is to (1) implement an intelligent tutor

to critique the example test problems the students create , (2) point out

interesting facets of their debugging strategies and (3) isolate

manifested weaknesses in their strategies. Our experience indicates that

such a tutor would be very helpful in that it could keep students from

getting caught in unproductive ruts and could help focus their attention on

the structure of the procedures themselves.

(1Z$ ) As a historical footnote , BUGGY was original’Cy developed to explore
the psychological validity of the procedural network model for complex
procedural skills. During that investigation we realized the pedagogical
potential of even this simple version of BUGGY as an instructional medium.
More recent versions of this system have stressed instructional aspects by
adding such features as assigning “costs” to student generated test cases,
thereby encouraging him to optimally formulate and test his hypothesis.

31

- . - - - -~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~


r

- -

-—
_ _ _

A l o n g these same lines , the “expert ” portion of the procedura l net

should be rn .~de “articulate ” in the sense of being able to explain and

justi Fy the subprocedures it uses. Th is would allow a student to pose a

problem to the system and obtain a running account of the relevant.

procedures as the “expert” solves the problem.

Another area for extension concerns the psychological validity of the

skill decomposition (and buggy variants) in the procedural network.

Determining the proper functional breakdown of a skill into its subskills

is critical to the psychological validity of the model and the resulting

behavior of the system . if the breakdown of the skill is not correct , bugs

that people would consider simple may be difficult to model , while those

• suggested by the model may be judged “unrealistic ” . From the network

designer ’s point of view this leads to the issue of choosing or
C

construc ting one structural decomposition instead of another. We are just

beginning to acquire a large data base of arithmetic errors from Stanford

[Searle 197ó] and will be testing to see how well our diagnostic model

accounts for all of them. In particular , we are concerned not only with

how many underlying bugs our current model captures , but also how many bugs

our network predicts that never show up. A more subtle issue concerns the

validity of the actual functional decomposition of the skills in the

network. Measuring the “correctness ” of’ a particular network is a

— problematic issue as there are no clear tests of validity, but issues such

as the ease or “naturalness ” of inclusion of newly discovered bugs and the

appearance of combinations of bugs within a breakdown can be investigated .

We are also in need of a theory which explains ~hat makes an

underlying bug easy or difficult to diagnose . Simple conjectures

concerning the depth of the bug from the surface don ’t seem to work , but

more so, isticated measures might . It ’s hard to see how to predict the

degree of difficulty in diagnosing a particular bug , without a precise

information processing or cognitive theory of how people actually formulate

conjectures about the underlying bug or cause of’ an error.

32

hdM~
— . -.

~~

. ... - --
... -: -

- - - - - ~‘ -
-

— ~~
—.•

~
- - .

~~
.-

. . ..
~

- -
~

— - - -.---.._......_ .,-. - - .- -~.-.‘ — -.- — - - ._ _ - , . .~ - .— .~ .~ - -

r ~~~~~~~~

-

~~

-— -- - - -
.

- - - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -

~~~~~~

Finally, we note that we have left open the entire issue of a semantic
-

or teleological theory of how bugs are generated in the first place. The

need for such a theory is important for at least two reasons. First it

could provide an interesting theoretical mechanism that would account for

the entire collection of empirically arrived at bugs , and second , it

provides the next step in a semantically based productive theory of student

modelling .

Ii
11

33

~ LI. ~~~~~~~~~~~

* ‘: — _~~. . . .
‘

~~, — - —* ~~
- - ..:.— - - -~~~.

u_*J ,_I ~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~

Ch APTER 2

AUTOMAThD PR OTOCOL ANALYSIS - A TECHNI Q UE FOR MODELL iNG AND MEASURING

. ~UD E NT PERFORMANCE
15

~l-:(:’1 1~ N i

The persistent theme throughout our research has been tha t for

intelligent CAl programs to successfully tutor a student , they must be

able to induce a model of the student ’s current knowledge and

preferred in teract ion modes. Otherwise , computer—based tutors ,

regardless of the power of their embedded expert , risk transactions with

the student that are inappropriate or annoying .

To address this student modelling problem , one must have some means

for making hypotheses regarding the student ’s knowledge . The

previous chapter described such a technique , namely diagnostic models

built around procedural networks. This chapter discusses another technique

that augments the previous one , ~.nd , unlike the previous one , assumes that

the main source of data available to the ICAI tutor is the student ’s

problem solving protocol or trace (as opposed to just his answer). This

chapter proposes a theory and a computational approach for automating the

• protocol analysis task for the purpose of automatically inducing a

struc tural model of the student ’s problem solv ing strategies. It then

~ discusses the design of a computer system , named PAZATN , for carry ing out

this task.

In add ition to providing us with a powerful technique for discovering

a student ’s underlying reasoning strategies , automated protocol analysis

also serves as a new means of measuring and testing the tutor ’s success.

With it , we can determine whether successive protocols reflect improved

problem solving competence on the part of the student. It can provide

rigorous measures of the virtues of alternative tutoring modes.

Finally, protocol analysis can also serve as a diagnostic tool for

discovering gaps in the knowledge of a practicing problem solver and

(15) A substantially modified version of this chapter is appearing as a
working paper by Goldstein and Miller.

~~~~~~~~~~~~~ 

-
‘ 

--

~~~~

. - ‘. ,_. ,-... . ‘ -
- -

-. -

direct a computer based assistant ’s attention to those areas that require

assistance and review (e .g . an adapt ive Job Performance A i d) .

In designing such an automated protocol analysis system , we have

drawn on concepts and algorithms from computational linguistics.

While the protocols we consider relate to problem solving behavior , and

not linguistic interactions , we nevertheless believe that there is a

fruitful synergy between the concepts developed in the language

understanding arena and the problems of ICAI.

- - Technical Statement of the Probl em

Protocol analysis assigns one or more theoretical interpretations

• to a record of a subject ’s overt behavior on a problem solving task.

Our concern is with problem solving tasks in which a student or subject

interacts with an on—line computer terminal. For such tasks, the

behavioral record is the sequence of keystrokes from the console

session. T~-e keystrokes are grouped into events , which are treated as

unitary inpot/output transactions. An advantage over the most general

analysis situation is gained by assuming that the dialogue occurs

within the confines of a well—defined finite “menu ” of legal responses.

Our primary concern is to account for problem solving behavior ; we do not

attempt to solve the natural language understanding problem as a

subprocedure .

For the purposes of this discussion , an interpretation is a structural

description of the list of events , augmented by an assignment of values
h

to a set of semantic context var iables , and a set of pragmatic assertions ,

associated with each node of the de~- ’- .-iption . The semantic

variables and pragmatic assertions relate the subgoal structure of the

problem solving protocol to the model , a formal description of the task

to be accomplished . In applications of automatic protocol analysis , it

is common to assume the existence of this formal problem

description . It is not assumed that the student has internally

represented the task in precisely the same fashion . These definitions

• are elaborated in section two .
_3 5

• ~
— ~~- —~ . .~~~ -

— - • - . - -
- ~- a- ~-- — -- ‘- ‘ - * -~ ,~~— - ~

- -~--—- - -- - - -- -

—-----~~- - - - - - -- --

— In order to impose realistic bounds on the specification of the

analyzer , it is also assumed tha t the protocol is “ reasonable . ”

That is , the protocol should represent a sincere attempt to solve the

problem at hand , and should terminate exactly when this goal has been

accomplished . Although “reasonable ” is difficult to define more

precisely, PAZATN ’s sensitivity to this assumpt ion will be made clear in

the ensuing discussion.

Determining the Validit y of Theoretical Interpretations

The validity of the interpretations assigned by the analyzer may

be ascertained in a variety of ways. Our philosophy is to utilize every

ava ilable source of evidence. Since the synthetic problem solver

employs identical descriptions , its heuristic adequacy is taken as

suggestive , though by no means decisive , evidence. Introspection by

human problem solvers is another source of weak confirming evidence.

The analyzer ’s ability to predict future behavior on the basis of

past performance will provide the strongest corroboration. No

• formal experimentation has been carried out to date. Our plan is to employ
C

the finished system for this type of rigorously controlled

experimentation . Ultimately we hope to embed such analyzers in

computerized tutors. This is an ambitious undertaking. When a

~ prototype is available , though , the pedagogical efficacy of that system

will provide a further check.

Review of the Synthetic Theory

Before examining the analyzer in detail , it will be helpful to

briefly review the synthetic theory. The basis for the approach is

a hierarchical classification of commonly observed planning and

debugging techniques. According to the planning theory, when the

problem solver confronts a problem , there are three major categories of’

plans which may be pursued . The problem may be solved by

ident if icat ion , tha t is , by recognizing it as a problem for wh ich a

36

~~~~~~~~~~~~~~~~~~~~ ~~ -~~~~~~~~~~. 1 2 . :~~~~~~~~~~~~~~~~~~~~~~~~~ *

a~ ~~~~ ‘ —i-- — . . L_. . - -



solution already exists in some answer library . This type of plan

may seem a bit trivial , but of course it is absolutely essential to

avoid infinite regress.

- .- 
Alternatively, the problem may be solved by

decomposition , that is , by subdividing it into smaller , easier

subproblems . These are each solved separately (by recursively calling

the problem solving system), and then recombined in one of several

specific ways , to produce a solution to the original problem.

If these strategies fail to produce a solution , the problem may

be solved by reformulation , that is, by redescribing the goal in other

terms which seem more amenable to solution. The reformulated problem

must , of course , still be solved itself (recursively calling the

problem solving system) by identification , decomposition , or further

reformulation.

Each of these categories of’ planning concepts is further subdivided

by the theory, as illustrated by Figure 1. Identifications may

be accomplished by retrieval from a lexicon of primitive operations for

the task domain , or by retrieval from an extensible answer library .

• Decomposition may be performed by Conjunction or by Repetition (among

others). Reformulation may involve Equivalent models or Simplifications.

Each of these , in turn , is elaborated still further.

The taxonomy is transformed into a procedural problem solver in

the following manner. In order to represent semantic information , a

finite set of registers is defined. These are used for storing flags

and structures resulting from intermediate steps of the computation. At

this point , the taxonomy can be thought of as a highly non—deterministic

decision tree.

In order to increase the system ’s determinism , the nodes and links

of the tree are taken to be the states and arcs of a recursive t rans i t ion

diagram. Arbit rary conditions over the contents of the registers

are assoc iated with the arcs , as preconditions for following them.

Finally, arbitrary structure-building and register—setting actions are

associated with the arcs , to be performed whenever they are followed.

37

~

- - :--~~ ~~~~~~~~~~~~~~ -:1 .:T :~~~~.~~~~~ ~ 
:.~:i~ 

-



r 

-

~~~~~~~~~~~

Figure 1 - The Planni ng Taxonomy

- - — PRIMITIVE
SIN

IDENTIFY COS
EXP
POLYNOMIAL

ANSWER LIBRA RY

CONJUNCTION

SUMS-RULE
PLAN DECOMPOSE CONSTA NT FACTORS

I NT-BY—PART S
PART I AL FRACT IONS

REPETIT I ON

EXTENDED INT-BY-PARTS

REFORMULATE
EQUIVALENT

vs SUBSTITUTI ON
PYTHAGO REA N - RE LAT ION

SiMPLI F ICATION

:~~- - - .-~i. - - - ~~~ -
- -- . -. - .~~ -‘. -

- —---—~~~~ -. - .,_— -
~~~~—----—-—- ~~~~~~~-U~~~~—-- --U



- -

I-or efficiency, s—me states with similar topology are merged , and

a few additional arcs are added to provide for such features as iterative

con trol , when recursively invoking the complete problem solver is

- 
. 

unnecessary. Although we allow arbitrary conditions and actions , these

are not chosen arbitrarily, but. are carefully selected to reflect the

semantics and pragmatics of the problem solving process.

The result of this metamorphosis is PAIN ’s synthetic augmented

transition network displayed in Figure 2.~

PATN has a particularly interesting property from the standpoint of

protocol analysis. It views certain types of errors (bugs) as rational ,

in that they result from heuristically mound planning choices made in

the absence of complete information , and is capable of producing

partial solutions (i.e., traversing intermediate states) containing

bugs of this type .

Design Considerations

A major insight of’ generative grammarians (e.g., Chomsky [1965))

was that in characterizing a set of phenomena , it is often helpful to

conceptualize the formalism synthetically, and to view analysis as a

~ process of inverting synthetic rules. Equivalently, analysis may be

I ‘ described as the selection of’ one or more plausible derivations from

~ a potentially infinite collection of synthetic possibilities. In

designing PAZATN , we have found it enlightening to view protocol

analysis as parsing in this sense , where PATN is taken as the generative

formalism.

Since the space of’ synthetic possibilities (both in language

processing and in problem solving) is potentially infinite , it is

critical that this space be characterized using a finite (reasonably small)

— (16) PATN is an expert problem solving system , designed by Miller and
Goldstein [1976] in which planning knowledge is modeled using augmented
transition networks [Woods 1970]. This system serves as the cornerstone of
a grammatical theory of problem solving which can act as a formalism for
representing the knowledge of our Articulate Expert for mathematics and
some aspects of electronics.

Ii -

~ht ~~~~~~~~~~~~ 
~~~~~~~~~. ~~~~~~~~~~~~~~~~ 


~~
-
~~~~~~~~

--— - -
~~~~

--
-

- -
~~~~

--

- 
- Figure 2. Plann i ng ATN for Symbolic Integration

PRIM SIN

- 

~~~~~~~ID POLYNOMIAL

ANSWER L R Y -~~~~

I — — —

CONJUNCTION SUMS

_ _

I NT-BY-PARTS

•
PLAN

J

- ~~ DEC

1

PARTIAL FRACTJO NS]

t ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

.

~~~~~~~I~~~~~ IMPL IF ICA T W N~~~~~~~~~~~~~~~~~
1

~~~~~~~~~~~~

- ‘
.
‘---

~~~~~

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _


______ - ~~~~~~~~~~~~~~~~ ~~~~~~~ — — —~~~~~~~ - -~-—~~-~~~ — - ______

~~-t of r-~~lt~s. In PAIN , these rules take the form of an ATN. This is

somewhat unusual , mince in computational linguistics the ATN is

commonly thought of as an efficient mechanism for inverting

F

transformational rules , i.e., for analysis. PATN ’s synthetic ATN is a

gene rator for the space of plans and debugging techniques which are

relevant to the problem at hand .

Naturally, PAZATN is not prepared to understand protocols which PATN

could not be made to generate eventually. The one exception to this is

that buggy versions of various synthetic plans (including irrational

bugs which would not be introduced by PATN) can often be recognized.

Since PATN is presumably an effective procedure within its domain of

competence , the analysis could , in princip le , be performed by exhaustively

enumerating the set of synthetic protocols , and selecting the first one

which matches the input data . Unfortunately, this would take

considerable time . Consequently, the primary consideration in the

analyzer ’s design must be to ensure that this synthetic plan space is

searched efficiently. Bottom up evidence from the actual protocol is

used for this purpose.

An important design consideration is that the analyzer be able to

take full advantage of the available sources of constraint. The

protocol analyzer has access to an unusually strong set of

expectations , namely the model. This is analogous to knowing the

“gist” of what a speaker is going to say before parsing it.

Consequently, the analyzer must be organized in such a manner that it is

able to extensively utilize the top down synthetic guidance which can be

provided by PATN.

This might suggest a design based on using PATN as a purely top

down predictive analyzer. The difficulty is that , while we know the

“gist” of the input , there is a tremendous diversity of potential

realizations of a given model in terms of the form of the solution. So it

is more like knowing the “theme” of a story , but not knowing whether the

author will present the events in chronological order , via flashbacks ,

~~~~~ ~~~~~~~~~~~~~~~ . .-~~ 
‘- - - -  - - — -

U •* .A ~~~~~~~~~~~~~~~ ~ -. .5 1k - - — - — -  - * - - -  ~t



-----U ~~~~~~~~~~~~~~~~~~~~~ --- ----- - -

or in anì order derived from some other organizing principle. The

unguided PATN could generate scores of irrelevant synthetic solutions

before stumbling upon one that matched the data. This factor leads to a

somewhat elaborate dual organizatiofl for the analyzer , which enables

it to reduce the diversity by considering bottom up evidence as well.

Another difficulty which must be faced , if PAZATN style analyzers —

are to be viable for eventual dynamic use in computerized

tutoring , is that events must be examined in a single pass , in

approximately left to right order. One could postpone this issue

temporarily, but such a simplification might result in a design which

cc. d not be extended for applications because of fundamental , premature

commitments. If the analyzer is forced to back up frequently, over many

events , it is often lzkely to find itself “apologizing” for

inappropriate tutorial remarks regarding prior events. Consequently, it

must carry along ~~y plausiI~ile alternative interpretations in parallel ,

until it has a clear basis for ruling them out. Conversely, the analyzer

must have some capability for restricting the set of alternatives under

active consideration , to ensure that excessive processing and storage

resources are not consumed by low plausibility interpretations.

The organization of the protocol analyzer is a

generalization and elaboration of the coroutine search plan—fi nding

procedure used by Mycroft [Goldstein 1971$ , 1975]. The differences

arise mainly from the need to take account of the considerations

mentioned above . In particular , the protocol analyzer is intended

to: (a) apply to more than a single task domain ; (b) understand a

wider range of event types (e.g., Mycroft was designed to analyze

finished computer programs rather than protocols); (c) reap maximum

advantage from the dynamic information available in the protocol regarding

subgoal structure and development; and (d) embody the more coherent

structured planning and debugging theory underlying PATN .

i—- -- ~~~~~~~~~~~~~~~~~~~~~ 
. _
~i~

:_
~

- 
- -  14



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - -

Over -v j ew

The PAZATN protocol analyzer is constructed on PATN ’s synthetic

foundations by supplementing the synthetic ATN with a number of

additional modules and data structures. One data structure is used to

keep track of the set of plausible subgoals which have been proposed by

PAIN. Another is used to record the state of partially completed

interpretations of the protocol. A preprocessor module is used to

suppress uninteresting syntactic details and to perform preliminary

segmentation . The preprocessor employs an event classifier to

determine the syntactic class of each event of the protocol.

Corresponding to each syntactic category, PAZATN must be supplied with

an event specialist which embodies the requisite domain knowledge for

assisting an event interpreter in associating an event of that type with

some syn the t ic subgoal. Since a p u r e l y top down or bot tom up strategy

would be too inefficient , a scheduler module is necessary to direct the

analyzer through a “best first” coroutine search.

Section two elaborates our notion of protocol analysis as a parsing

prc’cess analogous to the natural language processing task. The third

section provides a slightly simplified description of the

organization of the automatic protocol analyzer. Section four refines

this first order description of PAZATN ’s design. Finally, we present

our tentative conclusions and plans for future work.

I SECTION II

A GRA MMATICAL APPROACH TO PR OTOCOL AN A LYSIS

This section addresses the question : “What is it about PAZATN ’s

approach to protocol analysis that makes it grammatical?”

Central to the approach is the conjecture that various aspects of’

problem solving behavior can be studied approximately independently.

Consider the underlying problem solver (i.e., the subject) whose

behavior is to be analyzed . While we conceive of this problem solver

as being an integrated procedural system , we nevertheless suppose , at

least as a research strategy , that certain aspects may be factored -ut

.•

t i_ - - - - - -
~~

— - -

~~
_
~~.

1
_

-

- --U— ,

for separate study: the structural component , the semantic

component , and the pragmatic component. These correspond ,

respectively, to the potential control paths , data flow , and branching

conditions of a procedural problem solver. These aspects are

modelled by the network of states and arcs , the registers, and the

transition conditions of the augmented transition network. The

next sub—section introduces an example protocol in order to illustrate

PAZATN ‘s analysis.

An Example Problem Solving Protocol

In this sub—section we provide a brief example of the type of

L problem solving protocol which PAZATN is to analyze , and the sort of

analysis which it would provide. Imagine a situation in which a student

(5) is interacting with a computerized educational environment such

as SOPHIE. Suppose S is confronted with the the following problem:

In an electrical circuit , the voltage at time “t” is given

by

e(t) = r.sin(wt),
where r and w are arbitrary constants. Find the root—

~ mean—square voltage for the time interval [a,b].

A segment from a hypothetical protocol , representing S’s solution path on

this problem , is shown in Figure 3. Before delving into the details of’

PAZATN ’s analysis , we provide an informal account of the student ’s

solution.

The student was familiar with the definition of root— mean-square

voltage , and hence began the protocol by writing down the relevant formula. J.

[a,b] / 1 rb
[01 : V

~ f —- -- —— f [e(t)]2 dt
rms \ b - a)a

44

U
• -. .. -

—
• — -a — .. -- -.‘- - - -- a - - - - t • * • - S -- --- ~~~~~~~~~ -- -

Figure 3 The Example Pro tocol Segment

[a ,b] r 1 rb 2
[01 : V -~J—--——-— ---— J [e(t)] dt

rms V b - a)a

E02 : = ~~ I
[r2sin 2 (w t)] dt

E03 : = f r~sin
2(w t) dt

E04 : = r2fs in2 (wt) dt

[05: = fsin
2(t) dt

[06: = f u
2 du

3
U

E07: =

3

sin 3(t)
E08 : =

3

-
-
4 5

a— - -- ~~~~~~~ ~~~~~~~~
.
~~~~ 

,-

~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r

- 

Fi gure 3 The Example Protocol

[09 : sin 2 ( t ) cos ( t )

r 2
- u d u

ElO:  I
J cos ( t)

- Eli : cos ( t ) = ~~~~~~~~~~ sin 2(t)

- 

[12: 
fu

2[(l - u2 ) -1/2 ] du

El3: f sin 2 ( t )  dt

Ei4: let U = s i n ( t ) ,  dv = s in ( t )  dt

[15: du = co s ( t )  dt. V = -cos ( t )

E16: fs in
2 ( t )  dt = - s i n ( t ) c o s ( t )  + fcos

2 (t) dt

- E l7 :  
f

cos 2 (t )  dt fi dt - fsin
2 (t )  dt

-

. 

[18: 2fs in
2 ( t )  dt = t -  s i n ( t ) c o s ( t )

~L~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _



- -  -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

__

Next , S substituted the particular defin ition for e(t) provided by the

current problem statement.

r i lb
E02: =

~~~~~

—— -

~~~

- - --

J
{ r 2s i n 2

(wt)] dt

- - This resulted in a problem whose essence is integrating the function

sin~ . Some students might have remembered the formula for this indefinite

integral , in which case the solution would have been straightforward .

In this case , S knew only a few simple integrals and a few basic rules

for decomposing complex integrals into simpler ones. In the next step S

focused on this integration task.

E03 : = f r2
s in

2 (wt) dt

• Then S applied the “sum of i n t e g ra nd s ” rule , e l i m i n a t i n g the r 2 t e rm .

E04: = r2fs in
2 (wt) ~j t

As a simplification , S decided to ignore the w term in the argument

to the sin function.

£05 : = sin 2 (t) dt

At th is point , S at tempted to apply the subs t i tu t ion , u s i n (t) , hoping to

convert the integrand to a polynomial , one of the primitive integrals

which was known . However , the student committed the common error of

failing to substitute for the differential term .

47

- — -U • - -. . - - - , -
-- . r

- U ~~~~ -‘ ~ -“- .‘_ --‘,- - _& - - ‘-. - - - .- -- . ‘- - -U- — • •~ - ~ - -
-U— - U’—

--

r ~~~~~~~~~~~~~~
- — ---U- --—--

~~~~~~~~~~~~
-
~
-- -  -‘--U - -  - - -_-‘ ----

US• .

E06 : = U2 du

In a sense , the bug was fortuitous , since it aonverted the integrand

to a simple polynomial.

3
U

E07: =

3

The final step of S’s substitution plan was to re—substitute for the

temporary variables , restoring the solution to include only those terms

which were mentioned in the original problem statement .

sin ( t )
E08 : =

3

At this point , S became suspicious of the substitution - the result

I’ seemed too simple. As a check on its validity, S differentiated

the expression .

E09 : sin 2 ( t )cos( t )

Her e, S realized the mistake in E06, and re—executed the

substitution. This time S correctly substituted for the

differential term , except that the expression used was still in terms of

t, not u.

~~~ 
u2 du

ElO: I
J cos(t)

48

:, -

~

~U U ~~~~~~~~
•
~~~~~~~~~- ‘ ~~U- 

T .~ ::~ U 



- - - - - —U - --- - .- ~~~ - - - -_ - -,- - U-~~~~~~~~~ -~~~~~~~~~~~~~~~

The appropriate next step is to rid the expresaion of t. S

accomplished this using the pythagorean re ation .

El i :  cos( t )  = ~/~T si n 2(t)

E12: 
fu

2 {( l  - u
2
) 

- 1/2 ] du

Actually, at E12 , S has derived the canonical u = s i n(t )

substitution formula. However , the resulting subproblem was also

unfamiliar. It did not appear to S to he sufficiently simpler than the

original problem.

The substitution plan therefore failed to produce the desired

result. Hence , S retreated to the sin
2(t) formulation , and tried a new

approach - integration by parts.

E13: sin 2(t) dt

[14: let U = s i n ( t ) ,  dv = sin(t) dt

E15: du cos(t) dt , v = -cos(t)

[16: fs in
2 (t )  dt - s i n ( t ) co s ( t )  ÷ fcos

2 (t)  dt

Integrat ion by parts resulted in what appears , at first , to be an equally

hard problem — integrating cos2(t).

4

- U

~ 

.~~~~~~~~~ 

-



fcos~~t d t  =f 1 d~~~~f i
(t) dt

But once again , the student applied the pythagorean relation , this

time leading to an equation which did allow solving for the desired

in tegra l .

ElS :  2 si n 2 (t )  dt = t - s i n ( t ) c o s ( t )

Event 18 s t i l l  does not represent a complete solution to the original

problem. S might still have forgotten , for example , to correct for the

simplification introduced at event E05, or might have incorrectly

evaluated the limit terms for the definite form of the integral.

However , this segment of the protocol is sufficient to serve as our

example of the form of PAZATN ’s analysis.

Structural Descriptions

The result of PAZATN ’s protocol analysis is a set of data struccures

representing these severa l aspects of the problem solving behavior.

The first is a description of the subgoal structure of the protocol.

This data structure is similar to the context free deep structures (or
I

base components) of natural language parsing. It summarizes the arc

transitions which presumably were followed by the generating ATN . The set

of legal structural descriptions may be characterized by a context free

grammar. To apply PAZATN to a wide range of protocols , a thorough

analysis of the specialized problem—decomposition techniques relevant

to the particular domain is necessary. The reduced grammar illustrated

in Figure ~4 is adequate for anal yzing the subgoai structure of the

segment of protocol introduced above. While this grammar is typical of

the sort we envision , by no means does it represent a complete task

analysis.

50

hI~~
___ 

~~~~~~~~~~~~~ 
~~~~~~~ ,

- . -.  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ -

r
— --- -----

~~~~~~~~~~~~~~~~~~~~~ 

-

Figure 4 . The Context Free Gramma r

SOLVE -> PLAN + ~DEBUGJ

PLAN -> IDENTIFY DECOMPOSE REFORMULATE

IDENTIFY -> P R I M I T I V E  I ANSLIB

PRIMITIVE -> S I N  I COS I EXP I POLY .

DECOMPOSE -> CONJUNCTION I REPETITION

CONJUNCTION -> INT - BY— PARTS PARTIAL - FRACTIONS
SUM — RULE I CONSTANT— FACTOR I .

REP ET I T I O N  -> EXTENDED-INT—BY-PARTS I ..
REFORMULATE -> EQUIVALENT I SIMPLIFICATION

EQUIVALENT -> SUBSTITUTION PYTHAGOREAN— RELN

DEBUG —> < [DIAGNOSE] + ~REPAIR ]> *

DIAGNOSE -) ID-PLAN D— PROCEDURE I D—MODEL I D— PROCESS

D-MODEL -> CHECK-DERIVATIVE

REPAIR -> EDIT I SOLVEI- Is
I

51

~~~~~~~ ~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



U—U—-.---U- ~~~~~~~~~~~ —-—U--- 

~~~~~~~ -~=~- -  ~~~~~.- — - - - - U- --- — -U — -

~1gure 5 indicates the structur l description of this protocol

which PAZATN is intended to produce. Such structural descriptions

capture one aspect of problem solving behavior. They can be used to

provide formal answers to certain questions which heretofore might have

been discussed only in a more intuitive way. As an example , the

- - pa rse tree makes it apparent , by inspection , that the student is

comfortable with integration by parts; however , the incorrect first

attempt to use substitution , and the subsequent failure to apply it on a

second a p p r o p r i a t e occasion (a t E 12) , provide evidence tha t th i s
-

-
student requires additional practice using oubstitutionis.

Semantics and Pragmatics

Although the sort of description discussed in the previous

section is useful for answering certain questions , it does not tell

the -,.thole story. Even to make such structural descriptions intelligible

to the reader , it is necessary to provide some semantic and

pragmatic commentary . The synthetic theory of planning and debugging

provides the basis for more complete and precise semantic and pragmatic

annotation .

Semantic annotation ~~~~ defined to be the values of the ATN

k ~ registers associated w i t h each node of the structural description.

F These relate the behavior to the formal problem description . Pragmatic

-

-
annotation is defined to be a record of the justifications for selecting

a given arc transition rather than its competitors. In analysis , this

pragmatic annotation is a hypothesis about the subject ’s reasons for

using a particular approach. These hypotheses are based on both

PAIN ’s arc conditions (when the recommended synthetic transitions have

been made) and heuristic inferences from the available data.

The following is a typical set of registers which would be employed

by PATN to define the semantic context of a node in the problem solving

tree. Some of these are not “primitive ,” since they are derivable from

one or more of the others. It is possible that additional

52

‘ -
-

• •
~~~~~~~~~~~~~~~~ 



-U - U -  - -  ~~~~~~~~~~~~~~~~~~~~~~ - - -— -- ---— - 

Figure 5. Structura l Description of the Example Protocol

2 . 2  - -SOLVE (integrate r sin (wt)) ;top level of integration task
PLAN

DECOMPOSE
C O N J U N C T I O N  2

CONSTANT-FACTOR ;r E04
INTEGRAL-TERM 2

• SOLVE (integrand sin (wt))
PLAN

- 
- REFORMU LATE

SIMPLIFY ;ignore w
E05 2SOLVE ( i n t e g r a n d  = sin ( t ) )

PLAN
DECOMPOSE

REFORMULATE
SUBSTITUTION (u = sin (t)) ... E06

SOLVE
P L A N

I D E N T I F Y
PRIMITIVE . £07

RESTORE - INITIAL-TERMS
£08

D E B U G
DIA GNOSE

ID -MODEL

E09
REPAIR .~f i r s t  a t t empt  f a i l s

~ CHECK-DERIVATIVE

E D I T  .. ElO
SOLVE . , • REF . • PYTH . Eli , El2

R E P A I R  2SOLVE ; for  the sin ( t )  i n t e g r a l  aga in
PLAN

D E C O M P O S E
INT BY PARTS (u = sin(t))

E14 , £15 , El6 2SOLVE ( integrand = cos (t))
PLAN

R E F O R M U L A T E • •
PYTH I RE LNI , . £17, £18

U

L~ ~~~~~- --.~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _



—- - -

~~~~~~~~~~~~

-- —--U’— -- -- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-U- - — -- - - --

~~~~~~~~~~-

semantic variables may be added in future research , perhaps in tailoring

PATN to particular domains. The list below is adequate for our current

purposes.

1. ?TREE is that part of the parse tree attached

to the current node (“below” it).

— 2. ?PHOCED (JRE is the terminal solution procedure

as defined so far. This reflects the state of the plan

after any debugging events have been taken into account.

3. ?EFFECT is a domain-oriented description of

the actual performance obtainable by the solution as

defined so far. Since a partially solved problem may

contain references to currently unsolved subgoals ,

?EFFECT may be unassigned at a given node.

~t. ?PROTOCOL is the “fringe ” of ?TREE. That is,

it is the list of terminal events dominated by a given

node.

5. ?PLAN is a collapsed version of the subtree

associated with ?PROCEDURE. That is, ?PLAN corresponds

• to the notion of the plan of a finished solution. The

concept of collapsing a parsed protocol into a plan is
I-

elaborated in other reports by the authors .

~ 6. ?MODEL is the set of predicates which

?PROCEDURE is intended to accomplish . For a correct

solution ?EFFECT will be a special case of ?MODEL.

7. ?ADVICE is a list of planning and debugging

suggestions generated by the synthetic pragmatics of

PATN. For example , in solving a novel integral by

-

--
partial fractions , when it is not known for certain

whether such a decomposition is valid , a record of the

fact that the partial fractions arc transition may have

been inappropriate , is appended to the current contents of

?ADVICE. This helps to guide the debugging component in

54

‘

~

T . - - ~~~~~~~ ~~~~ ~-“~-. ‘~:i: 1~~: 1 T ~: TI
____________—-U -

-

U-- -- — - - U —U- - - U - -

~~~~

• - - — —U- -U- - ____________

diagnosing the underlying cause of later model

violations.

8. ?TITLE is the symbolic name of the solution

currently being developed . This aids in the detection of

se l f—refe ren t i a l  (recursive) plans. An example of its use

in t h e  example protocol is when th e integration—b y—

parts led to a second occurrence of the integral of sin2.

Sometimes , as it happened here , a self—reference results

in a solution ; at other times , it may indicate a

c i rcu la r i ty  in the solut ion path .

- 
- 9. ?GIVENS is a list of the names and types of

the given data , and assumptions which  may be made

regarding them by the subplan below a given node. This

is used , for instance , in the detectior~~- of

inconsistencies between the definitions of subgoals and

their usage .

10. ?VIOLATIONS is the list of model predicates

• which are not satisfied by the ?EFFECT achieved by

?PROCEDURE. This register is set by a separate

performance annotation module. H

Let us briefly consider a few examples of the values of these

registers at various nodes of the structural descriptions for the

hypothetical problem solving protocol presented earlier . For the SOLVE

node corresponding to E03, ?MODEL is as shown in Figure 6.

Prior to E09, the ?VIOLATIONS register at the PLAN node for the

subst i tut ion was :

(NOT (: ( E X P R  E05) ( EX P R E 0 6 ) ) )

Since the integration task is eventually solved , ?VIOLATIONS is empty at

its SOLVE node , since solut ions include debugging. The same is not true

for the corresponding PLAN node.

55 

-- U-— — U - - - - - -~~~~~~
—— --- - - __



—---—- - --— - - — - -~~~-------- - --- ---— - — - - — -~~~~~~~~- - - -~ --- —-- - -~~~~~~~~~~

Figure 6. Problem Oescription (Model) for Top Level Integral

3(f(t)) such that

- 
d f ( t )  2 2

- _______ = r sin (wt)~
dt

and

II ~J

1’

56-

~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~



I h e  pr-~ gmatic s  provides  r at i o na le s  for  the var ious  p l a n n i n g

choices in the protocols. These are derived from the synthetic arc

c o n d i t i o n s  when applicable. For example , the reason for integration by

parts being attempted on the integration task was that the integrand was in

the form of a product of two terms .

(HEASON (INT—BY—PARTS E13)

(EQ (FORM (INTEGRAND E05)) ‘PRODUCT))

U 

The reason for each buggy event in the protocol is the same as the

reason for what might have been the corresponding correct version of the

event , but flagged by a note s t a t ing  t h a t  the  a t tempt  was buggy.

• Debugging operations localize (or repair) the cause of some

violation. The reason for E09, for example , is to verify that the

integration satisfied its specifications (i.e., that the derivative of

the results give the original expression). In this case , the underlying

cause of the violation was the omission of an essential cleanup step

( t h e  differential term). The repair was to solve for the missing term and

incorporate it at the appropriate point in the solution :

(REASON ElO (REPAIR EOÔ))

REASONS are represented by assertions involving instantiated arc

predicates  of th i s  sort , a t t ached  to each node of the  s t r u c t u r a l

description .

Discussion

The example protocol discussed in this section illustrates

the analyses which PAZATN is designed to generate. In keeping with

the grammatical metaphor , these analyses have three aspects: structural

(syntax), semantic (purposes), and pragmatic (reasons). The structural

analysis is represented as a parse tree. The semantic and

pragmatic information is represented as annotation (variables and

assertions) associated with each node of the parse tree.

57

I-

hI_~ ~~~~ ~~~~

-

- ~~
1 t  

~~~~
-
~~~~ U ~~~~~~~~~~~~



_ _ _  _ _ _

Some rea1er- ~ n~ght. object that these three aspects alone do not

con s t i t u t e  a complete analysis  of a p ro toco l .  Perhaps some essent ia l

dimension of the subject ’s problem so lv ing  performance  has been

overlooked. li there are useful questions about the behavior which are

not captured by these aspects , we would have to agree. However , our

working hypothesis is that there are not . Hence , we believe that part

of our contribution in this research is our recognition of the

appropriateness of a linguistic analogy .

A precise d e f i n i t i o n  of protocol ana lys i s  has been provided ,

along with a brief example of the form of this analysis. We now turn our

attention to the design of PAZATN , a scheme for performing such analyses

automatical ly .

SECTION I I I

ORGA NIZATION OF THE PA ZA TN PR OTOCOL ANALYZER

General

In this sub—sect ion we describe the general organization of the

protocol analyzer. Later sub-sections present additional detail. The

analyzer would consist of the fo l lowing  data  s t ruc tures  and modules:

PA T N , the PLA NCHART , the DATAC H A Ff T , the preprocessor , t he event  c lassif ier ,

the (domain specific ) event  spec ia l i s t s , the  event  i n t e rp re te r  and the

scheduler. Figure 7 provides a b lock  d iagram . A f t e r  r ev iewing  the

analyzer ’s input/output specifications , we consider each of these

components in turn. Section four refines the first order

description provided in the cur rent  section . Since the event specialists

are domain specific , we will not provide details in this report .

The analyzer receives the model as input. It is a formal

statement of the top level goal , and the protocol , which is a list of

input/output events. It has been assumed that the protocol is

“reasonable , ” in that  it represents  a sincere at tempt  to accomplish the

task , and that  it terminates exac t ly  when th is  goal has been sa t i s f ied .  —

The design is robust in th is  respect: it relies only s l igh t ly  on

these s implifying assumpt ions. Consequent ly,  it is our expectation tha t

58

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ i~i~~ -~~~~~


+~~~~0
JUJ

x
ou-
cx L4~~>-

-
- < I — . ~Z -J

I— N~ fl Z I— ~~ -~

< ~~o 0 < I— cD

~ o-z — <
I— I--

il Ii c x w - -

L_1 o t ~~~~~~~~

~~1 ___ -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

LL 
___

iii ~j~E!Ill—— —L[
-39

1~~
__ 

~~~~ T ~~~~ ~~~~~~~~~~~

-

U- -U -—

--U - U - - U - U- U--- ’--

t t - it JI~ - l I L.- f i I I - ‘ : ~;l•~~V l- t o be use I i - -~~ 1 though it may perform less

e t T i c i e n t l y) t o c - 1es~ t h~ ri Ideal pc tocols , such as where the

subject/student makes a s~~~it,l~- start t~~t f~~il~ to complete the project.

The output of the analyzer is a Set of one or more plausible

interpretations of the pr~ t . where an interpretation is

def ined as the assignment of a ~tru:t~ ral description (or “parse”) to

the l is t of even t s , augment ~-~i t y dn assignment of values to the set of

semantic variables , as well as by a collection of pragmatic—reason

assertions , for each node of the description. In order to discuss

the representation of interpretat ions , and the manner ~n which they are

discovered , it is necessary to introduce the roles of the ATN and PLANCHART

in the analysis process.

Augmented Transition Network (ATNI

To understand the central role of the ATN , one need only remember

that the analyzer is little more than a procedure for selecting those

synthetic solutions to the stated problem which most closely match the

input data . However , the space of possible solution paths is

represented in tensiona l ly (as opposed to extensionally) by the ATN . We

require the ATN to generate complete protocols , even to the level of

I

events corresponding to the typing in of detailed instructions to the

computer monitor. Some of these requirements are superfluous for the

expert version of the problem solving system. Hence , we plan to

employ a slightly modified version of PATN in the analyzer (but the

differences are not otherwise important).

There is a question as to whether the expert version of the ATN will

eventually succeed in spanning the entire space of reasonable non—expert

behaviors , provided that each of its preferred approaches is

successively rejected by the analyzer. The expert version of PATN would

have the interesting property of being capable of producing partial

solutions which contain certain “rational bugs.” Furthermore , it will

be seen that the spanning requirement does not rule out the

6()

- ~~ -~~~~~ - —~~~~~~ - ---~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~

=-



_________ 
- - - U—-—--U—--

~~~~~
-

~~~~;— —--- --

ana~ ysis of “inexpli cable ” (or “irrati onal”) bugs —- such as

t y p o g r a p h i c a l  e r rors  or memory lapses  -- provided that they can be

recognized as deviant versions of some rational synthetic

behavior. Consequently, we tentatively assume that PATN is indeed such

a spanning model in this extended sense .

The P.TN would perform arc transitions partially as a result of

P A TN ’s s y n t h e t i c  p ragmat ics  and p a r t i a l l y  as a r e s u l t  of a n a l y t i c

guidance . For example , the ATN may expand the plan for a subgoal which

might not have been pursued in the pure synthetic system , because

analytic criteria have established that this is probably a subgoal of the

subject/student. The ATN then suggests how one might go about solving it.

The PLANCHART

As the  ana ly s i s  progresses , t he re  are a number  of reasons for  need ing

an extens ional represent ion of the  ATN process , as it operates  upon the

particular problem. Consequently, a complete trace of the synthetic

c o m p u t a t i o n  is kept  for e x a m i n a t i o n  by t he  a n a l y z e r .  This  da t a  s t r u c t u r e

is called the PLANCHART. The most obvious reason for creating such a

r ep resen ta t ion  is to avoid repeated c a l c u l a t i o n s , but  i m p o r t a n t

add i t iona l  uses for the  P L A N C H A R T  w i f l  appear  in the  course of the

discussion.

In f ac t , the  P L A N C H A R T  i nc ludes  not o n l y  p lans , but  nodes of o ther

types  such as debugging episodes .  As i ts  name suggests , the  P L A N C H A R T

is a char t  [Kay  1973 ] ,  a n e t w o r k — l i k e  da ta  s t r u c t u r e  w h i c h

compactly represents many comb inations of subexpressions. Iris

data s t r u c t u r e  is an e f f i c i e n t  r e p r e s e n t a t i o n  fo~ PATh ’s c u r r e n t

set of p a r t i a l  so lu t ions  and t h e i r  s t r u o t u r - ~1 d e s c r i p t i o n s .  R a t h e r  t~-3n

genera t ing  the  e n t i r e  so lu t ion  space at once , w h i c h  wou ld  be i m p r a c t i c a l

even if the space happened to be finite , the ATN expands tnis PLANC c-iA RT

incrementally as additional possib ilities are needed t-y the analyzer.

The PLANCHART resembles an AND/OR goal tree (see Figure b ,

for an example). However , there are a g rea t e r  v a r i e t y  of ’ no de t ypes ,

~~~~~~~~
-UU-. --— -~~~~~~~ L~~~

- 1’L~~~~ ~~ ~ -U--- ~~~~~~~~ ~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~



- - - ~~- U- ~~~~~~~~~~~~~~~~~~ ‘-~_- U -U—

Figure 8. Example Plancha rt :  Like an AND/ OR Goal Tree

SOLVE

PLAN

CHOOSE

DECOMPOSE

CONJUNCTIO N

CHOOSE

INT-BY-PART S

SOLVE (integrate cos
2 (x )) 1

~
L-i

DE RI VAT I V E-DIV IDE~

I ~~~ REFORMULA TE .

- 

- /~-t ~~~~ (
~ c L ~ -

EQUIVALENT

PYTHAGOREAN- RELAT ION

SOLVE (integrate cos
2 ( x ) )

SOLVE( integrate h(x))

62

- 

U ~~~~~~ -



- -  - - - - U-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- —U-U-’ -- —U--- —-U— 

_ _ _ _ _ _

rather than just A N D und ~~}i . This a l l o w s t h ~~ PLANCHART to r -pr - - ; - -r i t

such concepts as whether a set of c-onjuricts r~~ - I t~~) t~e

accomplished in the specified order , or whether any order wi l l do ,

allowing a greater variety of synthetic combinations to be

expressed p a r s i m o n i o u s l y . For concre teness , we take the PLANCHA RT to be

a LISP S—expression. However , each subexpression is unique— ized; tnat

is , EQUAL subgoals refer to physically identical structures. The reasons

for this are explained shortly.

The analysis process is closely tied to modifications of this data

structure . In particular , the structural description assigned to a

protocol corresponds to a subtree of the PLANCHART starting from the root ,

(the top level SOLVE node) to the individual protocol events

corresponding to a subset of the leaves. Consequently the structure

building actions of the analysis system are performed entirely by the

ATN.

The Representation of Interpretations

In view of the above remarks , it should be clear that an

interpretation of an event can be defined simply as an assignment of that

event to a leaf of the PLANCHART (Figure 9). Similarly, an

~ interpretation of the protocol corresponds to a complete association list

of such event assignments , and a partial interpretation is an association

list containing assignments for a subset of the events in the

complete protocol. As a consequence of the left—to—right processing

order , a typical partial interpretation contains assignments for the

first M out of N events.

Notice , though , that a given PLANCHART leaf may be a member of

more than one structural description , due to the structure sharing

mentioned earlier. This is an advantage . Genuine ambiguities need

not be treated as explicit alternatives. The analyzer does not commit

itself to an arbitrary decision . All possibilities are carried along ,

implicitly, at no extra cost. It is possible , but unlikely, that

63

t ~~~
--

- - ~~- ‘ ‘
~.
‘ -

------U—U- - —

U - — U -- - --

Figure 9. Interpreting Events by Assignment to PLANCHART Leaves

PROTOCOL : PLANCHART :

E06 : fu
2du~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

M
RM ATE

E14: let u = sin(t)) SOLVE
du = cos (t) dt PLAN

DECOMPOSE
CONJUNCTI ON

(ASSERT (A S S I G N M E N T E06
/ - 2

~~

INT- BY -PARTS
d~
:

(ASSERT (BUG EO6 (not (u du sin (t) d t))))

(ASSERT (ASSIGNMENT El4 .))

64

U- ~~- - - - --~~~~~~~~~~~~~ -- - -U-

-

-
t t i - a ~-~~m p I ~

- l~ ;su - i t t ~on list for t ~~~~ r , t i r-~- protocol will likewise

h t V t mu It ipi ~;t u - I ur ~t 1 I 1 ~~- S (r 1 p1 ion p ithwi yS througr the PLANCH A RT.

Each ot these , t tchnicall y, should L-- considered a different

interpretation. Nevertbc- l~-ss , it is s~ nsib le to lump t t e r r togetr~~r ,

- since this situation can only occur wr en t~~ - data have beert irt~ dequate to

distinguish them.

In order to be assigned to a given leaf of the PLANCHPIRT, it is not

neoessary for the data event to i de n t icill y match the corresponding

- synthetic event. The assignment merely reflects the heuri ctic

- — judgment of the analyzer that the actual data event was intended to

- - serve the same role as the associated synthetic event . Consequently
-

-
a syn thetic event (i .e. a single PLANCHAR T leaf) actually stands for an

equiva lence class of data events , w ith various plausib ilities.

For an interpretation to be plausible , the data even t must be very

- “sim ilar ” to t he assigned synthetic event. Therc are exactly two ways

in which the events may differ: (a) the data event is an alternative ,

- equ ivalent realization of the synthetic event ; or (b) the data event

is a “buggy ” real ization of the synthetic event . The plausibility of

assignments of type (b) depends on three factors. One factor is the

intrinsic , essent ia l l y syn tac ti c , sim ilarity. Misspellings which diffe r

I

by only one or two characters are an examp le. The second factor is

• knowledge of common bug types. Since “rational” bugs would appear as

d istinct leaves of the PLANOFIART , here we speak of the “irrational”

- var iety. Since there is , at. present , no compell ing theory to

account for suc h bugs , the evidence must be of a statist ical nature , and

not necessarily the same for each individual. The third factor is the

context in which the bug occurs. This is determined by the status of

neighboring leaves. We return to these questions later.

The DATACHA R T

A partial interpretation is said to split when it proposes

more than a single PLANCHA RT assignment for its next event. Some

(1 5

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _



- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _  _

method for k t e  ping track of’ the analyzer ’s alternat ive partial

• interpretations is needed. Ideally, i t  should take advantage of the

fact that , following a split , the event interpretations prior to that

sp l i t  remain the  same : the  common ances t ry  should be preserved.  The

DATAC H ART serves t h i s  f u n c t i o n .
— The DATACHART may be thought of as a context—layered data base , sue-h

as that provided by CONNIVER [Sussman & McDermott 1972]. PAZATN would

record partial interpretations in CONNIVER—like contexts. Suppose that

- - two interpretations have identical assignments for the first M events ,

and then split. The split corresponds to a single context layer

having two descendants. Assertions corresponding to the shared part of

the interpretation are automatically inherited from the parent context

layer (Figure 10).

Whenever an event assignment is to be made whose plausibility

does not exceed some threshold , the following actions are performed:

(1) An assertion is added to the current context ,

indicating which assignment is about to be made. This

ensures that  the same possibil i t ies wi l l  not be

repeatedly pursued .

(2 )  A PUS H CONTEXT is executed , creat ing a new

subcontext which will inherit prior assignments from the

parent context. This ensures that changes which reflect

the uncerta in continuation of the interpretation will not

affect the state information in the parent.

( 3 )  The uncertain assignment is performed in the

new subcontext. The normal operations associated with

event in terpreta t ion (described below) are carried out.

( L )  A handle to th i s  context  is placed on a lis t

of NEW partial interpretations. This ensures that it

wi l l  be scheduled for at least one cycle of fur ther

inves t iga t ion .

66

Ii-~--~-- -. ~~~~~~~~~ f~~~i:~::~~ ~~~~~~~~~~~~~

_ _ _

~~~~~~~~~~

_ “
~

•
~~~~~~~~~~~ 

- -



-U— -~~~~ U - - —  —- - ------- - - — - -— - - — -U- 
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Figure 10. Inheritance of Shared Part ial Inter p reta t ions

(ASSIGNMENT EO 1 p tr 1)(ASSIGNMENT E02 ptr 2)

~~sp l i t)

(ASSIGNMENT EO3 ptr 4)
(ASSIGNMENT E03

ptr3)
‘-

~. (ASSIGNMENT EO4 ptr 5)

/
U /

/
(ASSIGNMENT E04 ptr 3)

(ASSIGNMENT EO5 ptr 6)
(ASSIGNMENT EO6 ptr 5)

(ASSIGNMENT E05 ptr 7)

1_
I

‘-
-

- -

(A SSIGNMENT E06 ptr 6) (ASSIGNMENT E06 ptr 5)

/
1

/ / (state saved , but no
- actual splitting here)

(ASSIGNMENT E07 ptr8)

67

I~~ ~~~ --

(5) A PuPCUNTE.X 1 is executed . The parent context

of the new interpretation is then re—examined to

determine if alternative assignments should also be

considered. If so , the above sequence of operations is

carried out for each. When no fu r ther a l t e rna t ives seem

worth considering at the present time , the parent context

is placed on a list of HUNG interpretations.

With this technique , it is not necessary to explicitly list all

of the possible alternative interpretations for a givea-~ event. Note

that , after the PUSHCONTEXT , the HUNG layer represents , not a single

part ia l in terpreta t ion , but an indefinite number of implicit alternatives

to the par t ia l in te rpre ta t ions exp l i c i t l y represented by its

offspring . Even a f t e r it is HUNG , the parent context conta ins the

necessary state information for generating additional possibilities ,

should it ever need to be reactivated .

Incremental PLANCHART Expansion

Consider the s i tua t ion in which an act ive pa r t i a l

in terpre ta t ion can f ind no acceptable assignment for i t s next event in

the PLANCHART . There are two actions possible: ei ther (a) conclude that

the current partial interpretation is a dead end , and move it to the

HUNG list; or (b) conclude that the PLANCHART has not been expanded
I

su f f i c i en t l y to account for the cur ren t da t a .

In case (b) , the ana lyze r passes con t ro l to PATN , which expands

those subgoals most likely to be relevant to this interpretation .

Since the PLANCHART is kept in the GLOBAL context , other

interpreta t ions may also benef i t from the add i t i ona l growth. This

is the only s i tua t ion in wh ich the PLANCHART is expanded. (This rule

is modif ied s l igh t ly in the next section.) Limited , incremental

growth ensures tha t a min imu m number of i r re levant syn the t i c solut ions

are generated .

68

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~



- - ~~~~~~~~ - - U--- ~~~~~~~ 

U n f o r t u n a t e l y , deriding whether (a) or (b) is actually the case ,

may be diff icult. The difficulty is compounded by the fact that . a given

data event need not be an exact  match to a PLANCHART leaf  in order to be

assigned to it; it could be a buggy version , or an equivalent

construct. There are three technica l  problems : (1) choosing between

cases ( a )  and (b) above for a given leaf; (2) locating the relevant

existing leaves which ought to be considered in view of possible

equivalence and bugginess; and (3) locating the relevant existing

part ia l  interpretations wh ich might be able to “make use” of newly

generated PLANCHART leaves , especially in view of possible

equivalence and bugginess .
- 

- 
Now , if the analyzer is too miser ly  in a l lowing PLANCHA R T growth , an

event might be interpreted as a buggy version of an existing leaf , when

only slight growth would have allowed it to match a new leaf exactly.

But if the analyzer is too eager to expand the PLANCHART , the number

of irrelevant synthetic solutions considered could be enormous.

We plan to provide the analyzer with a number of strategies 
- 

-

for dealing with these problems. One strategy , which has already been

introduced , handles the case where the relevant events are EQUAL; this is

the unique—izing of subexpressions. But unique—izing is inadequate to

deal with buggy or equivalent versions. Another strategy employs a hash

coding scheme , where the contents of the buckets are pointers into the

PLANCHART.

Markers and Marker Propagatio n

A third set of strategies for dealing with the difficulties

of the previous section relies on a system of PLANCHART markings and

marker propagations. The marker scheme is of interest because it is

also used to produce the f ina l  s t ruc tura l  description , by selecting a

subtree of the PLANCHART. The assignment of a data event to a PLANCHART

leaf can be thought  of as marking tha t  l e a f .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
ii___ _

’_
_~~~~~~~~__ - _ _ _ _

I
- --- ~~~ U-—-~~~ - - - ~~~~~~~~~~~~~~~~~~~~~~

UU U - - -

Now recall that the PLANCHART is essent ia l ly an elaborated

AND/OR goal tree. Each non—terminal node type represents an ATN

state , each of which specifies either a conjunction or a

disjunction of subgoals , with possible sequencing constraints.

Consequently, we can allow markers to propagate upward through the

PLANCHART according to three rules:

1. MPH— i . if the parent of a marked node is a —

disjunctive type (e .g ., CHOOSE), the parent is marked;

2. MPR-2. If the parent of a marked node is a

conjunctive type (e.g., SEQ), and the siblings of the

marked node are also marked , the parent is marked (note

that if there were constraints on the ordering, but the

events appeared in the wr’n order , the siblings would

probably not have been marked);

3. MPR-3 . If no h ighe r p l a u s i b i l i t y i n t e rp re t a t ion

can be discovered , under certain cond i t ions a propagation

may be postulated when neither rule MPR-1 nor rule MPR— 2

is completely satisfied . (This third propagation rule is

designed to allow structurally ill—formed

[“ungrammatical”] plans to be analyzed , but with lessened

plausibility.)

Top down MOD plans (see below) however , are handled specially.

-
- The so lu t ion for the top level problem should be propagated when it is

finished , even though the solutions for the subproblems have not yet been

encountered; but the expectation for the subproblem solutions remain

in e f f e c t , and cause subsequent propagations when they occur. This

is indicated by using two different marker symbols in later diagrams .

The marker propagation s t a t u s is local to a partial

interpretation and its offspring . Notice that it indicates which synthetic

subgoals are expected , and which are satisfied . An upward propagation

corresponds to what might be termed a reduction in a bottom up

parsing scheme . The propagat ion of markers is intended to a l low the

70

~

-U , :U - : - - -. U

~

, .
-U- - .-~~~~~~~~ - •-U- - - — — -— - - U ~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~ - - - —~~~~~ -~~~~~~~~~~~



- - • -

analyzer to efficiently draw inferences about the probable solution

?ath represented  by t he  protocol , w i t h  respect to a p a r t i c u l a r  ass ignment

of events .  —

At intermediate stages in the analysis , these PLANCHART markers

provide evidence concerning the plausibility of alternative

interpretations. This is especially important when additional PLANCHART

growth is under consideration. The following guidelines follow

immedia te ly :

-. PLR-1. An event assignment which would result in

a propagation is more plausible than one which would not.

PLR—2. An event assignment which would result in

a long chain of propagat ions  is more p l aus ib l e  t han  one

which would result in a shorter chain.

PLR—3 . A completed interpretation (one which has

interpreted the fin~il protocol event) which propagates a

marker to the top level SOLVE node is much more plausible

than one which does not (a consequence of the

“reasonableness” assumption).

PLR—~ . An event assignment to a conjunction

dominated leaf , many of whose siblings are marked , is more

plausible than an assignment to such a leaf only a few of

whose siblings are marked. A similar rule holds for

plausibly marking non—terminal nodes.
I-.

PLR—5 . No leaf sho d be marked by more than one

event .  More genera l ly ,  a node dominated  by a marked node

should not be marked. One exception is that if the

dominating marking was via marker propagation rule MPR-3

(or the USE nodes of top down MOD p l a n ) ,  and if the new

marking would have allowed a propagation via MPH— i or

M P R —2 , then the node may be marked . The other exception

is that if the marking was the result of a buggy

assignment , and the new mark ing  is the correct version of

71

~~~~~I~~~~~~~~~~~~~~~~~~~~~ U~~~~~~~~~ - t ~~~~~~
’: ~~

!Ir ~~
-

c c ’ - - - - —‘---- - ~~~ __
— — - —

that assignment , the no1i&- may be marked.

PLR— 6. Assi gnment:~ which result rn propagations

by propagation rule MIft-~ are much less plausible than

assignments which result in propagations by rules MPH— i

or MPR—2.

These heuristic guidelines help the analyzer to: (a) determine

whether it is propitious to allow additional PLANCHART growth; (b)

select the preferred interpretation for an event; and (c) select the

• U preferred structural description of the protocol , which is a subtree of

the final PLANCHART .

The marker propagation scheme provides a precise notion of

expectations. A constituent is expected to the extent to which it

world result in propagations. For example , consider an Identification

Plan for solving a subproblem . If the subproblem had previously been

solved and saved in a file , it is expected that a command retrieving the

solution from the file will occur. The PLANCHART would contain an

unordered conjunction of subgoals , one to add a use of the solution

to the subproblem to the solution to the top level problem , and one

to retrieve the solution to the subproblem from the file. After an

event had been assigned to the former , the latter would be expected because

its occurrence would result in a propagation at least as far as the

Identification Plan node.

Suppose that an expectation (such as the Identification Plan

example) f a i l s to be sa t isf ied a f t e r many events . One poss ib i l i ty

is that the partial interpretation which expects it is just on the wrong

track , and should be abandoned . A second possibility is that the overall

subgoal s t ruc ture is correct , but the subject has proceeded to

re—solve the problem via Decomposition or Reformula t ion , perhaps

because the existing solution had some undesirable property. If

this Second possibility was in fact the case , then when the

subproblem ’s solution was completed , the resulting propagation would

“turn off” the aberrant expectation , since it would then be dominated by

a marked node.
7,2

h11~a ~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - U~~~U-U-U- -


-~~~~~~~~ ~~~~~~~~~~
_ _

~~~~~~ _

A thir d pos sibility is that the student/subject is actually

using an ungrammatical plan. If a file retrieval is not performed as

expected , it could be that the student simply forgot to do it , or

thought that it was unnecessary , mistakenly believing that its

solution was already present in the workspace. The fact that a plan

is ungrammatical does not make it unanalyzable , however. When

the end of a solution to ~ subproblem is encountered , some

propagation ought to occur under every ACTIVE interpretation. If such an

-. event is followed by events which are analyzed as diagnosis , then the

most plausible propagation is forced , even if this is only possible via

rule MPR—3 . The plausibility of this interpretation will be greatly

increased if the missing event eventually does occur as a result of

subsequent error correction.

The Event Classifier

The event classifier module contains the syntactic knowledge

• necessary to distinguish the various domain—specific event types. The

event classifier is one of the few components of PAZATN which would need

to be redefined for each domain, in assigning an interpretation to an

event , a variety of semantic and pragmatic evidence may ultimately

be considered by the analyzer ; but the domain—specific event

classifier is deliberately restricted to syntactic evidence (and timing

data , for a few cases such as those mentioned earlier).

The event classifier can be invoked in three modes. In the norma l

-J mode (which is used by the preprocessor) its input is an event , and its

output is that event ’s primary syntactic class. For most events , thi s

is sufficient. The second mode of operation is used by partial

interpretations which find the primary syntactic class of the event to be

questionable , but have a specific alternative class under consideration.

In this second mode , the classifier is called with an event and a

proposed alternative category . The classifier returns with a numerical

summary of the syntactic evidence relevant to the proposed

7~

I
~~R, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



-U,

it-c l i~ s~~ u-atxon. The third mode is employed when the primary class is

- 

- questioncu , but no a l t e r n a t i v e  read i ly  suggests i t s e l f .  The c lass i f ier

returns with an exhaustive rank—ordered list of the syntactic categories

H and their (syntactic) plausibilities .

Event classification would be performed using

straightforward pattern matching. The details , being domain specific ,

are generally uninteresting and are not given here .

The Event Interpreter and Event S~ecjalists

The event interpreter is the module responsible for category

independent operations o~
’ event interpretation . This includes the

context saving and restoration sequence described in the DATACHART section ,

the actual processing required for marker propagation , and the marker

status plausibility computations. The rationale for grouping these

activities into a separate component is modularity: they are routinely

required , and common to every category of event interpretation.

The event interpreter is the “inner loop” of the analyzer.

It is invoked by the scheduler with two arguments: a handle to a partial

interpretation , and a data event from the protocol. In cooperation

with one or more event specialists , it attempts to explain that data

even t  in the  context of’ that partial interpretation. This may result

in the creation of one or more additional (descendant) partial

interpretations. When event interpretation is complete , control

returns to the scheduler.

A collection of domain specific event specialists [ESP’s] are

responsible for category dependent operations of event

interpretation ,. Each specialist contains the requisite knowledge for

analyzing events of a particular syntactic type . The event interpreter

invokes an ESP with an event (and an implicit assumption regarding

its syntactic category) in the context of a given partial interpretation.

The specialist is free to assign any interpretation to the event wh ich

is consistent with the categorization assumption . However , a given

74

~~ L -~~~ ~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.

_
. - .  h

—.---



- - - - - - — — —-- —— — — -------~ -~~----— - - • -— - U

~:~ l ( S  r r-t t r- ~ -~ t o - ) r ~S 1dt r - l b  i~ ’~:~;i b il i t y  I i  1 . t~~~ - ~~~

~i~ sumpt ion is i n - - o r - r - .-c

If the- event special st does not i- el urn witn a suffiriently

plaus ible event assignment , the event interpreter ~.il1 then consider

the pos~ i b ili ty that. the syntacti c category which has been postulated

for the event may be rncorrect. Whenever an event is interpreted

as b u g g y ,  expectat ions for diagnosis and repair are generated at the

request of the event interpreter. The details of the ESP ’s f r

particular task domains are not given here ; examples of ESP s for the

LOGO graphics domain are presented in [Miller & GoidsLein 1976dJ .

The Sche d u l e r

The remaining module to be considered is the scheduler. The job of

the scheduler  is to dr ive the  anal ysis throug h a best first coroutine

search of the space of partial interpretations . Ultimately it arrives

at one or more plausible completed interpretations.

The state of each interpretation is represented by assertions

in its context layer. For example , one fact which the scheduler needs to

know about an interpretation is how far along it is in processing the

U
i protocol. (Note that not all int€-r pre tation s are equally far

along.) This progress is represented by an assertion of the form :

(INPUTMARKER ~ <even t#>)

which means that the input marker is sitting immediately after the

<event#> ’th input event .

Another set of facts which are needed are the event assignments.

These are assertions of the form :

(ASSIGNMENT <event#) <leafptr>)

~ch means that the <event#> ’th event has been assigned to the PLANCHART

~~~~ referenced by <leafptr>. Note that at most a few of’ these assignment

~ ,i~~r ’ ions are explicitly present in a given layer; the rest are

~~~~~~~~~~~ from higher up in the context hierarchy.

7 r )

U~ — :— • ~. — .- -~~ .~ - - -

- U-— ——— —-U--— -- -— — -
- - U -  — U—- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -


F,— ‘ U-~~ ~~~~~~~~~~~~~~~~~~~~~
-
~~~~~~~~~ 

, ,
~~~~~

- W. TJ ,~V _ t _ .U-__U-. __

p The s c h e d u l e r m a i n t a i n s t h r e e l i s t s of p a r t i a l

interpretations (handles into the context hierarchy): the NEW list ,

thc ACTIVE list , and the HUNG l ist. Every partial interpretation

which has be-rn discovered is on one of these three lists . Typ ically

interpretations on the ACTiVE and NEW lists are further along in processing

the input. Those on the HUNG list will not make progress unless a

suff icient number of currently ACTIVE interpretations become HUNG , at

which t ime some HUNG interpretations may be reactivated .

The basic difficulty which is faced by the scheduler is to ensure

*
tnat interpretations which have a reasonable likelihood of succeeding

ccntinue to make progress , while those that are likely to fail do

not consume valuable resources. ACTIVE interpretations are pursued

in parallel , while HUNG interpretations are available should

backup become necessary. The size of the ACTIVE set is a global parameter

of the analyzer. It should be chosen to be just large enough to ensure

that backup will be infrequent , but not so large that progress

is forestalled . A fundamental hypothesis is that the ATN plus the event

specialists provide sufficient information to constrain the likely

interpretations to a moderately small number.

The sct eduler operates by cycling through the ACTIVE list ,

allowing each partial interpretation to process one input event. Then

the p l a u s i b i l i t y of each mod i f i ed i n t e r p r e t a t i o n is recomputed , and the

ACTIVE and HUNG lists are updated . NEW interpretations (resulting

from the splitting of ACTIVE interpretations on the previous cycle)

are autotaatically moved to the ACTIVE list , to ensure that they receive at

least one quantum of processing before being HUNG. The plausibility of a

partial interpretation increases with each additional event accounted

for. (This provides for automatic attenuation of older HUNG

interpretations.)

This coroutine search process continues until at least one ACTIVE

interpretation has processed the last input event with high plausibility.

To be highly plausible , a finished interpretation should not have

76

‘a U— •~, ~U - - - ‘- -
‘U

-
-~ -

—

______ - - —- - “U—--—U---
~~~~~~~~ -l

~I o~ I n~ ex~~-ctat ions , but be i sur ~~- , t a 1 ~;u lu t ion of t h -  origi na I

pro bl em , It the first successful m t  r i r - - t at i on is not sufficiently

be t t e r than  every  other candidate , som• - of the better alternatives may

also be pursued  u n t i l  t hey  become i m p l a u s i b l e  or det e r m in e  t h a t  in fad

t he protocol may successfully be interpreted in more than one way.

Sl-; I’Ii )N IV

R E F I N I N G  THE A N A L Y Z E R

Overview Qf Ref~ 1—er~ents

This section examines two broad classes of refinements to the PAZATN

protocol ana lyze r ’s basic des ign .  The f i r s t  class is a set of

elaborations to the slightly simplified description of the prev ious

section , which will be included in our first implementation.

The second category consists of so-ne possible alternatives to the

organization presented here. Our purpose in outlining this second

category is to provide the reader with a flavor of the issues involved.

Our overall scheme for doing protocol analysis is to use PATN to

generate expectations , and then to define a recognition process that

attempts to match these expectations Lo a protocol. This parsing process

can be refined by utilizing several ideas that have proven effective

~~~ 

-
~~~ in problem solving and language ~~rsing programs , includ ing

lookahead (e.g., [Aho & Ullman 1972]), least commitment (e.g.,

[Sacerdoti i975]) and differential diagnosis (e.g., [Rubin 1975]). Some

of these have parallels in the synthesis process. Here we examine their

role in analysis .

We also briefly examine some techniques for improving the

applicability of the analysis scheme to use in dynamic tutoring . One

strategy is to replace the expert ATN by a modified version , wh ich more

closely models the idiosyncratic problem solving behavior of the

individual student. Another strategy is to introduce pruning

procedures to reduce the amount of stc-rage required by the analyzer.

Still another is to provide heuristics for dynamically adjusting parameters

o of the recognition process in accord with the pragmatics of a tutoring

session.
77

III. , 
-

~ 

- U 
- ..-a. — . - — ‘. - -, U - 

- —

- ~~
‘ - ‘ U  - •~~ • 

~~~~ 
,., - - - a’ - - ~~~ . - - • — • U.

U-— --U—’— —— ------ — - ‘ ----— -

~~

-- _ .

1-indlly ~~~~- explore a number 0! 1SSU€- s related to possib le- alternative

design choices . Ih e possibi lity of organizing PAZATN as an analytic ATN

[A A T N J instead of as a corout inc ~t - a r ~~h t r is d i s c u s s e d . Th i s approach

m i g h t o f f e r g rea t e r c l a r i t y and m o d u l a r i t y , d e c o u p l i n g ma t t e r s of

efficiency from formal theoretical concerns . Limitations of the

breadth of the synthetic theory ar-c also considered . Finally, the

question of episode based analysis —— performing the analysis in

larger chunks —— is raised .

Lookahead and Least Commitment

Lookahead and least commitment are related search strategies

designed to avoid premature decisions based on inadequate evidence ,

and the resultant need to back up. Lookahead consists of briefly

examining later events in the input iLrxng pr ior to interpreting the

current event . Least commitment consists of postponing a decision

regarding the proper interpretation of the current event until

further evidence is gathered from later events.

Recall that PATN as an Al expert system always engages in strict top

• down problem solving. The top level plan is completely defined

before the solutions for subpr’oblems are attempted . Human problem

~

solving is not this uniform . Alternatives to pure top down planning

need to be incorporated by allowing variations on the order in which goals

are pursued.

t~ goal may be expanded before a subgoal , representing top down

planning . Ur , once the need for a particular subgoal has been

established , that subgoal may be expanded before ascerta ning which

other- subgoals are needed for the main goal , representing bottom up problem

solving . Figure 11 illustrates a top down expansion , while Figure 12

illustrates bottom up.

A bottom up or mixed solution order is a good example of the

possibility for misleading mismatches between expectations and protocol

• events . Least commitment helps to minimize this. The net effect is that

7~

Ui

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ .•~~~~~~~ .•

—U- - - -U— — -U—--— — - -----U U--  ‘-U~~~~ • -U~~~~-U



Figure 11 . Top Down Expansion

f,~~~x) + g(x ~~7 dx

Jf(x)dx +Jg (x)dx

+ fvd~7 
+ Jg (x)dx

+ Jvd~J + ~~~(x)  +

7 a 

~1 ~~~~~~~~ 11~ _ _ _



r ~~~~

- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~

—--

~~~

--
~~~~~~~

--
~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 12 . Botto m tip Expansion

- . 
JIf(x) + g(x ~J dx

J
f(x)dx + f g ( x )dx

- 

- Jf (x)dx = ~~ v 
+f

~~~~~~~~~~

f vdu = . .

VU

80

I

_ _
~~~~~~~~~~_U±_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~ ‘ -  -~~--— ‘ -



— -U’— —-- U -_ “~~~~~~~~ C U-U —, _

— - —

~it those decision points where the choice is essentially arbitr a ry (such

as in the part icular sequence for  a c c o m p l i s h i n g  a SET plan) PATN generates

a d i s ju n c t i v e  set of p o s s i b i l m t i ~~~, r a t h er  t han  making  an a r b i t r a r y

selection. Thus , at any point in the parsing proce~;s , a set of

3lternative expectations may be present . This avoids a blind depth first

top—do~.iianalysis , and reduces costly backup.

We have already seen some use of these techniques by PATN. The

primary application of least commitm ent , in the synthetic component ,

is the avoidance of arbitrary ordering decisions. As currently

designed , PATN can optionally be instructed to produce procedural

nets [Sacerdoti 19751. Figure 13 illustrates how purely sequential

solution procedures , unlike procedural nets , overspecify the ordering

cons t r a in t s .  The v i r t u e  of t he  p rocedura l net representa t ion  for  P A Z A T N

is that , when an ordering would be arbitrary, there is no reason to expect

the student to choose the same pa th  as PATh. By postponing the

decision , a greater number of interpretations can be implicitly represented

by a single PLANCHART marking .

Examples of the techniques occur in the analytic component as

well. Some difficulties which are encountered in designing event

specialists , for example , can be resolved by the use of demon procedures

[Charniak 1972]. In certain situations a demon would be createa to

represent an event assignment which  depends on subsequent events .

When the relevant events are finally encountered , the demon would then

fire , completing the assignment on the basis of’ the add i t iona l

— information.

One effective application of’ least commitment in the analytic

component is the sharing of substructures in the PLANCHART . This

allows ambiguous collections of event assignments -- those which

have more than a single s t ruc tura l  descript ion —- to be economically

stored . Rather than committing the analysis to one or another

structure , the decision is postponed until some event provides evidence

U - clear ly favor ing  one or the o t h e r .  Implement ing  this policy does not

81

U ~~~ 
— .‘, - - — 

-
~~-,- —U-.~~~~ — — ‘U a’ ~

—
.‘

—
~~

—--
~~ 

“c’- — 
~‘

-
~~~

--
~~~~ -~ 

— 

‘~



-- - - — - - - -

Fi gure 13. Procedura l Nets versus Sequential Procedures

— Clear A

~~~~~~~ft~~~~~~~~~~~~~~oin ~~~~~~~~~on B 1
Th

C l e a r C IY~
A Proce durd i Net For Building A Tower

• A fter Criticism to Resolve Conflicts

{Based on Sa ce rdo ti . 1975 , p. 15]

~~~~~~~~ L~~~~~—~~~ - - ——--- - -  —- _~~~~ ~~~~~~,. -— - —~—~—-~- 
-



r

rt -qu i r e  special action. It i s  an a u t a r l - I t  ic  consequence  of the a n a l y z e r ’s

Jat .& s t r u c t u r e s .

PAZATN can also benefit from a type of lookahead which has not been

presented so far.  Previous ly  i t  was claimed tha t  PLANCHART growth was

• to be limited to those cases in which a plausible active

i n t e rp re ta t ion  could not f ind  an acceptable assignment for its next

event. This statement was an expository simplification , and is not

strictly true .

-. The primary objective of PAZATN ’s control structure is to cause the

strongest sources of constraint to be utilized first. This is to prevent

unguided search in a potentially large space. Thus , when there is clearcut

bottom up evidence of a particular constituent , that evidence should be

examined . Likewise , when a top down decision is straightforward , that

route should be pursued prior to making less certain analytic

assumpt ions.

Therefore , instead of severely restricting PATN ’s activity,

as previously stated , we actually intend to allow it some freedom to

exploit strong sources of top down constraint. Some synthetic decisions

are virtually forced by the form of the model. There is no reason to

interrupt PATh when it is about to make such a decision. This can be

-
~~ viewed as a type of lookahead , in that even before the event

interpreter has “noticed” any deficit , the synthetic component has

predicted the necess i ty  for -— and accomplished -— appropriate PLANCHART

• growth.

PAZATN ’s analysis procesa is actually designed to begin by

synthetic examination of the model. This top down investigation

proceeds until some decision point is reached for which the synthetic

basis is uncertain in some fundamental way. At that point , control

switches to the analytic component. Likewise , whenever the ATN is

invok ed , it is allowed to proceed so long as its choices follow from firm

criteria. This reduces the overhead of constantly switching between

event interpretation and plan synthesis. Operations would proceed

with  fewer i n t e r rup t ions , in s l igh t ly  larger un i t s .

83

~ 

~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -U- - -------

~~

-_ ---- - -

Despite i t s v i r tues , though , least commitment could be overdone .

The resul t would be such a large d i s junc t ion of expectations tha t no

guidance could be obtained . Moreover , the relationship between the

system ’s formal model and the student ’s intuitive model is tenuous.

The analyzer strikes a balance between overly committing i tself , and

s tubbornly refusing to take decisive act ion. This is accomplished by

avoiding overcommitment in the course of a given decomposition s t ra tegy ,

but requiring bottom up evidence to change the formulat ion of the model.

The next section describes the d i f f e r e n t i a l diagnosis knowledge that would

be used to request such reformula tions .

Di f fe ren t i a l Diagnosis

We have a l ready encountered a use of demon procedures by the

analyzer ; this was to hand le the problem of the assignment of a given

event depending p r imar i ly on the assignment of some fu tu re event .

Another use of demons , w h i c h we did not consider , is to perform

differential diagnosis in deciding between two interpretations , or in

recovery of an appropriate explanation when a given approach becomes

hung . In those s i tuat ions where even the use of least commitment fa i l s
U

to produce a successful set of expectations , d i f f e r e n t i a l diagnosis

~ knowledge should direct PAZATN to produce a new set of expectations.

There are two s i tuat ions where d i f f e r en t i a l diagnosis is appropr ia te .

One is the use of e x p l i c i t diagnostics for unsuccessful category

assignments. The second , and most significant , is the

reformulation of the problem description to achieve consistency with

bottom up evidence .

In our f i r s t order descr ip t ion of the event specialists, we imposed

the stringent requirement that no specialist ever consider the

appl icabi l i ty of another special is t ; this job was lef t to the event

interpreter . Sometimes t h i s requirement can be a r t i f i c ia l . When a piece

of category specific knowledge is able to diagnose the appropriateness of

some other ESP , then that piece of knowledge belongs wi th in the

specialist for that category.

84


~~~~~~~~~~~ -U~~~~ ’ UU~~~ UU ~~~~
U-

Li kt- wi ~;e , d i f t e re n t  i - i l l i ag n o si s  is ua€- J to select the proper

subset of a disjunctive set of expectations (such as is produced using

the least commitment policy ). Conversely, when none of the alternative

expectations matches the protocol , the analyzer requests that PATN

perform a reformulation consistent with that evidence. The following

-ire some examples of demon templa tes , which  can be ins tan t ia ted  to

realize this behavior in specific situations.

DDR- 1.  If the cur rent  protocol segment uses a

named subproblem whose model has been firmly established ,

and if that model corresponds to a disjunctive subset of

the current  expecta t ions , then select that subset. If no

expectation corresponds to the model of this segment ,

reformulate the curren t problem description in such a way

that this model is among the expected subgoals.

DDR—2 . If the effects produced by the current

protocol segment match a disjunctive subset of the

current expectations , select that subset. If not ,

- - consider a reformulation that uses a model satisfied by

the segment effects as a subgoal. (The possibility that

the current segment is an error must also be

considered.)

DDR—3 . If the subject states that the current

segment corresponds to a certain subgoal , select that

subgoal. If that subgoal is not among the current

expectations , reformulate the model so that it is.

DD R — 14 . If the current  segment accomplishes the

ef fec ts  of an expected subgoal , but not by a plan t ha t

matches current expectations (e.g. via different control

• structure ) then reformulate for this part , in terms of a

model corresponding to the control structure observed in

the protocol. Generic/explicit conversion [Miller &

Goldstein 1976b) could be handled by this rule , for

85 

~~~~~~~~~~ ‘~~~~ ~~~~ ~~~~~~~~~~~~~~~ 

—U- - U -— - - - - .•l1l~

- - -
— -—-—_-—--U—--U-_--,— - _-U-U-- -----

~~~
-•-- ” i _ U -~~~~~~~~~~~ _U _______ - • —

~~~~~
-.

ins tance .

DDR—5 . If the effects of the current segment

violate only a few model predicates under the current

in te rpre ta t ion , but the segment has a sub—segment -

s t ruc ture that does not correspond to expectations , then

reformulate. If there are too few segments , try

regrouping into compound parts . If there are too many

segments , try disecting model parts which contain

multiple sub—parts.

This list is not exhaustive . However , it does suggest how

d ifferential diagnosis demons could be useful in refining the basic

analyzer.

Tai]~oring the ATN to the Individual

In previous sections , it has been assumed that PATN is a spanning

model , in other words , that the ATN is capable of exhaustively

enumerating the space of reasonable problem solving behav iors (within its

chosen domain). To this definition is added the caveat that

“irrational bugs” such as typing errors are often understandable as buggy

~ versions of one of these intended synthetic solutions.

It might seem that the caveat leaves the definition so weak as to

be vacuous. But it is at least thinkable , if not probable , that some

human problem solvers might display genuinely irrational intent. This

• does not refer to deliberately trying to mislead the analyzer —— “hacking

the system ”. In PATN terminology, such problem solvers would have a

deviant ATN. Their protocols would be more difficult , if not impossible ,

to analyze .

• In what ways can an ATN be incorrect? One error would be to have a

variant of the optimal pragmatic arc constraints. A characteristic

example would be an ATN wi th an overly developed cr i t ic on the l inear

planning arc . A problem solver , having encountered severa l cases in

86

~~~- -:~~~~~ ~~;~~~~:-~~~ 
~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~-~ -

--



wP~i -h  an initially line ar- a tt a ck ted to bugs , m i g h t  reach the  gene ra l

c o n c l u s i o n  t h a t  a l l  p rob lems  r e q u i r e  a n o n — l i n e a r  a p p r c a c h .

Consequent ly, any problems w h i c h  appeared to be l i nea r  m i g h t  be

r e f o r m u l a t e d  to ensure  the  i n t r o d u c t i o n  of non-linearit ies.

Such an approach , of course , misses the  v a l u a b l e  g u i d a n c e  in

understanding the complexities of novel tasks , which is offered by the

failure of the linear plan. This quirk is common among novices in

the programming domain , for example. Relat ions , which by all accounts

of “ s ty le” in programming ought to be accomplished via an interface step,

will be accomplished as part of the definition of an adjacent main step.

For example , a W ISHING W EL L is de f ined  as a TOP , a POLE , and a WELL ,

where the setups for each are inc luded  in the  subprocedures .

More serious would be to have missing , or extra arcs. A novice

programmer , whose prior experience was in the BASIC language ,

would probably be missing the recursion arc for achieving round

plans. Consequently all problems involving generic models would be

solved by iteration . Those problems for which iteration is truly

inadequate , such as drawing arbitrarily deep binary trees , would be

u n s o l v a b l e .
I’ Even more catastrophic would be to have missing , or extra states.

Suppose one wished to a p p l y  P AZATN to the ana ly s i s  of pro tocols  produced

by some other  A r t i f i c i a l  In te l l igence  program . It is l i k e l y  t ha t

reformulation would not be one of its solution techniques ; the relevant

states would probably be missing entirely.

Moreover , the class of “rational” bugs should really be seen as

relat ive to the problem solver ’s compu tational resources. Suppose there

were certain systematic limitations on the ATN , suc h as an upper bound

on the size of the structures contained in (or  pointed to by)  i ts

registers. Some bugs which formerly might have been termed “irrational” , —

in that they might have been avoided by consulting the critics gallery

for example , become “rat ion-al. ” This is because a plan involving

oversimplification , follo.-~ed by debugging , may place less stringent

87 -;

U - - - •
~~~ - - - - -

—U’- - ~,L__ - - ~~~~~~~
• •~~~~~‘~A ’’ - - - ~~~~~~~~~~~

- - -U- - - — •~ .~
— -U - ‘U U- ~U ’•~ -~~~~~ ~~~~~~~~ -U-

-
-U --

U :_ _UU_ _ , ~~~~~~~~~~~~~~~~~~~~~~~ - -U-’-- --- —U-’ ‘- U- - —~ - —-U- U-

dem ir or r i - - li mited ,- - -~iource. Rat ion - -
~lity, by defin ition , is

measure l w i t t ~ r~-spect to some e s t i m a t e of u t i li t i e s , costs , and r i sks .

Very li kely, it is possible to handle most protocols produced by

suc h non-ideal problem solvers without significantly modifying PAZATN ’s

design . It is easy to generate example solutions which PATN would be

loa the to produce , but wh ich PAZ A T N , ‘ - i n g ilr ~’ l . \ 1 N A I N , f l flO flCthelesS

t r n d e r — i i i r 1 - ~f - t icr -o rnpt,-l I l ug P ir i t c r t- x rnr ll- ~,
- i i i bc lound is an open

quci - i t i - i .

Nevertheless , a drastic reduction in search would result if the

problem so lver ’s q u i r k s were t u r n e d to a d v a n t a g e . In tutoring the same

student day after d a y , for example , cons is ten t f a i l u r e to use a c e r t a i n

type of plan should suggest to PAZATN that it is pointless to continue to

— look for it (except perhaps as a last resort). Consequently, our

intention is to replace the expert F.TN by an idiosyncratic version

tailored to the individu al. Once such an idiosyncratic ATN has been

constructed , it can also be used , in tutoring applications , as a student

model for the selection of tutorable issues.

Further lm~rovements in A~~licabllity to Dynamic Tutoring

Al though an automatic protocol analyzer is a valuable tool in its

own r ight , the a u t h o r s are p a r t i c u l a r l y concerned t h a t PAZATN ’s

structure be amenable to applications involving real t ime , on—line

tutoring . This constraint imposes strong limitations on the design ,

most notably the restriction that events be processed in a single

pass in approxim ately left to right order. Moreover , the system

must be sufficiently responsive so as not to interfere with the

student s progress. Naturally this consideration is less critical in

the ex post facto exhaustive study of the protocol for theoretical

and experimental purposes.

Tc these ends , this section considers additional improvements

to PAZATN . The tailoring of the ATN to the individual , d iscussed

in the last section , is one improvement. Two further improvements are

88

- -
~~~~~~- -  ~~~~~~ 

-
~~~~~~~~~~~~

-
~~~~~~~~~~~ - ‘ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ — . -• 

- 
_ _ _  _ _ _ _  A



I[i—-
A0 A043 271 BOLT BERAteC AND NEWMAN INC CAMBRIDOC MASS F/S 5/9

ASPECTS OF A THEORY FOR AUTOuATEo STUDENT MODELLING. LW
MAY 77 J S BROWN. ft ft Bu.mtoti. C HAUSMANN 1CA903—76—C—OlOe

UNCLASSIFIED MN ’3509 NI

A 0 4 2 2 7 1

END
DA,E

FFLUED

9 —7_7



_ -

pre$E~rlted . One is the introduction of pruning heuristics to reduce the

amount  of storage required by the analyzer. The other aspect is the

dynamic adjustment of key parameters of the recognition process , to

• increase the system s responsiveness without degrading the accuracy

of its interpretations .

In order to assure reliability and the capability to recover from

initially erroneous interpretations , PAZATN keeps a record of ever y

p~irtial interpretation which has been discovered . These are kept on

three lists: NEW , ACTIVE , and HUNG. Furthermore , every local

ambiguity can potentially cause PAZATN to save the state of the

interpretation , in the event that splitting this interpretation becomes

necessary . This cautious style might result in a very long HUNG list.

One technique for dealing with this contingency is to provide

heuristics which reduce the amount of unnecessary splitting . The

avoidance of overly cautious saving of states and splitting of

interpretations is not a complete solution , however. Unless reliability

• is dangerously sacrificed , there are inevitably going to be a

substantial number of local ambiguities for which these precautions are

required . Only after examining later evidence will the doubtful status

of other alternatives be firmly established . Furthermore , it is not

enough that such low plausibility interpretations cease to consume

processing time. Their continued existence implies that the analyzer

will be “hanging on” to large quantities of storage in the form of

assertions in CONNiVER context layers (or their equivalent).

For this reason , FAZATN should include a mechanism for pruning

very implausible interpretations. The maximum allowable size of the HUNG

list , HM A X , is a parameter of the system. When UMAX is exceeded , the

lowest plausibility interpretation is deleted . This is based on a

heuristic assumption that , at most , UMAX interpretations will have

sufficient plausibility to warrant further consideration.

Unfor tunately , it is entirely possible that a prunable context

• 
layer has non—prunab le offspring . This is possible because the

~ 

~~~~~~~~~~~ ~~~~~
•
~~~~~~~~~~•



pruna~le context layer implicitly represents the set of (typically

implausible) alternative interpretations other than those explicitly

represented by its (typically more plausible) offspring. Since these

offspring are inheriting assertions from the prunable interpretation , the

garbage collector will not be able to reclaim its space , except in

the case that all the offspring have also been pruned .

For tunately, most context layers would probably have exactly one

subcontext. This is because the typical event would be sufficiently

ambiguous , to warrant maintaining a potential for splitting , but not so

ambiguous to cause any other alternative implicit in the parent context

to actually be pursued . The pruning procedure is designed to detect

this situation . When a context layer with exactly one non—pruned

subcontext is selected for pruning , this indicates that the subcontext may

be finalized . Consequently, the parent context layer may be spliced out

of the hierarchy altogether , and its space reclaimed . This helps to

impose an upper bound on the storage required by PAZATN .

We now turn our attention to another potential inefficiency

bug in the current design of PAZATN . This is that the size of the ACTIVE

list required to prevent frequent back up may be large. If so, the

system could simply be too slow for practical use in tutoring. PAZATN

I i requires some technique for increasing the responsiveness of the

system , while maintaining the effective size of the ACTIVE list.

The solution is to dynamically vary those parameters which

determine the size of this l ist . (The actual size would be determined by

a number of factors , including minimum size , maximum size , and

minimum plausibility for inclusion.) The capability for variation

would allow PAZATN to carry along a small working set of interpretations

when the student is rapidly typing . Whenever the student paused to think

or rest , the higher plausibility HUNG interpretations could be updated . In

this way, should one of these be reactivated later , less back up would be

required .

C) ()

~~



_ -
~~

-i~ _-.I1__ JIL -w

An elaboration of this refinement takes advantage of the primary

underl ying reason for avoiding back up. The greatest danger of backup

in the tutoring application is that some previous suggestion or

criticism may turn out to have been inappropriate. This danger

can be reduced as follows . Naturally, the system should always

require a high degree of confidence in its interpretation prior to

intervening . This should be supplemented by filtering any remarks so

as to be appropriate under all reasonably plausible

alternative interpretations. (Introspection suggests that human

tutors employ a similar heuristic.)

Furthermore , immediately prior to the remark , the size of the

working set should be increased , and the reactivated interpretations

brought up to date. It should then be verified that those marginal

interpretations are unlikely to invalidate the planned remarks. This

implies that normally the system would be highly responsive ; but if delays

were to be experienced , they would occur only when the student was about to

be interrupted for tutoring anyway.

Design Issues a~d Alternatives

The careful reader may have noticed that PAZATN is somewhat

independent of the detailed form of the synthetic formalism .

Although tremendous leverage for analysis is obtained by the postulation of

an effective synthetic theory, little use is made of the fact that

PATN is specifically organized as an Augmented Transition Network. For

example , the possibility that the debugging component is organized

differently has not been completely ruled out by anything which has been

said so far .

It does make a difference that the synthetic component plans and

debugs by making a series of pragmatic choices , which can be .~ummarized by

the tree structured PLANCHART. Furthermore , it is essential that the

system is capable of generating , not one solution , but an entire space

of progressively less favored solution paths. Also , an implicit



tssu mpt i~~ n run s throughout the analyzer ’s design that the linguistic

analogy is fruitful —— that the solution path consists of structural ,

semantic , and pragmat ic elemen ts. It may be tha t any synt hetic

• formalism satisfying these constraints is trivially equivalent to an

ATN . such questions are notoriously difficult to answer.

it. is probably a virtue that PAZATN is somewhat decoupled from this

issue , but one could construe it as a defect. One could argue that

somehow the design of the analyzer may be failing to take full

• advantage of the claims of the theory. A possible alternative design

would be to organize PAZATN as an analytic version of the ATN. This

“AAT N” would have numerically valued arc conditions , representing the

plausibility computations of the analytic pragmatics. Note that the event

specialists are to be organized internally as decision trees. It is only a

small step to reformulate this decision tree structure as a subgraph of an

AT N .

It might seem that employing an AATN instead of a coroutine

• searcher might commit the analyzer to a less powerful automatic backtrack

type of control structure . This is not necessarily the case .

Depending upon the implementation , the ATN formalism oer se carries no

irrevocable control structure assumptions. One may traverse the

diagram according to any of a wide variety of search strategies. In this

respect , the AATN would be attractive , offering greater perspicuity by

decoupling efficiency issues from theoretical concerns.

• Nevertheless , the A A TN des ign for PAZATN has no t been pursue d .

Although it is possible , in principle , to employ a mixture of top

down and bottom up strategies with an ATN , it is more natural to

conceptualize an ATN parser as a top down backtracker. To understand

their bottom up use , PUSH arcs must be thought of as “IF—REDUCE” arcs;

POP arcs must be thought of as “REDUCE” arcs. This felt counterintuitive. )
An important issue in the design concerns the breadth of the

synthetic theory . There are of course particular lacunae , suc h as

conditional plans , which have been deliberately, but only temporar ily ,

~ — ~~—.‘- . • .
• ‘, •• • 

-
•

— •—•——••~~~~~ -~~~~~~~ 
.. - •-

~ --  —-“ .•‘ ,. •.. . _,• b—..
— -



ignored . The greater threat comes from the unknown . Even the youngest

children display an incredible richness in their ’ problem solving

behavior. PATWs origins are at least partly empirical. But some

phenomena , perhaps those most in need of investigation , may have been

lost in the process of formalization. This remains a topic

for investigation.

A fina l design issue warrants mention here . PAZATN operates by

indiv idually processing each event. But perhaps this leads to too local a

perspective. Perhaps larger sized chunks of protocol should be examined at

once. In other words , an episode based analyzer might be preferable.

The event based design has been selected because it is the simplest ,

• most straightforward approach.

S E C T I O N  V

TENTATIVE CONCLUSIONS AND PLANS FOR FUTURE WORK

Recapitulation

In this report we have investigated the problem of analyzing

problem solving protocols. The result of this investigation is a

preliminary design for PAZATN , a domain independent framework for

automatic protocol analysis. The foundation for the approach was a

grammatical theory of problem solving as a structured process of planning

and debugging . This lead us to the definition of an interpretation

as an assignment of a structural description to a list of events ,

• augmented by semantic and pragmatic annotation associated with each node.

The foundation for the approach was a grammatical theory of problem solving

as a structured process of planning and debugging. This lead us to the

definition of an interpretation as an assignment of a structura l

description to a list of events , augmented by semantic and pragmatic

annotation associated with each node.

A key ingredient in the design is a synthetic problem solving

system called PATN . PATN employs an augmented transition network to

represent fundamental planning concepts , including techniques of

identification , decomposition , and reformulation. PAZATN is somewhat

93

ha ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • ~~•



—

decoupled from the ATN representation mer se. However , considerable

leverage for the analysis process is obtained from PATN ’s ability

to generate successively less preferable solution paths , by a series

of pragmatically guided planning decisions , as well as from PATN ’s

characterization of certain bugs as errors in these planning choices.

The analysis procedure has been designed to obtain maximal

advantage from both top down synthetic guidance and bottom up analytic

constraints. Analysis proce~ds by a coroutine search of a space of

plausible partial interpretations . The PLANCHART , a data structure

resembling an AND/OR goal tree , is used to keep track of synthetic

expectations. By careful selection of the representational scheme , this

structure achieves considerable storage economy . It is incrementally

expanded by the synthetic ATN when existing expectations are inadequate

in view of the protocol data. The DATACHART , a data structure

analogous to a context layered CONNIVER data base , is used to keep

track of the state of alternative partial interpretations.

The analogy to computational linguistics has turned out to be

fruitful., providing insights into the parsing process developed in

research on language understanding and speech recognition . The

value of this analogy is illustrated by the adoption of several

search strategies and representational techniques. For example , the

chart representation is utilized to economically store well—formed

substructures. Partial knowledge of structure and of the status of

• synt hetic ex pec tations is recor ded us ing a sc heme of PLANCHART

markings and marker propagations. These would allow for considerable

efficiency both in storage and in the drawing of inferences regarding

possibly ambiguous structural descriptions. Likewise , the basic outlines

of PAZATN have been refined by the incorporation of search

heuristics prevalent in computational linguistics , including lookahead ,

least commitment , and differential diagnosis. These would allow the

analyzer to proceed with reasonable assumptions when necessary , and yet

modify its interpretation in response to anomalies. Ideas for

94

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ L~~ : 
- _ _ _ _ _ _

replacing the expert ATN by a version tailored to the individual were

discussed. Major design issues and alternatives were also examined.

Although PAZATN is not yet a working program , the design is

sufficiently specific so as to be hand simulable. The next phase of the

research is to implement and experiment with a prototype analyzer.

~eneralitv of PAZATN

The design of PAZATN is of interest in that it. suggests a paradigm

• for protocol analysis which may be applicable to many domains. Although

an operational PAZATN system for a particular task domain requires

considerable domain specific knowledge —— a necessity if significant power

is to be attained —— its knowledge is extremely modular. This domain

specific knowledge is restricted to the event classifier , the event

specialists , the lowest levels of PATN , and the answer library . The other

modules of PAZATN , which have been emphasized in this report , make no

domain specific assumptions in their operation . This suggests that PAZATN

systems could be constructed for a variety of domains by supplying

“plug— in” modules for these domain specific components.

in our early work , a text by Donaghey & Ruddel [19751 was found to

be useful in organizing knowledge of elementary algebra into procedural

rules. It was found that many students demonstrated an understanding of

the rules , and often were able to apply them correctly. Their hardest

problem was to recognize the appropriateness of a given rule to

a particular problem situation. For example , in actual student

protocols , it was observed that students would multiply out an

expression , and then , only a few lines later , factor it again. This

haphazard application of inverse operations inevitably leads to careless

errors , by increasing the length and subjective difficulty of the task.

• These algebraic rules can be modeled by a PATN-based synthetic

problem solver. Each algebraic transformation operation can be

associated with an arc transition on an ATN subgraph . Associated

with each transition is a set of semantic and pragmatic constraints on its

95

~~~~~— 

- - -
• 

.

~~~~

• •
- %. •

.
‘S ,~~ ~~~~ ~~~~~ - .-, -r ,.. .~~S • -~ ! •~ .. -• .

•
‘-.-. • .S• . ~%

- -~~~~~~~ --~~ - - • -• -

TT~
: : • —--—- — ------ - - - - •-- ,•

~ -_
-

applicability. For example , to follow the fac tor ing arc , the

semantics require that the ?EXPRESSION register to be a polynomial in a

single variable with numerical coefficients. The pragmatics indicate that

this is an appropriate transition when the goal is to determine the roots

of the polynomial (see Figure 14). While many students will have

learned the syntax of the transitions , which is usually all that is

taught., their weaknesses often lie in not knowing the appropriate

semantic and pragmatic constraints.

A feature of programming environments , which has been helpful in

thinking about the PAZATN system for that domain , is that a great deal

of the student ’s reasoning is manifest in the protocol. Not all

CAl environments share this property. PAZATN would have more difficulty

with domains for wh ich the “bandwidth” of the analyzer ’s window into the

student ’s thinking is low. This might be a problem in applying the

paradigm to WUMPUS [Stansfield and Carr 1976), WESi [Brown and Burton

1976], or SOPHIE [Brown et al. 1976). For example , in the ele”tronic

• troubleshooting scenario , the student requests a particular

measurement , but provides no ind ication of the pragmatics —— the

reasoning which led to that measurement rather than another. Since

there are many routes by which the misguided troubleshooter could

have arrived at the requested measurement , a precarious chain of

statistical inferences from multiple trials is required to pinpoint

the student ’s underlying confusion .

Probably this would pose problems for any analyzer. Hence , the

extent to which the student ’s reasoning is articulated suggests itself as

a dimension along which to evaluate designs for future CAl environments.

Note that this is a property not only of the domain , but also of the

particular scenario used . For example , in the electronics domain , one

can envision a design scenario which would closely mimic the alleged

virtues of the programming world . (It would be essential to contrast

the reasoning strategies required for debugging an erroneous design to

those needed for troubleshooting a faulty component in a properly

96

~

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~


r
_ _ _ _ _ _ _ _ _ _

Figure 14. Subgraph of Algebra ATN

Semantic Constraints :

(AND (POLYNOMIALP :EXPRESSION)

(NUMBERP (COEFF : EXPRESS IO N)))

~~~~~~~~~~~~~~~~~~ UAL TOIF INDR OOTS I )

97

• -1 
—~~ ~~~~ 

• , 
• •

- ,
• . • ~~~~~~~~ - - -~~.Lm . . , ~~~.- ., •~~~ . — ,• •~- -~~~~~~~~~~~ ~~~~~~~~~~~~- . • _ - •_ - -• • • -



designed circuit.) Another possibility is to ask the student to

explain his reasoning. The major stumbling block to such an undertaking

at the present time lies not in inadequate theories of problem solving ,

but in the understanding of natural language.

L

I.

C 98

~~~~~~~~~
••
~~ ~~ ~~~~~~~~~~~~~~

• - •

~~~~~~~~~~

- - • •

~~~~


— — • -——~~~~~~~~~~~~~~ - _ — ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~_ - ~~~~~_~~~ ~~~~~~~~~~~~~~~~~~~

JT~~ T~

h EF E H EN C ES

Tho , A.V ., & Uliman , J .D. The theory of parsing, t ranslat ion, and
compiling, Volume 1: ParsinL. Englewood Cliffs , New Jersey:
Prent ice— Hall , 1972.

L~ rr , A. et al. A rat ion~~ e and descript ion of the basic instructional
program . Psychology and Educat ion Series , St anford Univers i t y,
Technical Report 228, A p r i l 197 14 .

bro,m , J .S. , & Bur ton , H.P. .~ys temati c understand±ng : Synthesis , analysis ,
m d con t ingent knowledge in specialized understanding systems. In D.
bo b row an d A . Collins (Eds.), Pepresen tatton and Understanding : Studies
.in Cognit ive Sc ience, New York: Academic Press , 1 9Th .

brown , J.S. , & Coll:ns , A . Art ificial intelligence and learning
strateg !es. To appear in H.F . (fNetl (Ed.), Learning strategies. New

-: Yor k: Academic Press , 1978 , in press.

Brow n , J.S., Bur t on , H.P . & Bell , A.G. SOPHIE: A Soph isticated
instructional Environment for Teaching Elec t ronic Troubleshoot ing (An
Exam ple of A l in CAl) (Final Report). AFH RL— TR—7~ —77 , Oct ober 1 9714.

brc’wn , J .S., Burton P.R. , Mil1 ~~r , M .L., DeKleer , J., Purcell , S.,
hausmann , C., & Bobrow , P. ~teps toward a theoretical foundat ion for
compl~ x knowledge—based CAl (Final Report). Bolt , Berane k and Newman ,
Aug ust 1975.

b rown , J. S., Hu b i n s t e in , H ., & Burton , H.P . React ive learning environment
for compute r assisted electronics instruct ion. Bolt Beranek and Newman
m c , Repor t ~3 114 , (1CAI Report 1), Uctober 1976.

• Bur ton , P .R ., & brown , J.S. A tutoring and student modell ing paradigm for
• gaming environments. I n Proceedings for the Symposium on Computer

• Science and Educat ion, Anaheim , California , February 1976 .

Carb onell , J ., & Collins , A. Na tural semantics in artificial intelligence.
In Proceedings of the Third International Joint Conference on Art ificial
intelligence , Sianford Univers ity, 1 973.

F Carr , B., & Goldste in , I. Overlays : A theory of modelling for computer

~iUe~ inst ruction. Massachus etts Inst itute of Technology, Al Memo ~O6 ,
Febr u ary 1977 .

Sr ar n i a k , E. Toward a model of children ’s story compre hension.
Massachusetts lnst itute of Technology, Ar t ificial in t elligence
Laboratory, Technical Report 266 , December 1972.

Chamsky, N. Aspec ts of the theory of syntax . Cambridge , Massachuse tts: The
• ~~~~~ Press , 1965.

Collins , A., ~arnoc k , E., & Passafiume , J. Analysis and syn thesis of
t utor ial dialogues. In G.H . Bower (Ed.), Advances in Learning and
Mot ivat ion, Vol. 9, 1 975.

Lonaghey, P., & Ruddel , J .A . Procedures of elementary algebra . New
York: Academ ic Press , 1 975.

Gol d st e~ n , I. The computer as coach: An athlet ic parad!gm for intellectu al
edu~ •t ion. Massachusetts Inst itute of ‘lechnology , Al Memo 389 , January
1~~(7.

99

~
-. -

~~~~~
. 

—. — — 
—

~~ 
—

~ —-s. -. — ~~ ~..* 
~~

•-.--
~ 

— — I 
— — ~~•- - ------ _--•- — - -- _-- --••--- -•-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


~~ 1 ~ist e :u , I . F’. I st tn ~rtg s imple ptc t ure programs. Massachuset t S
Inst it U t ~~ ut Oichnhlogy , Ar t it icial Intelligence Laboratory , Technical
Repor t 2 t j L., ~e p t t ~mber 1 97 14 .

Goldst ein , l .P ., & Miller , M. L. Al based personal learning environments:
D irect ions for long te rm research. Massachuset ts inst it u t e of
lechnology, Art if icial lntel ltgence Laboratory, Memo 383 (Logo Memo 30) ,
October’ 1976.

Golds te in , l.P., & M t l l e r , M .L. Al—based personal learnIng environments:
Li rt c t ions for long term research. Massachuset ts Inst i t u te of
‘technology , Ar t if icial intelligence Laboratory, Memo 3814 (Logo Memo 3 1) ,

• Dec~ mber 1976a.

Go ldstein , l .P., & Miller , M.L. St ructured plannIng and debugg ing: A
l inguist ic theory of design. Massachuse tts Inst itute of Technology,
Art it :ciul intelligence Laboratory , Memo 387 (Logo Memo 314), Decemb er
197 b b.

Kay, M . The MIND System. In Randall Hustin (Ed.), Nat ural Language
• Process~ ng, Courant Computer Science Symposium 8 (December 20—21 ,

1971), New lark: A lgorL thm~ cs Press , 197~~, pp. 155—1 88.

Krauss , P.M., & Giucksberg , S. Social and nonsocial speech. Scienttfic
• Amer ican , 1977, ~~~ (2), 100-105.

Miller , ~1.L., & Goldst e in, l.P. Overv iew of a l~ nguistlc Theory of DesIgn .
Ma ssachuse t t s inst it u t e of Technology , A rt if ic ial intel l igence
Laboratory, Memo 3 8 3 O (Logo Memo 3 0 a) , February 1977.

M i l l e r , M.L., & Gol dstein , UP. Parsing protocols us~ ~g problem solving
grammars. Massachusetts Inst it ute of Technology , Art if ic ial Intelligence

• Laboratory , Meno 365 (Logo ~‘1emo 2 2) , December 1 976 b

t1:ller , M .L., & Go ldstein 1.P. SPADE : A grammar based ed i tc~r for plann ing
• ~~~ debugging programs. Massachusetts inst itut e of Technology ,

Art itic ial intelligence Labor atory, Memo 386 (Logo Memo 33), December
1 97cc.

M~ lier , ~.L., & Goldst ein , l .P. FAZATN: A linguist ic approach to autom at :c
snalysis of eleme ntary progr amming protocols. Massachusetts inst itute of’
Technology, Ar t ~fic~iaI Int e ll igence Laboratory, Memo 386 (Logo Memo 3~~),December 1976e.

Rich , C., & Shrobe , H.E. In it ial report on a LISP programmer ’s apprent ice.
Massachusetts Inst it ut e at Technology , A I_ TR_ 3514 , December 1976.

Hubin , A. Hypo thesis formation and evaluat Ion in medical diagnosis.
b Massachus e t t s Inst it u t e of Technology, Art ificial Intelligence

Laboratory , Technical Report 3 16 , January 1975.

Sacerdot i , E. A structure for plans and behavior. St anford Research
• Inst itute , Art ificlal Intelligence Center Technical Note 109, August

Sacerdo t i , E. The nonlinear nature of plans. In Advance Papers of the
Fourt h international Joint Conference on Art ificial intelligence ,
Tbil isi , Georgia , U.S.S.R., Septemb~’r 1975 , pp. 206—218.

Self , J .A. Student models in computer— aided instruction. International
,Journal of Man—Mac hine St ud&es , 19714 , ~~~ , 261—276 .

~tans field , J.L., & Carr , B. The humpus Advisor (Draft). Massachusetts
Inst i tute of Technology, Ar t ificIal Intelligence Laboratory,
for thcom ing Memo , July 1976.

100

~~ -1,1
-
~ ~~~~ * ~~. •~~ . ~,

t., . - .a . , • I •
_______ -—•~~~~ ~~~~~ -• ~•4. - .- ‘ ‘~

‘ “ ‘
~
“ -

• : •
-

-~~~~~— - • ~~~~ .--~~~~~~~~~~-•- ~~~~~~

~-uosm in , G.J ., & McDermot t , D.V. From PLANNER to CONNIVER —- A GI-rtet ic
-
~ Approach. ProceedIngs of Fall JoInt Computer Conference , Montv ale , New

Jersey, AmerIcan Federation of Informat ion ProcessIng SocIet ies , 1972.

West , T. Diagnosing pupIl errors: lookIng for patterns. The Ar Ithm et Ic
Teacher, November 1971.

Woods , W.A. Transit Ion network grammars for nat ural language analysis.
• Commun Icat ions of the AssocIation For Computing MachInery, October 1970 ,
• jj(10), 591— 606.

I

101

~~LI - ~~~~~~~~~~~~~~~~
-~~~~~T ~~~~~~~~~~~~~~~~~~~~

-
~~~

‘
~~~~~

‘
:~~~~

“
~~~ 

‘ “

~~~~~~~~~~~~~~ ~~~~~~~~~~

. -

~~~~~~~----‘ - -  14



APPENDIX I

RED TEST

Student 1:

83 330 89 354
+106 +187 +132 +69

-

~~~~~~~~ fIT
Exj~~anat ion :

Student 2:

94 498 77 48
+115 +215 +26 +41
11 9 611 91 89

Exp lanat ion:

Student 3:

347 758 437 923
±139 +296 +284 +481

4 7 6 944 601 1404

~~ pIanat ion:

Student 4 :

109 98 98 35
+452 +105 +111 +64

501 103 209 99

Exp lanation :
-

•

L
Student 5:

352 784 1784 8
+18 +3080 ±3080 +35
360 6364 7364 63

Explanation :

Student 6:

8372 6527 893 63
—657 —2394 —195 —47

• 6725 3233 608 16

~ j~4,,anation :

102

Student 7:

913 5394 4 7 7 893
—76 —797 —284 -195
777 4497 101 718

~~ planation:

-. Student 8:

394 77 935 126
—166 —53 —3 61 —1 17

-‘
248 24 774 29

Exp lanation :

Student 9:

48 394 57 239
— 15 —166 — 23 —95

43 340 60 124

~~planat ion :

Student 10:

305 987 340 9280

—108 -320 -56 -6090
667 290 3090

Exj~~anat ion :

103

~I, ~~~
- •

r
Appendix 2

List of all responses to the question:

What do you think you learned from this experience?

I see from this system that you learn from your mistakes. In a certain
• operation there are so many mistakes that you can make . When you learn

what the mistakes are you learn to do the operation correctly.

• That children ’s errors can be a way of d iagnosing the way the child learns
material. Also it raises questions about the way a child is tested both
standardized and informally.

A student ’s errors and/or misunderstanding of a concept may have not been
due to carelessness but rather involved a complex and logical thought
process.

• I learned that it is necessary to try many different types of examples to
be sure that a child really understands. Different types of difficulties
arise with different problems .

Trying to beat the machine can be challenging. Feedback is extremely
important in trying to determine the error. It. ‘S difficult for me to
describe the error but the machine doesn ’t care as long as I can prove my
point through examples.

Although it ’s hard to tell from these pre and post tests, in the middle is
learned a great deal about the complexity of student ’s errors . I know that
young students can get these preconceived notions about how to do things
and it ’s very hard to find a pattern to their errors but there is and I
believe that BUGGY convinced me of [it].

That if you study the errors long enough you can ev~ntuallv come up with areasonable solution as to why the [errorl is occurring .

Through looking carefully at children ’s math errors it is sometimes
possible to discover a pattern to them . This pattern will tell you an area
or a concept the child does not understand .

r ~ carelessness. Working with children with special needs I have encountered
many such problems , yet never stopped to analyze what could be a systematic

I

I learned that there could be more to a child ’s mistakes other than

problem —— for this I thank you.

Children do have problems and they are very difficult to spot especially
when a number of different operations are used to come to an answer. I’ve
learned to be more aware of how these children reach these “answers” and to

F help them to correct them ; first by knowing how they arrived at the answer.

Although many arithmetic errors may be careless , there may also be a
pattern that the kid is locked into. If you pick up on a pattern you can
test the child to see if he/she conforms to it and work on it from there .

The types of analysis necessary to “debug” student errors on the test
(paper/pencil) seems more dif~

’icult than with the computer. But that
doesn ’t make any sense. The “analysis ” ought to be the same. Perhaps the
computer motivated my analytical ability .

I found that I have looked closer at the problems , looking for a
relationship between the set after working with BUGGY.

104

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ?,~~~~
-
~~~~

- -
~~~ i~~~~~

- - •  
~~~~~~~~~~~ 

- • *4


~~~~~~
— w~—-• - -

~~~
-
~~~~~~~~~

- —• - -• - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~~ • - -~~~~~~
- • -~~- - -r

How to perceive problems , that don ’t look too consistent , a little easier.
How to have a good time wAth a computer. (I ’ve only played tic—tac—toe at
the Science Museum , and have always wanted to do more). Machines can be
tempermental (when pestered by a large number of students?)

• I learned and was exposed to the many different types of problems children
might have. I never realized the many different ways a child could devise
his own system to do a problem . I am now aware of problems that could
arise and I ’m sure this will help me [in) my future career as a teacher.

How to more effect ively detect “problems ” students have with place value .

That you can find causes of a child ’s problem without the child ’s work in
front of you. In looking for the “bug” , up and down aren ’t the only
possibilities , also diagonally. I suppose horizontally also. How specific
the problem might be —— only works in one situation .

I have learned several new possible errors students may make in
computation . I have also learned somewhat how to diagnose these errors,
i.e. what to look for , and how specific errors can be.

I think I learned more about computers and how to use them . Also I learned
about diagnosing math difficulties. It makes me aware of problems that
children have and they sometimes think logically, not carelessly as
sometimes teachers think they do.

I learned that computers are very complicated pieces of machinery. If one
isn ’t experienced with the mechanisms , then problems could result. That
computers can be an asset to the classroom is not doubted , but I think many

- - - problems can result. They can add much to a classroom until they start
breaking down .

• That there are many problems that you can diagnose about a child by looking
at his homework.

If a ch’.ld has repeatedly made [the] same mistakes , it is more easily
identified if the teacher has an opportunity to try and make [the] same

• mistakes. This method can be solved at least quicker than...

Computers are concise . Information can be gathered and stored for
reference.

Tuned in to picking up malfunctions i~ simple addition and subtractionwhich seemed to be realistic problems .

105

~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~,‘- • . .

- -~--~—-—- —~~~ - • . •~~ - - -

Appendix 3

List of all responses to the question :

What is your reaction to BUGGY?

I think it would be a fantastic resource for a school with a lot of money
to spend .

Too early to tell. But the potential seems stupendous. I enjoyed it and
see it as a powerful future tool.

I like it.

Working with a partner is good for being forced to explain (defend) your
theory [as long as partner requires that]. Useful tool for those with
pretty good number ability. What about those who don ’t have good feeling
for numbers?

Good!!! Forces one to get very specific answer to the problem . You can be
• slightly wrong and then , rather moving way off base in your second theory

as to the problem , you pinpoint/modify your first (assuming it ’s almost
right). Bad . It ’s too much fun and I wasn ’t being very professional in mu
usage (though under different situation I might).

I think this system is fantastic. It ’s a wonderful way to expose people
(who are involved with children) to the problems children will probably
have. It might be especially useful with special learning needs children.

It ’s great ! When will it be in my “price” range?

As for the game itself , it would have been continued for another 3 or 14
hours.

I think it ’s an excellent device for trying to diagnose some of the
•

- difficulties found in mathematics. For a teacher the time element —-
having the machine diagnosis would be more practical.

It ’s a nice toy.

The Bug is great. Makes you stop and think .

I enjoyed the BUGGY experience extensively . Solving or determining errors
was much easier on the computer —— and fun too!

• I enjoyed working with BUGGY but when it breaks down it is very
frustrating. This might be difficult for children to understand that
problems with computers do arise. Also it may be complicated for younger
children to understand how to use it. High school students may enjoy it
though .

I think BUGGY would be a definite “plus” in the classroom but right now I
feel there are too many “bugs” with BUGGY . Too many times did BUGGY go
crazy . I find it amazing though that a machine can help one detect
problems. It sure is a better way than the present.

BUGGY makes one look at each problem carefully and detect exactly what a
child cannot do or cannot comprehend without formal testing.

As far as BUGGY is concerned , I had a very good time “playing ” with BUGGY.
It was quicker and somehow easier than pencil and paper. lt took less
concentration and was definitely more efficient. Can this be used as a
strictly d iagnostic tool? If so, I think that BUGGY is great .

1 06

—

~

--

~

- ~~~ A

r
• He~ i~ ~ trip! Seriuusly, he ’s fine if you can master him in case he decides

to break down .

I think BUGGY is a good idea and would like to hear more about it.

It ’s a program that should be further researched and has excellent
potential.

Great experience in beginning to play with computers —— exercised problem
focussing without frustrating a child with inadequate preparation.

I think that BUGGY could be used to sharpen a teacher ’s awareness of
different difficulties with addition and subtraction . It might be fun for
the kids to play such a game together.

107

~~~ k ._
• •• _ • •~ .• ~~~~~~~~~~~~~~~ •



- • 
T- ~~~~ L~~~~~~~ • • • ~~

— -- —
~~

—‘ • - • — .—  — •
~~~~

— -- — - • —
~~~~~~~ 

— • •  
~~~~= — —

Appendix 14

• This appt~ndix presents answers and descriptions for some of the subtraction
bugs for th~ problem:

15300
-9522

5778

F 95778: When borrowing from a column which has a 1 on top, the student
treats the 1 as if it were a 10.

27998: When borrowing is necessary, instead of subtracting 1 from the
top digit of the next column , the student adds 1 to it.

214822: The student adds instead of subtracts.

• 16888: When the student needs to borrow , he adds 10 to the top digit of
the current column without subtracting 1 from the top digit of the next
column .

15778: The student borrows correctly except he doesn ’t take 1 from the
top digits that are over blanks.

114822: The student adds without carrying instead of subtracts.

114378: The student subtracts the smaller digit in a column from the
larger digit regardless of which is on top.
and No matter what other bugs the student may have , he performs the
units column correctly even if it requires borrowing.

114222: The student subtracts the smaller digit in each column from the
larger regardless of which is on top. The exception is when 10 is in the
left—most columns of the top number ; in this case 10 is treated like a

• single digit.

114222: The student subtracts the smaller digit in a column from the
larger digit regardless of which is on top.

111200: The student subtracts the smaller digit in each column from the
larger digit regardless of which is on top. The exception is when the
top digit is 0, in which case a 0 is written as the answer for that
column , i.e. 0—N:0.

10022: The student doesn ’t know how to borrow . If the top digit in a
column is 0, the student writes the bottom digit in the answer (i.e.
0—N:N). If the top digit is smaller than the bottom digit , then 0 is
written in the answer.

10000: The student writes a 0 in any column in which borrowing is
needed .

87148: The student gets 6 and 9 mixed up when decoding (reading) the
digits in the problem , misreading 6 for 9, and 9 for 6.

1998: When borrowing from a column , the student borrows from the larger
di git disregarding whether it is the top or the bottom digit.

6888: The student will only borrow from a column in which the top digit
is larger. In the columns he skips (where the top digit is smaller
he automatically adds 10 to the top digit.

108

.
bb2~ : Ihe stuicnt borrows f rom the next column to the left which has a
larger top digit. Any intervening columns have 10 added to their top
digit . the exccptiori is when 0 is on top in which case the student
writes th e bottom number in the answer (e.g. O-N:N).

5878: When borrowing f rom a column whose top digit is 0, the student
writes ~~~, but does not continue borrowing from the column to the left of

-• the 0.

5822: Wnrnever the top digit in a column is 0, the student writes the
bot tom dig it in the answer , i.e. 0—N=N .

5800: Whenever the top digit in a column is 0, the student writes 0 in
the answer , i.e. 0—N:O.

5798: When borrowing from a column with 0 on top, the student borrows
froa the bottom digit instead of the 0 on top. In all other cases the
student borrows correctly.

• 5788: The student forgets to change 10 to 9 after borrowing into a
column whose top digit is 0.

5688: When the student needs to borrow from a column whose top digit is
0, he skips that column and borrows from the next one .

5678: Once the student needs to borrow from a column , he continues to
borrow into every column whether he needs to or not.

5372: When faced with borrowing , the student decrements the next column
• correctly, but instead of adding ten to the top digit of the current

column , he simply subtracts the smaller digit from the larger digit even
though the smaller digit is on top.

14822: The student adds instead of subtracts , but when carrying he
subtracts the carry from the top digit of the next column instead of
adding it.

14222: The student subtracts the smaller digit in a column from the
larger digit regardless of which is on top.
and The student stops working the problem as soon as the bottom number
runs out .

1’~
109

1
IkR

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . -~~~-~~~~ -- -~~~~~ 
-
~ 

-
~ 

•



L r .  ~iar si~~1 I •J . ~arr , Lirector ~u p e r in t o n dent
~er~ L n : € i  ~ l r a L . n i r l R 8es. i~rog. 

Naval F’os tgraduate School (Coue 2124)

~~1 t i c ~ of N~ivaI he~ earch  (Code 4 56) N o n t e r e y  CA 93940
Mn i ri~ , t c~ ‘i A 1]

01 rector
f d fl~~~~ ~~~~ 1 ’ . , I r a i n i n g  A n a l y s i s  and ~va lua t i on  Group

~~~~ ~ uinnier ~ t. 
(1 A~A i)

hcst~ r ~~ ü~~’iu
Ur l ando IL 32b 13

~~t~.ti ~ r an c~ ~~~ Ass is tan t ~oc r etary of the Navy
l~~~J L. ure en ~;t.

(M a npowe r and heserve A f f a i r s)
t~asadena CA ~ 1 1 U 1 Navy Depar tment
A ttn: ir. ~u~ene ~ ioyc- W ashing ton D . C . 20350

ut4 h i~ra nch (j t f i c e Assistant Secretary of the Navy
5 j 0 ~~~. clark ~t. (Resear ch and Development)
Lh icag o lL 0060 5 Navy Depar tment
A t t n : D r . Charles n . Oavis Washington D . C . 20350

Chief of N aval Op era t ions (O P — 9 9 1 B) Chief , Bureau of Medicine & Surgery
- - Navy Department Nav y Department (Code 71 3)

W ashington D .C . ~O35O Washington D . C . 20372

Chief of Na val operat ions (0I’—98 7H) Chief of Naval Reserve (Code 3055)
Nav y Department Ne w Orleans LA 71046
Washing ton D.c . 2O 35~)

Comman ain~ Of f i cer
Chie t of Na val r’ersonn el (P e r s — l O c) Naval Tra ining ~quipment Center
Navy Department Code N— 2
Wa shington D. C . 923 0 Orlando IL 32813

Chief of N aval iec~in ica l T ra in ing Commanu in ~ Of f i ce r
Code 016 Naval Ira ining l~quipment Center
N aval Air Stat ion (~~~i M emphis Code N—OO I
i-iillin~ ton TN 30054

Orlando FL 32813

Chief of Naval Technical iraining Command ing Off icer
Lode ~)15

Naval Aerospace L-iedical Institute
i.aval A ir ~ t a t ior~ ~~ -~~~~- i~

Naval Air .~t at ion
ri illington TN 3~054

k~ensacola IL 32508

Lh ief of t~aval hducatior arM ~uperin tendent
ira inin~ Support j.2. Naval Academ

tdlyson ~ield
A:~riapo lis MI) 2140

~ rensaco la rL 3~ 509 LoL H~ana ing O f f icer
Lh ief of ~.aval i~ater iaj. (NNpi—035)

1,aval Iiesearch Laboratory
lepar tmet.t CI the Navy Washington D.C. 20375
Washington b.C. 20340

Center for Naval Analyses
r.ief of Information (01—2252) 1401 Wilson boulevard

aavy Lepartr~ent Arlington VA 22209
Washington o.C. 20350 Commanu ing ueneral
Commanding Officer Marine Corp bevelopment and ~ducation
L4aval ~M~ cation and Ira in ing Center

lnformation Systems Activit y (.~uantico VA ~~134
hemphis Detachment , Bld~~. 0— 2 3 7 -

i~aval A ir Station Memphis Office of Assistant Secretary of Defense (N&RA)
friillington TN 36054 Navy Department

Washington D.C. ~O350

~omm an ain g u f f icer -
Naval Develo pment and Irairin g Military Asst . for human Resources

Center (Loje Q1~ U)
UAD(b&LS)O1 &b

~cx lU t , ~~ v~i 1 Ctation ~ilitary Asst. for Iraining &
ar Li (-~ o • A j:l~ 6 ~‘ersonnel lechnology

ObDh&1~, OAt) (b&LS)Room 30129 , The Pentagon
Washington D.C. 20301

110

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
~~~~~~~::::~~~~~~~~~~~~~~~


—~~~~~~~~~~~~

I L r~ t o r , Vt I ~ r~ ;t A c t i v i t y l o r hi- . ueor ge N .
I~~ri—Ir a d iti ona l r~ducation Support Naval ~ea ~ystem3 ~~~ni ty son C e n t e r SEA O 4 1C 1~Pensacola ~L j25U9 W a s h i n g t o n OC �Ojt~

or. ~~~~ b e r t i n , cc i . D i r . Pr i n c i p a l C i v i l i a n A dv i sor
o f f i c e of N a v a l hesearch f o r E d u c a t i o n ano ‘Ir a in ir ~S c i e n t if i c L ia i son (~roup / 1o k y u N a v a l T r a in i n ~ Command , Coue Uo~Amer i can ~n iba ssy Pensacola IL j2bO b
Al-u San Ir anc i sco 9b503 A t t n : D r . W i l l i a m L . Ma loy

O ffice of Naval ~esearch Dr . A lVre u I. Smode , Director
Code 200 Training Analysis & Evaluation
Arlington VA ~~~~

Dept. of the Navy
Orlando IL 32613

Comma nding Officer
Naval Research Laboratory Chief of Naval Education and
Code ~b27

iraining (Code N—b)
Washington oC ~O390

i~aval Air StationPensacola IL 32509
LCoN C . J . ih e i sen , J r . , MOo , DO N
4024 Chief of Naval Education anu
Naval Air I)evelopmLnt Center Training (Code O 1A)
Warm inster ~~ 16974 Naval Air Station

Pensacola FL 32509
Commanding O f f i c e r
uS Naval Amphibious School Capt. R.J. Connery , DON
Coronado CA 92155 Nav y Medical R&D Commanu

I4NMC, bethesda
CUR Paul I). Nelson £ISC , uSN Bethesda MD 20014
Naval Meaical h&L âommanc (Code 14 14)
National Naval Medical Center Navy Personnel R&D Center
bethesda MD 20014 Code 01

San Diego CA 92152
Commanding Off icer
Naval health Research Center Navy Personnel R&D Center
San Diego CA 92152 Code 306
Attn: Library San Diego CA 92152

Attn : Dr. James McGrath
• Chairman , Leadership & La~ Dept.

Div. of Professional Development A .A . Sjoholm , head , lechnica l ~~~~
US Naval Academy Navy Personnel R&D Center
Annapolis ML) 21402 Code 201

San Diego CA 92152
scientific Auvisor to the Chief

of Naval Personnel (Pers Of) Navy Personnel R&D Center
Naval Bureau of Personnel San Diego CA 92152
Room 4410 , Arlin~ton Annex

Attn: Library
Washington DC 2Oj7O

Navy Personnel R&D Ceenter
or. Jack B. borstirig San Diego CA 92152
i rovost & Academic Dean Attn : Dr. J.D. Fletcher
US r’~aval Postgraouate SchoolMonterey CA 93940 Capt. D.M. Gragg , NC , USN

head , Section on t~iedical Educ .
Mr. Maurice Callahan Uniformea Services Univ . of
NODAN (Code 2) the health Sciences
Dept. of the Navy 6917 Arlington Road
bldg. 2 , nashington Navy fard bethesaa MD 20014
(Anacostia)
Washington DC 203(4 LDCR J .W. Snyder Jr.

F — 1 14 Training Model Manager
office of Civilian rersonnel VF— 1214
Coce 342/02 ~,AP

San Diego CA 92025
Washington DC 20390 • -

Attn: Dr. Richard J. Niehaus or. John Ford
Navy Personnel R&b Center
san Diego CA 52152

111

::

~

:

~

_ : :;~ -~~~~• ~_~~:::. .~~ _ •~ ~

~r . W o r t h scan Land h~ U SA RELJ R & 7 t h Army
Lfl jt’t ~ 1 N a v a l ~.duc . & i r a i n in g UD CSOI s

USAREUR Director of I~ f~Drerisacol •i FL 3250b Al-U New ~iork 09403

l ech n i c o l u i r e ct o r AId F i e l d U n i t — Leavenwor th
US A r m y he search i n s t i t u t e f o r LU Lox 3 122

seh av io ral & ~3ocial Sc iences F t . L e a v e n w o r t h KS 66027
1)00 W i l s o n i l v d .
A r l i n g t o n V A ~~~~~ D OU R , U SAA DM1N CEN

b l dg . 1 A 3 10
Ar weu For ces Staff College I 4 t t n : A~ 21—UbD LibraryNor folk VA 23511 It. Benjamin harrison iN 4621o
Attn: L ibrary

Opt.’
Commandant A RI ADS
US Army lntantry School Attn : URCrM—TbO
Fort benn ing GA 31905 Dr. Cieri
Attn: A 1S l~— I— V—l T Fort Noninouth , New Jersey 07703

Commandant 001. ~~~. Smart
US Army lnst itute of Adn,in. US Arm y Training Support
Attn: tA Center (1 00)
rort benjamin harrison iN 46216 Fort l~ustis VA 23004

Dr. halp h Ousek Capt. John Johnson
US Arm y Research institute Iraining Management institute
1300 Wilson blvd . US Army , Bldg. 1514
Arl ington VA 22209 Fort Eustis VA 23004

or. Beatrice Earr Mr. ~oze Gleaton , Lib rary
US Army Research lnstitute fram ing Management institute
1300 Wilson bivo . US Army , bldg. 151 14
Arl ington VA 22209 Fort ~ustis VA 23604

or. Frank J. harris Dr. Edgar Johnson
US Ar ra y Research lnstitute US Army research rstitute
1300 Wilson blvd . 1 300 Wilson blvd .
Arlington VA 22209 Arl ington VA ~2209

Dr. Leon Lgawr o cki Dr . James baker
US A r m y rtesearch Institute US ~ rrn y Research I n s t i t u t e
1300 Wilson blvd. l3uo ~lison blvd.Arlington vA 22209 h r l in g t o n V A 2220~
or. Josep h Ward or. u .A. ~ckstrand (AFHRL/AS)
US Arm y Research institute v.rignt—tatterson A IR
13 00 Wilson blvu . ~~ 45433Arl ington VA 22209

or. Ross L. Morgan (AIMR L/AOR)
Dr. Milton S. ~.atz, Chief Wright— Patterson APB
individual iraining & Performance Oh 454j3

twaluation lechnical Area
Us Army hesearch institute or. ar~ y Mockway (AFBBL/T’l)
ljUO 4ilson blvd . Co~ r~ aFt
Ar lin ,.-tor VA 22209 CU ou~ 3U

~ol. j.L. howa ru Instruct i;nal l e c h no l o gy Branch
us Ar ay . AIk - inL
‘lrairi ing auppor t A c t i v i t y Lowry A I r
Fort L~ustt~ VA 2)004 CO oU~ 3U

Col. Frank hart , [Jirector or. Ali re a Ii. t regly
Ira ining Management institute AFUSa/NL , blug . 410
US Arm y, Bldg. 1725 Lolling Arb , DC 20322
F ort ~ust is V A ~3b04

112

I.- ~~~

-~~~~~—~~
--—

1 . .y 1~~
,, ii. Mayer (Bol l) Director , Managemen t In f orm ati on

ho El ect r-~ r ic systems Division Systems Office
L~ ranis~ L t- b i d 050, M&R A
L e i t o r ~ ~A ui i3U Rm . 3b917 , Ihe Per tu ~n-~nWas hing ton DC ~U 3 U l
Cap t. ~~i~~k thorpe , USA F
A l - hhL /ri~ Dr. harold F . O’Ne ii , Jr.
A illiam s AId , AZ 65224 Advanced Research Projects Agenny

Cy bernetics 1ecF~nology , Rn. 623
Air un iversit y Library 1400 Wilson bl vc.
AUL/C: r (u— 443 Arlington VA 2�2~ 9Maxwu U AFU , AL 36112

LIC henry L. 1ayl cr
or. I . L . Cotterman US Air Force

Military Ass istant for lra iing
Wright—Patterson Al -b and lechnology
Oh 4543) ODDH & b/GAD (F. & LS)

hm . 30129 , Ihe Pentagon
Dr. Uona lJ F. Meyer Washington DC 20301
US Air Force
ATC/XPIo LTC Roger Urossel
Randolp h AFE , IX 76148 USD11 & L(WR)

Rm. �b323, The Pentagon
Dr. W ilson A. Judd Washington DC 20301
McDonnel—Uouglas Astron. Co. East
Lowry A l-b Dr. M. Dene bennett , Director
Denver Cu 00230 institutional Technology Clearinghouse

US Civil Service Commission
Dr. William Strobie 1900 ~ Street NWNcL)onnel—Douglas Astron. Co. Las t Washington DC 20415
Lowry A l-b
Denve r Cu b0230 Dr. Robert ‘xoung

Ad vanced Research Projects Agency
Director , Office of Manpowe r 1400 Wilson Blvd .

Ut ilization - Arl ington VA 22209
ht~ Marine Corps (Code MPU)
bC~~, E1.ug. 2009 Dr. Vern Urry
L,uantico VA 22134 Personnel R&D Center

US C ivil Service Commission
Dr. A .L. Slafkosky 1900 F. Street NW
Scientific Advisor (Code hr— i) Washington DC 20415
h~~, Os r~arine CorpsWashington DC 20360 Dr. Andrew B. Moinar

Science Education 0ev . & fies.
AC/a , FOucation Programs National Science F oundation
Education Center , M~ DFC ~ash ingtorn DC 20550
c~uantico VA 22134

or. Marshall S. Smith
Mr. Joseph J. Cowan , Chief Assoc. Director
Psychological hesearcfl branch Nib/OPEl-A

(Li—P—i/b2) National institute of Education
uS Coast Guard t~ Washington DC 20209
Washington DC 2U5~ O or. Joseph L. Young, Director
Advanced Research Projects Agency Memory & Co~nitive ProcessesAdministrative Services’ National Science F oundation
1400 v~ilson blvd. Washington DC 20550
Arlington VA 22209
Attn: Ardella holloway Dr. Jame a M. Ferstl

Employe e Development Training
Defense ~ocumentat ion Center lechnologist
Cameron Station bldg. 5 bureau of Iraining
A l e x a n a r i a V A 2~ 3 14 US Civ il Service Commission
A t t n : iC Wash ing ton DC 204 15

Military Asst. for h uman hesources W i l l i a m J . M cLaur in
Off ice of the Director of Defense hn,. 301

i~esearch & ~ngineering internal Revenue Service
~m. 3D1~~~, The Pentagon 2221 Jefferson Davis hwy .
~ashington DC 20301 Arlington VA 22202

113

*

W ~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~ .‘~~~~
.

- ~~~~~~~~~~~~ —.~ - — — —

Dr. John It. Anderson Or. Allan M . Collins
D e p t . of Psycho logy bolt heranek & Newman Inc .
lale University 50 Moulton St.
New Raven Cl 06320 Cambriuge MA 02138

Or. Scarvia B. Anderson Dr. John J. Collins
educational Testing Service Essex Corp.
Suite 1040 6305 Caminito Estrellado
. 445 Peachtree Rd. NE San Diego CA 92120
Atlanta GA 30320

Dr. Donald Dansereau
Prof. Earl A. Alluisi Dept. of Psychology
Code 207 Texas Christian University
Dept. of Psychology Fort Worth TX 76129
old Dominion University
Norfolk VA 23508 Dr. Ruth Day

Dept. of’ Psychology
Dr. Daniel Alpert Yale University
Computer—based Education 2 I-iillhouse Ave .
Research Laboratory New haven CT 06520
University of lllinois
Urbana lL 01001 ERIC Facility/Acquisitions

4633 Rugby Ave .
Ms. Carole A . Bagley Bethesda MD 20014
Appl ications Analyst
Minnesota Educational Dr. John Eschenbrenner

Computing Consortium McDonniel—Douglas Astron. Co. East
1925 Sather Ave . P0 Box 30204
Lau derdale , MN 55113 St. Louis MU 00230

Dr. John Brackett Major I.N. Evonic
sofIech Canadian Forces Personnel
4~ 0 Tot ten Pond Rd . Appl ied Research Uni t
Waltham MA 02154 11 07 Avenue Rd.

Toronto Ontario CANADA
Dr. Robert K. branson
1A fu l l y Bldg . Dr . V ic to r Fields
F lo r ida State Univers i ty Dept . of Psychology
Tallahassee FL 32306 Montgomery College

hockvi lle MD 20850
Dr. Victor bunderson
insti tute for Computer Uses Dr. Edwin A. Fleishma n

in Euucation Advanced Research Resources Org .
3~5 LULL 0555 Sixteenth St.
brigham loung Unive r s i ty Silve r Spring MD 20 9 10
Prov e U i o14601

~~ Dr . Larry F rancis
~ D r . don ald P . Carver U n i v e r s i t y of il l inois

school of Education Computer—Based Educ . Research Lab
u n i v e r s i t y of Missour i Champaign iL 6 1801
1UO hockhill Rd.

aansas City MO 64110 Dr. Frederick C. Erick
MiT Lincoln Laboratory

Century Research Corp. Rn. D 268
411 3 Lee hwy . P0 box 73
Arlington VA 22207 Lexington MA 02173

Jac klyn Caselli Dr. John Ft. l-rederiksen
LR1C Clear inghouse on Bolt beranek & Newman inc.

information Resources 50 Moulton St.
Stanforu University Cambridge MA 02138
Schoci ~f i. :~~ atjon/SCRDT
Stantoru LA ~j43O5 Dr. Vernon S. Gerlach

College of Education
Dr. Kenr~~tr r . L~i~~rk 146 Payne Bldg. B
College ot ~rt~ ~ ciences Arizona State Un iversity
Univers ity nt t~ochester Tempe AZ 85281
River Cam pus Ltation
Rochester Ni 14027

114

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



• i~~~~ t~~~~t~~~ ~~~~ u~ r , Co—L)ir~’ut u or. ~iiliam C. MannUn i v tr: ity n i  tittsburgh Information Sciences i n s t i t u t e
~~~~ u

’tu n u ~ t . 467b Admiralty Way
~itt~mt,r~~h tA 1 2 1 Marina Del Hey CA 90291

i n . h.L . tiu v n -~~ or. Leo Munday
huma n ~ ci~ f l L & S .~~. i n (h inc. hough ton Mifflin Co.
i (1U (il i ~ prin e tnu ~ & hd . pnj ~ox 1970West . ~~i t t ~ lnous trial hark iowa City IA 52240

i~c L e a n n ~.A ~~ 1U1
hr. T homas C. O’Sullivan

or • our. c u r t n t n t ~~t- II IRAC
School 3! r c h ca t i on 1220 Sunset Plaza Drive
Memp his Ot d t L Univers ity Los Angeles CA 90069
Memphis i~. f o l i O

t i r . A .J. Pesch , Presidenthuman hesuurc€ r hesearC-h Org . Eclectech Assoc. inc.
~O3 Plaza P1u~~. PU box 170
Pace Elvu . at Fairfield Drive r~. stonington Cl 0b359
r€nsacol a IL j~ 5O5 -Dr. Steven M. F~inehumnktU/Western rivision

~ ooo Elliott hail
~7b5 (berwick orive university of Minnesota
oarme l CA 939~~1 75 East oiver Rd.
Attn: Library Minneapolis Mf~ 55455

numh hU/Columbus O ffice Dr. Kenneth A. Pol~’cynou~ te ~ o, 2001 Cross Coun t ry D r . PCh Information Sciences Co.
o0 lumbus GA 31900 Communication Satellite Applications

7b00 Ulu Springhouse Rd.
nunihhU/Ft . Knox Office McLean VA 22101
Pu box 293
Fort Knox ki 40121 It. Dir. B. hauch

P 11 14
or. Lawrence a. Johnson bunuesministerium der Verteidigung
Lawrence Johnson & Assoc . Inc. postfact 101
oulte 50~ 53 bonn 1 , GeMMAn~
~OO 1 a Street NWWashington DC 20009 lr. Joseph h . iilgney

un iversity of So. Cali f .
or. Arnoic t . Kan ar i c~ behavioral Technolo1~y Laboratories
~oneywell Inc. - 3717 South Grand
cD UU hiugeway Pkwy . Los Angeles LA ~UUu~Minneapolis hN 5541j

or. Andrew t’~. hose
or. Roger A. Kaufma n American lnstitutes f o r r€ s e a r ch
203 oodu ball 1055 i homas Jefferson ot . NW
Florida State University Wash ington DC 20007

r Tallahassee IL 32jUo - .

hr. Charles It. ftupp
h

or. Steven r . tLeele Advanc ea w/C Levelopirient cng .
Dept. of Psychology oen€ral electric Co.
University of Uregcr iou t lastics Ave .
eugene u ti 97403 t~i t t s t ield MA 01201

or . David Klanr Dr. i L L c r t J. Seidel
oep t. of Psychology lnct:-u~ tional 1echnolo~ y Group
Carnegie—Mellon University ni _ c t no
Pittsourgh PA 15213 jUL .. ~as h i ng t o n st .

A lexan iria VA 223~~4or. Robert h . Bac kie
numa n Factors nesearch inc. Dr. nic r ard Snow
o700 Corton Dr. Stant~~n u un ivers ity
Santa barbara Research Park school t educat ion
Goleta ~A ~3017 stan tcn ~ CA 914305

115

~~
- • .-, ~ ~~..• .

‘
. ~~. . -

~ — - .—~~
.-_ ‘ .~~~~~~~~~~ . • _ - .‘ - _.

I
or. Persis Sturgis
Dept. of Psychology
California State University
Chico CA 95926

Mr. Walt W . Tornow
Control Data Corp .
Corpo rate Personnel Research
~u box U HONObOMinneapolis MN 55440

Dr. David J. Weiss
Dept. of Psychology
NObO elliott Mall
University of Minnesota
Minneapolis MN 55455

Dr. Keith Wescourt
Dept. of Psychology
Stanford University
Stanford CA 94305

-
•
‘ Dr. Claire B. Weinstein

Educational Psychology Dept.
University of Texas
Austin TX 78712

Dr. Anita West
Denver Research institute
University of Denver
Denver CU 0201

Dr. ~rik McWilliam sNSF Education Directorate — C1E
National Science Foundation
Washington DC 20550

Dr. Dorothy Derringer
National Science Foundation
Educ ational Directorate
5225 Wisconsin Ave NI~• Washington DC 20550

Prof. Carl Zinn
Center for Research in Learning

and leaching
Unive rsity of Michigan
109 East Madison St.
Ann Arbor Mich 40104

116

I
IIl ~~~~~

—

~~

---- - --

