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Preface

This is the first of three reports [ICAI4,6,7] which document our

recent investigations into a theory for automatically inducing and using
(structural) models of a student which explicate his reasoning strategies,
his representation of procedural skills and his underlying misconceptions
as manifested in his errors. Our basic methodology has been to explore
segments of the modelling problem in the context of particular knowledge
domains, and to implement tentative theories in the form of prototype
intelligent instructional systems. This methodology not only provides us a
test for the completeness and usefulness of our theories, but equally
important it provides us an opportunity to develop and experiment with
tutorial strategies which wutilize the kind of deep structure model of a

learner which was, heretofore, impossible to draw upon.

Before proceeding, we should comment on why structural student models
(as opposed to simpler, parametric models) are critical to the kind of
instructional paradigms being developed under this Tri-service contract.
One of the classical goals of CAI has been to produce adaptive
instructional systems which transform textbook and classroom type learning
into self-paced individualized instruction. Learner models for directing
this kind of instruction require very little detail with respect to the
reasoning capabilities and underlying knowledge representations of the
particular learner. For example, parametric models based on a factor
analysis of a student’s performance, or Markov models based on observed
transition probabilities, often capture all the information that is needed.
Note, however, that the parameters of such models don’t reveal very much
about the infinite variety, subtlety and structure of the reasoning
strategies and problem solving heuristics of the students; nor do they, in
themselves, reflect any of his deep-seated misconceptions. In part this
fundamental limitation arises from the fact that there are only a finite
(and wusually small) number of parameters which can represent only a finite
number of predetermined "entities". In other words, these models are

basically extensional with no generative capabilities.
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The instructional paradigm being developed here is quite different
from the classical CAI or CMI approaches. In particular, we are not
focusing on techniques for teaching factual, textbook knowledge (which can
often be competently handled by the frame-oriented CAI or CMI systems).
Instead, we are focusing on techniques for teaching procedural knowledge
and reasoning strategies which are best learned through hands-on laboratory
or problem-solving tasks during which the student gets a chance to exercise
his knowledge under the watchful and critical eye of an automated
intelligent tutor. Qur instructional systems attempt to mimic the
capabilities of a laboratory instructor or '"coach" who works on a
one-to-one basis with a trainee and who can carefully diagnose what the
trainee knows, how he reasons, what kinds of deficiencies exist in his
ability to apply his factual knowledge and so on. The instructor then uses
this inferred knowledge of the trainee to determine how best to critique

and/or kibitz with him.

This report describes some techniques and a beginning theory for how a
computer-based "intelligent"™ 1laboratory instructor (or on-the-job-site
trainer) can extract and use such information about the learner. The first
chapter discusses the concept of a diagnostic model, which is based on the
concept of a "procedural network" - a network having many of the properties
of the older style semantic networks but which captures both the
intensional and extensional (or executable) aspects of procedural skills.
These diagnostic models provide not only a technique for modelling the
underlying or deep structure aspects of a procedural skill but they also
suggest that an important forcing function for modelling cognitive
processes and their related knowledge representation is that of finding a
natural way to account for all possible manifested errors in human

performance of that skill.

The second chapter describes a considerably more complex
theory/technique for examining the problem solving trace or protocol of a
student and automatically synthesizing, from the trace, a model of his

problem solving strategies as well as the motivations or "plans" that he

11
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used to guide him in his solution. This theory begins to capture the
subtle reasoning powers of a master tutor and as such not only acts as 1) a
powerful learner modelling technique (useful for guiding our computer-based
lab instructors as well as providing a methodology for measuring how a
student s problem solving performance is evolving as a result of some
instruction) but also as 2) a cornerstone for building information

processing models of the skills of a master tutor.
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CHAPTER 1
DIAGNOSTIC MODELS FOR PROCEDURAL SKILLS]

"If you can both listen to students and accept their answers not as
» things to just be judged right or wrong but as pieces of information
| which may reveal what the student is thinking you will have taken a

giant step toward becoming a master teacher rather than merely a

disseminator of information." ---J.A. Easley, Jr. & Russel E. Zwoyer

i

Until recently our efforts in constructing "intelligent”
knowledge-based instructional systems (ICAI) have been primarily focussed
on endowing <computers with sufficient expertise to answer a student’s
questions, critique his b<havior, and in some cases, help him debug his own
understanding. Although such expertise 1is necessary for sophisticated

training systems, it 1is by no means the whole story. Master tutors have

skills that transcend their particular field of expertise. One of their
greatest talents is the artful synthesis of an accurate "picture" of a
jent s misconceptions from the meager manifestations reflected in his

*S. An accurate picture of a student’s capabilities is a prerequisite

> any attempt;at direct individual remediation. The pictures of students
that teachers develop (in whatever form) are often called "models". The
form, use and induction of such models for procedural skills is the topic
of this chapter. 1In particular, we shall describe some initial efforts in
the development and use of a representational technique called "procedural

networks" as the framework for constructing diagnostic models of procedural

1 skills. A diagnostic model attempts to capture a student’s common

misconceptions or faulty behavior as simple changes to (or mistakes in) a

correct model.

This chapter consists of four sections. The first describes a domain
of application and provides examples of the problems which must be faced
with a diagnostic model. The second introduces procedural networks as a

general framework for representing procedural knowledge underlying a skill

(1) A version of this chapter has been accepted for publication in the
Proceeaings of the National Association of Computing Machinery, 1977.




W TP

in such a way as to facilitate discovering or inferring misconceptions or
bugs existing in a particular student’s encoding of this knowledge. The
third discusses pedagogical issues that emerge from the use of diagnostic
models of procedural skills. This discussion is framed in the context of a
computer-based tutoring/gaming system that was developed to explore the
characteristics of our models. The final section describes the results of
an experiment probing the pedagogical effectiveness of this tutoring/gaming

system.

Pr £ Diagn ic Mode rocedu ki

In our research we have been investigating how to teach, learn and
model procedural skills. Our approach has been to focus our initial
efforts on a knowledge domain in which the procedural skills can be
accurately modelled and tested. Consequently, we have selected the task
domain of "doing" high school algebra. (Choosing this domain has the
by-product of letting us test our theories in the increasingly important
arena of remedial high school algebra.) This 1includes not only the
generally recognized rules of algebra, but also such normally implicit
skills as reading formulas, parsing expressions and determining which rule
to apply next. [Brown and Burton 1975, Brown and Collins 1977]. For this
chapter, however, we will 1limit our discussion to examples encompassing
arithmetic skills. This will allow us to concentrate on the critical ideas
of diagnosis, without the need for a large number of algebraic rules.
Limiting our examples to arithmetic also provides a compelling
demonstration of how much more difficult it is to diagnose what 1is wrong
with a student’s method of performing a task (i.e. to form a diagnostic
model) than it is to simply perform the task itself. In particular, it
seems fair to assume that it is no great challenge to add or subtract two
numbers. Let us consider some examples of attempts to use this competency
to diagnose what 1is wrong with the internalized representations of these
arithmetic skills (procedures) in some students. We shall start with a
case study in which we examine five "snap shots" of a student’s
performance during addition (as might be seen in a homework assignment).

The task is to discover the student’s misconception or bug.
Z
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Sample of the student’s work:

41 328 989 66 216
+9 +917 +52 +887 +13
1) 13045 ISLE) 1053 229

Once you have discovered the bug, try testing your hypothesis by
"simulating™ that bug and predicting the results on the following two test
problems.

446 201
+815 +399

The bug is really quite simple. In computer terms, the student, after
determining the carry, forgets to reset the "carry register" and hence the
amount carried is accumulated across the columns. For example, in the
second problem 847=15, so he writes 5 and carries 1; 2+1=3 plus the one
carry is 4, Lastly 3+9=12 but that one carry from the first column is
still there -- it hasn’t been reset -- so adding it in to this column gives
115 If this is the bug, then the answers to the test problems will be
1361 and 700. This "bug" is not So absurd when one considers that a child
might wuse his fingers to remember the carry and forget to bend back his
fingers, or counters, after each carry is added.

A common assumption among teachers is that students do not follow
procedures well and that erratic behavior is the primary cause of a
student s inability to perform each individual step correctly. Qur
experience has been that students are remarkably able procedure followers,
but that they often follow the wrong procedures. One case encountered
last year is of special interest in this regard. The student proceeded
through a good portion of the school year with his teacher thinking that he
was exhibiting random behavior in his performance of arithmetic. As far
as the teacher was concerned there was no systematic explanation for his
errors; and, we must admit that hefore we had "discovered" his bug we, too,

thought that he was erratic. Here is a sample of his work:




i

q
3

.
o

923 27,493 7917

+481 41,509 +48,632
114 26,991 08,119

There is a clue to the nature of his bug in the number of ones in his
answers. Every time the addition of a column involves a carry, a one
mysteriously appears in that column; he is simply wr.cing down the carry
digit and forgetting about the units digit! One might be misled by 17+8
which normally involves a carry yet is added correctly. It would seem
that he is able to do simple additions by a completely different procedure
-- possibly by counting up from the larger number on his fiagers.

The manifestation of this student’s simple bug carri:s over to other
types of problems which involve addition as a subskill. What answer would
he give for the following?

A family has traveled 2975 miles on a tour of the U.S. They have 1828
miles to go. How many miles will they have traveled at the end of their
tour?

He correctly solved the word problem to obtain the addition problem 2975 +
1825 to which he answered 3191. Since his work was done on a scratch
sheet, the teacher only saw the answer which is, of course, wrong. As a
result, the teacher assumed that he had trouble with word problems as well
as arithmetic.

When we studied this same student’s work in other arithmetic
procedures, we discovered a recurrence of the same bug. Here is a sample
of his work in multiplication:

68 734 543

x46 x37 x206
20 792 141

752 2764
x29 x53
144 2731




|
|
|
|
|
|

There are really several bugs manifested here; the most severe one being
that his multiplication algorithm mimics his addition algorithm. But
notice that the bug in his addition algorithm above is also present in his
multiplication procedure. The "carry unit" subprocedure bug shows up in
both his multiplication and addition. For example, to do 68x46, in the
first column he performs 8x6, gets 48 and then writes down the "“carry"
which in this case is 4, ignoring the units digit. Then he multiplies 6xi
to get 2 for the second column. All along he has a complete and consistent
procedure for doing arithmetic. His answers throughout all of his
arithmetic work are far from random. In fact they display near perfection

with respect to his way of doing it.

A First Approximation to Representing Procedural Skills

In order to build a computer system capable of diagnosing aberrant
behavior such as the above, the skill being taught must be represented in a
form amenable to modelling incorrect as well as correct procedures.
Additionally, the model should break the skill down into shared sub-skills
in order to account for the recurrence of similar errors in different

skills. We use the term diagnostic model to mean a representation that

depicts a student’s internalization of a skill as a variant of a correct
version of the skill. For a representation of a correct skill to be useful
as a basis for a diagnostic model, it must make explicit much of the tacit
knowledge underlying the skill. In particular, it must contain all of the
knowledge that can possibly be misunderstood by a student performing the
skill, or else some student misconceptions will be beyond the diagnostic
modelling capabilities of the system. For example, if the model of
addition doesn’t include the transcription of the problem, the system would

never be able to diagnose a student whose bug was to write 9°s which he

later misread as 7’s.
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The technique we use to represent diagnostic models is & procedural
networg.2 A procedural network consists of a collection of procedures
(with annotations) in which the calling relationships between procedures
are made explicit by appropriate links in the network. Each procedure node
has two main parts: a conceptual part representing the intent of the
procedure, and an operational part consisting of methods for carrying out
that intent. The methods (also called implementations) are programs that
define how the results of other procedures are combined to satisfy the
intent of a particular procedure.3 Any procedure can have more than one

implementation which provides a way to model different methods for

F performing the same procedure (skill). For most skills, the network

representation takes the form of a lattice. Figure 1 presents an example

# : of how a part of the addition process is partially broken down into a
procedural network. Conceptual procedures are enclosed in ellipses. The
top procedure in the lattice is addition.A Two of the possible
algorithms for doing addition are presented as alternative methods. In

method 2, the columns are added from left to right with any carries being
written below the answer in the next column to the left. If there are any

(- carries, they must be added in a second addition. 1In method 1, (the

(2) This term has been used by Earl Sacerdoti [1975] to describe an
interesting modelling technique for a partially ordered sequence of
annotated steps in a problem solving "plan". Our use of procedural net:c
differs from, and is less developed, than his. The extensive treatment of
the structure and use of our networks is being reported in a companion
paper. [Burton and Brown, forthcoming]
(3) The language we have used is LISP. The particular programming language
is unimportant from a theoretical standpoint because an implementation is
I non-introspectable. The modelling aspects of the network must occur at the
k conceptual procedure level. For example, the implementation of the
subtraction facts table look up procedure in the computer 1is necessarily
different from that in the student. However, the conceptual properties of
the facts table procedure are the same in both. Those aspects which are
the same (e.g., the invoking of other procedures, the values returned, the
relevant side effects) are included in the network, while the
implementation details, which may differ, are "swept under the rug" into
the program. This is not a limitation, as any "implementational issue" can
be elevated to the conceptual level by creating a new conceptual procedure
in between the existing ones. The distinction between conceptual and
implementation details can also be used to allow a single network to model
a skill efficiently at different levels.
(4) This is a simplified representation intended only to demonstrate those
features of the procedural network particularly relevant to the diagnostic
task. The actual breakdown into subprocedures may be different in a
particular network, and will be considerably more detailed.

6
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standard algorithm) the columns are added from right to left with any
carries being written above (and included in the column sum of) the next
column to the left. Notice that these two methods share the common
procedures for calculating a column sum and writing a digit in the answer,
but differ in the procedure they use when carrying 1is necessary. One
structural aspect of the network is to make explicit any subprocedures that

can be potentially shared by several higher level procedures.

[insert Figure 1]
The decomposition of a complex skill into all of its conceptual

procedures terminates in some set of primitives that reflects assumed

elements of an underlying computational model. For addition, typical
primitives are: recognizing a digit, being able to write a digit, and
knowing the concepts of right, left, etc. The complete procedure network
(explicitly specifying all the subprocedures of a skill) can be evaluated
or "executed", thereby simulating the skill for any given set of inputs.
By itself, this merely provides a computational machine which performs the
skill and is not of particular import. However, the possible

"misconceptions™ of this skill are represented in the network by "buggy"

implementations associated with procedures in the decomposition. Each
buggy version contains incorrect actions taken in place of the correct
ones. An extension to the network evaluator enables the switching in of a
buggy version of a procedure, thereby allowing the network to simulate the
behavior of that buggy subskill. This provides a computational method for

determining the external behavior of the underlying bugs.

Inf s M f the S

The problem of diagnosing a deep structure failure in a student’s
knowledge of a procedural skill can now be accomplished, at least
theoretically, in a straightforward manner. Suppose, as in the examples on
page U4, we are provided with several surface manifestations of a deep

structure misconception or bug in the student’s addition procedure. To




ADDITION

Method 1 Method 2
Right to left Left to right

SUM A
COLUMN

Method

CARRY TO
OPERAND
Method

CARRY BELOW
ANSWER

WRITE IN THE
COLUMN ANSWER

Method

Method

FIGURE 1
A Simplified Piece of a Procedural Network for Addition
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uncover which possible subprocedures are at fault, we use the network to
simulate the behavior of buggy subprocedures over the set of problems, and
note those which generate the same behavior as exhibited by the student.
Tc catch a student’s misconceptions that involve more than one faulty
subprocedure, we must be able to simulate various combinations of bugs.

For example, a student may have a bug in his carrying procedure as well as
believing that 8+7 is 17 (a bug in his addition facts table). To model his
behavior, both buggy versions must be used together. A deep structure
model of the student’s errors is a set of buggy subprocedures which, when
invoked, replicate those errors. Each buggy version has associated
information, such as the underlying teleology of the bug, specific
remediations, explanations, examples and so on. These may be used by a

tutoring system to help correct the student’s problem.6

Relationship of Diagnostic Models to Other Kinds of Structural Models.

It is beyond the scope of this paper to discuss all the past and
current work on structural models of students and how it relates to
diagnostic models based on procedural networks. However, a few words are
in order. Most previous and current research on this subject has been
focussed on the intuitively appealing notion which postulates that if one
has an explicit, well formulated model of the knowledge base of an expert
(for a given set of skills or a problem domain) then one can model a
particular student’s knowledge as a contraction or simplification of the
rules comprising the expert [Collins, Warnock and Passafiume 1975, Brown,
Rurton and Bell 1974, Burton and Brown 1976, Carr and Goldstein 1977].

Recently, Goldstein has articulated this concept in his Computer Coach

(5) Additional structure in the network helps resolve what combination of
bugs are worth considering. In general, simulating or evaluating all
simple and multiple bugs takes approximately 2 cpu seconds for the addition
and subtraction procedural nets.

(6) West [1971] has broken down the diagnostic teaching task into four
steps: 1) distinguish between conceptual and careless errors; 2) identify
the exact nature of the conceptual error (bug); 3) determine the conceptual
basis (cause) of the bug; and 4) perform the appropriate remediation. The
system we describe has been directed towards problems (1) and (2). The
buggy implementation nodes in the network provide the proper places to
attach information relevant to problems (3) and (4).

9
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research and has coined the term "overlay model" for capturing how a
student ‘s manifested knowledge of skills (rules) relates to an expert’s
knowledge base [Goldstein 1977]. In all these cases, the primary problem
has been to develop techniques to discover 1) which skills were employed by
the student in solving problems, 2) which skills were not used, and 3)
which skills an expert would have used which the student did not.

The work reported in this paper differs in emphasis from such
approaches in that the basic modelling technique focuses on viewing a
structural model of the student not primarily as a simplification of the
expert’s rules but rather as a set of semantically meaningful deviations
from an expert’s knowledge base.7 That is, each subskill of the expert
is explicitly encoded, along with a set of potential misconceptions of that
subskill. The task of inferring a diagnostic model then becomes one of
discovering which set of variations or deviations best explains the surface
behavior of the student. This view is in concert with (although more
structured than) the approach taken by Self [1974] in which he models the
student as a set of modified procedures taken from a procedural expert
problem-solver.

We shall now consider examples of procedural skills in arithmetic,
evaluations of the networks for these skills, and then we shall shift our

focus to some pedagogical uses of the procedural network notion.

Procedural Knowledge Used in Subtraction

To provide an example indicative of the surprising amount of
procedural knowledge needed to perform a simple skill, let us consider a
more complete network representation of the subtraction of two numbers.8

Figure 2 shows the 1links of the procedural network for subtraction that

(7) Because these deviations are based on both the student’s intended goals
and underlying teleology of the subskills, we have no automatic way to
generate them (as opposed to what could be done if the deviations were
based on the surface syntax of the rules). However, ongoing work by
Goldstein and Miller [1976], Rich and Schrobe [1976] and Burton and Brown
[ forthcoming] will eventually help overcome this limitation.

(8) We have chosen just one of the several subtraction algorithms (the
so-called "standard" algorithm) but the jideas presented here apply equally
to others.
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indicate which procedures a procedure may use,. The network has been

simplified by showing only one implementation of each procedure (i.e., the

one taught in the "standard" algorithm).
[insert Figure 2]

The top most node represents the subtraction of two n-digit numbers.
It may use the procedure for: setting up the problem, transforming it if
the bottom number is greater than the top, and sequencing through each
column performing the column subtraction. The implementation of the latter
has to account for cases where borrowing is necessary and may call upon
many separate subprocedures including taking the borrow from the correct
place, scratching O and writing § if that place contains a zero, and so on.
An important subprocedure is the facts table look-up where any of the
simple arithmetic_facts can be wrong, including the addition of 10 to a
column digit, the subtraction of 1 during a borrowing operation, or any
subtraction facts used during the processing of a column.

In principle, each of these subprocedures could have many buggy
versions associated with it.g An example of a common bug is to calculate
the column difference by subtracting the smaller digit from the larger
regardless of which is on top. In another bug, the set-up procedure
left-justifies the top and bottom numbers so that when the student is told
to subtract 13 from 185, he gets 55. One interesting thing about the left

justification bug is that the student will be faced with seemingly

impossible problems (185-75) and may be inclined to change the direction in
* which he subtracts, borrowing from left to right instead of from right to
left or to change his column difference procedure to larger minus smaller,
thereby eliminating the need to borrow. Thus, there can exist
i relationships between bugs such that one bug suggests others. A major
challenge in identifying the procedural breakdown or description of a skill

is to have the network naturally handle ramifications and interactions of

(9) On the average our network has two to three buggy versions for each
correct version of a subprocedure.
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A Procedural Network for Subtraction
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multiple bugs, as well as to provide a natural way to define and handle all

common bugs.

E E t the Network

Given a procedural network like the one in Figure 2, it is not always
obvious how bugs in any particular subprocedure or several subprocedures
will be manifested on the surface (i.e. in the answer) -~ especially
since bugs can have serious interactions or since a single buggy
subprocedure can be used by several higher-order procedures in computing an
answer. In fact, if asked to make predictions about the symptoms of a
given bug, people often determine the symptoms by considering only the
skills or subprocedures used in solving one particular sample problem. As
a result they often miss symptoms generated by other procedures that can,
in principle, use or call on the given buggy subprocedure but which,
because of the characteristics of the particular problem, weren’t called.
Yet if another sample problem were chosen, it would have caused the
particular faulty subprocedure to have been used for a different purpose or
in a different way, thereby generating different symptoms. Determining the
complete set of symptoms for a bug is further complicated by the fact that
sometimes a buggy subprocedure can be called by several higher order
procedures in the midst of solving just one problem. It was this
observation that first led us to consider the diagnostic value of this
scheme for systematically verifying a conjectured bug.

In order to provide a feeling for the range of "answers" that can come
from simple underlying bugs, we have included in Figure 3 the "answers" to
a subtraction problem (15300-9522) wusing some of the bugs in the
procedural network for subtraction. For example, the answer 14222 was
generated by the bug which subtracts the smaller digit, in each column,
from the larger. Appendix U4 gives one brief explanation of a bug that

would generate each of the answers in Figure 3.
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Figure 3
Manifestations of Some Subtraction Bugs
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Of course, a particular "answer" to a given problem can have more than
one explanation or cause since there can be several distinct bugs that
generate the same "answer”, For example, a student may harbor many
misconceptions and still get the correct answer to a particular problem.
The need for teachers to thoroughly appreciate and strategically cope with
the possible range of student bugs led us to construct a game called

BUGGY.

BUGGY - An Instructional Activity

BUGGY is a computerized game based on the diagnostic interactions of a
teacher and a computerized student. The teacher’s role may be played by
one or more persons. The teacher is presented with an arithmetic homework
problem that the "student" has done incorrectly. The "student “s" behavior
is generated, using a procedural network, and manifests an underlying bug
in one of the arithmetic subprocedures. The teacher’s job is to diagnose
the computerized student by providing strategic test problems for the

"student" to solve in order to discover exactly what the underlying bug or
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misconception is. The problems given by the teacher are answered by the
"student" using the bugged procedure. When the teacher thinks he knows the
bug, he signals the computer program by pressing a "got it" key. BUGGY
then asks the teacher to describe what he thinks the bug is. To make
certain that he really has found the bug, a five-problem test is given in
which the teacher must answer the problems in the same way that the student
would do them, i.e. he must simulate the "student’s" bug. Success is
achieved when all five problems are done "correctly". Then the teacher
proceeds to a new bug.

The following is a protocol of a team of teachers using BUGGY. The
dialogue 1is interspersed with commentary about the issues that we feel are
pedagogically important. Those lines typed by the team are marked with a

vertical line in the left margin.

Protocol of a Team Using BUGGY

WELCOME TO BUGLAND.
I HAVE CHOSEN A BUG. HERE IS AN EXAMPLE OF THE BUG.

17
+5

13
The system presents an example in which the student doesn’t get
the right answer. At present, these initial examples are stored
in the network linked to the buggy implementation.

NOW YOU CAN GIVE ME PROBLEMS TO DETERMINE THE BUG.

18 43
+6 +79
B 23

The team generates problems that are answered by the "student".
Notice that the team’s test problems are similar to the initial
example generated by BUGGY. In general this is a poor diagnostic
strategy, since it may leave other symptoms of a bug
undiscovered.

| Got the bug!

The team forms an initial hypothesis, and tells the system they
have discovered the bug. The system now asks the team to
describe the bug and then tests them on their understanding.
Asking for a description forces the team to verbalize their
sometimes fuzzy idea of what the bug 1is and often makes them
realize how ill-defined or vague their idea actually is.l0

(10) In the present system, the descriptions are saved but they are not
currently wused, since the understanding of these utterances is beyond the
capabilities of any existing natural language system.
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PLEASE DESCRIBE THE BUG YOU THINK I HAVE.

Student adds the number to be carried into the last column

worked in.

This cryptic description is typical of those we have observed.
Describing bugs in English is surprisingly difficult. What the
team is trying to say is that if a column adds to more than 9,
the wunits digit and the carry digit are added together and the
result is written as the answer. For example, in the first
column of the example problem, when 7 and 5 are added, 1 (the
carry) and 2 (the units digit) are added to get 3. The same with
8+6, 2+9, and 3+9. (This bug could easily arise if the student
were using method 2 from Figure 1 and mistakenly wrote the carry
under the same column.) The hypothesis makes sense.
Unfortunately, it is not the student’s bug. Notice the possibly
humorous, probably disastrous results that would have transpired
if the team had stopped at this point and tried to tutor the
student on the basis of their initial belief'!

HERE ARE SOME PROBLEMS TO TEST YOUR THEORY ABOUT THE BUG.

WHAT IS:

To ensure that the team has found the correct bug, the system
generates several problems for the team to solve. (At present,
BUGGY has a heuristic problem generation program that gives a
broad range of "different" problems. These are then filtered to
try to get three problems which cause symptoms and two that give
correct answers. This simple routine does surprisingly well at
producing critical problems. So well, in fact, that a more
"intelligent" routine which used meta-evaluation to determine the
consistent set of bugs and then filtered the test problems to
split the set was discarded as unnecessarily time-consuming.)

The team’s hypothesis is revealed as incorrect by the first of
the five test problems. BUGGY presents its answer and then
allows the team to enter more test problems.

THAT’S NOT THE BUG I HAVE.
USING MY BUG:

21

39
15

TRY GIVING ME SOME MORE EXAMPLES.

51
+1707
R

99 68
+99 +9
36 23




After failing the test, the team gives a greater range of
problems, specifically those using bigger numbers. How is it
that 51+1707 can add up to 21?2 By broadening the scope of
example problems they are able to reevaluate their initial
hypothesis, dismiss it, and develop another one that is complete
and consistent with respect to the new errors.

|Got the bug!
PLEASE DESCRIBE THE BUG YOU THINK I HAVE.

The student is adding all the digits together.

HERE ARE SOME PRCBLEMS TO TEST YOUR THEORY ABOUT THE BUG.

WHAT IS:

33 1091 8 28 90
+9 +60 +34 +70 +6
| 2 17 15 17 15

This time the team’s hypothesis passes the test and they are
given the description of the bug stored in the procedural
network.

VERY GOOD. MY DESCRIPTION OF THE BUG IS:
THE STUDENT ALWAYS SUMS UP ALL THE DIGITS WITH NO REGARD TO COLUMNS.

ical I s
One application of BUGGY and the "diagnostic model" view of procedural

skills 1lies 1in the domain of instructor training. The realization that

3

"random" errors are actually the surface manifestations of an underlying
bug in a procedure is a major conceptual breakthrough for many instructors.
Often behavior that appears to be random has a simple, intelligent, and
complete underlying explanation. By proper diagnosis, remediation can be
directed towards the specific weaknesses. The importance of this notion
cannot be overstressed. Admitting the possibility of wunderlying bugs is
critical to remediation in the classroom. Without the ability to diagnose
procedural bugs, failure on a particular problem must be viewed as either
carelessness or total algorithm failure. In the first case, the

remediation consists of giving more problems, while in the second, it
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consists of going over the entire algorithm.ll When a student’s bug
(which may only manifest itself occasionally) is not recognized by the
instructor, the errant behavior must be explained as carelessness, laziness
or worse. This causes the instructor to adapt his model of the student’s

capabilities, thereby mistakenly lowering his expectations. From the

student s viewpoint, the situation is even worse. He is following what he
believes to be the correct algorithm and, seemingly at random, gets marked
wrong. This situation can be exacerbated by improper diagnosis. For
example, Max subtracts 284 from 437 and gets 253 as an answer. Of course,

says the instructor "you forgot to subtract 1 from 4 in the hundreds place

when you borrowed." Unfortunately Max’s algorithm is to subtract the

smaller digit in each column from the larger. Max doesn’t have any idea

what the instructor is talking about (he never "borrowed"!) and feels that

he must be very stupid indeed not to understand. The instructor agrees

with this assessment since none of his remediation has had any effect on

YT

Max ‘s performance.

BUGGY, in its present form, presents instructors with examples of
f buggy behavior and provides practice in diagnosing the underlying causes of

. errors. Using BUGGY, the instructor gains experience in forming theories

about the relationship between the symptoms of a bug and the underlying bug

p '; itself. This experience can also be cultivated to make instructors aware
i‘ that there are methods or strategies that they can use to properly diagnose
bugs. There are a number of strategy bugs that instructors may have in

a forming hypotheses about a student’s misconceptions. The development of a
good "troubleshooting" strategy by an instructor can avoid these pitfalls.
A common mistake 1is to jump too quickly to one hypothesis. Prematurely
focussing on one hypothesis can cause a teacher to be unaware that there
are many competing hypotheses that are just as likely, or possibly more

likely. A common consequence of this is that the instructor only generates

(11) In computer programming metaphors, this corresponds to the debugging
activities of resubmitting the program and throwing the whole program away
and starting over from scratch because the computer must have made a
mistake.




problems for the student that confirm his own incorrect hypothesis! For
example, one student teacher was given the initial example (A) (shown
following) after which he proceeded to generate example problems:

A B C
i9 23 81

+6 +8
T99 736 B8

At this point, he concluded that the bug was "writes the bottom digit after
the top number."™ But his hypothesis failed when he was given the first
test problem:

8
+12

to which he responded 812. The bug actually is that single digit operands
are concatenated on the end of the other operand, so that the correct buggy
answer 1is 128. By presenting only examples with fewer digits in the bottom
number, he got only confirming evidence for his hypothesis.

In some cases, an instructor may believe his hypothesis so strongly
that he will ignore disconfirmations that exist or decide that these
disconfirmations are merely random noise.12 One way this can be avoided
is by using the technique of differential diagnosis [Rubin 1975] in which
one always gene¢rates at least two hypotheses and then chooses test problems
that separate them.

Another important issue concerns the relationship between the language
used to describe a student’s errors and its effect on what a teacher
should do to remediate it. Is the language able to convey to the student
what he 1is doing wrong? Should we expect instructors to be able to use
language as the tool for correcting the buggy algorithms of students? Or
should we only expect instructors to be able to understand what the bug is
and attempt remediation with the student wusing things 1like manipulative
math tools? The following are quotes of student teacher hypotheses taken
from protocols of BUGGY, which give a good idea of how difficult it 1is to
express procedural ideas in English. The descriptions in parentheses are

BUGGY ‘s (prestored) explanations of the bugs.

(12) There is, of course, some amount of "processor failure" as students
are often all too human.
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"Random errors in carryover." (Carries only when the next column in the top
number 1s blank.)

"If there are less digits on the top than on the bottom he adds columns
diagonally." (When the top number has fewer digits than the bottom number,
the numbers are left-justified and then added.)

"Does not like zero in the bottom." (Zero from any number is zero.)

"Child adds first two numbers correctly then when you need to carry in the
second set of digits child adds numbers carried to bottom row then adds
third set of digits diagonally finally carrying over extra digits." (The
carry 1is written in the top number to the left of the column being carried
from and is mistaken for another digit in the top number.)

"Sum and carry all columns correctly until get to last column. Then takes
furthest left digit in both columns and adds with digit of last carried
amount. This is in the sum." (When there are an unequal number of digits
in the two numbers, the columns that have a blank are filled with the
left-most digit of that number.)

What does this say to us? Even when one knows what the bug is in

terms of being able to mimic it, how is one going to explain it to the

student having problems? Considering the above examples, it is clear that

anyone asked to solve a set of problems using these explanations would no
doubt have real trouble. One can imagine a student’s frustration when the
teacher offers an explanation of why he is getting problems marked wrong,
and the explanation is as confused and unclear as these are. For that
matter, when the correct procedure is described for the first time, could

it too be coming across so unclearly?

= This 1issue 1is further complicated by the existence of another

cE/- N

important issue: there are fundamentally different bugs which cause
identical behavior! In other words, there can be several distinct bugs

that are logically equivalent and always generate the same "answers". For

WA

example, here is a set of problems:

{ i

38 186 298 89

+U46 +254 +169 +64
78 2330 2357 253

The underlying flaw in the student’s procedure (his bug) can be

described as "The columns are added without carries and the left-most digit
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in the answer 1s the total number of carries required in the problem.” In
this case, the student views the carries as tallies to be counted and added
to the left of the answer. But another equally plausible bug also exists;
the student 1is placing the carry to the left of the next digit in the top
number instead of adding it to the digit (i.e. he is actually carrying ten
times the carry digit). This generates the same symptoms. So even when
the teacher is able to describe clearly what he believes is the underlying
bug, he may be addressing the wrong one. The student may actually have

1
either one of these bugs. -

We feel that all of the issues discussed above are as important for
students learning procedures as they are for teachers. In particular, the
diagnostic task of a player requires studying the structure of the
procedural skill per se as opposed to merely performing it. This can be
especially important if we are trying to get students not to just rotely
memorize the procedural skill but to encode it in some semantically
meaningful way.

Another reason for having students develop a language for talking
about procedures, processes, bugs, etc. 1is that this language enables the
student to talk about (and think about) procedures and the underlying
causes of his own errors. This is important in its own right, but it also
gives a student the motivation and the apparatus for stepping back and
critiquing his own thinking, as well as saying something interesting and
useful about his errors. This is especially important given the fact that
there’s been so little success in getting students to look over their own
work (such as estimating answers) and to use this perusal to good

advantage.

(13) This leads to an interesting question concerning how one can "prcie"
two different descriptions of bugs entail logically the same surface
manifestations.




An Ixperiment using BUGGY

We have conducted an experiment to explore BUGGY ‘s impact on student
teachers. In particular, we wished to answer the question of whether
exposure to BUGGY significantly improves the student teachers’ ability to
detect regular patterns of errors in simple arithmetic problems. The
subjects were twenty-four undergraduate education majors from Lesley
College in Cambridge. They were all volunteers who were not paid for their
services. The 24 subjects were divided into twelve groups of two each.

Their exposure to BUGGY lasted ap,.roximately one and a half hours with
most teams completing at least six different bug sessions. Both addition
and subtraction bugs were presented. The first two bugs each team
encountered were chosen from a list of simple bugs so as not to compound
difficulties the subjects faced in just getting used to using a computer
terminal and to BUGGY.

The effects of their exposure to BUGGY were measured by comparing each
subject ‘s performance on pre- and post-exposure tests. There were two such
tests, labelled Red and Blue. The twenty-four subjects were randomly
assigned to two groups. One group had the Red test before exposure, and
thz Blue test after, and the other group had them 1n reverse order. Each
test had ten items, each item consisting of a set of four simple addition
or subtraction problems with their "solutlons". Seven of the items in each
test contained "patterned" errors, such that the four solutions could all
be arrived at as a result of a single misapplied rule -- for example,
failure to carry when a column adds to more than 10. The other three items
were "random" items in which there was no single explanation for all of the
errors. (See Appendix 1 for the Red test.) For the experiment, BUGGY was
modified so that no subjects were given bugs that occurred on their

post-tests.

Results
The raw data generated by the tests are shown in Table 1. The items
across the top (1P,2P,3R...) indicate the problem number and whether the

correct problem description was random (R) or could be explained by a

single bug description or pattern (P). The subjects’ responses were scored
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and assigned to four categories: PC, PI, PW, K, plus one extra category of
Not Attempted (NA). The first letter stands for the type of response the
subject made where P=pattern, and R=random. The second letter is the
quality of the explanation the subject made on that item: C=consistent or
complete (the subject’s single explanation explains all the errors),
I=inconsistent (the subject’s explanation is not contradicted by any of the
problems but does not explain all errors), and W=wrong (the subject’s
explanation is contradicted by at least one of the problems). For the case
of "R"™, Random-Consistent is implied.
[insert Table 1]

First, let us compare the results of Pre and Post tests, combining the
results across the two groups of subjects and across the Red and Blue
tests. The distribution of responses is shown in Table 2 together with
values fer Chi-squared.

[insert Table 2]
There was a significant improvement on the patterned items. The number of
correct responses for patterns (PC) rose (p=0.048 by one-tailed binomial
test). The number of pattern descriptions disconfirmed by one of the
solutions it was supposed to describe (PW responses fell significantly
(p=0.02 by one-tailed binomial test). The number of random (R) responses,
where a patterned bug was incorrectly described as a random error, also
fell (p=0.047 by one-tailed binomial test).

The results on the Random test items also showed improved performance
after exposure to BUGGY, although they fail to reach significance. The
number of  Random (R) responses for random items increased; the number of
Pattern responses contradicted by at least one of the examples (PW)
decreased; and the number of items not attempted (NA) fell, suggesting
that speed increased slightly. (Almost all of the reduction in the number
not attempted occurred on the final random items which were the last item
in the Red test, and the next to last in the Blue test.) The number of
pattern-inconsistent (PI) responses increased slightly in both patterned
and random items, suggesting that the exposure to BUGGY increased the

subjects’ sensitivity to the presence of patterning.
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TABLE 2
[ Patterned Items Random Items j
Response Pre-Test Post-Test Pre-Test Post-Test
SVSERY 5L R A S Ers. SN e
PC 55 75 - -
PI 18 24 150 22
Lo / x
PU 27 13 4 ) g |
R 16 7 9 13
NA 52 49 44 35
X2 12.45 2.33
DF 4 2
p P<0.02 S
ek e , e, (R T n

*Combined for Chi-Square test
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The foregoing conclusions depend on two assumptions implicit in the
experimental design: that the two groups of subjects were equivalent, and
that the Red and Blue tests were equivalent. To confirm that the two
groups of subjects were equivalent, the responses obtained in the Pre-~tests
were combined with those from the Post-tests, for each group, as shown in
Table 3.

[insert Table 3]
The two groups yielded very similar distributions of responses for both
Patterned and Random items. The differences are not significant by
Chi-squared test, and a large portion of the obtained Chi-squared values
derive from the difference in the number of Random responses between the
two groups, which appears 1in both the Patterned and in the Random test
items.

The second assumption is that the Red and Blue tests are equivalent.
The Pre- and Post-test responses are combined separately for the Red and
Blue tests in Table 4.

[insert Table 4]

There is no difference between the two tests in the Random items, but
the patterned items were significantly easier in the Blue test than in the
Red test. The number of correct responses was greater for the Blue test,
and the number not attempted was smaller, though neither difference is
significant by one-tailed binomial test. On the other hand, there were
significantly more internally-inconsistent errors (PW) on the Blue test
(p=.04 by two-tailed binomial). This difference between the Red and Blue
tests is unimportant as long as the pattern of differences is similar for
both the Pre-test and the Post-test. Table 5 shows the distribution of
responses to Patterned test items for Red and Blue tests separately for
Pre-exposure and for Post-exposure applications. (Note that different
groups of subjects are involved, so the validity of the conclusions depends
on our earlier finding of no difference between the two groups.)

[insert Table 5]
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TABLE 3
Patterned Items Random Iteins
S1-812 $13-S24 £1-512 $13-524
|
[ PC 64 66 - - |
PI 21 21 17 20 |
L L,
PU 18 22 1) 5 |
R 17 6 15 7
NA 48 53 39 40
G 5.94 4.06
D.F. 4 2
p P=0.2 P=0.2

*Combined for Chi-Squared test
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[ABLE 4

Response Patterned Items Random Items

Red Blue Red Blue

W e i -

Pl 25 17 191 18
PY 13 27 1 _f 5 j
R 12 11 12 10
NA 59 42 40 39
& 10.44 0.40
DF 4 2
p b L02<P<.05 .90<p<.80

-

*Combined for Chi-Squared test
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Table

5

Response Pre-exposure Post-Exposure
Red Blue Red Blue

PC 24 31 35 40

PI 11 7 14 10

PW 9 18 4 " G

R 1 5 1) 6

NA 29 23 30 19

- 7.72 8.47

DF 4 %

P P=0.1 +02<P¢ .05

*Combined

for Chi-Squared test.




An inspection of Table 5 shows that the difference between the two
tests 1s very similar for the Pre- and Post-exposure applications (with the
single exception of the Random responses) and is certainly not large enough
to cast doubt on the main conclusion. We can, therefore, conclude that
exposure to BUGGY significantly improved the subjects’ ability to detect

regular patterns of errors in simple arithmetic problems.

Qualitative Impressions

The next question to be investigated concerned the issue of what the
subjects (student teachers) themselves felt they gained from their exposure
to BUGGY. In order to assess their impressions, we convened the entire
group during the evening when they had finished using BUGGY. At that
gathering, we first asked them to write their responses to two questions
(discussed below) and then taped a final group discussion in which we
sought their reactions to BUGGY, and their suggestions for its deployment
with school-aged students. The following week, their professor held a
similar group discussion (he also participated in the initial experiment)
and reported back to us the consensus, which was consistent with what they
had written.

Appendix 2 1lists all the written responses to the question "What do
you think you learned from this experience?". All 24 responded that they
came away with something valuable. Many stated that they now appreciated
the "complex and logical thought processes" that children often use when
doing an arithmetic problem incorrectly. "It makes me aware of problems
that children have and they sometimes think logically, not carelessly as
sometimes teachers think they do." "I never realized the many different
ways a child could devise his own system to do a problem." They also
stated that they learned better procedures for discovering the underlying
bug -- "I learned that it is necessary to try many different types of
examples to be sure that a child really understands. Different types of
difficulties arise with different problems." Several stated their mixed
feelings about working with a computer. "Trying to beat the machine can be

challenging." "l 1learned that computers are a very complicated piece of
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machinery. If one isn’t experienced with the mechanism, then problems
could result." And finally, "The types of analyses necessary to ‘debug’
student errors on the test (paper/pencil) seems more difficult than with
the computer. But that doesn’t make any sense. The “analysis’ ought to be
the same. Perhaps the computer motivated my analytical ability."

Appendix 3 1lists all written responses to the question "What is your
reaction to BUGGY?" Many felt that "BUGGY could be wused to sharpen a
teacher’s awareness of different difficulties with addition and
subtraction.” They felt that it might be of wuse in grade school, high
school, or with special needs students, or even as a "great experience in

beginning to play with computers."

Conclusion and Extensions

Although our experience shows that student teachers learn a
significant amount from their use of BUGGY, the system should still be
substantially extended. In particular, most of what the students learned
while using BUGGY they learned or discovered, in some sense, on their own.
BUGGY does no explicit tutoring. It simply challenges their theories and
p encourages them to articulate their thoughts.14 The rest of the learning

experience occurred either through the sociology of team learning or from
i | what a person abstracted on his own. The next step in improving the
educational effectiveness of BUGGY is to (1) implement an intelligent tutor
to critique the example test problems the students create, (2) point out
interesting facets of their debugging strategies and (3) isolate
manifested weaknesses in their strategies. Our experience indicates that
such a tutor would be very helpful in that it could keep students from
getting caught in unproductive ruts and could help focus their attention on

the structure of the procedures themselves.

(14) As a historical footnote, BUGGY was originally developed to explore
the psychological validity of the procedural network model for complex
procedural skills. During that investigation we realized the pedagogical
potential of even this simple version of BUGGY as an instructional medium.
More recent versions of this system have stressed instructional aspects by
adding such features as assigning "costs" to student generated test cases,
thereby encouraging him to optimally formulate and test his hypothesis.
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Along these same lines, the "expert” portion of the procedural net
should be made "articulate" 1in the sense of being able to explain and
justify the subprocedures it uses. This would allow a student to pose a
problem to the system and obtain a running account of the relevant
procedures as the "expert" solves the problem.

Another area for extension concerns the psychological validity of the
skill decomposition (and buggy variants) in the procedural network.

Determining the proper functional breakdown of a skill into its subskills

1s critical to the psychological validity of the model and the resulting |
behavior of the system. If the breakdown of the skill is not correct, bugs
that people would consider simple may be difficult to model, while those
suggested by the model may be judged "unrealistic". From the network
designer’'s point of view this leads to the issue of choosing or
| constructing one structural decomposition instead of another. We are just
beginning to acquire a large data base of arithmetic errors from Stanford

[Searle 1970] and will be testing to see how well our diagnostic model

accounts for all of them. In particular, we are concerned not only with
how many underlying bugs our current model captures, but also how many bugs
our network predicts that never show up. A more subtle issue concerns the
- validity of the actual functional decomposition of the skills 1in the
network. Measuring the '"correctness" of a particular network 1is a
problematic 1ssue as there are no clear tests of validity, but issues such
as the ease or "naturalness" of inclusion of newly discovered bugs and the
appearance of combinations of bugs within a breakdown can be 1investigated.
We are also in need of a theory which explains what makes an
underlying bug easy or difficult to diagnose. Simple conjectures
concerning the depth of the bug from the surface don’t seem to work, but
more sophisticated measures might. It’s hard to see how to predict the
degree of difficulty in diagnosing a particular bug, without a precise
information processing or cognitive theory of how people actually formulate

conjectures about the underlying bug or cause of an error.
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Finally, we note that we have left open the entire issue of a semantic
or teleological theory of how bugs are generated in the first place. The
need for such a theory is important for at least two reasons. First it
could provide an interesting theoretical mechanism that would account for
the entire collection of empirically arrived at bugs, and second, it
provides the next step in a semantically based productive theory of student

modelling.
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CHAPTER 2

AUTOMATED PROTUCOL ANALYSIS - A TECHNIQUE FOR MODELLING AND MEASURING
STUDENT PERFORMANCE‘.15
SECTION 1

The persistent theme throughout our research has been that for
intelligent CAl programs to successfully tutor a student, they must be
able to 1nduce a model of the student’s current knowledge and
preferred interaction modes. Otherwise, computer-based tutors,
regardless of the power of their embedded expert, risk transactions with
the student that are inappropriate or annoying.

To address this student modelling problem, one must have some means
for making hypotheses regarding the student ‘s knowledge. The
previous chapter described such a technique, namely diagnostic models
built around procedural networks. This chapter discusses another technique
that augments Lﬁe previous one, .nd, unlike the previous one, assumes that
the main source of data available to the ICAI tutor 1is the student’s
problem solving protocol or trace (as opposed to just his answer). This
chapter proposes a theory and a computational approach for automating the
protocol analysis task for the purpose of automatically inducing a
structural model of the student’s problem solving strategies. It then
discusses the design of a computer system, named PAZATN, for carrying out
this task.

In addition to providing us with a powerful technique for discovering
a student’s underlying reasoning strategies, automated protocol analysis
also serves as a new means of measuring and testing the tutor’s success.
With 1t, we can determine whether successive protocols reflect improved
problem solving competence on the part of the student. 18 can provide

rigorous measures of the virtues of alternative tutoring modes.

Finally, protocol analysis can also serve as a diagnostic tool for

discovering gaps 1in the knowledge of a practicing problem sclver and

(15) A substantially modified version of this chapter is appearing as a
working paper by Goldstein and Miller.
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direct a computer based assistant’s attention to those areas that require
assistance and review (e.g. an adaptive Job Performance Aid).

In designing such an automated protocol analysis system, we have
drawn on concepts and algorithms from computational linguistics.
While the protocols we consider relate to problem solving behavior, and
not linguistic interactions, we nevertheless believe that there is a

fruitful synergy between the concepts developed in the language

understanding arena and the problems of ICAI.

Technical Statement of the Problem

Protocol analysis assigns one or more theoretical interpretations
to a record of a subject’s overt behavior on a problem solving task.
Our concern 1is with problem solving tasks in which a student or subject
interacts with an on-line computer terminal. For such tasks, the
behavioral record 1is the sequence of keystrokes from the console
session. Tre keystrokes are grouped into events, which are treated as
unitary input/output transactions. An advantage over the most general
analysis situation 1is gained by assuming that the dialogue occurs

within the confines of a well-defined finite "menu" of legal responses.

P Our primary concern is to account for problem solving behavior; we do not
attempt to solve the natural 1language understanding problem as a
subprocedure.

? For the purposes of this discussion, an interpretation is a structural
description of the 1list of events, augmented by an assignment of values
to a set of semantic context variables, and a set of pragmatic assertions,
associated with each node of the desci'iption. The semantic
variables and pragmatic assertions relate the subgoal structure of the
problem solving protocol to the model, a formal description of the task
to be accomplished. In applications of automatic protocol analysis, it
is common to assume the existence of this formal problem
description. It is not assumed that the student has internally

represented the task in precisely the same fashion. These definitions

are elaborated in section two.
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In order to impose realistic bounds on the specification of the
analyzer, 1t 18 also assumed that the protocol is "reasonable."
That 1s, the protocol should represent a sincere attempt to solve the
problem 2t hand, and should terminate exactly when this goal has been
accomplished. Although "reasonable" is difficult to define more
precisely, PAZATN’s sensitivity to this assumption will be made clear in

the ensuing discussion.

Determining the Validity of Theoretical Interpretations

The validity of the interpretations assigned by the analyzer may
be ascertained in a variety of ways. Our philosophy is to utilize every
available source of evidence. Since the synthetic problem solver
employs identical descriptions, its heuristic adequacy 1is taken as
suggestive, though by no means decisive, evidence. Introspection by
human problem solvers is another source of weak confirming evidence.

The analyzer’s ability to predict future behavior on the basis of
past performance will provide the strongest corroboration. No

formal experimentation has been carried out to date. Our plan is to employ

the finished system for this type of rigorously controlled
experimentation. Ultimately we hope to embed such analyzers in
computerized tutors. This is an ambitious undertaking. When a

prototype 1s available, though, the pedagogical efficacy of that system

will provide a further check.

Review of the Synthetic Theory

Before examining the analyzer in detail, it will be helpful to
briefly review the synthetic theory. The basis for the approach is
a hierarchical classification of commonly observed planning and
debugging techniques. According to the planning theory, when the
problem solver confronts a problem, there are three major categories of
plans which may be pursued. The problem may be solved by

identification, that is, by recognizing it as a problem for which a
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solution already exists in some answer library. This tLype of plan

may seem

a bit trivial, but of course 1t is absolutely essential to

avoid infinite regress.

Alternatively, the problem may be solved by
decomposition, that is, by subdividing it into smaller, easier
subproblems. These are each solved separately (by recursively calling

the problem solving system), and then recombined in one of several

specific ways, to produce a solution to the original problem.

If these strategies fail to produce a solution, the problem may

be solved by reformulation, that is, by redescribing the goal in other

terms which seem more amenable to solution. The reformulated problem

must,

problem

of course, still be solved itself (recursively calling the

solving system) by identification, decomposition, or further

reformulation.

Each

by the

of these categories of planning concepts is further subdivided

theory, as illustrated by Figure 1. Identifications may

be accomplished by retrieval from a 1lexicon of primitive operations for

the task domain, or by retrieval from an extensible answer library.

Decomposition may be performed by Conjunction or by Repetition (among

others).

Reformulation may involve Equivalent models or Simplifications.

Each of these, in turn, is elaborated still further.

The

taxonomy is transformed into a procedural problem solver 1in

the following manner. In order to represent semantic information, a

finite

set of registers 1is defined. These are used for storing flags

and structures resulting from intermediate steps of the computation. At

this point, the taxonomy can be thought of as a highly non-deterministic

decision tree.

In order to increase the system’s determinism, the nodes and links

of the tree are taken to be the states and arcs of a recursive transition

diagram.

Arbitrary conditions over the contents of the registers

are associated with tne arcs, as preconditions for following them.

Finally,

artitrary structure-building and register-setting actions are

associated with the arcs, to be performed whenever they are followed.
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Figure 1.

IDENTIFY
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The Planning Taxonomy
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INT-BY-PARTS
PARTIAL-FRACTIONS
REPETITION

EXTENDED INT-BY-PARTS
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SUBSTITUTION
PYTHAGOREAN-RELATION
SIMPLIFICATION
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For efficiency, some states with similar topology are merged, and
a few additional arcs are added to provide for such features as iterative
control, when recursively invoking the complete problem solver 1is
unnecessary. Although we allow arbitrary conditions and actions, these
are not chosen arbitrarily, but are carefully selected to reflect the
semantics and pragmatics of the problem solving process.

The result of this metamorphosis is PATN’s synthetic augmented
transition network displayed in Figure 2.'°

PATN has a particularly interesting property from the standpoint of
protocol analysis. It views certain types of errors (bugs) as rational,
in that they result from heuristically sound planning choices made 1in
the absence of complete information, and 1is capable of producing
partial solutions (i.e., traversing intermediate states) containing

bugs of this type.

Design Considerations

A major insight of generative grammarians (e.g., Chomsky [1965])
was that in characterizing a set of phenomena, it is often helpful to
conceptualize the formalism synthetically, and to view analysis as a
process of inverting synthetic rules. Equivalently, analysis may be
described as the selection of one or more plausible derivations from
a potentially infinite collection of synthetic possibilities. In
designing PAZATN, we have found it enlightening to view protocol
analysis as parsing in this sense, where PATN is taken as the generative
formalism.

Since the space of synthetic possibilities (both in language
processing and in problem solving) is potentially infinite, 1t is

critical that this space be characterized using a finite (reasonably small)

(16) PATN is an expert problem solving system, designed by Miller and
Goldstein [1976] in which planning knowledge is modeled using augmented
transition networks [Woods 1970)]. This system serves as the cornerstone of
a grammatical theory of problem solving which can act as a formalism for
representing the knowledge of our Articulate Expert for mathematics and
some aspects of electronics.
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Figure 2. Planning ATN for Symbolic Integration
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set of rules. In PATN, these rules take the form of an ATN. This 1is

somewhat unusual, since in computational linguistics the ATN 1is
commonly thought of as an efficient mechanism for inverting
transformational rules, i.e., for analysis. PATN s synthetic ATN is a

generator for the space of plans and debugging techniques which are
relevant to the problem at hand.

Naturally, PAZATN is not prepared to understand protocols which PATN
could not be made to generate eventually. The one exception to this 1is
that buggy versions of various synthetic plans (including irrational
bugs which would not be introduced by PATN) can often be recognized.
Since PATN is presumably an effective procedure within 1its domain of
competence, the analysis could, in principle, be performed by exhaustively
enumerating the set of synthetic protocois, and selecting the first one
which matches the input data. Unfortunately, this would take
considerable time. Consequently, the primary consideration in the
analyzer’s design must be to ensure that this synthetic plan space is
searched efficiently. Bottom up evidence from the actual protocol is
used for this purpose.

An important design consideration is that the analyzer be able to

take full advantage of the available sources of constraint. The
protocol analyzer has access to an unusually strong set of
expectations, namely the model. This is analogous to knowing the

"gist" of what a speaker is going to say before parsing it.
Consequently, the analyzer must be organized in such a manner that it 1is
able to extensively utilize the top down synthetic guidance which can be
provided by PATN.

This might suggest a design based on using PATN as a purely top
down predictive analyzer. The difficulty is that, while we know the
"gist" of the input, there 1is a tremendous diversity of potential
realizations of a given model in terms of the form of the solution. So it
is more like knowing the "theme" of a story, but not knowing whether the

author will present the events in chronological order, via flashbacks,

. -~ 1)
'&&'M»n‘m Sl

st s it N R s S




-

or 1n an order derived from some other organizing principle. The
unguided PATN could generate scores of irrelevant synthetic solutions
before stumbling upon one that matched the data. This factor 1leads to a
somewhat elaborate dual organizatiou for the analyzer, which enables
it to reduce the diversity by considering bottom up evidence as well.

Another difficulty which must be faced, if PAZATN style analyzers

are to be viable for eventual dynamic use in computerized
tutoring, is that events must be examined in a single pass, in
approximately left to right order. One could postpone this issue

temporarily, but such a simplification might result in a design which
cc .d not be extended for applications because of fundamental, premature
commitments. If the analyzer is forced to back up frequently, over many
events, it is often l:ikely to find itself "apologizing" for
inappropriate tutorial remarks regarding prior events. Consequently, it
must carry along any plausible alternative interpretations in parallel,
until it has a clear basis for ruling them out. Conversely, the analyzer
must have some capability for restricting the set of alternatives under
active consideration, to ensure that excessive processing and storage
resources are not consumed by low plausibility interpretations.

The organization of the protocol analyzer is a
generalization and elaboration of the coroutine search plan-finding
procedure used by Mycroft [Goldstein 1974, 1975]. The differences
arise mainly from the need to take account of the considerations
mentioned above. In particular, the protocol analyzer is intended
to: (a) apply to more than a single task domain; (b) understand a
wider range of event types (e.g., Mycroft was designed to analyze
finished computer programs rather than protocols); (c) reap maximum
advantage from the dynamic information available in the protocol regarding
subgoal structure and development; and (d) embody the more coherent

structured planning and debugging theory underlying PATN.
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The PAZATN protocol analyzer 1is constructed on PATN s synthetic
foundations by supplementing the synthetic ATN with a number of
additional modules and data structures. One data structure is used to
keep track of the set of plausible subgoals which have been proposed by
PATN. Another 1is wused to record the state of partially completed
interpretations of the protocol. A preprocessor module 1s used to
suppress uninteresting syntactic details and to perform preliminary
segmentation. The preprocessor employs an event classifier to
determine the syntactic class of each event of the protocol.
Corresponding to each syntactic category, PAZATN must be supplied with
an event specialist which embodies the requisite domain knowledge for
assisting an event interpreter in associating an event of that type with
some synthetic subgoal. Since a purely top down or bottom up strategy
would be too inefficient, a scheduler module is necessary to direct the
analyzer through a "best first" coroutine search.

Section two elaborates our notion of protocol analysis as a parsing
proccess analogous to the natural language processing task. The third
section provides a slightly simplified description of the
organization of the automatic protocol analyzer. Section four refines
this first order description of PAZATN’s design. Finally, we present
our tentative conclusions and plans for future work.

SECTION II
A GRAMMATICAL APPROACH TO PROTOCOL ANALYSIS

This section addresses the question: "What is it about PAZATN's
approach to protocol analysis that makes it grammatical?"
Central to the approach 1is the conjecture that various aspects of
problem solving behavior can be studied approximately independently.
Consider the underlying problem solver (i.e., the subject) whose
behavior is to be analyzed. While we conceive of this problem solver
as being an integrated procedural system, we nevertheless suppose, at

least as a research strategy, that certain aspects may be factored -ut




for separate study: the structural component , the semantic
component , and the pragmatic component. These correspond,
respectively, to the potential control paths, data flow, and branching
conditions af a procedural problem solver. These aspects are
modelled by the network of states and arcs, the registers, and the
transition conditions of the augmented transition network. The
next sub-section introduces an example protocol in order to 1illustrate

PAZATN s analysis.

An Example Problem Solving Protocol

In this sub-section we provide a brief example of the type of
problem solving protocol which PAZATN is to analyze, and the sort of
analysis which it would provide. Imagine a situation in which a student
(S) 1is interacting with a computerized educational environment such

as SOPHIE. Suppose S is confronted with the the following problem:

In an electrical circuit, the voltage at time "t" is given

by

e(t) = r.sin(wt),
where r and w are arbitrary constants. Find the root-

i mean-square voltage for the time interval [a,b].

A segment from a hypothetical protocol, representing S°s solution path on
this problem, is shown in Figure 3. Before delving into the details of i
PAZATN s analysis, we provide an informal account of the student’s
solution.

The student was familiar with the definition of root- mean-square

voltage, and hence began the protocol by writing down the relevant formula.
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Figure 3 The Example Protocol Segment
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Figure 3 The Example Protocol

sin(t)cos(t)
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|
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cosz(t) dt
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Next, S substituted the particular definition for e(t) provided by the

current problem statement.

EQ2: Sl [rzsinz(wt)] dt
b - a a

This resulted 1in a problem whose essence is integrating the function
sinz. Some students might have remembered the formula for this indefinite
integral, in which case the solution would have been straightforward.
In this case, S knew only a few simple integrals and a few basic rules
for decomposing complex integrals into simpler ones. In the next step S

focused on this integration task.

EO03: = rzsinz(wt) dt

Then S applied the "sum of integrands" rule, eliminating the r2 term.

EQ4: = r2 sinz(wt) dt

-"‘v’?
WA
.

As a simplification, S decided to ignore the w term in the argument

to the sin function.

E05: sinz(t) dt

At this point, S attempted to apply the substitution, u = sin(t), hoping to
convert the integrand to a polynomial, one of the primitive integrals
which was known. However, the student committed the common error of

failing to substitute for the differential term.
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E06: = u du

In a sense, the bug was fortuitous, since it converted the integrand

to a simple polynomial.

E07' = —

The final step of S’s substitution plan was to re-substitute for the

temporary variables, restoring the solution to include only those terms

which were mentioned in the original problem statement.

E08: S o

At this point, S became suspicious of the substitution - the result

seemed too simple. As a check on its validity, S differentiated

the expression.

o 12
E09: sin“(t)cos(t)
Here, S realized the mistake in E06, and re-executed the
substitution. This time S correctly substituted for the

differential term, except that the expression used was still in terms of

t, not u.

cos(t)
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The appropriate next step is o rad the expression of L. 'S

accomplished this using the pythagorean relation.

S
Ell: cos(t) = 1 - sin"(t)
E12: w21 - u?) V2 7 4
Actually, at Ele, S has derived the canonical u = sin(t)
substitution formula. However, the resulting subproblem was also

unfamiliar. It did not appear to S to be sufficiently simpler than the
original problem.

The substitution plan therefore failed to produce the desired
result. Hence, S retreated to the sinz(t) formulation, and tried a new

approach - integration by parts.

E13: sinz(t) dt
E14: let U = sin(t), dv = sin(t) dt
E15: du = cos(t) dt, v = -cos(t)
, o G 2
E16: sin“(t) dt = -sin(t)cos(t) + [ cos (t) dt

Integration by parts resulted in what appears, at first, to be an equally

hard problem - integrating cosz(t).




EVZ: cosz(t) dt = [1dt - [sin"(t) dt

2

But once again, the student applied the pythagorean relation, this
time leading to an equation which did allow solving for the desired

integral.

£18: 2 | sin?(t) dt = t - sin(t)cos(t)

Event 18 still does not represent a complete solution to the original
problem. S might still have forgotten, for example, to correct for the
simplification introduced at event EO05, or might have incorrectly
evaluated the 1limit terms for the definite form of the integral.
However, this segment of the protocol 1is sufficient to serve as our

example of the form of PAZATN s analysis.

Structural Descriptions

The result of PAZATN's protocol analysis is a set of data structures
representing these several aspects of the problem solving behavior.
The first 1s a description of the subgoal structure of the protocol.
This data structure is similar to the context free deep structures (or
base components) of natural language parsing. It summarizes the arc
transitions which presumably were followed by the generating ATN. The set
of legal structural descriptions may be characterized by a context free
grammar. To apply PAZATN to a wide range of protocols, a thorough
analysis of the specialized problem-decomposition techniques relevant
to the particular domain is necessary. The reduced grammar illustrated
in Figure 4 is adequate for analyzing the subgoal structure of the
segment of protocol introduced above. While this grammar is typical of
the sort we envision, by no means does it represent a complete task

analysis.
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Figure 4.
SOLVE >
PLAN >
IDENTIFY =
PRIMITIVE >
DECOMPOSE 2
CONJUNCTION >
REPETITION ->
REFORMULATE >
EQUIVALENT =
DEBUG >
DIAGNOSE >
D-MODEL >
REPAIR >

The Context Free Grammar

PLAN + [DEBUG]

IDENTIFY | DECOMPOSE | REFORMULATE
PRIMITIVE | ANSLIB

siN | cos | Exp | poLy | ...
CONJUNCTION | REPETITION

INT-BY-PARTS | PARTIAL-FRACTIONS |
SUM-RULE | CONSTANT-FACTOR | ...

EXTENDED-INT-BY-PARTS | ...

EQUIVALENT | SIMPLIFICATION

SUBSTITUTION | PYTHAGOREAN-RELN
<[DIAGNOSE] + [REPAIR)>*

D-PLAN | D-PROCEDURE | D-MODEL | D-PROCESS

CHECK-DERIVATIVE

EDIT | SOLVE




b
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Figure 5 1ndicates the structural description of this protocol
which PAZATN 1s intended to produce. Such structural descriptions
capture one aspect of problem solving behavior. They can be used to
provide formal answers to certain questions which heretofore might have
been discussed only in a more 1intuitive way. As an example, the
parse tree makes 1t apparent, by inspection, that the student is
comfortable with 1ntegration by parts; however, the incorrect first
attempt to use substitution, and the subsequent failure to apply it on a
second appropriate occasion (at E12), provide evidence that this

student requires additional practice using substitutions.

Semantics and Pragmatics

Although the sort of description discussed in the previous
section is useful for answering certain questions, it does not tell
the w~hole story. Even to make such structural descriptions intelligible
to the reader, it is necessary to provide some semantic and
pragmatic commentary. The synthetic theory of planning and debugging
provides the basis for more complete and precise semantic and pragmatic
annotation.

Semantic annotation i3 defined to be the values of the ATN
registers associated with each node of the structural description.
These relate the behavior to the formal problem description. Pragmatic
annotation 1is defined to be a record of the justifications for selecting
a given arc transition rather than its competitors. In analysis, this
pragmatic annotation 1is a hypothesis about the subject's reasons for
using a particular approach. These hypotheses are based on both
PATN’s arc conditions (when the recommended synthetic transitions have
been made) and heuristic inferences from tlie available data.

The following is a typical set of registers which would be employed
by PATN to define the semantic context of a node in the problem solving
tree. Some of these are not "primitive," since they are derivable from

one or more of the others. It is possible that additional
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Figure 5. Structural Description of the Example Protocol

SOLVgtiRtegrate rzsinz(wt)) ;top level of integration task
DECOMPOSE
CONJUNCTION 2
CONSTANT-FACTOR 'r E04
INTEGRAL-TERM 2
SOLVE (integrand = sin” (wt))
PLAN
REFORMULATE
SIMPLIFY :ignore w
EOS5
SOLVE (integrand = sin
PLAN
DECOMPOSE
REFORMULATE
SUBSTITUTION (u = sin(t)) ... EO06
SOLVE
PLAN
IDENTIFY
PRIMITIVE ... EO07
RESTORE-INITIAL-TERMS
EO8

2y s

DEBUG
: DIAGNOSE
- D-MODEL
CHECK-DERIVATIVE
E09
REPAIR :first attempt fails
EDIT LI B Elo
SOLVE i REE vy PYH EL1l, EL2

REPAIR 2
SOLVE ! for the sin” (t) integral again
. PLAN
DECOMPOSE
INT-BY-PARTS (u = sin(t))
El4, E15, El6 2
SOLVE (integrand = cos” (t))
PLAN
REFORMULATE ...
PYTH. RELN. ... E17, E18




semantic variables may be added in future research, perhaps in tailoring
PATN to particular domains. The 1ist below is adequate for our current
purposes.
1. ?TREE is that part of the parse tree attached
to the current node ("below" it).
2. 7?PROCEDURE is the terminal solution procedure
as defined so far. This reflects the state of the plan i

after any debugging events have been taken into account.

3. ?EFFECT is a domain-oriented description of

the actual performance obtainable by the solution as

defined so far. Since a partially solved problem may
contain references to currently unsolved subgoals,
?EFFECT may be unassigned at a given node.

4. ?PROTOCOL is the "fringe" of ?TREE. That is,
it is the list of terminal events dominated by a given
node.

5. 7?PLAN is a collapsed version of the subtree
associated with ?PROCEDURE. That is, ?PLAN corresponds

5 to the notion of the plan of a finished solution. The

concept of collapsing a parsed protocol into a plan is

A

elaborated in other reports by the authors.
6. ?MODEL 1is the set of predicates which
?PROCEDURE is intended to accomplish. For a correct

solution ?7EFFECT will be a special case of ?MODEL.

L 7. ?ADVICE is a list of planning and debugging
suggestions generated by the synthetic pragmatics of
PATN. For example, in solving a novel integral by
partial fractions, when it is not known for certain
; whether such a decomposition is valid, a record of the
| fact that the partial fractions arc transition may have
been inappropriate, is appended to the current contents of

:
E ?ADVICE. This helps to guide the debugging component in
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diagnosing the underlying cause of later model

violations.

8. ©?TITLE is the symbolic name of the solution
3 currently being developed. This aids in the detection of
self-referential (recursive) plans. An example of its use
in the example protocol 1is  when the integration-by-

parts led to a second occurrence of the integral of sinz.

Sometimes, as it happened here, a self-reference results
| in a solution; at other times, it may indicate a
circularity in the solution path.

9. ?GIVENS is a 1list of the names and types of
the given data, and assumptions which may be made |
regarding them by the subplan below a given node. This

1 is used, for instance, in the detection@m of
inconsistencies between the definitions of subgoals and
their usage.

10. ?VIOLATIONS is the 1list of model predicates

which are not satisfied by the ?EFFECT achieved by

?PROCEDURE. This register 1is set by a separate
k
b performance annotation module.
T Let wus briefly consider a few examples of the values of these
‘ registers at various nodes of the structural descriptions for the

hypothetical problem solving protocol presented earlier. For the SOLVE
node corresponding to E03, ?MODEL 1is as shown in Figure 6.
Prior to EO09, the ?VIOLATIONS register at the PLAN node for the

substitution was:
(NOT (= (EXPR EO05) (EXPR E06)))

Since the integration task 1is eventually solved, ?VIOLATIONS is empty at
its SOLVE node, since solutions include debugging. The same is not true

for the corresponding PLAN node.
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Figure 6. Problem Description (Model) for Top Level Integral

J(f(t)) such that i
df(t)
_—= rzsinz(wt).
dt
and
i
»
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The pragmatics provides rationales for the various planning
choices 1n the protocols. These are derived from the synthetic arc
conditions when applicable. For example, the reason for integration by
parts being attempted on the integration task was that the integrand was in

the form of a product of two terms.

(REASON (INT-BY-PARTS E13)
(EQ (FORM (INTEGRAND EO05)) “PRODUCT))

The reason for each buggy event in the protocol 1s the same as the
reason for what might have been the corresponding correct version of the
event, but flagged by a note stating that the attempt was buggy.

Debugging operations localize (or repair) the cause of some
violation. The reason for E09, for example, 1is to verify that the
integration satisfied its specifications (i.e., that the derivative of
the results give the original expression). In this case, the underlying
cause of the violation was the omission of an essential cleanup step
(the differential term). The repair was to solve for the missing term and

incorporate it at the appropriate point in the solution:

(REASON E10 (REPAIR E06))

REASONS are represented by assertions involving instantiated arc
predicates of this sort, attached to each node of the structural

description.

Discussion
The example protocol discussed in this section 1illustrates

the analyses which PAZATN is designed to generate. In keeping with

the grammatical metaphor, these analyses have three aspects: structural
(syntax), semantic (purposes), and pragmatic (reasons). The structural
analysis 1s represented as a parse tree. The semantic and
pragmatic information is represented as annotation (variables and

assertions) associated with each node of the parse tree.

3
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Some readers might object that these three aspects alone do not
constitute a complete analysis of a protocol. Perhaps some essential
dimension of the subject s problem solving performance has been
overlooked. If there are useful questions about the behavior which are
not captured by these aspects, We would have to agree. However, our
working hypothesis is that there are not. Hence, we believe that part
of our contribution 1in this research 1is our recognition of the
appropriateness of a linguistic analogy.

A precise definition of protocol analysis has been provided,
along with a brief example of the form of this analysis. We now turn our
attention to the design of PAZATN, a scheme for performing such analyses
automatically.

SECTION III
ORGANIZATION OF THE PAZATN PROTOCOL ANALYZER

General

In this sub-section we describe the general organization of the
protocol analyzer. Later sub-sections present additional detail. The
analyzer would consist of the following data structures and modules:
PATN, the PLANCHART, the DATACHART, the preprocessor, the event classifier,

the (domain specific) event specialists, the event interpreter and the

scheduler. Figure 7 provides a block diagram. After reviewing the
analyzer’s input/output specifications, we consider each of these
components in turn. Section four refines the first order

description provided in the current section. Since the event specialists
are domain specific, we will not provide details in this report.

The analyzer receives the model as input. Lt is a formal
statement of the top level goal, and the protocol, which is a list of
input/output events. It has been assumed that the protocol is
"reasonable," in that it represents a sincere attempt to accomplish the
task, and that it terminates exactly when this goal has been satisfied.
The design is robust in this respect: it relies only slightly on

these simplifying assumptions. Consequently, it is our expectation that
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the analyzer will also prove to be usetul (although it may perform less
efriciently) for less than 1deal protocols, such as where the
subject/student makes a sensible start but fails to complete the project.

The output of the analyzer 1s a set of one or more plausible
interpretations of the protocol where an 1interpretation is
defined as the assignment of a structural description (or "parse") to
the 1list of events, augmented by an assignment of values to the set of
semantic variables, as well as by a collection of pragmatic-reason
assertions, for each node of the description. In order to discuss
the representation of interpretations, and the manner in which they are
discovered, it is necessary to introduce the roles of the ATN and PLANCHART

in the analysis process.

Augmented Transition Network (ATN)

To understand the central role of the ATN, one need only remember
that the analyzer 1is little more than a procedure for selecting those
synthetic solutions to the stated problem which most closely match the
input data. However, the space of possible solution paths is
represented intensionally (as opposed to extensionally) by the ATN. We
require the ATN to generate complete protocols, even to the level of
events corresponding to the typing 1in of detailed instructions to the
computer monitor. Some of these requirements are superfluous for the
expert version of the problem solving system. Hence, we plan to
employ a slightly modified version of PATN in the analyzer (but the
differences are not otherwise important).

There 1is a question as to whether the expert version of the ATN will
eventually succeed in spanning the entire space of reasonable non-expert
behaviors, provided that each of its preferred approaches is
successively rejected by the analyzer. The expert version of PATN would
have the interesting property of being capable of producing partial
solutions which contain certain "rational bugs." Furthermore, it will

be seen that the spanning requirement does not rule out the
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"inexplicable" (or "irrational") bugs -- such as

typographical errors or memory lapses -- provided that they can be

recognized as deviant versions of some rational synthetic
behavior. Consequently, we tentatively assume that PATN is 1indeed such
a spanning model in this extended sense.

The ATN would perform arc transitions partially as a result of
PATN’s synthetic pragmatics and partially as a result of analytic
guldance. For example, the ATN may expand the plan for a subgoal which
might not have been pursued 1in the pure synthetic system, because
analytic criteria have established that this is probably a subgoal of the
subject/student. The ATN then suggests how one might go about solving 1it.

Thie PLANCHART

As the analysis progresses, there are a number of reasons for needing
an extensional represention of the ATN process, as it operates upon the
particular problem. Consequently, a complete trace of the synthetic
computation is kept for examination by the analyzer. This data structure
1s called the PLANCHART. The most obvious reason for creating such a

representation is to avoid repeated calculations, but important
additional uses for the PLANCHART will! appear 1in the course of the
discussion.

In fact, the PLANCHART includes not only plans, but nodes of other
types such as debugging episodes. As its name suggests, the PLANCHART
is a chart [Kay 1973], a network-1like data structure which

compactly represents many combinations of subexpressions. This

data structure 18 an efficient representation for PATIN’s current

set of partial solutions and their structural descriptions. Rather than
generating the entire solution space at once, which would be impractical
even 1if the space happened to be finite, the ATN expands this PLANCHART
incrementally as additional possibilities are needed by the analyzer.

The PLANCHART resembles an AND/OR goal tree (see Figure 8,

for an example). However, there are a greater variety of node types,
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Figure 8. Example Planchart: Like an AND/OR Goal Tree

SOLVE
PLAN
CHOOSE
DECOMPOSE |
4 CONJUNCTION |
7 CHOOSE
INT-BY-PARTS
SOLVE (integrate cosz(x)yw
|
DERIVATIVE-DIVIDES f
|
"
: REFORMULATE e ool
At don ticad.

EQUIVALENT
PYTHAGOREAN-RELATION

SOLVE(integrate cosz(x))

SOLVE(integrate h(x))
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rather than just AND and Ohk. This allows the PLANCHART to represent
such concepts as whether a set of conjuncts need to be
accomplished in the specified order, or whether any order will do,
allowing a greater variety of synthetic combinations to be
expressed parsimoniously. For concreteness, we take the PLANCHART to be
a LISP S-expression. However, each subexpression 1s unique-1zed; that
1s, EQUAL subgoals refer to physically identical structures. The reasons
for this are explained shortly.

The analysis process 1is closely tied to modifications of this data
structure. In particular, the structural description assigned to a
protocol corresponds to a subtree of the PLANCHART starting from the root,
(the top level SOLVE node) to the individual protocol events
corresponding to a subset of the leaves. Consequently the structure
building actions of the analysis system are performed entirely by the

ATN.

The Representation of Interpretations

In view of the above remarks, it should be clear that an
interpretation of an event can be defined simply as an assignment of that
event to a leaf of the PLANCHART (Figure 9). Similarly, an
interpretation of the protocol corresponds to a complete association list
of such event assignments, and a partial interpretation is an association
list containing assignments for a subset of the events in the
complete protocol. As a consequence of the left-to-right processing
order, a typical partial interpretation contains assignments for the
first M out of N events.

Notice, though, that a given PLANCHART leaf may be a member of
more than one structural description, due to the structure sharing
mentioned earlier. This is an advantage. Genuine ambiguities need
not be treated as explicit alternatives. The analyzer does not commit
itself to an arbitrary decision. All possibilities are carried along,

implicitly, at no extra cost. It 1is possible, but unlikely, that
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Figure 9. Interpreting Events by Assignment to PLANCHART Leaves

PROTOCOL : PLANCHART:
el SOLVE
EO06: ju du PLAN
REFORMULATE
EQUIVALENT

SUBSTITUTION u = sin(t)
fuz(l - uz)'lﬁdu

E14: let u = sin(t) SOLVE
du = cos(t) dt PLAN
DECOMPOSE
CONJUNCTION
INT-BY-PARTS u = sin(t)
du = cos(t)

(ASSERT (ASSIGNMENT EO6 e 2)) 2
(ASSERT (BUG E06 (not (= u"du sin (t)dt))))

(ASSERT (ASSIGNMENT E14 .+ 1))
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the complete issoclation 1list for the entire protocol will 1likewilse
have multiple structural description pathways through the PLANCHAKT.
kEach of these, technically, should be considered a different
interpretation. Nevertheless, 1t 1s sensible to lump them together,
since this situation can only occur when the data have been inadequate to
distinguish them.

In order to be assigned to a given leaf of the PLANCHART, it is not
necessary for the data event to 1dentically match the corresponding
synthetic event. The assignment merely reflects the heuristic
judgment of the analyzer that the actual data event was 1ntended to

serve the same role as the associated synthetic event. Consequently

a synthetic event (i.e. a single PLANCHART leaf) actually stands for an
equlvalence class of data events, with various plausibilities.

For an interpretation to be plausible, the data event must be very
"similar" to the assigned synthetic event. There are exactly two ways
in which the events may differ: (a) the data event 1s an alternative,
equivalent realization of the synthetic event; or (b) the data event

1s a '"buggy" realization of the synthetic event. The plausibility of

assignments of type (b) depernds on three factors. One factor is the
intrinsic, essentially syntactic, similarity. Misspellings which differ
by only one or two characters are an example. The second factor 1is
knowledge of common bug types. Since "rational" bugs would appear as

distinct leaves of the PLANCHART, here we speak of the "irrational"

variety. Since there 1S, at present, no compelling theory to

account for such bugs, the evidence must be of a statistical nature, and
not necessarily the same for each individual. The third factor is the
context 1n which the bug occurs. This 1is determined by the status of

neilghboring leaves. We return to these questions later.

The DATACHART
A partial interpretation 1is said to split when it proposes

more than a single PLANCHART assignment for its next event. Some

65

ot S AT 0 s s L Decihin W P D oo . i




method for Kkeeplng track of the analyzer’s alternative partial
interpretations is needed. ldeally, 1t should take advantage of the
fact that, following a split, the event 1interpretations prior to that
split remain the same: the common ancestry should be preserved. The
DATACHART serves this function.

The DATACHART may be thought of as a context-layered data base, such
as that provided by CONNIVER [Sussman & McDermott 1972]. PAZATN would
record partial interpretations in CONNIVER-like contexts. Suppose that
two interpretations have 1dentical assignments for the first M events,
and then split. The split corresponds to a single context layer
having two descendants. Assertions corresponding to the shared part of
the interpretation are automatically inherited from the parent context
layer (Figure 10).

Whenever an event assignment is to be made whose plausibility

does not exceed some threshold, the following actions are performed:

(1) An assertion is added to the current context,
indicating which assignment is about to be made. This
ensures that the same possibilities will not be
repeatedly pursued.

(2) A PUSHCONTEXT is executed, creating a new
subcontext which will inherit prior assignments from the
parent context. This ensures that changes which reflect
the uncertain continuation of the interpretation will not
affect the state information in the parent.

(3) The uncertain assignment is performed in the
new subcontext. The normal operations associated with
event interpretation (described below) are carried out.

(4) A handle to this context is placed on a 1list
of NEW partial interpretations. This ensures that it
will be scheduled for at 1least one cycle of further

investigation.
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Figure 10. Inheritance of Shared Partial Interpretations

(ASSIGNMENT EOI1 ptr])
(ASSIGNMENT E02 ptrz)

,4Sp1it)

4
/

(ASSIGNMENT E03
ptrs)

(ASSIGNMENT EO3 ptr4)

™~

e

"~  (ASSIGNMENT EO4 ptr)

(ASSIGNMENT EO4 ptr3)

(ASSIGNMENT EO05 ptr6)
(ASSIGNMENT EQ6 ptrs)

(ASSIGNMENT EO5 ptr7)

~

\\

(ASSIGNMENT EO6 ptr6) /)( (ASSIGNMENT EO6 ptrs)
\

(state saved, but no
actual splitting here)

|
[
!
L (ASSIGNMENT EO7 ptr8)
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(5) A PUPCONTEX1 1s executed. The parent context

of the new 1nterpretation 1s then re-examined to
determine 1if alternative assignments should also be
considered. If so, the above sequence of operations 1is
carried out for each. When no further alternatives seem
worth considering at the present time, the parent context

is placed on a list of HUNG interpretations.

With this technique, it 18 not necessary to explicitly list all
of the possible alternative interpretations for a given event. Note
that, after the PUSHCONTEXT, the HUNG layer represents, not a single
partial interpretation, but an indefinite number of implicit alternatives
to the partial interpretations explicitly represented by its
offspring. Even after it is HUNG, the parent context contains the
necessary state information for generating additional possibilities,

should it ever need to be reactivated.

Incremental PLANCHART Expansion

Consider the situation in which an active partial
interpretation can find no acceptable assignment for 1ts next event in
the PLANCHART. There are two actions possible: either (a) conclude that
the current partial interpretation 1is a dead end, and move it to the
HUNG list; or (b) conclude that the PLANCHART has not been expanded
sufficiently to account for the current data.

In case (b), the analyzer passes control to PATN, which expands
those subgoals most likely to be relevant to this interpretation.
Since the PLANCHART is kept in the GLOBAL context, other
interpretations may also benefit from the additional growth. This
is the only situation in which the PLANCHART is expanded. (This rule
is modified slightly in the next section.) Limited, incremental

growth ensures that a minimum number of irrelevant synthetic solutions

are generated.
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Unfortunately, deciding whether (a) or (b) 1is actually the case,
may be difficult. The difficulty is compounded by the fact that a given
data event need not be an exact match to a PLANCHART leaf in order to be
assigned to 1t it could be a buggy version, or an equivalent
construct. There are three technical problems: (1) choosing between
cases (a) and (b) above for a given leaf; (2) locating the relevant

existing 1leaves which ought to be considered in view of possible

equivalence and bugginess; and (3) locating the relevant existing
i

partial interpretations which might be able to '"make use” of newly

generated PLANCHART leaves, especially in view of possible

equivalence and bugginess.

Now, if the analyzer is too miserly in allowing PLANCHART growth, an
event might be interpreted as a buggy version of an existing leaf, when
only slight growth would have allowed it to match a new leaf exactly.
But if the analyzer is too eager to expand the PLANCHART, the number

of irrelevant synthetic solutions considered could be enormous.

We plan to provide the analyzer with a number of strategies
for dealing with these problems. One strategy, which has already been
introduced, handles the case where the relevant events are EQUAL; this 1is

| the wunique-izing of subexpressions. But unique-izing is inadequate to

A

deal with buggy or equivalent versions. Another strategy employs a hash
coding scheme, where the contents of the buckets are pointers into the

PLANCHART.

Markers and Mark Propagation

A third set of strategies for dealing with the difficulties
of the previous section relies on a system of PLANCHART markings and
marker propagations. The marker scheme is of interest because it is
also used to produce the final structural description, by selecting a

subtree of the PLANCHART. The assignment of a data event to a PLANCHART

leaf can be thought of as marking that leaf.
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Now recall that the PLANCHART 1s essentially an elaborated

AND/OR goal tree. Each non-terminal node type represents an ATN
state, each of which specifies either a conjunction or a
disjunction of subgoals, with possible sequencing constraints.

Consequently, we can allow markers to propagate upward through the
PLANCHART according to three rules:
1. MPR-1. If the parent of a marked node 1is a
disjunctive type (e.g., CHOOSE), the parent is marked;
2. MPR-2. If the parent of a marked node 1is a

conjunctive type (e.g., SEQ), and the siblings of the

marked node are also marked, the parent is marked (note

that if there were constraints on the ordering, but the

events appeared in the wron order, the siblings would

probably not have been marked);

9. MPR-3. If no higher plausibility interpretation

can be discovered, under certain conditions a propagation

may be postulated when neither rule MPR-1 nor rule MPR-2

is completely satisfied. (This third propagation rule is

designed to allow structurally ill-formed

["ungrammatical"] plans to be analyzed, but with lessened

plausibility.)

Top down MOD plans (see below) however, are handled specially.
The solution for the top level problem should be propagated when it 1is
finished, even though the solutions for the subproblems have not yet been
encountered; but the expectation for the subproblem solutions remain
in effect, and cause subsequent propagations when they occur. This
is indicated by using two different marker symbols in later diagrams.

The marker propagation status is local to a partial
interpretation and its offspring. Notice that it indicates which synthetic
subgoals are expected, and which are satisfied. An upward propagation
corresponds to what might be termed a reduction 1in a bottom up

parsing scheme. The propagation of markers is intended to allow the
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analyzer to efficiently draw inferences about the probable solution

path represented by the protocol, with respect to a particular assignment
of events.
At intermediate stages 1in the analysis, these PLANCHART markers

provide evidence concerning the plausibility of alternative

? ) interpretations. This is especially important when additional PLANCHART |
growth is under consideration. The following guidelines follow
immediately:

PLR-1. An event assignment which would result in :
a propagation is more plausible than one which would not.

PLR-2. An event assignment which would result in
a long chain of propagations 1is more plausible than one
which would result in a shorter chain.

PLR-3. A completed interpretation (one which has
interpreted the final protocol event) which propagates a
marker to the top level SOLVE node is much more plausible
than one which dces not (a consequence of the
"reasonableness" assumption).

PLR-4. An event assignment to a conjunction

dominated leaf, many of whose siblings are marked, is more

A

plausible than an assignment to such a leaf only a few of

b whose siblings are marked. A similar rule holds for
plausibly marking non-terminal nodes.

PLR-5. No leaf sho d be marked by more than one

| event. More generally, a node dominated by a marked node

should not be marked. One exception 1is that if the

dominating marking was via marker propagation rule MPR-3

(or the USE nodes of top down MOD plan), and if the new

marking would have allowed a propagation via MPR-1 or

MPR-2, then the node may be marked. The other exception

is that if the marking was the result of a buggy

assignment, and the new marking is the correct version of

il
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that assignment, the node may be marked.

PLR-6. Assignments which result in propagations

by propagation rule MFr-¢ are much less plausible than

assignments which result 1n propagations by rules MPR-1

or MPR-2.

These heuristic guidelines help the analyzer to: (a) determine
whether it 1s propitious to allow additional PLANCHART growth; (b)
select the preferred interpretation for an event; and (c) select the
preferred structural description of the protocol, which is a subtree of
the final PLANCHART.

The marker propagation scheme provides a precise notion of
expectations. A constituent 1is expected to the extent to which it
would result in propagations. For example, consider an Identification
Plan for solving a subproblem. If the subproblem had previously been
solved and saved in a file, it is expected that a command retrieving the
solution from the file will occur. The PLANCHART would contain an
unordered conjunction of subgoals, one to add a use of the solution
to the subproblem to the solution to the top level problem, and one
to retrieve the solution to the subproblem from the file. After an
event had been assigned to the former, the latter would be expected because
its occurrence would result in a propagation at least as far as the
Identification Plan node.

Suppose that an expectation (such as the Identification Plan
example) fails to be satisfied after many events. One possibility
is that the partial interpretation which expects it 1is just on the wrong

track, and should be abandoned. A second possibility is that the overall

subgoal structure 1is correct, but the subject has proceeded to
re-solve the problem via Decomposition or Reformulation, perhaps
because the existing solution had some undesirable property. iy
this second possibility was in fact the case, then when the

subproblem’s solution was completed, the resulting propagation would
"turn off" the aberrant expectation, since it would then be dominated by

a marked node.
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A third possibility 18 that the student/subject 1s actually

using an ungrammatical plan. If a file vretrieval 1is not performed as
expected, 1t could be that the student simply forgot to do 1it, or
thought that it was unnecessary, mistakenly believing that its
solution was already present in the workspace. The fact that a plan
1s ungrammatical does not make it unanalyzable, however. When
the end of a solution to 2 subproblem 1s encountered, some
propagation ought to occur under every ACTIVE interpretation. If such an
event 1s followed by events which are analyzed as diagnosis, then the
most plausible propagation is forced, even if this is only possible via
rule MPR-3. The plausibility of this interpretation will be greatly
increased 1if the missing event eventually does occur as a result of

subsequent error correction.

The Event Classifier

The event classifier module contains the syntactic knowledge
necessary to distinguish the various domain-specific event types. The
event classifier is one of the few components of PAZATN which would need
to be redefined for each domain. In assigning an interpretation to an
event, a variety of semantic and pragmatic evidence may ultimately
be considered by the analyzer; but the domain-specific event
classifier 1s deliberately restricted to syntactic evidence (and timing
data, for a few cases such as those mentioned earlier).

The event classifier can be invoked in three modes. In the normal
mode (which 1s used by the preprocessor) its input is an event, and its
output is that event’s primary syntactic class. For most events, this
is sufficient. The second mode of operation is used by partial
interpretations which find the primary syntactic class of the event to be
questionable, but have a specific alternative class under consideration.
In this second mode, the classifier is called with an event and a
proposed alternative category. The classifier returns with a numerical

summary of the syntactic evidence relevant to the proposed
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reclasssfication. The third mode is employed when the primary class is
questioned, but no alternative readily suggests 1itself. The classifier
returns with an exhaustive rank-ordered list of the syntactic categories
and their (syntactic) plausibilities.

Event classification would be performed using
straightforward pattern matching. The details, being domain specific,

are generally uninteresting and are not given here.

The Event Interpreter and Event Specialists

The event interpreter is the module responsible for category
independent operations of event interpretation. This includes the
context saving and restoration sequence described in the DATACHART section,
the actual processing required for marker propagation, and the marker
status plausibility computations. The rationale for grouping these
activities into a separate component is modularity: they are routinely
required, and common to every category of event interpretation.

The event 1interpreter 1s the "inner loop" of the analyzer.
It 1is invoked by the scheduler with two arguments: a handle to a partial
interpretation, and a data event from the protocol. In cooperation
with one or more event specialists, it attempts to explain that data
event 1in the context of that partial interpretation. This may result
in the creation of one or more additional (descendant) partial
interpretations. When event interpretation is complete, control
returns to the scheduler.

A collection of domain specific event specialists [ESP's] are
responsible for category dependent operations of event
interpretation. LEtach specialist contains the requisite knowledge for
analyzing events of a particular syntactic type. The event interpreter
invokes an ESP with an event (and an implicit assumption regarding
its syntactic category) in the context of a given partial interpretation.
The specialist is free to assign any interpretation to the event which

1s consistent with the categorization assumption. However, a given




specilalist 1S not free Lo consider the possibility that the category
assumption 1s 1ncorrect.

LE the event specialist does not return with a sufficliently
plausible event assignment, the event interpreter will then consider
the possibility that the syntactic category which has been postulated
for the event may be 1incorrect. Whenever an event 1S interpreted
as buggy, expectations for diagnosis and repair are generated at the
request of the event interpreter. The detalls of the ESP’s for
particular task domains are not given here; examples of ESP’s for the

LOGO graphics domain are presented in [Miller & Goldsiein 1976d].

The Scheduler

The remaining module to be considered is the scheduler. The job of
the scheduler is to drive the analysis through a best first coroutine
search of the space of partial interpretations. Ultimately it arrives
at one or more plausible completed interpretations.

The state of each interpretation 1s represented by assertions
in 1its context layer. For example, one fact which the scheduler needs to
know about an interpretation is how far along 1t is 1in processing the
protocol. (Note that not all 1interpretations are equally far

along.) This progress 1is represented by an assertion of the form:
(INPUTMARKER= <event#>)

which means that the input marker is sitting immediately after the
<event#>'th input event.
Another set of facts which are needed are the event assignments.

These are assertions of the form:

(ASSIGNMENT <event#> <leafptr>)

which means that tne <event#>'th event has been assigned to the PLANCHART
eaf referenced by <leafptr>. Note that at most a few of these assignment
sssertions are explicitly present in a given layer; the rest are

erited from higher up in the context hierarchy.
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The scheduler maintains three lists of partial

interpretations (handles into the context hierarchy): the NEW list,
the ACTIVE 1list, and the HUNG list. Every partial 1interpretation
which has been discovered 1is on one of these three lists. Typically
interpretations on the ACTIVE and NEW lists are further along in processing
the 1input. Those on the HUNG 1list will not make progress unless a
sufficient number of currently ACTIVE interpretations become HUNG, at
which time some HUNG interpretations may be reactivated.

The basic difficulty which is faced by the scheduler 1is to ensure
that interpretations which have a reasonable 1likelihood of succeeding
ccntinue to make progress, while those that are likely to fail do
not consume valuable resources. ACTIVE interpretations are pursued
in parallel, while HUNG interpretations are available should
backup become necessary. The size of the ACTIVE set is a global parameter

of the analyzer. It should be chosen to be just 1large enough to ensure

that backup will be infrequent, but not so large that progress
1s forestalled. A fundamental hypothesis is that the ATN plus the event
specialists provide sufficient information to constrain the likely

interpretations to a moderately small number.

f The schlieduler operates by cycling through the ACTIVE list,
allowing each partial 1interpretation to process one input event. Then
the plausibility of each modified interpretation is recomputed, and the

ACTIVE and HUNG 1lists are updated. NEW interpretations (resulting

from the splitting of ACTIVE interpretations on the previous cycle)
are automatically moved to the ACTIVE list, to ensure that they receive at
least one quantum of processing before being HUNG. The plausibility of a
partial interpretation increases with each additional event accounted
for. (This provides for automatic attenuation of older HUNG
interpretations.)

This coroutine search process continues until at least one ACTIVE
interpretation has processed the last input event with high plausibility.

To be highly plausible, a finished interpretation should not have

716




— m"—.———‘————m

dangling expectations, bul be a successful solution of the original
problem. 1§ ¢ the first successful 1nterpretation 1s not sufficiently
better than every other candidate, some of the better alternatives may
also be pursued wuntil they become implausible or determine that in fact
the protocol may successfully be interpreted in more than one way.
SECTION IV

REFINING THE ANALYZER

Overview of Reficeoments

This section examines two broad classes of refinements to the PAZATN
protocol analyzer’s basic design. The first class 1is a set of
elaborations to the slightly simplified description of the previous

section, which will be included in our first implementation.

The second category consists of some possible alternatives to the
organization presented here. Our purpose in outlining this second
category 1is to provide the reader with a flavor of the 1issues 1involved.

Our overall scheme for doing protocol analysis is to use PATN to

generate expectations, and then to define a recognition process that

attempts to match these expectations to a protocol. This parsing process

can be refined by wutilizing several ideas that have proven effective

k|

in problem solving and language parsing programs, including

lookahead (e.g., [Aho & Ullman 1972]), least commitment (e.g.,

[Sacerdoti 1975]) and differential diagnosis (e.g., [Rubin 1975]). Some

1 of these have parallels in the synthesis process. Here we examine their
role in analysis.

We also briefly examine some tecnniques for improving the
applicability of the analysis scheme to use in dynamic tutoring. One
strategy is to replace the expert ATN by a modified version, which more
closely models the idiosyncratic problem solving behavior of the
individual student. Another strategy is to introduce pruning
procedures to reduce the amount of storage required by the analyzer.
Still another is to provide heuristics for dynamically adjusting parameters
of the recognition process in accord with the pragmatics of a tutoring

session.
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Finally we explore a number of 18sues related to possible alternative

design choices. The possibility of organizing PAZATN as an analytic ATN

[AATN] instead of as a coroutine searcher is discussed. This approach
might offer greater clarity and modularity, decoupling matters of
efficiency from formal theoretical concerns. Limitations of the
breadth of the synthetic theory are also considered. Finally, the
question of episode based analysis -- vperforming the analysis 1in
larger chunks -- 1s raised.

Lookahead and Least Commitment

Lookahead and least commitment are related search strategies
designed to avold premature decisions based on 1inadequate evidence,
and the resultant need to back up. Lookahead consists of briefly
examining later events in the 1input string prior to interpreting the
current event. Least commitment consists of postponing a decision
regarding the proper 1nterpretation of the current event until
further evidence 1is gathered from later events.

Recall that PATN as an Al expert system always engages in strict top
down problem solving. The top 1level plan 1s completely defined
before the solutions for subproblems are attempted. Human problem
solving 1s not this wuniform. Alternatives to pure top down planning
need to be incorporated by allowing variations on the order in which goals
are pursued.

A goal may be expanded before a subgoal, representing top down
planning. Or, once the need for a particular subgoal has been
established, that subgoal may be expanded before ascertaining which
other subgoals are needed for the main goal, representing bottom up problem
solving. Figure 11 1illustrates a top down expansion, while Figure 12
illustrates bottom up.

A bottom up or mixed solution order 1is a good example of the
possibility for misleading mismatches between expectations and protocol

events. Least commitment helps to minimize this. The net effect is that
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Figure 11. Top Down Expansion
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Figure 12. Bottom Up Expansion
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atl  those decision points where the choice 1s essentially arbitrary (such
as 1n  the particular sequence for accomplishing a SET plan) PATN generates
a disjunctive set of possibilities, rather than making an arbitrary
selection. Thus, at any point 1in the parsing process, a set of
alternative expectations may be present. This avoids a blind depth first
top-dowianalysis, and reduces costly backup.

We have already seen some use of these techniques by PATN. The
primary application of least commitment, 1in the synthetic component,
1S the avoidance of arbitrary ordering decisions. As currently
designed, PATN can optionally be instructed to produce procedural
nets [Sacerdoti 1975]. Figure 13 1illustrates how purely sequential
solution procedures, unlike procedural nets, overspecify the ordering
constraints. The virtue of the procedural net representation for PAZATN
is that, when an ordering would be arbitrary, there is no reason to expect
the student to choose the same path as PATN. By postponing the
decision, a greater number of interpretations can be implicitly represented
by a single PLANCHART marking.

Examples of the techniques occur in the analytic component as
well. Some difficulties which are encountered in designing event
specialists, for example, can be resolved by the use of demon procedures
[Charniak 1972]. In certain situations a demon would be createa to
represent an event assignment which depends on subsequent events.
When the relevant events are finally encountered, the demon would then

fire, completing the assignment on the basis of the additional

information.

One effective application of least commitment in the analytic

component is the sharing of substructures in the PLANCHART. This
allows ambiguous collections of event assignments -- those which ?
have more than a single structural description -- to be economically ‘

|

stored. Rather than committing the analysis to one or another
structure, the decision 1s postponed until some event provides evidence

clearly favoring one or the other. Implementing this policy does not

|
|
.
|
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Figure 13. Procedural Nets versus Sequential Procedures
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requlre special action. It 1s an automatic consequence of the analyzer’s
data structures.

PAZATN can also benefit from a type of lookahead which has not been
presented so far. Previously it was claimed that PLANCHART growth was
to be limited to those cases in which a plausible active
interpretation could not find an acceptable assignment for its next
event. This statement was an expository simplification, and is not
strictly true.

The primary objective of PAZATN s control structure is to cause the
strongest sources of constraint to be utilized first. This 1s to prevent
unguided search in a potentially large space. Thus, when there 1s clearcut
bottom up evidence of a particular constituent, that evidence should be

examined. Likewise, when a top down decision 1is straightforward, that

route should be pursued prior to making 1less certain analytic
assumptions.
Therefore, instead of severely restricting PATN ‘s activity,

as previously stated, we actually intend to allow it some freedom to
exploit strong sources of top down constraint. Some synthetic decisions
are virtually forced by the form of the model. There 1s no reason to
interrupt PATN when it 1is about to make such a decision. This can be
viewed as a type of lookahead, in that even before the event

interpreter has "noticed" any deficit, the synthetic component has

predicted the necessity for -~ and accomplished -- appropriate PLANCHART
growth.

PAZATN s analysis process is actually designed to begin by
synthetic examination of the model. This top down investigation

proceeds until some decision point is reached for which the synthetic
basis is uncertain in some fundamental way. At that point, control
switches to the analytic component. Likewise, whenever the ATN is
invoked, it is allowed to proceed so long as its choices follow from firm
criteria. This reduces the overhead of constantly switching between
event interpretation and plan synthesis. Operations would proceed

with fewer interruptions, in slightly larger units.
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Despite its virtues, though, least commitment could be overdone.
The result would be such a large disjunction of expectations that no
guidance could be obtained. Moreover, the relationship between the
system’s formal model and the student’s intuitive model is tenuous.
The analyzer strikes a balance between overly committing itself, and
stubbornly refusing to take decisive action. This is accomplished by
avoiding overcommitment in the course of a given decomposition strategy,
but requiring bottom up evidence to change the formulation of the model.
The next section describes the differential diagnosis knowledge that would

be used to request such reformulations.

ferenti iagnosi

We have already encountered a use of demon procedures by the
analyzer; this was to handle the problem of the assignment of a given
event depending primarily on the assignment of some future event.
Another use of demons, which we did not consider, is to perform
differential diagnosis in deciding between two interpretations, or in
recovery of an appropriate explanation when a given approach becomes
hung. In those situations where even the use of 1least commitment fails
to produce a successful set of expectations, differential diagnosis
knowledge should direct PAZATN to produce a new set of expectations.
There are two situations where differential diagnosis is appropriate.
One is the use of explicit diagnostics for unsuccessful category
assignments. The second, and most significant, is the
reformulation of the problem description to achieve consistency with
bottom up evidence.

In our first order description of the event specialists, we imposed
the stringent requirement that no specialist ever consider the
applicability of another specialist; this job was left to the event
interpreter. Sometimes this requirement can be artificial. When a piece
of category specific knowledge 1is able to diagnose the appropriateness of

some other ESP, then that piece of knowledge belongs within the

specialist for that category.
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lL.ikewlse, differential diagnosis 1S used to select the proper
subset of a disjunctive set of expectations (such as 1is produced using
the least commitment policy). Conversely, when none of the alternative
expectations matches the protocol, the analyzer requests that PATN
perform a reformulation consistent with that evidence. The following
are some examples of demon templates, which can be 1nstantiated to
realize this behavior in specific situations.
DDR-1. If the current protocol segment uses a
named subproblem whose model has been firmly established,
and if that model corresponds to a disjunctive subset of
the current expectations, then select that subset. If no
expectation corresponds to the model of this segment,
reformulate the current problem description in such a way
that this model is among the expected subgoals.
DDR-2. If the effects produced by the current
protocol segment match a disjunctive subset of the
current expectations, select that subset. If wmnot,
consider a reformulation that uses a model satisfied by
the segment effects as a subgoal. (The possibility that
the current segment 1is an error must also be
considered.)
DDR-3. If the subject states that the current
segment corresponds to a c¢ertain subgoal, select that
subgoal. If that subgoal is not among the current
expectations, reformulate the model so that it is.
DDR-4. If the current segment accomplishes the
effects of an expected subgoal, but not by a plan that
matches current expectations (e.g. via different control
structure) then reformulate for this part, in terms of a
model corresponding to the control structure observed in
the protocol. Generic/explicit conversion [Miller &

Goldstein 1976b] could be handled by this rule, for
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instance.

DDR-5. If the effects of the current segment
violate only a few model predicates under the current
interpretation, but the segment has a sub-segment <
structure that does not correspond to expectations, then
reformulate. If there are too few segments, try
regrouping into compound parts. If there are too many
segments, try disecting model parts which contain

multiple sub-parts.

This 1ist 1is not exhaustive. However, it does suggest how
differential diagnosis demons could be wuseful 1in refining the basic

analyzer.

Tailoring the ATN to ividu

In previous sections, it has been assumed that PATN 1is a spanning
model, in other words, that the ATN 1s capable of exhaustively
enumerating the space of reasonable problem solving behaviors (within its
chosen domain). To this definition is added the caveat that
"irrational bugs" such as typing errors are often understandable as buggy
versions of one of these intended synthetic solutions.

It might seem that the caveat 1leaves the definition so weak as to
be vacuous. But it is at least thinkable, if not probable, that some
human problem solvers might display genuinely irrational intent. This
does not refer to deliberately trying to mislead the analyzer -- "hacking
the system". In PATN terminology, such problem solvers would have a
deviant ATN. Their protocols would be more difficult, if not impossible,
to analyze.

In what ways can an ATN be incorrect? One error would be to have a
variant of the optimal pragmatic arc constraints. A characteristic
example would be an ATN with an overly developed critic on the linear

planning arc. A problem solver, having encountered several cases in
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which an 1nitially linear attack led to bugs, might reach the general
conclusion that all problems require a non-1linear apprcach.
Consequently, any problems which appeared to be linear might be
reformulated to ensure the introduction of non-linearities.

Such an approach, of course, milsses the valuable guidance 1in
understanding the complexities of novel tasks, which is offered by the
failure of the linear plan. This quirk 1s common among novices 1in
the programming domain, for example. Relations, which by all accounts
of "style" in programming ought to be accomplished via an interface step,
will be accomplished as part of the definition of an adjacent main step.
For example, a WISHINGWELL is defined as a TOP, a POLE, and a WELL,
where the setups for each are included in the subprocedures.

More serious would be to have missing, or extra arcs. A novice
programmer, whose prior experience was in the BASIC language,
would probably be missing the recursion arc for achieving round
plans. Consequently all problems involving generic models would be
solved by 1iteration. Those problems for which iteration is truly
inadequate, such as drawing arbitrarily deep binary trees, would be
unsolvable.

Even more catastrophic would be to have missing, or extra states.
Suppose one wished to apply PAZATN to the analysis of protocols produced
by some other Artificial Intelligence program. It is 1likely that
reformulation would not be one of its solution techniques; the relevant
states would probably be missing entirely.

Moreover, the class of "rational" bugs should really be seen as
relative to the problem solver’s computational resources. Suppose there
were certain systematic limitations on the ATN, such as an upper bound
on the size of the structures contained in (or pointed to by) its
registers. Some bugs which formerly might have been termed "irrational",
in that they might have been avoided by consulting the critics gallery
for example, become "rational." This 1s because a plan involving

oversimplification, followed by debugging, may place less stringent
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demands o th= limited resource., Rationality, by definition, 1s
measured with respect to some estimate of utilities, costs, and risks.

Very likely, 1t 1s possible to handle most protocols produced by
such non-ideal problem solvers without significantly modifying PAZATN s

design. It 1s easy to generate example solutions which PATN would be

loathe to produce, but which PAZATN, using the PATN ATN, can nonetheless

understand. Whether compelling counterexamples can be found is an open
question.

Nevertheless, a drastic reduction in search would result if the
problem solver’s quirks were turned to advantage. In tutoring the same
student day atter day, for example, cons}stent failure to use a certain
type of plan should suggest to PAZATN that it is pointless to continue to
look for it (except perhaps as a last resort). Consequently, our
intention 1s to replace the expert ATN by an 1diosyncratic version
tailored to the individual. Once such an idiosyncratic ATN has been
constructed, it <can also be used, in tutoring applications, as a student

model for the selection of tutorable issues.

Further Improvements in Applicabilaty to Dynamic Tutoring

Although an automatic protocol analyzer is a valuable tool 1in its
own right, the authors are particularly concerned that PAZATN s
structure be amenable to applications involving real time, on-line
tutoring. This constraint 1imposes strong limitations on the design,
most notably the restriction that events be processed in a single
pass in approximately left to right order. Moreover, the system

must be sufficiently responsive so as not to interfere with the

student s progress. Naturally this consideration is less critical in
the ex post facto exhaustive study of the protocol for theoretical
and experimental purposes.

Tc these ends, this section considers additional improvements

1 to PAZATN. The tailoring of the ATN to the 1individual, discussed

in the last section, 1s one improvement. Two further improvements are
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presented. One 1s the introduction of pruning heuristics to reduce the
amount of storage required by the analyzer. The other aspect is the
dynamic adjustment of key parameters of the recognition process, to
increase the system’s responsiveness without degrading the accuracy
of its interpretations.

In order to assure reliability and the capability to recover from
initially erroneous interpretations, PAZATN keeps a record of every
partial interpretation which has been discovered. These are kept on
three lists: NEW, ACTIVE, and HUNG. Furthermore, every local
ambiguity can potentially cause PAZATN to save the state of the
interpretation, in the event that splitting this interpretation becomes
necessary. This cautious style might result in a very long HUNG 1list.

One technique for dealing with this contingency is to provide
heuristics which reduce the amount of unnecessary splitting. The
avoidance of overly cautious saving of states and splitting of
interpretations is not a complete solution, however. Unless reliability
is dangerously sacrificed, there are 1nevitably going to be a
substantial number of local ambiguities for which these precautions are
required. Only after examining later evidence will the doubtful status
of other alternatives be firmly established. Furthermore, it is not
enough that such 1low plausibility interpretations cease to consume
processing time. Their continued existence 1implies that the analyzer
will be "hanging on" to large quantities of storage in the form of
assertions in CONNIVER context layers (or their equivalent).

For this reason, PAZATN should include a mechanism for pruning
very 1implausible interpretations. The maximum allowable size of the HUNG
list, HMAX, is a parameter of the system. When HMAX is exceeded, the
lowest plausibility interpretation is deleted. This is based on a
heuristic assumption that, at most, HMAX interpretations will have
sufficient plausibility to warrant further consideration.

Unfortunately, it is entirely possible that a prunable context

layer has non-prunable offspring. This is possible because the
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prunavle context layer implicitly represents the set of (typically
implausible) alternative interpretations other than those explicitly
represented by its (typically more plausible) offspring. Since these
offspring are inheriting assertions from the prunable interpretation, the
garbage collector will not be able to reclaim its space, except in
the case that all the offspring have also been pruned.

Fortunately, most context layers would probably have exactly one
subcontext. This is because the typical event would be sufficiently
ambiguous, to warrant maintaining a potential for splitting, but not so
ambiguous to cause any other alternative implicit in the parent context
to actually be pursued. The pruning procedure is designed to detect
this situation. When a context layer with exactly one non-pruned
subcontext is selected for pruning, this indicates that the subcontext may
be finalized. Consequently, the parent context layer may be spliced out
of the hierarchy altogether, and 1its space reclaimed. This helps to
impose an upper bound on the storage required by PAZATN.

We now turn our attention to another potential inefficiency
bug in the current design of PAZATN. This is that the size of the ACTIVE
list required to prevent frequent back up may be large. If so, the
system could simply be too slow for practical use in tutoring. PAZATN
requires some technique for 1increasing the responsiveness of the
system, while maintaining the effective size of the ACTIVE list.

The solution is to dynamically vary those parameters which
determine the size of this list. (The actual size would be determined by
a number of factors, including minimum size, maximum size, and
minimum plausibility for inclusion.) The capability for variation
would allow PAZATN to carry along a small working set of interpretations
when the student is rapidly typing. Whenever the student paused to think
or rest, the higher plausibility HUNG interpretations could be updated. 1In
this way, should one of these be reactivated later, less back up would be

required.
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An elaboration of this refinement takes advantage of the primary

underlying reason for avoiding back up. The greatest danger of backup
in the tutoring application 18 that some previous suggestion or
criticism may turn out to have been 1inappropriate. This danger
can be reduced as follows. Naturally, the system should always

require a high degree of confidence 1n 1ts interpretation prior to

intervening. This should be supplemented by filtering any remarks so
as to be appropriate under all reasonably plausible
alternative interpretations. (Introspection suggests that human

tutors employ a similar heuristic.)

Furthermore, immediately priocr to the remark, the size of the
working set should be increased, and the reactivated interpretations
brought up to date. It should then be verified that those marginal
interpretations are unlikely to invalidate the planned remarks. This
implies that normally the system would be highly responsive; but if delays
were to be experienced, they would occur only when the student was about to

be interrupted for tutoring anyway.

Design Issues and Alternatives

The careful reader may have noticed that PAZATN 1is somewhat
independent of the detailed form of the synthetic formalism.
Although tremendous leverage for analysis is obtained by the postulation of
an effective synthetic theory, little use 1s made of the fact that
PATN is specifically organized as an Augmented Transition Network. For
example, the possibility that the debugging component 1s organized
differently has not been completely ruled out by anything which has been
said so far.

It does make a difference that the synthetic component plans and
debugs by making a series of pragmatic choices, which can be summarized by
the tree structured PLANCHART. Furthermore, 1t 1s essential that the
system 1is capable of generating, not one solution, but an entire space

of progressively less favored solution paths. Also, an 1implicit
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tssumpt 1on  runs throughout the analyzer’s design that the linguistic
analogy 1s fruitful -- that the solution path consists of structural,
semantic, and pragmatic elements. It may be that any synthetic
formalism satisfying these constraints 1is trivially equivalent to an
ATN. Such questions are notoriously difficult to answer.

It 1s probably a virtue that PAZATN is somewhat decoupled from this
1ssue, but one could construe it as a defect. One could argue that
somehow the design of the analyzer may be failing to take full
advantage of the claims of the theory. A possible alternative design
would be to organize PAZATN as an analytic version of the ATN. This
"AATN" would have numerically valued arc conditions, representing the
plausibility computations of the analytic pragmatics. Note that the event
specialists are to be organized internally as decision trees. It is only a
small step to reformulate this decision tree structure as a subgraph of an
ATN.

It might seem that employing an AATN instead of a coroutine

searcher might commit the analyzer to a less powerful automatic backtrack

type of control structure. This is not necessarily the case.
Depending upon the implementation, the ATN formalism per se carries no
irrevocable control structure assumptions. One may traverse the

diagram according to any of a wide variety of search strategies. In this
respect, the AATN would be attractive, offering greater perspicuity by
decoupling efficiency issues from theoretical concerns.

Nevertheless, the AATN design for PAZATN has not been pursued.
Although it 1s possible, in principle, to employ a mixture of top
down and bottom up strategies with an ATN, it is more natural to
conceptualize an ATN parser as a top down backtracker. To understand
their bottom up use, PUSH arcs must be thought of as "IF-REDUCE" arcs;
POP arcs must be thought of as "REDUCE" arcs. This felt counterintuitive.

An important issue in the design concerns the breadth of the
synthetic theory. There are of course particular lacunae, such as

conditional plans, which have been deliberately, but only temporarily,




ignored. The greater threat comes from the unknown. Even the youngest
children display an incredible richness in their problem solving
behavior. PATN's origins are at least partly empirical. But some
phenomena, perhaps those most in need of 1nvestigation, may have been
lost 1in the process of formalization. This remains a topic
for investigation.

A final design 1issue warrants mention here. PAZATN operates by
individually processing each event. But perhaps this leads to too local a
perspective. Perhaps larger sized chunks of protocol should be examined at
once. In other words, an episode based analyzer might be preferable.
The event based design has been selected because it 15 the simplest,
most straightforward approach.

SECTION V
TENTATIVE CONCLUSIONS AND PLANS FOR FUTURE WORK

Recapitulation

In this report we have 1investigated the problem of analyzing
problem solving protocols. The result of this investigation 1is a
preliminary design for PAZATN, a domain independent framework for
automatic protocol analysis. The foundation for the approach was a
grammatical theory of problem solving as a structured process of planning
and debugging. This lead us to the definition of an interpretation
as an assignment of a structural description to a 1list of events,
augmented by semantic and pragmatic annotation associated with each node.
The foundation for the approach was a grammatical theory of problem solving
as a structured process of planning and debugging. This 1lead us to the
definition of an 1nterpretation as an assignment of a structural
description to a list of events, augmented by semantic and pragmatic
annotation associated with each node.

A key ingredient in the design 1s a synthetic problem solving
system called PATN. PATN employs an augmented transition network to
represent fundamental planning concepts, 1including techniques of

identification, decomposition, and reformulation. PAZATN 1s somewhat
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decoupled from the ATN representation per ge. However, considerable
leverage for the analysis process 18 obtained from PATN s ability
to generate successively less preferable solution paths, by a series
of pragmatically guided planning decisions, as well as from PATN s
characterization of certain bugs as errors in these planning choices.

The analysis procedure has been designed to obtain maximal
advantage from both top down synthetic guidance and bottom up analytic
constraints. Analysis procecds by a coroutine search of a space of
plausible partial interpretations. The PLANCHART, a data structure
resembling an AND/OR goal tree, is used to keep track of synthetic
expectations. By careful selection of the representational scheme, this
structure achieves considerable storage economy. It is incrementally
expanded by the synthetic ATN when existing expectations are inadequate
in view of the protocol data. The DATACHART, a data structure
analogous to a context layered CONNIVER data base, is used to keep
track of the state of alternative partial interpretations.

The analogy to computational 1linguistics has turned out to be
fruitful, providing insights into the parsing process developed 1in
research on language understanding and speech recognition. The
value of this analogy 1is illustrated by the adoption of several
search strategies and representational techniques. For example, the
chart representation is wutilized to economically store well-formed
substructures. Partial knowledge of structure and of the status of
synthetic expectations 1is recorded using a scheme of PLANCHART
markings and marker propagations. These would allow for considerable
efficiency both in storage and in the drawing of inferences regarding
possibly ambiguous structural descriptions. Likewise, the basic outlines
of  PAZATN have been refined by the incorporation of  search
heuristics prevalent in computational 1linguistics, including lookahead,
least commitment, and differential diagnosis. These would allow the
analyzer to proceed with reasonable assumptions when necessary, and yet

modify 1its interpretation in response to anomalies. Ideas for
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replacing the expert ATN by a version tailored to the individual were

hiscussed. Major design 1ssues and alternatives were also examined.
Although PAZATN is not yet a working program, the design 1is

sufficiently specific so as to be hand simulable. The next phase of the

research 1s to 1implement and experiment with a prototype analyzer.

enerali PAZATN

The design of PAZATN is of interest in that it suggests a paradigm
for protocol analysis which may be applicable to many domains. Although
an operational PAZATN system for a particular task domain requires
considerable domain specific knowledge -- a necessity if significant power
is to be attained -- its knowledge 1s extremely modular. This domain
specific knowledge is restricted to the event classifier, the event
specialists, the lowest levels of PATN, and the answer library. The other
modules of PAZATN, which have been emphasized 1in this report, make no
domain specific assumptions in their operation. This suggests that PAZATN
systems could be constructed for a variety of domains by supplying
"plug-in" modules for these domain specific components.

In our early work, a text by Donaghey & Ruddel [1975] was found to
be wuseful in organizing knowledge of elementary algebra into procedural
rules. It was found that many students demonstrated an understanding of
the rules, and often were able to apply them correctly. Their hardest

problem was to recognize the appropriateness of a given rule to

a particular problem situation. For example, in actual student
protocols, it was observed that students would multiply out an
expression, and then, only a few lines later, factor it again. This

haphazard application of inverse operations inevitably leads to careless
errors, by increasing the length and subjective difficulty of the task.
These algebraic rules can be modeled by a PATN-based synthetic
problem solver. Each algebraic transformation operation can be
associated with an arc transition on an ATN supgraph. Associated

with each transition is a set of semantic and pragmatic constraints on its
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applicability. For example, to follow the factoring arc, the
semantics require that the ?EXPRESSION register to be a polynomial in a
single variable with numerical coefficients. The pragmatics indicate that
this is an appropriate transition when the goal is to determine the roots
of the polynomial (see Figure 14). While many students will have
learned the syntax of the transitions, which is wusually all that is
taught, their weaknesses often 1lie 1in not knowing the appropriate
semantic and pragmatic constraints.

A feature of programming environments, which has been helpful in
thinking about the PAZATN system for that domain, is that a great deal
of the student’s reasoning is manifest in the protocol. Not all
CAI environments share this property. PAZATN would have more difficulty
with domains for which the "bandwidth" of the analyzer’s window into the
student s thinking is low. This might be a problem in applying the
paradigm to WUMPUS [Stansfield and Carr 1976], WEST [Brown and Burton

1976], or SOPHIE [Brown et al. 1976]. For example, in the ele~tronic

troubleshooting scenario, the student requests a particular
measurement , but provides no 1indication of the pragmatics -- the
reasoning which led to that measurement rather than another. Since

there are many routes by which the misguided troubleshooter could
have arrived at the requested measurement, a precarious chain of
statistical inferences from multiple trials is required to pinpoint
the student’s underlying confusion.

Probably this would pose problems for any analyzer. Hence, the
extent to which the student’s reasoning is articulated suggests itself as
a dimension along which to evaluate designs for future CAI environments.
Note that this is a property not only of the domain, but also of the
particular scenario used. For example, in the electronics domain, one
can envision a design scenario which would closely mimic the alleged
virtues of the programming world. (It would be essential to contrast
the reasoning strategies required for debugging an erroneous design to

those needed for troubleshooting a faulty component in a properly

96

v .
T RS o RRAEI Y e L N e




Figure 14. Subgraph of Algebra ATN

Semantic Constraints:

(AND (POLYNOMIALP :EXPRESSION)
(NUMBERP (COEFF :EXPRESSION)))

\
{

Pragmatic Constraint:
(EQUAL :GOAL "FINDROOTS")

Actions:
:EXPRESSION<«(FACTOR
s :EXPRESSION)

E |

/

'\ FACTOR/ | FACTORED

)
/
/

/
\ /
/

\- s
NG - e

97

- ¢ - - < .
o a g w’-im':}.,_..- SRR T WG L0 AN T




designed circuit.) Another possibility is to ask the student to
explain his reasoning. The major stumbling block to such an undertaking

at the present time lies not in inadequate theories of problem solving,

but in the understanding of natural language.
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APPENDIX I

RED TEST
Student 1:
83 330 89 354

+106 +187 12072 +69

189 417 111 313
Explanation:

Student 2: i

94 498 77 48

+115 +215 +26 +41

119 611 91 89
Explanation:
Student 3: N 2

347 758 437 923
+139 +296 +284 +481
476 944 601 1404
Explanation:
Student 4: R e

109 98 98 35
+452 +105 SHIISIN]) +64
501 103 209 99
Explanation:
Student 5:

352 784 1784 8
+18 +3080 +3080 $35
360 6364 7364 63
Explanation:
Student 6:
8372 6527 893 63
=657 -2394 -195 -47
6725 3233 608 16
Explanation:
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Student 7:

=16 =797 -284 -195
2 4497 101 718
Explanation:
Student 8:
B 7 935 126
-166 =23 -361 -117
drk 24 774 29
Explanation:
Student 9:
48 394 57 239
b -166 = =95
i I 60 124
Explanation:
Student 10: el
305 987 340 9280
L o221 =56 -6090
107 667 290 3090
Explanation:
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i Appendix 2

List of all responses to the question:

What do you think you learned from this experience?

1 see from this system that you learn from your mistakes. In a certain
j operation there are so many mistakes that you can make. When you learn
: what the mistakes are you learn to do the operation correctly.

That children’s errors can be a way of diagnosing the way the child learns
material. Also it raises questions about the way a child is tested both
standardized and informally.

A student’s errors and/or misunderstanding of a concept may have not been
due to carelessness but rather involved a complex and 1logical thought
process.

I learned that it is necessary to try many different types of examples to
be sure that a child really understands. Different types of difficulties
arise with different problems.

Trying to beat the machine can be challenging. Feedback is extremely
important in trying to determine the error. It°s difficult for me to
describe the error but the machine doesn’t care as long as I can prove my
point through examples.

Although it°s hard to tell from these pre and post tests, in the middle is
learned a great deal about the complexity of student’s errors. I know that
young students can get these preconceived notions about how to do things
and it’s very hard to find a pattern to their errors but there is and I
believe that BUGGY convinced me of [it].

That 1if you study the errors long enough you can eventually come up with a
reasonable solution as to why the [error] is occurring.

Through looking carefully at children’s math errors it is sometimes
possible to discover a pattern to them. This pattern will tell you an area
or a concept the child does not understand.

-

I 1learned that there could be more to a child’s mistakes other than

- carelessness. Working with children with special needs I have encountered
many such problems, yet never stopped to analyze what could be a systematic
problem -- for this I thank you.

Children do have problems and they are very difficult to spot especially
when a number of different operations are used to come to an answer. I've
learned to be more aware of how these children reach these "answers" and to
help them to correct them; first by knowing how they arrived at the answer.

Although many arithmetic errors may be careless, there may also be a
pattern that the kid 1s locked into. If you pick up on a pattern you can
test the child to see if he/she conforms to it and work on it from there.

The types of analysis necessary to "debug" student errors on the test
(paper/pencil) seems more difficult than with the computer. But that
doesn’t make any sense. The "analysis" ought to be the same. Perhaps the
computer motivated my analytical ability.

I found that 1 have 1looked closer at the problems, looking for a
{ relationship between the set after working with BUGGY.
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How to perceive problems, that don’t look too consistent, a little easier.
How to have a good time with a computer. (I°ve only played tic-tac-toe at
the Science Museum, and have always wanted to do more). Machines can be
tempermental (when pestered by a large number of students?)

I learned and was exposed to the many different Lypes of problems children
might have. I never realized the many different ways a child could devise
his own system to do a problem. I am now aware of problems that could
arise and 1°'m sure this will help me [in) my future career as a teacher,

How to more effectively detect "problems" students have with place value.

That you can find causes of a child’s problem without the child’s work in
front of you. In looking for the "bug", up and down aren’'t the only
possibilities, also diagonally. I suppose horizontally also. How specific
the problem might be -- only works in one situation.

I have learned several new possible errors students may make 1in
computation. I have also learned somewhat how to diagnose these errors,
i.e. what to look for, and how specific errors can be.

I think I learned more about computers and how to use them. Also I learned
about diagnosing math difficulties. It makes me aware of problems that
children have and they sometimes think logically, not carelessly as
sometimes teachers think they do.

I learned that computers are very complicated pieces of machinery. If one
isn“t experienced with the mechanisms, then problems could result. That
computers can be an asset to the classroom 1s not doubted, but I think many
problems can result. They can add much to a classroom until they start
breaking down.

That there are many problems that you can diagnose about a child by loocking
at his homework.

If a child has repeatedly made [the] same mistakes, it 1is more easily
identified if the teacher has an opportunity to try and make [the] same
mistakes. This method can be solved at least quicker than...

Computers are concise. Information can be gathered and stored for
reference.

Tuned in to picking up malfunctions in simple addition and subtraction
which seemed to be realistic problems.
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Appendix 3
List of all responses to the question:

What 1s your reaction to BUGGY?

1 think 1t would be a fantastic resource for a school with a lot of money
to spend.

Too early to tell. But the potential seems stupendous. I enjoyed it and
see it as a powerful future tool.

I like 1it.

Working with a partner is good for being forced to explain (defend) your
theory [as long as partner requires that]. Useful tool for those with
pretty good number ability. What about those who don’t have good feeling
for numbers?

Good!!! Forces one to get very specific answer to the problem. You can be
slightly wrong and then, rather moving way off base in your second theory
as to the problem, you pinpoint/modify your first (assuming it’s almost
right). Bad. It’s too much fun and I wasn’t being very professional in mu
usage (though under different situation I might).

I think this system is fantastic. It’s a wonderful way to expose people
(who are involved with children) to the problems children will probably
have. It might be especially useful with special learning needs children.

It's great! When will it be 1in my "price" range?

As for the game itself, it would have been continued for another 3 or |
hours.

I think it°s an excellent device for trying to diagnose some of the
difficulties found in mathematics. For a teacher the time element --
having the machine diagnosis would be more practical.

It's a nice toy.
The Bug is great. Makes you stop and think.

I enjoyed the BUGGY experience extensively. Solving or determining errors
was much easier on the computer -- and fun too!

I enjoyed working with BUGGY but when it breaks down it 1is very
frustrating. This might be difficult for children to understand that
problems with computers do arise. Also it may be complicated for younger
children to understand how to use it. High school students may enjoy it
though.

I think BUGGY would be a definite "plus" in the classroom but right now I

feel there are too many "bugs" with BUGGY. Too many times did BUGGY go

crazy. I find it amazing though that a machine can help one detect |
problems. It sure is a better way than the present.

BUGGY makes one 1look at each problem carefully and detect exactly what a
child cannot do or cannot comprehend without formal testing.

As far as BUGGY is concerned, I had a very good time "playing" with BUGGY.

' It was quicker and somehow easier than pencil and paper. It took less
concentration and was definitely more efficient. Can this be used as a
strictly diagnostic tool? 1If so, I think that BUGGY is great.
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He's a trip! Seriovusly, he’s fine if you can master him in case he decides
to break down.

I think BUGGY 1s a good idea and would like to hear more about it.

It°s a program that should be further researched and has excellent
potential.

Great experience in beginning to play with computers -- exercised problem
focussing without frustrating a child with inadequate preparation.

I think that BUGGY could be used to sharpen a teacher’s awareness of
different difficulties with addition and subtraction. It might be fun for
the kids to play such a game together.
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& This appendix presents answers and descriptions for some of the subtraction
bugs for the problem:

15309
-9522

g5778: When borrowing from a column which has a 1 on top, the student
treats the 1 as 1i1f it were a 10.

27998: When borrowing is necessary, instead of subtracting 1 from the
top digit of the next column, the student adds 1 to it.

24822: The student adds instead of subtracts.

16888: When the student needs to borrow, he adds 10 to the top digit of
the current column without subtracting 1 from the top digit of the next
column.

15778: The student borrows correctly except he doesn’t take 1 from the
top digits that are over blanks.

14822: The student adds without carrying instead of subtracts.

14378: The student subtracts the smaller digit in a column from the
larger digit regardless of which is on top.

and No matter what other bugs the student may have, he performs the
units column correctly even if it requires borrowing.

14222: The student subtracts the smaller digit in each column from the
larger regardless of which is on top. The exception is when 10 is in the
left-most columns of the top number; in this case 10 is treated like a
single digit.

14222: The student subtracts the smaller digit in a column from the

3 W larger digit regardless of which is on top.
t 14200: The student subtracts the smaller digit in each column from the
q larger digit regardless of which is on top. The exception is when the
top digit is 0, in which case a 0 1is written as the answer for that
column, i.e. 0-N=0.
i 10022: The student doesn’t know how to borrow. If the top digit in a

column 1s 0, the student writes the bottom digit in the answer ( i.e.
0-N=N). If the top digit is smaller than the bottom digit, then 0 is
written 1in the answer.

10000: The student writes a 0 in any column in which borrowing is
needed.

8748: The student gets 6 and 9 mixed up when decoding ( reading ) the
digits in the problem, misreading 6 for 9, and 9 for 6.

1 7G698: When borrowing from a column, the student borrows from the larger
digit disregarding whether it is the top or the bottom digit.

6888: The student will only borrow from a column in which the top digit

[ is larger. In the columns he skips ( where the top digit is smaller )
he automatically adds 10 to the top digit.
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b82¢: Ihe student borrows from the next column to the left which has a
larger top digit. Any intervening columns have 10 added to their top
digit. The exception is when O 18 on top 1n which case the student
writes the bottom number in the answer (e.g. 0-Nz=N).

5676: When borrowing from a column whose top digit is 0, the student
writes 9, but does not continue borrowing from the column to the left of
the 0.

5822: Wnenever the top digit in a column is 0, the student writes the
bottom digit in the answer, i.e. 0-N=N.

5800: Whenever the top digit in a column is 0, the student writes 0 1in
the answer, 1.e. 0-N=0.

5798: When borrowing from a column with O on top, the student borrows
froa the bottom digit instead of the 0 on top. In all other cases the
student borrows correctly.

5788: The student forgets to change 10 to 9 after borrowing into a
column whose top digit is O.

5688: When the student needs to borrow from a column whose top digit is
0, he skips that column and borrows from the next one.

5678: Once the student needs to borrow from a column, he continues to
borrow into every column whether he needs to or not.

5372: When faced with borrowing, the student decrements the next column
correctly, but instead of adding ten to the top digit of the current
column, he simply subtracts the smaller digit from the larger digit even
though the smaller digit is on top.

4822: The student adds instead of subtracts, but when carrying he
subtracts the carry from the top digit of the next column instead of
adding 1it.

4222: The student subtracts the smaller digit in a column from the
larger digit regardless of which is on top.

and The student stops working the problem as soon as the bottom number
runs out.
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