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ABSTRACT

Based on a newly developed asymptotic Green's function for a magnetic

dipole on a conducting surface [1], this paper presents a simple, closed~

form formula for the mutual admittance between two slots on a cylinder or a

plane. When compared with the exact solution obtained by numerical

integrations, this formula gives accurate results when the slots are

relatively small and their separation large.
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1. INTRODUCTION

This paper contains two results for the mutual admittance Yl7 between

two slots on the surface of a large conducting cylinder (including the
conducting plane as a special case). The first and the main result is

that an approximate, closed-form solution of le is derived. This solution

may be considered as a simplified version of the asymptotic solution of le

reported in [1], as the two surface integrals over the apertures of the
slots are no longer needed in the present approximate solution. Our
second result concerns the derivation of an exact solution of le, which is
given in terms of an inverse Fourier transform and an infinite summation of
cylindrical modes. This solution is based on the original expression for
YI’ described by Stewart, Golden, and Pridmore-Brown [2], [3], and is more
suitable for numerical calculation for some cases.

This work is undertaken for the following reasons. The determination

of Y (or its dual problem for Z between two dipoles) is not only a

19 l )
classical problem in electromagnetics that has attracted wide attention
[1] - [10], but also an integral part in the design of modern conformal

irrays [11] - [15]:. In the latter application, Y must be repeatedly

L2
calculated for a large number of times. Thus, a simple closed-form
solution should greatly reduce the computation effort and, furthermore,

-ovide better phvsical insigl for » desi roblem as the "cause"
provide a better physical insight for the design problem as the “cause
and "effect" can be readily identified in a closed-form solution.

he organization of this paper is as follows. In Section 2, we first

define Y],, and then give the final form of its approximate solution.

Discussions and numerical results are presented in Section 3. In the




o

last two sections (4 and 5), the derivations of both the approximate and
the exact modal solutions of Yl7 are given. Fock functions used in the

text are described in the Appendix.




2. APPROXIMATE FORMULA FOR MUTUAL ADMITTANCE

Referring to Figure 1, consider two slots on the surface of an
infinitely long conducting cylinder with radius R. The orientation of
the slots may be either circumferential (Figure lb where N b m o= Al 200
or axial (Figure lc where a, < bn). The problem is to determine the
mutual admittance between these two slots when kR is large.
First let us define mutual admittance. Throughout this work we
always assume that
(i) the slots are thin, and (2.1a)
(ii) their length is roughly a half-wavelength. (2.1b)
Then the aperture field in each slot can be adequately approximated by a

simple cosine distribution, which is the so-called "

one-mode' approximation.
For example, if slot 1 is circumferential (Figure 1b), its aperture field

under the "one-mode' approximation is given by

F=ve, ,H=TLh (2.2a)
5 = e i = 1 2..2a
disellt 2 1
where . 3 L ey
e e s . be = % x 2.2b
€ Z/:]hlLOS LT hl el ( )
1
y = R¢ (2.2¢c)
(Vl,ll) are respectively the modal (voltage, current) of slot 1. The
mutual admittance Yl’ is defined by
Y ]2 (2.3)
Y s s
12 2 \Y
14
where 1"1 is the induced current in slot 2 when slot 1 is excited by a
voitage Vl and slot 2 is short-circuited. An alternative expression for




12~ V.¥
where
A, = aperture of slot 2
H, = magnetic field when slot 1 is excited with voltage Vl, and
slot 2 is covered by a perfect conductor

E, = electric field when slot 2 is excited with voltage V2, and

o

slot 1 is covered by a perfect conductor.
Because ﬁl = l:lﬁ‘ and E: = VKS), it is a simple matter to verify that
(2.3) and (2.4) are equivalent [16].
There is an alternative definition of mutual admittance. Instead
of (2.2), a modal voltage Gl (with a bar) may be defined through the

xpression for the aperture field of slot 1 as follows:

E =z Vo eos =y (2.5a)
b 1 ar s
1
or equivalently
b
- | -
Vl = (z « E) -0 dz 2:5b)
Jo :
Then a different mutual admittance Y)\ is defined by (2.4) after replacing
KVI.V‘) by (V]‘V’;. [t can be easily shown that
l// Y
a ;
- 1 172
Y = Y (2.6)
1 2 b‘n, 12
I'wo remarks are in order: (i) In the limiting case that bl and b, * 0,
% A 12 = -
., Roes to zero as ( l,,) , whereas ‘1],, approaches a constant
independent of b, and b,. (ii) For the special case a, = a, = 1/2 and

1

1 2




R > o gt is §12’ not Y that is identical to the mutual impedance Z

122 12

between two corresponding dipoles calculated by the classical Carter's
method [5], [8], [9]. (iii) When the slots are excited by waveguides

(transmission lines), one often uses Y (Y,.,). From here on, we will

12 12

concentrate on qu instead of §12'

For the two slots in Figure 1, the final form of an approximate

solution of Y is as follows (for exp +juwt time convention):

12

Circumferential slots

: B8 ) 1L/ ’ 5 e e . o
\12 - wz (a1b1d7b°) S(bl sin 6) b(b2 sin §) C(al cos §) (,(a2 cos &) g;
: 2.7a)
Axial slots
Y - §—--(a b.a.b )l/2 S(a. cos 8) S(a, cos 6) C(b, sin 8) C(b, sin 9) ;
12 -2 3 bzt e N 2 ik 2 ’z
(2.7b)
The various factors in (2.7) are explained below. S and C are simple
trigonometric functions
~ 3 ¢ Y .
S(x) = ——””('k}((‘/"z‘fil ) GGy = SBE R) (2.8)
1 - (kx/n)"
The (simplified) Green's functions éﬂ and éy are given by
ki r 1 “y . o 9
g = G(s)iv(t)sin” 6 + . cos 39\ 4 d u(t) cos” 6
o - \ ks ks
; -2/ 4 |
+ Ju'(£)(¥2 kR cos 9) /3 sin” 6 | (2.9a)
= g8} v(E) lcos? 8 = 4 ; 260+ ue) sin® ol
8, = (s) v E) jcos 8 = ke Cos 28 = u(f) sin 8 |
where X
k%4 AT "
k ¥o e iks . |
G(s) = - T R S e o
273 ks 0 1207

& ] ’
= (k cos 6/2R )1/} s




6
/-f) = P
s = /zl + (R@O)z (2.12)
-1
) g,
8 tan (20/R¢O) : (2.13)

The Fock functions u and v are explained in the Appendix. In the limiting
case kR » = (slots on a planar surface), (2.9) is further simplified to

become

I‘ .
= G(s)'sin2 6 + %; (2 - 3 sin2 a):

ov
I

KR con (2.14)

79
]

[ 2 j 2
5 (¢ 5 SR (D 9)!
s ((%).COS ) = ( 3 cos %

The formula in (2.4) is an approximate solution, valid under the condition
KRS 2 ard s E > (2:15)

The numerical accuracy of the formula is discussed in Section 3, and its

derivation in Section 4.

e i -
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3. NUMERICAL RESULTS AND DISCUSSION
For the two slots in Figure 1, the final form of the approximate
solution of ‘{l2 is given in (2.7). Generally speaking, its accuracy is
good only if
(i) the size of the slots is small in terms of wavelength,
and/or
(ii) the separation of the slots is large in terms of wave-
length.
In this section, we will give some numerical examples to illustrate the
quantitative accuracy of (2.7).
(A) Circumferential Slot - (Figures 2 and 3). The size of each slot
is 0.5 x 0.2X, and the cylinder radius is 1A. Y__, is presented in (dB,

12

normalized phase) format, where dB = 20 logjo iy in mho) and normalized

12/

phase is equal to Arg(Yl, are given: the

, expjks). Three solutions of V.,

| 848 §

UT exact modal solution caleculated from (5.2), (5.3) and (5.9); the UI

asymptotic solution reported in [1]; and the approximate solution in (2.7).
.

We note that all the three solutions are in an excellent agreement.

(B) Percentage Error vs. Slot Position - (Figures 4 and 5). In these
figures, the coordinates of each point determine the center-to-center
distance, in ¢ and z directions between two slots. The pairs of numbers in
the parentheses are the percentage error in magnitude and the absolute
error in phase of Yll as calculated by the approximate formula, respectively.
For the circumferential slots (Figure 4), the accuracy is generally very
good. For the axial slots (Figure 5), the approximate formula gives erratic
results (as high as 27 percent error in magnitude) when the two slots are
very closely displaced in the ¢-direction. The reason for this inaccuracy
is that the surtace field due to a magnetic dipole varies very rapidly as

a function of z when the observation point is close by.




(C) Accuracy vs. Cylinder Radius (Figure 6). The accuracy of the

approximate formula is not sensitive to the radius of the cylinder.

(D) Planar Slots (Tablesl and 2). The mutual admittance qu

between

two identical slots of dimension (a = 0.69X, b = 0.3)) on an infinite
conducting plane is calculated as a function of z, and Yo (the center-to-
center distance between two slots in z and y directions, see Figure 1b).

Yll is given in (dB, phase in degrees). 1In both E-plane and H-plane couplings,
the approximate formula is accurate when the separation is at least two wave-
lengths (2.6"). It should be also remarked that the present slots (0.69}

0.3X) are relatively large. The accuracy of the approximate formula is better

when the slots are smaller.




4. DERIVATION OF APPROXIMATE FORMULA

We will now give the derivation of the formula in (2.7a)[that of
(2.7b) is very similar]. Consider a circumferential infinitesimal dipole
located at Q' on the surface of a cylinder (Figure 7) which is described by

the magnetic current density
> L R
K=¢g 8- RICSI(GINSCz)E . (4.1)

At an observation point Q on the cylinder, the ¢-component of the H field,
denoted by g., is determined in Eq. (2.16b) of [1], which reads in the
b

present notation,

-
o e Y g ]
gf(t,;) v G(t) v(g)Lsin a + Wt o8 2aJ
74 2 231 P 2
3.} witey leos® o 15 < 21 RSO S
+ e u(,){}os o1 \1 ke + we, sin” o

+ $¢/% ¥hfoos” ay 23

9 4 B b
. [v'(g) sin” a + !tanq o+ lf~ u'(¢) cos” a}
\ kt J
(As2)
where (t,n) are the cylindrical coordinates of Q with respect to the origin

at 0' on a developed cylinder, and

£ = (k coSA r':/ZRZ)l/3 & (4.3)

>

The formula in (4.2) is mainly based on a classical work of Fock [17], and
contains a modification that introduces a field dependence on the surface
curvature in the binormal direction of the surface ray (see Section 6 of
[1]). This formula is asymptotically valid for kR » =, and may be used to

calculate the field at any point on the cylindrical surface.

---llzu!!lIlE!!==:==1==::==!!H-Illl.llllll.lll-i‘



10
Making use of the Green's function in (4.2), we next calculate the surface
field H¢ due to slot 1 on a cylinder (Figure 8). The aperture distri-
bution of slot 1 is described in (2.2a), which may be replaced by an

equivalent magnetic current density (p. 108 of [18])

K=& 68(r - R)

/2
albl Vl cos (ny/al) : (4.4)

Then, H at an observation point Q is obtained by superposition, namely,

Q

9 m
0 = vy e ( . 4.
H;(l) //ab \l J[A (COb a y) g®(t,z) dy dz (4:-5)
i
The expression for calculating the mutual admittance Y between the two

12

>
slots in Figure 8 is given in (2.4). Note that E, is described much as
“

(2.2a) and ﬁl in (4.5). Then (2.4) becomes

=D [ [ ) [
Yl" = ——— {‘ dy dz {( dy, dz, |cos iy y\‘cos %~ y,\ gQ(t,a)
s ES 2k J i o ‘ ’ by S
’mlold:bk 'JAl JA2 IS 2 ; (4.6)
The distance t in (4.6) is given by
2 1./2
t = [(s cos O + Ve T (s sin 8 + z, - 2 5 (@)

- P4

s is large relative to the length of either slot, t may be approximated by

{s (4.8a)

¥y =3 2o = z\

!s|1 + cos

\ : %

In evaluating the magnitude of g, in (4.6), we use the approximation in
¢

(4.8a), whereas in evaluating its progressive phase term, we use (4.8b).




Then the integrals in (4.6) can be explicitly carried out. After a

3

-

further approximation by dropping the terms of order (ks) ~ = (kt)-J in

i

(4.2), we obtain the desired solution of Y17 T (207l




5. EXACT MODAL SOLUTION

3 The admittance le defined in (2.3) may be calculated exactly by

using cylindrical modes, as has been done by Stewart, Golden and

Pridmore-Brown [2], [3]. Extensive numerical results of le calculated

from the SGP solution are reported in [13], [14]. As will be explained
below, the SGP solution is not suitable for numerical calculations when

the slot separation z . (Figure la) is large. In this section, we will

0

derive an alternative modal solution of le which does not have this

difficulty.
Let us first consider the circumferential slots shown in Figure 1b.

For the case that a =a,=a and bl = b2 = b (identical slots), the

*
mutual admittance Y,, is given in Eq. (8) of [3] , which reads in the

present notation,
o . ~j (mp+k_z
; o i (mog+k z,)

Y = dk7 ) ;(m,kz)h(m,kz)e (b 1a)

J —ox T mE=

where , 3
sin ik b/2) f”i“ (mp, + T /2) sin (m:q = N
7z : :

ab i i \
é

20 N S Je A TR, S e T YR e e 1/2) | (5.1b)
S 87°R (k,h/:)* \ (s, i (me )

= (a/2R)

{ 1 | ; m ‘ . 3
Glm,k ) = Y,|= : - + |2 = T — (5.1¢)

. .
The multiplication factor 2 in the definition of ¢ in [3] is a misprint
and should be removed.

b




-

1Ke]
TFT g -
vk~ - k 3 deEk S
z — "z 8
k[ —n
——
(-1 /k;-L , if k <k
Rewrite le in terms of its real and imaginary parts:
le SHG - A8, (5.2)
[t can be shown that G is given by
(k @ cos mé
S ) cos k zn y(mk JR(mk ) dk, (5.3a)
0 m=0 m
where
k f L )
” !
2 1 z : S
Bitigk, Jo = —peenlsamri St 5 , (5.3b)
Sl I ]Mz(k SRR LI R R
(et ' W € )
Nl 12 o 2
00 = J0) + ¥ (x) (5.3c)
2 il 2
NGO = J 700 + Y 700 (5.30)
[} 5 m=tlgy
P : (5.3e)
a5 11 , m# 0

We note that G contains a finite integral and can be evaluated in a straight-

forward manner by standard numerical integration techniques. The imaginarv

part of le is given by
[ “': cos mo
B = J 10 QR k720 . w(m,kz) . w(m,kz) dkz (5.4a)
C, m= m g
1

where the integration contour C] is shown in Figure 9 and

S ———

PRSI s

F
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= 2

i mk \_

k Z 1

== (I I' + Y Y") el — |, if k k

ik w2 gy KRR oo R 2

| E / m- L

W(m.kz) (5.4b)
1 f 2
K'(|k_|R) mk \ K (,
_:E_i it - B e z j SLoR e e k7
‘!ktl\khm(;ktl}{) \kt\kR}; |k 1\)J

The computation of B as given in (5.4a) can be quite laborious because (i) the
integration with respect to k_is of infinite range, and the factor cos kyz
is highly oscillatory for large kZO' (G5 W(m,kz) has nonintegrable singulari-

ties of opposite sign on both sides of k2 =k (iii) W(m,k ) decays slowly

with respect to m and kz

To circumvent the above difficulties in evaluating B, we adopt a
method introduced bv Duncan [19]in the study of cylindrical antenna problems.

Let us rewrite (5.4a)

( [ % o
s cos md, | [ Rz i
B=1 ] —[-3 | Fmk) sink z, dk + [ R de 20l
L= e 7 20 g z z| |
m=0 m { LI 'Ll
2 (5.5
where
K = i 1 . '(
F(m,k,) [R(m,k,) + _)N(m,kz)].(m,kz) (5.6)

[he imaginary part of the first term inside the bracket of (55 ds

N
! 13

N e _[ By m .k si Y - &
der ‘ R(m‘“z)'(“"z) sin k_ 2z, dkz “ 15.7)

Im{=] F(m,k ) sin k _z
z z Jo z 0O

0]
\ 1 I

In order to compute the imaginary part of the second term of (5.5), the integra-

tion contour Cl is deformed into C, (Figure 9) according to the theory of

complex variables. This manipulation leads to

g ]A’x” ( jk_z
Im F(m,k e ° dk_ = Im | Flm,k_Je °
J z z

dk . (5.8)
Z -4




15

Make the change of variable kz = jn in (5.8). Substitution of the resultant

equation and (5.7) into (5.5) gives

B oS mw“ (k
B= ) —— —J R(m,k )¢(m,k ) sin k z,. dk
£ 0 z z z .0 Z

m=0 m

£ 59)
_nZO
+ { R(m,jn)y(m,jn)e d;}

Our final expression for.le is given in (5.2), with its real part G in (5.3)
and its imaginary part B in (5.9). Several remarks are in order: (i) Not
only G but also B is determined by R(m,kz), which is much simpler than W(m,kz)
defined in (5.4b). (ii) B contains only a finite integral. (iii) The
infinite integral in B, i.e., the second integral in (5.9a), contains an
exponentially decaying factor exp[-zo - a)n] in its integrand. The emergence
of the evaluation of B is faster for larger 24 This is in contrast to the
original expression of le given in (5.1). (div) There is no nonintegrable

singularity in (5.3) or (5.9).

The same method applies to the derivation of an alternative expression

of Y]\ for two identical axial slots (Figure lc with a; =a, =a and
hl = b, = b). We give below only the final result:
k :
aby v cos mod [ =jilc. = dk
i 0 - 0 ¢ s z 0 Z
Lyn ™ = . g 2(m,k_Je e
6 tk RT m=0 m {‘U 3 N _(k _R)
- TN
: -n: R
Bl 20 dn
B L PP Rp—— (5.10a)
70 2 fid 2) |
N (Rv Roatle i ]
here
2
(sin (md_ ) cos (k_b/2 )
b(m,k ) = SR S ~—~~-»-'-r~/~~——~, (5.10b)
el (m$ ) PR L
a tk b2y =~ (®/2)
‘.
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In summary, the alternative expression of the exact modal solutions is given
in (5.2), (5.3), and (5.9) for two identical circumferential slots, and in

(5.10) for two identical axial slots.




In this appendix we define and
Yo Mo QBN i CE) S wilE ) sand vl(,f_),
Fock functions.

(i) Definition:

1l

il

]

i

integration

conventions, wl(w,,) above is

APPENDIX

FOCK FFUNCTTONS

a complex t and a real ¢,

1 j ( 1 3]
= dizsexp Stz ===z
Imdr 3

%
J'Y dz exp (Lz - —]3- 23) = wl(l)

2
R
.’l‘ e "/qr,’,l/z 1 —— e Jet dt
2 I wz(t)

/n

'
o LE Al
L3n/4,3/2 1 e lee
2 = I wz(t)

w, (t)
o33774,3/2 1 J Bk 4
r

list some useful formulas

These functions are commonly known

I''(T,) goes from @ to 0 along the line

from 0 to « along the real axis.

Because of

cqual to w,)(wl) defined Iin [179.
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(L1) Residue series representation: For real positive g,

A =
VEE) = e j Y/.v"; t—l/z } ((') e (1\'())
n
n=1
G 5 =1
= >
u(g) = e’ /'Zv“: :',3/" Z g i (A-7)
n=1
17/ g T ikt
vl(g) = cJ"/QZV’; :’,5/" Z e 5 (A-8)
n=1
. [
By b =dmfy = = ot ) TAGE
v (E) = —2- e Jn/qv‘n £ 1/2 (1 - j2(,cr‘l)(c['1) le 5 (:\-9)

_‘gt
] n

u’ (£) = E,tn‘e (A-10)

|
wino

I 43 172 ) (1
n—:I

1 .
where {t ¥ and “1’1 } are zeros of w,(t) and w)(t), respectively, and
I 7 2 3

are tabulated in [17] and {1].

r

(iii) Small argument asymptotic expansion: For real positive & and £ + 0,

_ S gms3/2 75 3, 1w SIl4,9/2
4 : 5

v(E) v 1 + el 4 X
( 60 S12 4,141 i8OS i s
(A-11)
e ok Ym nf4 . 3/2 54 .3 . S5VF ~iwl4, 912 . .. =2.%
u(g) v 1 5 € : +12 8 tG e 3 = B0 o JOETE R L
(A-12)
o £ 1 /4 i/) PY 3 7/— s /I ()/2 2
v n/4 _3/2 730 T =71 . =2
x'l< ) I e’ £ - TJ; & - i ¢ e + 4555 x 10 56 e
(A=13)
_ Wa ~jdn/b. /2 75 .2 , 631 -in/4,7/2 s
v (] AN ¢ Ll o SICRALES S A SR
&) g € : f 50 1024 € £, 2.485 10 “ET + e
(A-14)
- 6 Yo e - A A . - )
a (5) ’S s L i 3/ a:‘]/g & 2 ;2 4 439 C—pr/@_//l - 2.291 « ]()—1:5 "
4 4 » 125 - Ly odid 5 = i
(.‘\'J'))
(iv) Numerical evaluation: For § > ;‘()’ the residue series representation
the first ten terms in the summation may be used. Tor .U' the Il
trpument asymptotic expansion with the first five terms may be used. It has

indicated in [12] that the smoothest crossover is obtained if £. = 0.6.
I C nt study, wo sot r’,” 0.7, where the difference in the two .

ntations (8 less than 0017 in magnitude and 0.9° fn phase [1 ].
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(b) Developed cylinder

(c) Cut along O-direction

A

A surface ray frot ource I‘l’il” Q' to observation P(‘in[ Q on
a cevlinder of radius R.




SLOT 2

SLOT |

Figure 8. Two circumferential slots on a developed cylinder.
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Figure 9. Contours in the complex k7—pl.mu for the integral
in (D40 ;




TABL

MUTUAL ADMITTANCE Y

ON A PLANE (E-PLANE COUPLING)

H)

| BETWEEN

30

TWO SLOTS

| z Exact

Approximate

| —64.57 dB
-110°

e e L

~63.25 dB
-108°

|
1
J
‘.
l
L
i

-69.58

81°

| 1A |
‘ ol
77 %7 B
? % .
} o i =758
l 84°
5 -78.58

.......

l

|
4
3
|
8

i el s e oo

SESSESSEE. (-

85° |
el | 4
-79.22 J

87

______ o
' :
-87.75 ,
89°
.




TABLE 2
MUTUAL ADMITTANCE Yl"‘ BETWEEN SLOTS ON
A PLANE (H-PLANE COUPLING)

i R ——

ly Exact f Approximate

5 -83.41 dB | -85.04 dB

~53° . -180°

o~ e S R ] S e o C

~104.00 1 ~ 104,13

= IE7 , 180°
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=9SOk ~109513




