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Summary.

Closed form solutions are obtatned for the problem of a rigid asperity

sliding with Coulomb friction over a power law vizicoelastic halfspace.

The dual integral equations relating the unknown normal tra:tion under the

contact interval (also unknown) to the unknown normal displacement outside

the contact interval are solved by first reducing the system to a generalized

Abel integral equation and then appealing to the the~ory of Riemann-Hilbert

boundary value problems. The physical quantities of interest (eg. the

coefficient of sliding friction) are determined for the three canonical

indentors: a parabolic pur ch, a wedge punch and a flat punch. It is

observed that for certain power law materials, singularities in the normal

traction field occur even for the smooth parabolic indentor.
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Introduction.

Sliding and rolling contact problems in linear viscoelasticity theory

have received considerable attention by analysts during the last two decades;

for example, see [3], [4], (7] and the recent review by Rutanaprakarn [6].

The primary objective of these studies is :o predict the dependence of the

contact pressure distribution, friction coefficient (or mechanical dissipation)

and contact area on the applied normal force, speed and viscoelastic

properties of the slider (unless rigid) and the other body on which contact

is made. It should be noted that without adhesion and surface roughness

the sliding contact problem is equivalent to that of rolling contact for

rigid circular cylinders and spheres pressed against deformable media.

In none of these studies is an exact analytical solution found, except

the case in which the material is characterized as a so-called standard

linear solid (SLS) [3]. This type of representation is far too simple to

fit actual viscoelastic data. Indeed, for rubbery materials, the modulus A

varies with time or frequency over typically ten to twenty decades (e.g. [1],

(71, [8]); at best, the SLS can be fit, approximately, to actual data over

two decades.

One very important feature of actual viscoelastic behavior is that it

often obeys a power law in time or frequency over much of its range of

variation. On this basis, we believe that it would be very desirable to

obtain analytical solutions to problems involving power law materials.

The behavior predicted with such a model would certainly provide a better

IA mathematical description of contact phenomena than with the SLS, and should

be useful in guiding and checking numerical solutions to problems in which°'Ji
real viscoelastic data are used.

A
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4 2

Inasmuch as a power law does not fit actual data over the entire range of

variation, it would be helpful to know if significant error is introduced

in contact solutions because of this lack of complete agreement. Rutanaprakarn

[61 deals with this question, and one can infer from this study (especially

Figs. 5 and 7 in (6]) that for a given sliding speed, any descrepancy is

unimportant outside of a so-called "dominant frequency range". This range

is limited to approximately four decades for power law exponents which do

not exceed one-half; such is the case for practically all viscoelastic

solids (see [1i, [71, [81). Also given in [61 is a procedure for selecting

the power law exponent and coefficient from actual data when the latter

values are not accurately characterized by a power law over any four-decade

range.

In Section 1 we consider the problem of a rigid indentor sliding over

a viscoelastic half-space and exhibit the governing equations. In that

section the mixed boundary value problem is reduced to a set of dual

integral equations. Section 2 contains an analysis of the dual integral

equations based upon solving an equivalent Riemann-Hilbert boundary value

problem. The results of Section 2 are applied in Section 3 to the contact

problem for three canonical indentors: a flat punch, a parabolic punch and

a wedge punch. Consistent with contact problems for a linearly elastic

material, the appearance of corners produces singularities in the normal

traction field under the indentor for our power law viscoelastic .aterial.

However, for certain power law materials we find jump discontinuities

and singularities occurring even for smooth indentors. We conclude Section 3

with a brief discussion of complications attendent with multiple indentor

. fproblems for viscoelastic materials which arc not encountered in elasticity.

.........



4 3

Section 4 contains an interesting observation which suggests that the

moving asperity problem may be cast in a variational framework. This is

accomplished by demonstrating that for a parabolic indentor the contact

interval, which is unknown apriori, may be determined by minimizing a

suitable functional.

! I
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Section 1. Formulation of the Problem.

The particular problem which will occupy our attention in this investigation II
is the steady translation (to the left, say, with velocity U) of a rigid

2-dimensional asperity pressed against the 2-dimensional viscoelastic -

halfspace, y 0_ .

Our ultimate goal is a description of the normal traction field on the

contact interval and the vertical displacement of the halfspace outside the

contact interval.

The mathematical formulation is as follows.

!Neglecting inertia, the force balance equations are

30 3T
x+ =

ao 3aa oT

and the boundary conditions are

T (x,o,t) k( t) _-o < x < C
xy y

v(xo,t) f(x + Ut) a(t) < x < b(t)

O (X,o,t) = 0 x < a(t), x > b(t)
y

a(t) a + Ut b(t) b + Ut

f O (x,o,t)dx = total load.
a~t) F

Here v(x,y,t) and u(x,y,t) are the vertical and horizontal displacements,

a is the normal stress on x = constaxft'lines, 0 is the normal stress on
x y

y - constant lines, T is the shear stress, k is a given nonnegative constdnt
xy

aa- 77;



and I(x) is the shape of the indentor. Adopting the standard notation 0

au , av au a-v a u3 y' Y + - for the strains we write
U., Tx y F - + -5i T-a

the viscoelastic stress strain laws as

o t A+""• t ac

o = A(t-r) DA dT + 2 _ G(t-T) xT dT
x -X) -iJ0 -

J~cx) a ac i
oy A(t-T)- d'r + 2 tdt

Pta)

I -O(t-t)Ax d-.

xy

A!

To employ Fourier transforms it is necessary to differentiate all the

equations (save for the equation a (x,o,t) = 0, x < a(t), x > b(t))
y

with respect to x and then adopt the Gallilean variable s = x ÷ Ut.

Define the Fourier transform of any function g(xy) as

g(py) = ¢• -iPs g(s,y) ds.

Since A(z) and G(z) vanish for z < 0 it follows that

ip ra

+oj (CS)

727 and
- -c - -o -- ."+++i!,+p + , ,+ + 0 :

Ty 3
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i •i

'yj u.3 ) + (Tv (TA~ (T pa

Thus we arrive at

YA

(' 2+u)• +ip( +ip-(•+)• - -A2Gp2 ( -o 0-
2  Ev CA G- T 0A

ay 2

which yields

(av\ Il
A Ap(p)eA2(y+ A AP)ye2P - y

-i -,ý iA +372AGpy
-i A,( p ) e - + 1 -p(yIPIY

a-[ 2
The condition s- (s,o) k a (so) results in .A,(i + klpI/p)pas as

A2[I I WIA ( + 27G) + kpG] / (A +). Z)

Before proceeding we make the following explanatory observations. The

elastic version of our stress-strain laws would be

ax AA + 2Gsx, etc.

where A and G are constants. If we take E~ to be Young's modulus and v to

be Poisson's ratio then it is well known that +G) E Now if we
,A+2G 4(1-v 2

AA
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take G ippG and i•= and appeal to standard correspondence principles

(see [7]) it follows that

S+ 20 4(1-2 2)

"-2For a wide variety of materials v is a constant (see [7]). Therefore

it suffices to assume merely that E(t) = t't 11(t) (H(t) is the lleavyslde

function) to characterize our power law viscoelastic material. It should

also be remembered that once s = x + Ut is chosen as a new independent

variable both A and G are functions of t/U essentially and hence

UCld r (1-at) (ip)(' •
E=

Since A

q (so)= 2(2n)1/ 2 (1p)IP G(+ + 2 1 - ik sgn) A(P)

-1
oy (s,y) = t {y(p,y);s} J

y y J
y,((ip ) s]y)d p

•!_• we obtain p I
o (so) =-----(-l-- ' e' (iP)-I AI(p)dp " -

Y(1-
IV
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S(1) g(s) 2(1-v )ay (s,o)/ (U (i-a)c))
y

and

-= tan , O
71 v

the boundary conditions for v(s,o) and o (s,o) yield the following dual
y

integral equations

(2) -'{A (p) f'(s) a < s < b
10 0

(3) -'{A (p) jpj(ip)a-ll[l-tan(B8i12)sgn (p)];s} =g(s)

where g(s) vanishes for s < a and b < s and is unknown for a < s < b
0 0 0 0

It should be noted that the parameter a satisfies 0 < • < 1 and that B = 0

corresponds to frictionless sliding. The total load condition requires

g(s) to be integrable on (ao,bo) so that Eq. (3) may be inverted to obtain
00

b
(4) A[( 1 = [l-i tan (0712)sgn(p) ] gpl-(ip)l-(x -1/2 sesp.s.

(4).~snp~ PI (p (21) ~ ag(s)eiSi a
0

Substituting (4) into (2) yields

S! ~(5) fl(s) f -{)lli)- g(y) ;p};s}

-i tan(OIT/2) {-1}-1 (ip) g-)S

The right side of (5) may be simplified as follows:

0'. OP-l{ p -(ip) 1-a• 5 {g(y);p);s}

(6)

1- Ipj-l(ip)l-eiPsdp Jg(y)e--Ypdy
2 

a
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S~b

(6) g g(y)dy p.(ip)l1a ip(S-Y) _
a

0

rb b
['(l-a) o g(t)dt - cos i 1(dt

[fs (t-s) 1 - a (s-t) J
0

The interchange required for line (6) is readily justified since g(t) is

assumed integrable. In a similar way it may be shown that

(ip) 1-atU -{p- UiP)I-•{g(y) ;p};s}

(7)

= n r(l- g(t)dt
7T" a (s-t) 1-a

Substituting (6) and (7) into (5) results in the following integral equation

relating f'(s) and g(s):

y 1  (8)F •f'(s) = g(t)dt cos(c+3/2)i g(t)dt

fs (t-s) cos (1rr/2) a (s-t)0-
0

Equation (8) is a generalized Abel type integral equation. The special

case a + a/2 = 1/2 produces an elementary Abel equation which may be

readily inverted to yield

b 0

1 g(t) sin al d )ds I

However, obtaining a solution for (8) when a + a/2 # 1/2 requires much more

sophisticated techniques. One approach is to map the problem onto the

interval (0,-) and use Mellin transforms. Computing the resulting

inverse transforms requires summing certain infinite series of residues.
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The series obtained in this way are expressible In terms of hypergeometric

functions.

A far more elegant closed form solution of (8) from which all physical 0

quantities of interest can be computed may be obtained by solving a certain

Riemann-lilbert boundary value problem that is equivalent to (8). This

technique has been described by Gakov [2] and is developed in the next

section.

I

42
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Section 2. Analysis of the Riemann Boundary Value Problem.

Define the function of a complex variable z analytic in the complex

plane cut along the segmeat [a ,b on the real axis by
t00

b:• (bZ) -a/2 g(t)dt

ý(z) [(z-ao)(b -Z)10 dt.
fa (t-z)I

} ' (boZ) ]_/2 (t a-el

The multivalued function [(z-a )(b -z)] cz- is defined and

analytic in a plane cut along [ao,b by some branch. The density g(t)

is assumed to have the representation

g*(t)
g(t) a [(t~a)(Dot)]a

where g*(t) is Holder continuous on [a ,bo]. Define, for convenience,
00

R(z) [(z-a )(b -Z)]/2•
0 0

b

Then Cz) dt. Note that 4(z) is analytic in the plane• a (t-z)I-

cut along [a ,bo] and that
0 0

D as z+ ,

0- (9) ¢(z)P = O[(z-a and

D(z) =O[(b -z)
0

A, -Let 0W(x) denote the limiring valucs of 4(z) as z approaches the cut from

above and below respectively. It is readily shown (see Gakov [2]) that on

[a °b°]

A0 0,



- ao

.9' 12

b
x) ( g(t)dt +-0 g(t)dt1

g~t~dt -e-e~¢( x)+ -() -

=R(x) L()- 1c
a (x-t) (t-X) '30

1-

and

b
1 _ ___ -a~ri g(t)dt1

(i11 Rl ) q!_ ...- ax i

x) a (X-t) x (t-x)
0

-2-i

From these two relations it is seen that

-g v e-e and (x) + 4 n (x
(10) +(x)dt -( +R(x)

a e dx-t) e -2ai -1 b

0 e

and

b
0I(11 t L (x) e -t' (x RWx

fX (t-x) L- -2cciij
e -

Substituting (10) a and (11) into w) e obtain, finally, a

boalhifThat is,

i is Tequirde o find a funiemon problm danalytic in the complex plane cuti

along the segment [a ,b I subject to the asymptotic conditions (9) and

whose limiting values e(x) and 4)(x) satisfy on the cut the equation

4(12) e~) G(x),ý(x) + .-(x)

i~r (a"+) 0121rf (x)
where G(x) -e and g Wx r (1-a)R(x) (1-i tan (air2))

once 4P(z) has been determined, g(t) may be obtained by first computing the

limits (P (x) and then solving either of the Abel integral equations (10)

or (11).jThe index, Xof the Riemann problem depends upon the class of functions

-. d 
'- - - ~ -
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in which a solution is sought. In particular, if the solution is to be

bounded at both endpoints, Xis -i; if it is allowed to be unbounded at

buth endpoints X is +1; while if it Is to be bounded at one endpoinc and

unbounded at the other X is zero.

Define the auxiliary function ¢!(z) by
IR

D+(z) =(z-a )l(z-b +(z) Im(z) > 0

(z) (z 0 Z-jz) Im(z) < 0

[z-aO
The branch cut for - consists of a line segment from z to a

Fz-b- --
connected to the interval [ao, O) along the x-axis whereas for 0-T. it

consists of a line segment from z to b connected to the interval
-bo,=). The exponent y is chosen to be- if

A5  [b if 4(z) is to be bounded

at a and- otherwise. The exponent y' is then chosen to be
o

-(Y+X), where X is the index. The function %l(z) may be determined by

solving the Riemann problem with boundary equation

(13) ( -- (x-%z)X( 1 (x) + (x-a g-x-)•g .

0 ) g0xx))

The equation (13) is assumed to hold on a semicircle in the upper half-plane

with [ao,b I as diameter and z in the interior. If X = 1 the solution

to (13) that is 0 as z is given by

0 1- )_('-b )_Y (Td

(14) )l(z) = X1 (z) 2- 1 1 + C

If z
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where C is an arbitrary constant and the function X (z), the canonical

solution of the homogeneous problem corresponding to (13), is given ly

X +(z) and X1(z) (z o)_X.

In (14) the integral Is to be interpreted as a Cauchy principal value.

If X a 0 or -1 then C = 0, and when X = -1 in order to obtain a solution Z

it is necessary to impose the orthogonality condition

b

(15) (-a ( gl(¶)d-T = 0.
a

- a0

Before proceeding to a discussion of the form of the solution for the

possible values of X we shall consider the question of uniqueness of the

solution for the dual integral equations. Since the problem is linear this

is tantamount to assuming f'(x) = 0 for ao < x < b., and hence that gI(x)_ 0. 4
We shall allow only the physically reasonable solutions A (t) which

1

correspond to a finite total load, that is for which g(x) is integrable.

The homogeneous dual integral equations possess a non-zero solution oz.yl if

the homogeneous Riemann problem corresponding to (13) possesses non-trivial

solutions. From (14) non-trivial solutions exist if and only if X I

and are of the form Aii +

' (<z) C, 4)(z) (Z-Z )1 1 0

where C is an arbitrary constant. The function ((z) is then given by

i''C Z (o-(X+ý+l) /2 (zcý-1)/b

,Cz-+(z) = ( +-+) (l+-)b
0 0

ýD-(z) = -C(z-a )-(a+I-l)/2(z-b )e

0 0

I4

- A
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The pnase shift in the expression for '-(z) results from the two different
branch cuts used for [Z-Zo]-T and [z-z I The limits -(x) are easily

computed and whet: substituted into (11) yield the following Abel integral

equations for g(x)

b
(16) r g()dt ( -(0+)/2 ( +2c-l) /2

Ix (t-x) 1-a 0

(17) K dt=C"-°)-(ý+1)/2(-) (ý+2a-l)/2 ;
g(t)dt _"xa( X -

ao (x-t)l-Q a

where C' and C" are constants.

"From (17) we see that

.•- iX ix ~ (t-o)(+l)/2(bt (0+2ccI) /2dt:

f C"sin a~ir ( 0-t
ao~~ g(t) dt = 1 1~ig• a (x-t)•° , ...1•

a a
0 0

Observe that for x near a0

f x g(t)dt = [ (x-aO)(2•+ý-l) /-2

from which it follows that

g(x) = O[(x-a )-(2c7++l)12]

The function g(x) is integrable at a if and only if 0 < 2a+ý < 1. Similarly,
0

we obtain from (16) that for x near bo
0

g(x) -

4n
~2ii
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The above analysis shows that the dual integral equations possess a

unique solution in the class of functions for which g(x) is integrable

if and only if 2a+0 > 1. Note, however, that the solution is unique for

all values of 2a4-0 if g(x) is required to be square integrable.

In the subsequent sections we shall have need of the solutions of the

generalized Abel equation (8) for X -l and X 0. We list them here

for future reference.

When X = --1 we obtain for 4+(z)

/2 (cx+f+l)/2 -ari(a+-+l)/2 b 4
(z-ao)(1-) (A-b) e 0S+ (z) 02 ((-bo 0(1/2(b-T+02a)/2f1

(i + tan - 1 (ar/2))r(1-a) fa 0

- (z-a ( 1-a-B)/2 (z-b) (w+il)/2e-wi(a+0+1)/2 b 0 351P -(z°'r-a (b-l)/2"bM

-i +i ((X+13+1) fa 0 0
(i+tan (/2)r-e o-z)

The limits e+(x) and 4-(x) are readily computed using the Plemelj formulas

and when substituted into (10) and (11) yield the following Abel integral

equations for the determination of g(t):

(18) g(t)dt = r()(l+[tan-l ($T/2)]2)-1/2[f (x)2sin-(1/2)-cos(S/2)p(x)]

0
b

(19) d =r()(l+tan-(Br/2)]2) (sin[(x+8/2)7r]f' (x)-cos[(a+$/2)Tr]p(x)I
x (t-x) i-a21

where:1 1|

a •d
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b
0 [ (0-1)/ 2(b .- (P+2a+l)/2(..."(1p(-) (Xao) ( 2-)02 (b x)( a2c+l)/2 1 (-a) -r T(x- (o 1J 0

0 70J

0 (T-x)

Of course, the above analysis is subject to the orthogonality condition (15)

which now takes the form

b

(20) J (T-a) (l)/ 2 (bT)-(+2+l)/ 2 f (T)dT = 0.
a

0

The calculations for X 0 are similar and, for a solutibn that is

bounded at a and unbounded at b, result in the following Abel equations

(21) a (x-t) r(a) (1+[tan- 1  2 )1- [f'(x)sin(uý/2)-cos(•I/2)pl(x)I

0

b
(22) [ g(t)dt = r(1) (l+tan-l(8i/2)]2 -1/2 sin[((+0/2) f'(x)-pcos[(a2)l]P(X)

x (t-x) 
NO

where

i ~b (5-1)/2 T)(0+2a-I)/2f(Td

Pl(X) (x -8)/2 (bX)(8 +2-l)/2 1 jbo (T-a0) (b-).
0 0 f -

a (T-x)

S'+ In the next section we apply the results obtained above to an investigation
of the behavior of the solutions to the moving asperity problem for three

canonical indentor shapes.

..K

- ~ -5~Z:
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Section 3. Examples.

In this section we shall discuss the behavior of the solution to the

moving asperity problem for three canonical indentors, the flat punch,

the wedge punch ana the parabolic punch, since each one exhibits interesting

features of the power law model. For the sake of simplicity we shall

assume frictionless sliding, i,e. 0 0. Allowing • to be non-zero introduces

no new behavior into the solutions and represents a straight forward

extension of the techniques needed to treat the frictionless case.

In the physical problem the function f'(x) is assumed to have a

known functional form for a given loading and indentor shape on the

unknown contact inteival [ao,b]. It is required to determine a , b and000 0

ya (x,O), or equivalently, g(x). Moreover, we shall also compute the

coefficient of friction Cf given by

b

(23) C f'(x) O(x,)dx
f Xa y

0

where A is the total load given by

7 b

X a (XO)dx.
fa "y

' 0

it is an interesting feature of viscoelastic material models that there is

a resultant frictional like force impeding the frictionless sliding of a

punch. It is generated by the bulging of the material ahead of the asperity. A

We consider first the flat punch or square cornered block sliding over

the material. This corresponds to f'(x)) = 0 on the contact interval (ao,bo].

If the contact interval is to be non-degenerate, i.e. not just a singleton

"R -
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point, then g(x) must be a non-trivial solution of the homogeneous

generalized Abel integral equation (8). By the analysis of the last

section it is apparent that an integrable function g(x) satisfying the

homogeneous equation over a non-degenerate interval will exist if and only

if 0 < a < 1/2. Hence for 1/2 < a < I we are forced to conclude that a - b,
0 0

that is, the material is in contact with the flat punch only at the leading

edge and the problem becomes that of a moving point load! (See Figure 1.)

Sq±,,2• To analyze the flat punch problem for 1/2 < a < 1 it is simplest to

appeal directly to the dual integral equations (2) and (3) for 8 - 0.

Without loss of generality we may assume the contact point to be a 0.
0

Therefore, consider

(24) 1-l{Al(P);s - f'(s) s # 0

(25) -'{AI(p)l p(ip) -;s = c6(s)

where c is an arbitrary constant and 6 (x) denotes the )irac measure. From

(25) we obtain

,•~ ~ A(P) =IP cp-(ip)l-

which when substituted into (24) yields

i f(s) r(l-a)c -cos•-T s s>0

The constant c is determined from kno.wing the total load. It is interesting

to observe that when a = 1/2, f'(s) = 0 for s > 0 and that f'(-O) =+=.

Hence, the displacement is consta:t (which may be taken to be zero) past

• ' ;
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the contact point and ias a vertical tangent as it approaches the contact

point from the left. (See Figure 1.) For 1/2 < a < I the displacement

to the left of the contact point is similar to that for aX 1/2, whereas to

the right of the contact point it is no longer constant. Rather, f(s) O(sI)

as a approaches positive infinity. (See Figure 1.)

The situation for 0 < a < 1/2 is completely different. Now the contact

interval is the entire block face rather than merely one corner. From (16)

we see that g(x) may be determined from

b

f 0g(t)dt 
-/ -/x (tcx)- (A C cot (a7 (x-a -1/2 (b o-X) /2

Solving this Abel equation we obtain

b -1/2(bo-X) a-1/2 dx
gc cos a• d 0o (x-a) 0g(t) O1 Tt-

it (..-t)a

i• (26) - cr(l-a) (bo-ao)a (bo -1/2 (t -a 1/2
(26)l/(ba) 0 0 (b0- ) ( 0•AFT r(1/2 - ot)

The constant c is easily determined from the total load condition. (See

Figure 2).

To investigate the displacement off the contact interval it is useful

to notice that equation (8) is valid over the entire real axis. Hence we

V see that for s > b

b
0. o g(t)dt

(27) f'(s) = -cos OIf 1-a '

whereas for s < a
0 .

-
N--

"I ,,
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b(28) f'(s) a( s

a (t-.~-
0

In particular

-0 (s) s

-0((s-b - 1/ 2 s
0 0

f(x)-s 11 )-
-0(l(a)' -s s a-. _

Note that the displacement has a vertical tangent at both the leading and

trailing edges of the punch. (See Figure 1.)

We now consider the case of a parabolic asperity, i.e. one for which

f'(s) - -s. If at= 1/2 the problem is trivial. We obtain for g(t)

b

g(t) 1 d "f(s)11 ds

The function g(t) will be continuous for t b only if f'(bo) 0, i.e.
0 0

if b =0. In that case we have

g(t) = • t a < t < 0.
A, 0

The point a is then easily determined from the load equation. However,
0

A we shall postpone this calculation until the general case has been considered.

• ~When 0 < a < 1/2 we seek a solution to the Riemann problem that is t

bounded at both a and b. The index of the problem is then -1 and the function

0 0

g(x) may be obtained by solving either of the Abel equations (18) and (19)

z with 0 0. Before describing the sotution g(x) it is convenient to determine

the endpoints of the contact interval [ao,bo]

0I

•"ARM
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The orthogonality condition (20) becomes

F bi!~~ 1 (-o-/2( c-1)0P/2
(29) o- T) idi 0. A.

fa0 0•

0

From (29) it is evident that a < 0 < b , i.e. the material wraps around

the indentor. (See Figure 3.) The integral in (29) is easily evaluated

and yields

L'B(I/2,l/2 - (1/2 - ) b = 0

where L denotes the length of the contact interval (bo-a) and B(.,')

is the beta function. We therefore obtain the relation

L(1/2- oO
o (1-a)

The parameter L will be determined later from the load equation.

To determine g(x) it is convenient to first evaluate the Cauchy
••integral defining p(x). It is straight forward to show that

Sp(x) = -x tan an - r(I/2)1(I/2 - a)(bo-X) a+1/2

b
"{2F1(1/2,a•1/2;a+1/2;(bo-x)/L} - E -2+

•'•ii " F1 (1/2, ct+ /2;t+ 3/2; (bo-x)/L) }. •

The derivative of p(x) may now be taken and yields

p'(x) -tan an - r(1/2)r(l/12- a)(bo-X)a- 
1 1 2

[(x-a )/L]1/2 [bcL + (1/2 - )1 - (l/2,c-l/2;ot+l/2;(bX)/L

0 0

?%- | -7
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Since tan(wt)f'(b-)= P(b-), the solution of (19) is given by
0 0

b

(32) g(t) = sin(e)r(a) Jt(x-t)-([sina-ff"(x) cosarrp'(x)ldx.
t

Using (31), (30) and the fact that f"(x) -1, the integral defining

g(t) in (32) may be evaluated and after some manipulation yields

b1 0bo -1_/2( 1/2 -

(33) g(t) = (bl-a) ft °)i/2a -dad

b- -1/2 a- 2d

f o ( - ) ( b -T) a l 2
F (1/2) (1/.-a)L f ob0_______ -_i/2d_

r (l-a) r(2-a) r(a + 1/2) t

(See Figure 4.)

Now assume 1/2 < a < 1. For this case it is necessary to seek a solution

of the Riemann problem that is bounded at only one endpoint since the

orthogonality condition (29) is satisfied only for a degenerate interval

a 0= b 0and allowing this requires the material to pass through the asperity.

It is easy to see that we -must require the solution to be bounded at a

and hence unbounded at b . The function g(x) may therefore be determined

from either of equations (21) and (22) with 03 0. Evaluating p4(x) wE

obtain

!'

.4-

Y "iT7 :
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( =-tan + r(l1/2) (3/2-a) ) a 1/2 L1/2 - a

Ia (t- 3/2) L 1 Fx-a)L L l2a32O-/;b-)L
(1-a) (1-)

Since for 1/2 < a < 1 the orthogonality equation (29) does not hold, some

other condition must be imposed to specify a and b . It is natural to K
0 0

choose the points a and b so as to enhance tho endpoint behavior of g(x).
0 0

Choosing

(34) b L(3/2-
0I

forces g(x) to be continuous at x a while, as with the case 0 < a < 1/2,
0 T

choosing

b (12 )L

forces continuity at b . However, the condition (34) is physically impossible

since it predicts, among other things, a total load of the wrong sign.

The function g(x) must be positive. From equation (8), it is clear that

if 1/2 < a < 1 then f'(s) must be positive on [a,bo]. Since f'(s) = -s .this

means that b < 0, whereas line (34) results in b > 0. Hence, we conclude that
0 0

the condition (30) obtained for 0 < a < 1/2 is valid also for 1/2 < a < I.

Note, then that for 1/2 < a < 1 the material leaves the indentor before the

II
apex. (See Figure 3.)

S Given relation (30) it is straight forward to ahow that the formula (33)

obtained for g(t) when 0 < a < 1/2 is valid for 1/2 < a < 1. It should be

II observed that •

I7

TI
I.
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O(tb os]/2) for s b-
g(s) 0

O([s-a ]I/2-a for s -• a+
o 0

Therefore, the stress is continuous at b for all 0 < a < 1; whereas .f

a 1/2 it has a jump discontinuity at s = a., if 0 < a < 1/2 it is continuous

at s - a and if 1/2 < a < 1 it has a singu]arity of order a - 1/2. (See
0

Figure 4.)

In order to determine L, and hence a and bh we apply the total load

condition 0a

b
=f0

X a O(s,o)ds

b
- • r(u-a) g(s)ds.

2(l-v ) a
0

For g(s) given by (33), this integral is readily computed and yields

Ua6r(3 /2)r( 3 / 2 - a)L2-a

2 (1-a) r(3-a) (1-v2)

from which it follows that

S" .' 2 1 I ( 2 -a )
2A L- a) M(/2) r(3/21-a)

It is useful to examine the stress and displacement profiles. We consider

first the stress a (s,o). The derivative of g(s), given by (33), may be
first is ustreful y ,)S

calculated easily and gives
-1/2 -a- /

(b -s) (s-a
g's) 0 0

9(1(s) 4(j--tL S
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Hence it is apparent that when cc > 1/2 g(s) is monotone decreasing on

(a b ).However, when 0 < a < 1/2, g(s) has a unique maximum occurring
0 0

at the point

sL.

(See Figure 4.)

The behavior of the displacement profiles may be deduced from equations
(27) and (28). It should be noted that the displacement has a continuously

varying tangent over the whole line.

Mention should be given to the question of uniqueness for the parabolic

indentor. As was demonstrated in the last section, when 1/2 < a < I uniqueness

is assured, whereas, when 0 < a < 1/2 the solution to (8) is non-unique

in the class of integrable functions. However, only one of the solutions

is continuous. Adding to (33) any non-zero solution of the homogeneous

problem results in a displacement profile whose tangent becomes vertical

upon approaching the contact interval. This is obviously physically

impossible since it corresponds to the material passing into the indentor.

"oAs was indicated earlier, a quantity important in predicting the response

of a viscoelastic material tc loading is the friction coefficient given

by (23). For the parabolic asperity Cf is • tily computed. In particular

if f'(x) -x on (ao,bo) then a

Cf ct(2-a) _LCf (l-a)(3-a)

For completeness we shall indicate what the solution for the parabolic

asperity looks like when the friction ,term is included. For g(t) we obtain

AAA

i172
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b

g(t) a (c)j(b -x) (x-a)d
t

-r((B+l)/2)Cl-2cL-O)L f 0Qd
2r(1-a)r(2-ct)r((1+$+2a)/2) (x-t

The trailing contact point becomes

b =L/2 (;~

where L comes from the load condition

2 (1-v ) (1-a) r(3-at)

Finally for Cf we obtainj

Cf (aI)(-)L.

It should be noted that the parameter that governs the essential behavior

of the solution in this case is a + N/2 rather than ct.

We next consider a wedge shaped punch for which

f'(x) k J
2 X>

1 2

g(t) must be non-negative, we see from (8) that a and b must be such that
0 0 V

f'(x) > 0 on (a b ). Hence b < 0.

For at 1/2 the problem is again trivial. The function g(x) is given by
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g(x) = (b-x

(See Figure 6.) Recall that

10 t > b
1 0

f' W S 1 a 0 <t <b0

1 b0-/ (t-x)- / dt t<a

01a

Obviously, from physical considerations we must take b =0. The leading
0

contact point is now easily determined from the load equation. (See Figure 5.)

It should be noted that the stress is singular at the trailing contact point

(the apex of the wedge) and has a jump discontinuity at the leading point.

E~trt (See Figure 6.)

When 1/2 < a < 1 we seek a solution to the Riemann problem that is bounded

at a 0and unbounded at b 0.As before we solve the Abel equation (22) forA

g(t) where g=0 and p (s) is given by1I
6r(l/2)r(lI2-a)(b -s)t~/ 1/-

Pi (s) =tanc~r a -n 01a

2i F 1(1/2,a - 1/2;a + 1/2;(b o-s)/L).

This reduces to solving

b

(35) -& (t) -dt h(s)
(ts

where

4i
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S rSr(cO (1/2)(b°-s) 1 / 2 L1 2 -L

(36) h(s) F (1 /2,a l/2;a + 1/2;(b -s)/L)
r(l-c)l'(I/2 + ot) 20120

The derivative of h(s) is easily taken and yields

1-a ax 3/2 -1/2
S r(S()r(I/2)L (b -s) (s-a°)

h'(s) ~
r(l-c)r(c- 1/2)

Solving for g(t) we obtain

b

sin W h o ý_!sg(t)

t (t-s),

s r(C()sin(cT•)I'(1/2) o (b-•)o) -1

v- 1/2) t .(s.)

(See Figure 6.) It is easily seen that again we must choose b = 0. Indeed,

0

j recall that i• M

(37) fV(s) -Cos 7t¶ s s>b.
00

For s > b f'(s) is a decreasing function. Since f'(s) = 1 for a < s < b0 oo

we conclude that f'(s) < S1 when s > b . This is possible only if b = 0.
0 0 _

Therefore, when 1/2 < a < 1 the material leaves the wedge indentor at the

apex in contrast to the parabolic indentor for which it leaves in front

of the peak. (See Figure 5.)

The load equation is readily computed and yields

•-:t~ ~ r a' (3/2 -aOLt'
217r(2-a)(1-v 2) "

i#I

N I . ...... .... ... ....... ... • I
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from which L, and hence a, may be determined. Note also that for 1/2 < a < 1

the friction coefficient, CfV is just the slope of the leading face of
IN

the wedge, i.e. Cf S 1

It should be observed also that the stress is singular at both a and
0 M

b . In particular
o

0((s-a 012-) s 4 a° +
g(x) = 12O0((bo-S) ) s - b ---

00

(See Figure 6.) 0A

Assume now that 0 < a < 1/2. We may observe first that in this case

b > 0 > a , i.e. the material must wrap around the indentor. (See Figure 5.) A:
o 0

Indeed, from (37) we conclude that for 0 < a < 1/2, f'(s) is nonnegative A

when s > b , from which it follows that b > 0. Moreover, if b = 0 then0 0 o0

we may appeal to the analysis for the case 1/2 < a < 1 to conclude thatI g(t) must solve (35) with h(s) given by (36). Inverting (35) yields 3

Ssin an d 0 h(s)dt
g(t) dt t (s-t)

a-1/21
Observe that h(s) - O[(bo-S)- for s e bo which implies that

g(t) = O/ for s -, b This, together with (37) shows that

[1 f'(s) - O[(s-b for s b + , from which it follows that the

displacement possesses a vertical tangent upon approaching b . The last

statement is a physical impossibility. Hence, b > 0.
0A

To solve for g(t) we seek a solution of the Riemann problem that is

bounded at a and bo. It is required, then, to solve equation (19)
0 0

subject to the orthogonality constraint (20). However, for the wedge A

punch with a < x < b0, the solution of equation (19) is not expressible
0 0

- -~ A
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in terms of elementary functions but may be estimated numerically. Moreover,

simple expressions for a and b are not obtainable, though it is possible0 0

to calculate a and b numerically as follows. Define a new parameter a to
o o

be a -a AL. The orthogonality relation (20) becomes
0

(38) 0 ZS1  (l-z)-I 1 / 2  - S2  z- 1 /2(l-z)-' - 1/2dz.
0 0

The load equation is

bo2

(39) A={U' -) [ho g(s)ds
2(1-V a a

From (18) with 8 f 0 we obtain

Ix
!•g(tOdt =_ (a) p (x) AN

Ja (x-t)1-a
0

where p(t) is given by

"ob 1)-/2 ( -c - 1/2
p(t) = (t-a b 1/2 -t)+/21 J ( f'('T)dT .

0 0 7Ff a (-r )
0

• Hence,

b b
b1 bIg(t)dttd

a f(1-ct) a (b -t)a
, 0 0 0
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b b° (t1ao1/2 (b 1t 1/2
1 J° f,(T)(-a )-1/2(b-¶)- - I/ 2 dT _ 0 dt

r(l-a) fa oa (t T)
0o 0

S-I/2 -1/2r(l-) z(-a) (bo -T) - "
a

0

(40) Sr(-a) fa zl/ 2 (I-z)-O -
1 /2dz - $2  zl/ 2 (l-z)-, 1 dz .

Line 40 follows from an obvious change of variables and repeated applications

of (38). To determine a and b, one need only solve (38) numerically for 0
0 0

and then use (39) and (40) to obtain L.

As was indicated above, it is not possible to express g(t) in terms

of elementary functions. Once a and b are known g(t) ma. oe approximated
0 0

numerically. However, due to space limitations we shall not address this

question here.

We remark at this time that our analysis yields as a special case,

namely a 0, the solution to the problem of an indentor pressed into an

elastic half space. Indeed, setting a 0 in the above expressions

for g(t) produces the results obtained by Muskhelishvilli [5] for the

elastic contact problem. It. should be noted that, as expected, the friction

coefficient, Cf, vanishes when a= 0 and the pressure distribution is

symmetric on the contact interval for a symmetric punch.

R As another remark we include a brief discussion of the problem of

multiple asperities. In particular, assume that several indentors are

pressed into the half-space and are moving with the same constant velocity.

Assume that the indentors have shapes given by fl(x),...,f (x) and that the

nA

r- ------- -g-

- -•-
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total pressure under each of the punches is known. Hence, we assume as -

known the n parameters

b

x a oy(x,o)dx i 1,..., $
i

where Ii - [ai,b1 ] is the unknown contact interval for the ith indentor.

Letting gi(t) denote the restriction of g(t) (given by (1)) to the interval

1,, it is straight forward to show that fi(x) and gi(x) i = l...,n are

related by the system of dual integral equations

[A I (t);x) = (x) x C , i = ... ,n

-n
_lA (t)jtj(it)C'-l x] = Ingix

where
x CSxi (x)

For simplicity, assume n 2. Analogous to (8) we obtain the coupled

system of integral equations for g (t), i = 1,2

bL

Wf '(x) b1  gl(t)dt cx gl(t)dt fb 2  g2 (t)dt
rl-a) Tx (t-x)I-x 1 (x-t)I- + a2  (t-x)I- x

(41)

i•= Cos 0t7 CO T-(4) ki)co a (-t)l +f x( - cos ff: Xfa ( 0

ii. X-t
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The elastic contact problem for multiple indentors is no more difficult

to solve than for a single punch. The situation for the viscoelastic half-

space is considerably different. For the elastic half-space it Is possible

to reduce the problem to that of solving a single Riemann boundary value

problem. Because of the occurence of branch points on each of the intervals

1i, no such reduction is possible for the viscoelastic problem. Rather

one obtains a coupled system of Riemann boundary value problems fot which

no simple uncoupling seems to exist. In general, the system (41) must

be solved numerically.

There is, however, one special case for which (41) is easily inverted.

In particular, when (%= 1/2 the second equation uncouples and is easily

inverted to determine g2 (t). With g2 (t) known, the first equation may be

solved for gl(t). The four parameters a,, bi, i = 1, 2, are still to be

deduced. The contact points a2$ b2 for the trailing indentor are determined

independently of the first indentor since the first indentor produces no

effect on the second. The obvious coupling in (41a) is reflected in the

choice of a and b and the resulting relative displacement of the two

punches. For example, if f'(x) = -x and (x)= -(x-c) for 0 < c then

b c,
2

2 2/3(1- )3Ai
X2 a2 )i/2(t2bI

2 -2 1/2 -t)i/d
and a and bmay be calculated from the equations

2 _t1/ -l - d

biN

SN2

kv€=
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2(1_V ) a1

where .b •

bb
1/ (C 1/SII

gl(x) W (b 1-x)l/2 J i (c-t) /2(t-y)- 3 l 2 dtx (y-x) a2

and

2 1/2.
2 Tr

2
If the coordinate system is chosen so that f(x) x-2- x £ I, then on 12 I

2-
f(x) = d - (c-x) 2/2 where the relative displacement d is given by

d (b-a) 2  2 f 2(Zbl) 2 dz
"a 2

-c / -z 1/2 c 1/2 2

-4 (cz) 2(z 1) dz+ (4 + 4 /7T) (c 1zi/2( 1)/ #-
a2  fa 2

Ja

.1o

*-t-1 4S
4P
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Section 4. Observations on determining the contact interval.

In the last section tile criteria for dt,,rmnining the contact int.erval

for each of the examples depended upon the particular indentor shape

considered. No general principle other than preserving the physical

inaegrity of the asperity was invoked. For more general indentors it may

be very difficult to apply this criterion due to the complicated nature

of the integrals involved.

In attempting to circumvent this difficulty, we conjectured that for

a fixed loading, X, the correct choice for a and b should correspond
0 0

to a minimum, or at least stationary, point of Cf when considered as a
If

function of a and b . In particular, we tested the conjecture by considering

the following constrained minimization problem in the case of a parabolic

indentor without friction:

(42) minimizeyC . g(s)f'(s)ds subject to g(s)ds =y

where g(s) is given as tie formal solution of (18) for 0 < e < 1/2 and of
(21) for 1/2 < a < 1 and 'Y = 2(- '2)

-I
The problem (42) may 4e solved by a standard Lagrange multiplier argument. IR

We present the analysis for the case 1/2 < a < 1; tile other cases may be

treated similarly.

It may be shown that for f'(s) = -s
i 2

T(La) =f g(s)(-s)ds
00 a
0 .

- -A
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4

b b

b-i b o p((s) (b sr(I-c) Ja (boS) s c a s
00 0

_____ I2-at 1-a
(43) - ' (L+a )[B(3/2,3/2 - C)L + a B(i/2,3/2 - O)L

1 3-(x 3-(x
2 (i_)[B(5/ 2 ,3/ 2 

- x)L - B(3/2,5/2 - (x)L

2-at 2-uL+ a B(3/2,312 - C)L2 - a B(1/2,5/2 - (I)L
0 0

Similarly,
b°

( I ~2-CL -C(44) g(s)ds [B(3/2,3/2 - a)L + a 0B(1/2,3/2 - a)Ll-.
a

0

Hence we consider the problem of minimizing T(L,a ) subject to (G(L,ao) = 0
0 0

Swhere G(L,a ) - y - g(s)ds. Using Lagrange multipliers, we consider the
0 fa

0
function

F(L,ao,9)= T(L,a ) + G(lM,a ).

aF 3F LF" The partial derivatives -T',• and - are easily computed from (43) -31

S~and (44). It may be shown that the resultant variational, equations possess

a unique solution for which A

.51_ L2-a - yr(2-c) r(3-a)L A - (3/2)P(3/2 - C0L

and

a.
0 1CL

This is the solution obtained in Section 3 and is the unique stationary

:1
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point of Cf.

For constant sliding velocity U and load X, the coefficient of

friction, Cf, is proportional to entropy production. Hence the above

technique would be justified theoretically by proving a minimum entropy

production principle. This topic will be considered in a subsequent paper.

In this way it is possible to cast the moving asperity problem in a variational

framework which provides a useful numerical approach for obtaining all the

relevant physical quantities for general asperities.

1 20
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Conclusion.

Morland [41 has shown that for the relatively general case of a Kelvin

material the contact pressure distribution over a smooth indentor vanishes

at the leading and trailing edges of the contact area, just as it does for

elastic media. In contrast, however, we have found that for the parabolic

asperity the pressure at the leading edge has a finite discontinuity when

S- 1/2 and an infinite discontinuity when 1/2 < a < 1. This behavior is

apparently closely related to the fact that the initial value of the power

law relaxation modules is infinite whereas ihe initial value of the Kelvin

modulus is finite.

Nevertheless, the utility of our results, aside from the fact that

closed form solutions are provided, Is rel,1ected by the formula for the

friction coefficient. This coefficient, like the stress intensity factor

for crack problems, has proved to be a useful characterization of the

response of viscoelastic material to sliding contacts. When one recalls

that linear elasticity theory predicts a physically unrealistic singular

stress field at a crack tip but a finite, acceptably accurate intensity

factor the analogy becomes even more appropriate.

The other interesting deviation from classical behavior that should

not go unmentioned is the algebraic displacement to ±- of the material

4i' behind (ahead of) the aspe-ity when a > 1/2. This is to be contrasted

to the two-sided logarithmic displacement to _o for an elastic half space.

,el
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Figure 1. Displacement fields for a flat punch for ct < 1/2(-);

a=12 ... ) > 1/2(---- )
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Figure 2. Normal traction field over the contact interval f or a

flat punch: a~ < 1/2.
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S~Figure 3. Displacement fields for a parabolic asperity for a < 1/2(--);

= .> 1/2(--
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Figure 4. Normal traction fields over the contact interval for a

parabolic asperity for ot < 1/2(- ); a l2---)

a > 1/2( ---- ). The interval (a ,b) is only representative,
0' 0

it is not intended to imply that the same interval is

correct for all a.
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Figure 5. Displacement fields for a wedge indentor for a < 1/2(- );

S= /2( ... .. ; •> 1 12(-.. .)

224

I i •

ti



/ q

, •,, = 1/2

°is

t



Figure 6. Normal traction fields over the contact interval for a

wedge indentor for a < i/2(- ); a.

a > 1/2( ---- ). The interval (a ,b ) is only representative,

it is not intended to imply that the same interval Is correct

for all a.
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