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Summary.

Closed form solutions are obtained for the problem of a rigid asperity
sliding with Coulomb friction over a power law vigcoelastic halfspace.
The dual integral equations relating the unkncwn normal traztion under the
contact interval (also unknown) to the unknown normal displacement outside
the contact interval are solved by first reducing the system to a generalized

Abel integral equation and tien appealing to the thébry of Riemann-Hilbert

boundary value problems. The physical quantities of interest (eg. the

coefficient of sliding friction) are determined for the three canonical

indentors: a parabolic purch, a wedge punch and a flat punch., It is

observed that for certain power law materials, singularities in the normal

traction field occur even for the smooth parabolic indentor.
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Introduction.

Sliding and rolling contact problems in linearAviscoelasticity theory
have received considerable attention by analysts during the last two decades;
for example, see [3], [4], [7] and the recent review by Rutanaprakarn [6].

The primary objective of these studies is :o predict the dependence of the
contact pressure distribution, friction coefficient (or mechanical dissipation)
and contact area on the applied normal force, speed and viscoelastic
properties of the slider (unless rigid) and the other body on which contact
is made. It should be noted that without adhesion and surface roughness

the sliding contact problem is equivalent to that of rolling contact for
rigid circular cylinders and spheres pressed against deformable media.

In none of these studies is an exact analytical solution found, except
the case in which the material is characterized as a so-called standard
linear solid (SLS) [3]. This type of representation is far too simple to
fit actual viscoelastic data. 1ndeed, for rubbery materials, the modulus
varies with time or frequency over typically ten to twenty decades (e.g. [1],
(7}, (8]); at best, the SLS can be fit, approximately, to actual data over
two decades.

One very important feature of actual viscoelastic behavior is that it
often obeys a power law in iime or frequency over much of its range of
variation. On this basis, we believe that it would be very desirable to
obtain analytical solutions to problems involving power law materials.
The behavior predicted with such a model would certainly provide a better

mathematical description of contact phenomena than with the SLS, and should

be useful in guiding and checking numerical solutions to problems in which

real viscoelastic data are used.
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Inasmuch as a power law does not fit actual data over the entire range of
variation, it would be helpful to know if significant error is introduced
in contact solutions because of this lack of complete agreement. Rutanaprakarn
[6] deals with this question, and one can infer from this study (especially
Figs. 5 and 7 in [6]) that for a given sliding speed, any descrepancy is
unimportant outside of a so-called "dominant frequency range'". This range
is limited to approximately four decades for power law exponents which do
not exceed one-half; such is the case for practically all viscoelastic
golids (see [1}, [7], [8]). Also given in [6] is a procedure for selecting
the power law exponent and coefficient from actual data when the latter
values are not accurately characterized by a power law over any four-decade
range.

In Section 1 we consider the problem of a rigid indentor sliding over
a viscoelastic half~space and exhibit the governing equations. 1In that
section the mixed boundary value problem is reduced to a set of dual
integral equations. Section 2 contains an analysis of the dual integral
equations based upon solving an equivalent Riemann-Hilbert boundary value
problem. The results of Section 2 are applied in Section 3 to the contact
problem for three canonical indentors: a flat punch, a parabolic punch and
a wedge punch. Consistent Qith contact problems for a linearly elastic
material, the appearance of corners produces singularities in the normal
traction field under the indentor for our power law viscoelastic naterial.
However, for certain power law materials we find jump discontinuities
and singularities occurring even for smooth indentors. We conclude Section 3

with a brief discussion of complications attendent with multiple indentor

problems for viscoelastic materials which are not encountered in elasticity.
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Section 4 contains an interesting observation which suggests that the
moving asperity problem may be cast in a variational framework. This is
accomplished by demonstrating that for a parabolic indentor the contact

interval, which is unknown apriori, may bz determined by minimizing a

suitable functional.
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Section 1. Formulation of the Problem.
5
L The particular problem which will occupy our attention in this investigation
is the steady translation (to the left, say, with velocity U) of a rigid
‘ 2-dimensional asperity pressed against the 2-dimensional viscoelastic
halfspace, y > 0.
) ; Our ultimate goal is a description of the normal traction field on the
g ; contact interval and the vertical displacement of the halfspace outside the
3 contact interval.
‘ The mathematical formulation is as follows.
: Neglecting inertia, the force balance equations are
1
i 90x BTx
, S + dy =0
a0 BTx ’
, il
and the boundary conditions are
jg
i Txy(x,o,t) = kOy(x,o,t) ~© < x <@
? v(x,0,t) = f(x + Ut) a(t) < x < b(t)
oy(x,o,t) = 0 x < a(t), x > b(t)
a(t) =a_ + Ut b(t) = b+ Ut 3
(o] (o] -2%3
.|
b(t) =
I 0 (%,0,t)dx = A = total load. 5
a(t) :§
§
Here v(x,y,t) and u(x,y,t) are the vertical and horizontal displacements, E
: ox is the normal stress on x = constart'lines, Oy is the normal stress on %
y = constant lines, Txy is the shear stress, k is a given nonnegative constant i‘;
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and {(x) is the shape of the indentor. Adopting the standard notation

-.a.“l :..al -_-;?2. .al =-.a_9. 9—! ' +
Ex ™ I’ ey By ny 3y + o A X + 3y for the strains we write

the viscoelastic stress strain laws as

t aax
C(t-'l')-g_?— dt

-ty

Q
1]

t
j A(t—'r)%% dt + 2 J

ot
G(t—T)S;x dt

Q
1]

t t
184
J-m At T)aT dt + 2 J

~00
t
ey ™ |

=00

ay.
G(t-T).()Tx'Z dT.

To employ Fourier transforms it is necessary to differentiate all the

equations (save for the equation oy(x,o,t) = 0, x < a(t), x > b(t))

with respect to x and then adopt the Gallilean variable s = x 4 Ut.

Define the Fourier transform of any function g(x,y) as

——
——

glp,y) =
’ 2%

® -1
[ e P% g(s,y) ds.

<o

Since A(z) and G(z) vanish for z < 0 it follows that

B0 3
(5 r @ s ()
Jom \ 98 _ s s

30 =5 g€
1 (.a_.l) = ip A (—g—A) + Zipa (—a—z)
Jom \98 s s

3T oy
1 (m) < g ()
o 9s s

and
55;) 9 asz) '
ip (53— + 5; (Bs =0

:
3
3
2
;
3
3
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Thus we arrive at

-3 3u —. 0 v — — 2 [
G-a—y'z(%:s-) +ip(K+G)-a-; (I) - (A + 20)p ('5;)"0

[

2 — — e
— 8 v — - 3 Ju _ 2 v B
(% + 26) o ("’as) +ip(R + O (“’as) P G‘-—-—as) 0

which yields

(g-!) = Al(p)e'lply + A?_(p)yffIply

d ) ~lply . ~lply L 1
—) = -il-E-lA (p)e —1-P—lA (p)ye + ==
(as pl1 [p]72 PT+C

9T 90
The condition E-SLZ(S’O) =k s—s—z (s,0) results in ,Al(i + k]pl/p)p2

A l1[p| (R + 26) + kpGl/(R + C).

Before proceeding we make the following explanatory observations. The

elastic version of our stress-strain laws would be

o, = AN + 2Gex, etc.,

1f we take E to be Young's modulus and v to

be Poisson's ratio then it is well known that G(A+G) = E . Now if we
ot AM2G 4(1_\)2)

where A and G are constants.
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N - -
take G = ipC and X = 1ph and appeal to standard correspondence principles

(see [7]) it follows that

ck+ty %
X + 2¢ 4(1-Y%)

n
For a wide variety of materials v2 is a constant (see {7]). Therefore
1
it suffices to assume merely that E(t) =-6t‘(ﬂ(t) (H(t) 1is the Heavyside
function) to characterize our power law viscoelastic material,

It should

also be remembered that once s = x + Ut 1s chosen as a new independent

variable both A and G are functions of t/U essentially and hence

. Wera-oap®t

/2
Since
___ —— = -1
B (oo - 2 2ap]p) AR [1 ] P__LL_&:‘TSP)_] A,
& + 20) & + 20)
o (s,y) = F LG (p,y);s)
y y
1 ro ips —
= e o (p,yldp
/21 oo y _—
o o0
= —;— J eips (ip)'l<5§i> dp ,
Vo e
and
_]: _ \,
¢ _2°"
A+26 1-v
we obtain

ips o-1
e P2, 1(ip) A, (p)dp

o (s,0) = _U%ri-0) fﬁz
> N

- ik <—~—————1/2 - X)sgn(p))
1-v

y 2/71(1-9%)
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By defining

1 e(s) = 2(1-'\\)'2)0y(s,o)/(Uagl‘(l-oz))

and

- N
2 -1 1/2 = v
g = 5 tan [& -—~———1;} .

1-v

the boundary conditions for v(s,o) and Uy(s.o) yield the following dual

integral equations
2) F _l{Al(p)} = f'(s) a <s<b
3) F “Ha, 0 |p] 1Y/ [1-tan(Br/2)sgn (p)13s} = g(s)

where g(s) vanishes for s < a and b0 < s and is unknown for a <g < bo.
It should be noted that the parameter B satisfies 0 < f <1 and that B =0

corresponds to frictionless sliding. The total load condition requires

g(s) to be integrable on (ao,bo) so that Eq. (3) may be inverted to obtain

o
@ 4@ = -itan E2eem@ el ap M @n 2 [ 7 g(eels® a.
a0
Substituting (4) into (2) yields

&) £ = F T F e ip)is)
-1 tan(B1/2) F 10 am * ! F tg(y) sphis).
The right side of (5) may be simplified as follows:

F ~1{IP|-1(ip)l—a9‘ {g(y);pl};s}
(6)

00 . b

1 -1 1-0 1 -1

= o j lpl ™ (1p)" e Poap J g(y)e ¥Pay
-0 a
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(6) S"Z%J g(y)dyf lpl"l(ip)l'?eip(s_y)dp .
a

b

b
. o o
=_I,(l—a)[[ ;,(t)cle - cos on [ g(t)gt .
s (t=s)'™® a, (s=t) "

The interchange required for line (6) is readily justified since g(t) is

assumed integrable. In a similar way it may be shown that

F o am O F () sp)s8)
%)

.

S
isin(an)r(ln‘“) J g(t)dt

a_ (s-t) 1-a

Substituting (6) and (7) into (5) results in the following integral equation

relating £'(s) and g(s):

glt)dt
1-o

.

£ (s) Jbo a(t)dt cos(a+ B/2)w Is
s

(8)
r(i-a) (t_s)l-a cos(Br/2) a, (s-t)

Equation (8) is a generalized Abel type integral equation. The special

case @ + 8/2 = 1/2 produces an elementary Abel equation which may be

readily inverted to yield

.0

sin o d | £f'(s)

g(t) = - =< =~ J - ds
[(1-a) dt t (s-t)¢

4

:%

q

:

%

E

4

However, obtaining a solution for (8) when o + B8/2 # 1/2 requires much more %%

2

sophisticated techniques. One approach is to map the problem onto the 3
interval (0,) and use Mellin transforms. Computing the resulting

inverse transforms requires summing certain infinite series of residues.
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The geries obtained in this way are expressible in terms of hypergeometric
functions.

A far more elegant closed form solution of (8) from which all physical

quantities of interest can be computed may be obtained by solving a certain
Riemann-Hilbert boundary value problem that is equivalent to (8). This
technique has been described by Gakov [2] and is developed in the next

section.
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Section 2. Analysis of the Riemann Boundary Value Problem.

Define the function of a complex variable z analytic in the complex
plane cut along the segmeat [ao,bO] on the real axis by

b
-a/2 [ ° (t)
0@ = [Gra) 1™/ [ © 2,
a_ (t-z)

-'Otlz(t:--z)m—1 is defined and

The multivalued function [(z—ao)(bo—z)]
analytic in a plane cut along [ao,bol by some branch. The density g{t)
i5 assumed to have the representation

g*(t)
o
[(t-a ) (b ~t)]

g(t) =

where g*(t) is Holder continuous on [ao,bo]. Define, for convenience,

- = [l /2
k(z) = [(z-a ) (b -2)] .
b
1 [°_gt)
Then ¢(z) = dt. HNote that ¢(z) is analytic in the plane
R(z) a (t—z)l_a
o

cut along [ao,bol and that

¢(z) = % as z > w,
(9) ¥(2) = 0[(z-a )™ /%] and
8(2) = 0[(b -)/?) |

Let ¢i(x) denote the limiring valucs of ¢(z) as z approaches the cut from

above and below respectively. It is readily shown (see Gakov [2]) that on
o
[ao,bol

ey o o e = e g, T LY

A

i

T

i

LT

T
e

R
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R i

b .
R o
4ﬁw=R&)[w““ J g&@; +J g(t)dt 3
a, (x-t) x  (t-x) z
%
and -
bo
oo e [ ot [
Lla  (x-t) x (t-x) %
From these two relations it is seen that
omi +
oy . Jx g(t)dt T (x) + & (x) R(x)
(x-t) e—Zani -1
and
b - . "
° g(r)dt 5+(x) T ) %
(11) 1-a = - R(X) . g
x (t-x) e-20mi -1 jé
Substituting (10) and (11) into (8) we obtain, finally, a -é
=
Riemann boundary value problem for the determination of ¢(z). That is, 1%

fre

it 1is required to find a function ¢(z) analytic in the complex plane cut
along the segment [ao,bO] subject to the asymptotic conditions (9) and §§

whose limiting values ¢+(x) and ¢ (x) satisfy on the cut the equation

(12) 8T (x) = G(x) 07 (x) + g, (%)

T e

ik
LT

20 £ (x)

im (atB)
and g, (x) = TGz (1-1 tan (B1/2))

where G(x) = -e

Once &(z) has been determined, g(t) may be obtained by first computing the
limits Qt(x) and then solving either of the Abel integral equations (10)

or (11).

P

The index, X, of the Riemann problem depends upon the class of functions

R e
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in which a solution is sought. In particular, if the solution is to be

bounded at both endpoints, Xis «1; if it is allowed to be unbounded at
buth endpoints X 1is +1; while if it ILs to be bounded at one endpoinc and
unbounded at the other X is zero.

Define the auxiliary function ¢l(z) by

¢*(2) = (zma )" (z-b )" T (2) In(z) > 0
_ z-a_ 7Y (z-b Y _
¢ (2) = {z—z:] [Z_ZZ] ¢,(2) Im(z) < O .

z-a

Y
2_201 consists of a line segment from zo to a

The branch cut for [
o

]
z=b Y
connected to the interval [ao,m) along the x-axis whereas for [;_25] it
O,

consists of a line segment from 2, to bo connected to the interval

[bo,w). The exponent y is chosen to be _(Qi%:l) if ®z) is to be bounded

(s}
+§+1 otherwise. The exponent Y' is then chosen to be

at a and -
o)
~(Y+X), where X is the index. The function ¢l(z) may be determined by

solving the Riemann problem with boundary equation
: (13) 0T () = (x=2 WaT(x) + (x-a ) T (x-b )V g, (%).
. 1 o ‘1 o o 1

The equation (13) is assumed to hold on a semicircle in the upper half-plane
with [ao,bo] as diameter and zo in the interior, If ¥ = 1 the solution

to (13) that is 0 (%) as z - o is given by

b
o _ Y. ~y’
(14) ¢,(2) = X, (2) E%I J (t-a)) " (t-b ) g, (Ddr
L 2’ T -z
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where C is an arbitrary constant and the function Xl(z), the canonical

solution of the homogeneous problem corresponding to (13), is given hy

x;(z) = 1 and Xz(z) = (z-zo)-x.

Pakis oy

é In (14) the integral is to be interpreted as a Cauchy principal vaiue.
5 If X = 0 or ~1 then C = 0, and when X = =1 in order to obtain a solution

it is necessary to impose the orthogonality condition

B b

(15) J ° (w-ao)'Y(T-bo)”Y'gl(—r)dr = 0,

?5 a

;% Before proceeding to a discussion of the form of the solution for the F?
ff possible values of X we shall consider the question of uniqueness of the ;?
%5 solution for the dual integral equations. Since the problem is linear this i
i&i is tantamount to assuming £'(x) = 0 for a < % < b,» and hence that g;(x) = Q, A§
§¥§ We shall allow only the physically reasonable solutions Al(t) which ;

correspond to a finite total load, that is for which g(x) is integrable.

The homogeneous dual integral equations possess a non-zero solution only if

the homogeneous Riemann problem corresponding to (13) possesses non-~trivial

I A O D T e A

solutions. From (14) non-trivial solutions exist if and only if X=1

Vit

and are of the form .

@I(z) = ¢, ¢1(z) = (2~zo)"1C

St

! where C 1s an arbitrary constant. The function ¢(z) is then given by

- (0+B+1) /2 (a+B-1) /2

¢+(z) = C(z—ao) (z—bo)

¥(2) = ~Clama )T CHHUZ oy, 5 (HHED[ZomEm (4R

- a3 A St ¢

T At MR meA R e e T Y D 7 e g e B et s A e e e s

St —— e ~

R X I T L A T SRR IR TR e T a




The pnase shift in the expression for ¢ (z) results from the two different

- -’
branch cuts used for [z—zo] Y and [z—zo] Y The limits ¢t(x) are easily

computed and when substituted into (11) yield the following Abel integral

equations for g(x)

b
o .. _ _

(16) I BE g1y (D2, o Br2a-DI2
x (t-x)

X
17} g(t)dt  _ gy, (B /2, (B+20-1)/2
Jao (x-t)l'a " (x ao) (b, X)

where C' and C" are constants.

From (17) we see that

J * (t) C'sin an  [* (t“ao)-(Sﬂ) /2(b°~t) (B+20-1)/24¢
g(t)dt = —F— J . .
a m a (xdt)a

(o} o}

Observe that for x near a , 5
X ~(20+8-1) /2 =

J g(t)dt = 0[(x_a°) ( o B l)/ ] ;:—:@

a E

° E

from which it follows that

g(x) = 0l (xa )" P2y

The function g(x) is integrable at a if and only if 0 < 204 < 1. Similarly,

we obtain from (16) that for X near b0

R A e A B

i
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g = o[ s -0 112 - ;
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The above analysis shows that the dual integral equations possess a hd

R R

unique solution in the class of functions for which g(x) is integrable

if and only if 2043 > 1. Note, however, that the solution is unique for

-
i

all values of 2u#+ if g(x) 1s required to be square integrable.

“

In the subsequent sections we shall have need of the solutions of the

-W"’”' o

| N n o'
AR S A R

generalized Abel equation (8) for X = -1 and X = 0. We list them here
for future reference.

When ¥ = --1 we obtain for ¢t(z)

(z-a ) (1~a-8) /2 (2-b ) (WHBHL) /2_~i (ot BH) /2 b :

sH(a) = = (tma ) P2 (p o1y PR vyl
(1 + tan “(Bn/2))T(1-w) a
° (1 - 2)
(1-a-B) /2, (orhB+1) /2 —ni(o+B+1)/2 b
(z~a ) (z-b_) e ) -
47(z) =2 ° (1-a BV 2(p —ny~ (B2 120004
(1-+tan " (Bu/2)) T(1-ae™ (#4FHD) % -5

The limits ¢+(x) and ¢ (x) are readily computed using the Plemelj formulas
and when substituted into (10) and (11) yield the following Abel integral
equations for the determination of g(t):

2.4
(18) f %=r<a>(1+[can'1(s-n/z>12>”1’2[f'(x)sin(nslz)—cos(ne/np(x)l
a (x-t
o}
bO
(19) j BEME o (o) 1+ tan 1 (81/2)1%) M2 [s1n[ (#B/2) 71" (x)-cos [ (+8/2)]p (x)!
X 3

(=) -

where

e cestesveimns A oo ke i e %
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b .3
[ 0 (T-ao) (B_l) /2 (bo“T)-(6+2a+l)/2f' (T)dTo 3

p(x) = (x-a_) (1-8)/2 (b ) (B+20+1) /2

=5 [

J
3 (1-x%)

Of course, the above analysis is subject to the orthogonality condition (15)

which now takes the form

b

0
(20) J (ma ) B2y iy~ (B4 /260 (1341 = o,

a =
o

i

}
5

i
m’

il

The calculations for X = 0 are similar and, for a solution that is

bounded at ao and unbounded at bo’ result in the following Abel equations

>.4
(21) j %9515)‘{—_—& = T(@) +lean " (Br/215) 2 (£ () sintnp/2)-cog (1B/2)p, ()]
a X-t
o .
bo
(22) f BLEME - o) (1+tan™ (ar/2)15) 71 2 [sinfe+8/2)IE () ~coslB/2)mlp ()
x  (t=-x)

where

—a ) B2 ) B+ 2e1 (14,

’ b
= - o (1
p () = (xma ) 1BV 2 oy (B20-1)/2 L {
% (T~x)
In the next section we apply the results obtained above to an investigation

of the behavior of the solutions to the moving asperity problem for three

canonical indentor shapes.
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Section 3. Examples,
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In this section we shall discuss the behavior of the solution to the
moving asperity problem for three canonical indentors, the flat puuch,
the wedge punch ana the parabolic punch, since each one exhibits interesting

features of the power law model. For the sake of simplicity we shall

» AP

assume frictionless sliding, i,e. 8 = 0. Allowing £ to be non-zero introduces

foagbedics

no new behavior into the solutions and represents a straight forward
i extension of the techniques needed to treat the frictionless case.

In the physical problem the function f'(x) is assumed to have a

known functional form for a given loading and indentor shape on the

unknown contact intexval [ao,bol. It is required to determine a s bo and

oy(x,O), or equivalently, g(x). Moreover, we shall also compute the

coefficient of friction C_. given by -

f

b

N N B
(23) C xJ £ (x)0 (x,0)dx

a
[0}

where ) is the total load given by

b
o

A= J g (x,0)dx.
a 7.

o]

It is an interesting feature of viscoelastic material models that there is

a resultant frictional like force impeding the frictionless sliding of a

punch. It is generated by the bulging of the material ahead of the asperity.

We consider first the flat punch or square cornered block sliding over

the material. This corresponds te f'(}) = 0 on the contact interval {ao,bo}.

If the contact interval is to be non-degenerate, i.e. not just a singleton

L DT SRR e e T AU TNy W ST A S e S O e N



point, then g(x) must be a non-trivial solution of the homogeneous

Lt

generalized Abel integral equation (8). By the analysis of the last
gection it is apparent that an integrable function g(x) satisfying the
homogeneous equation over a non-degenerate interval will exist if and only

if 0 < a < 1/2. Hence for 1/2 < o < 1 we are forced to conclude that a = bo’

';mum«u.nmm»m.mmy.mnxuﬁﬁmmMMMWMM&HM%WMMM&MM

that is, the material is in contact with the flat punch only at the leading

edge and the problem becomes that of a moving point load! (See Figure 1.)

nsect
,%.j,,z‘ To analyze the flat punch problem for 1/2 < a < 1 it is simplest to

e
Bl Cenp

L
R

appeal directly to the dual integral equations (2) and (3) for B = 0.

Without loss of generality we may assume the contact point to be a = 0.

Therefore, consider

(24) FHa ()81 ~ £1(s) s 40

(25) F Hay ) 1p] 1) s} = c8(s)

where ¢ is an arbitrary constant and 8(x) denotes the Jirac measure. From

(25) we obtain
A, = clpl T apt™®

which when substituted into (24) yields

(x-.
I (1-a)c -CcoSam S s >0

£'(s) = =55 a-1
s

The constant ¢ is determined from kncwing the total load. It is interesting

to observe that when o = 1/2, £'(8) = 0 for s > 0 and that £'(-Q) = +=.
.t

Hence, the displacement is constast (which may be taken to be zero) past z

——— L Arrpes ey —-— -




the contact point and mas a vertical tangent as it approaches the contact

point from the left. (Sece Figure 1.) For 1/2 < a < 1 the displacement

;’3
R
,

=]
i
e
=
=
=

to the left of the contact puint is similar to that for o = 1/2, whereas to .
the right of the contact point it is no longer constant., Rather, £(s) = 0(305 2

E
=
‘%?
.
§
=
3
g
4
a
=
=
-§
"‘E“;%
e
7

i

as s approaches positive infinity. (See Figure 1.)
The situation for 0 < o < 1/2 is completely different. Now the contact
interval is the entire block face rather than merely one corner. From (16)

we see that g(x) may be determined from

b

o]
[ ﬁiElﬂ%:a ~ ¢ cot (am) (x-a )—1/2(b —-x)m-ll2 .
x  (t-x) 0 °

Solving this Abel equation we obtain

b -1/2 a-1/2
e(t) = - c cos on d I o (x—ao) (bo—x) dx
a dt ¢ (s_t)a
o o] o

v T(/2 - o) °

The constant ¢ is easily determined from the total load condition. (See

Figure 2).

To investigate the displacement off the contact interval it is useful

to notice that equation (8) is valid over the entire real axis. Hence we

see that for s > b0

bo g(t)dt
27) f'(s) = ~c05(nrj (s_t)1~a :

a
o

whereas for s < ao

e e
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bO
(28) £1(s) =J —ﬂﬁl‘l—lf—a )
ao (t-s)

In particular

~0(s®) s -+ =
a4+ 172
-0((s-bo) s s - b
f(x) =
-0((ao-s)l/2) s >ar
—0(]s|a) s > =,

Note that the displacement has a vertical tangent at both the leading and

trailing edges of the punch. (See Figure 1.)
We now consider the case of a parabolic asperity, i.e. one for which

.

f'(8) = -s. If a= 1/2 the problem is trivial. We obtain for g(t)

b
L1 d ° f£'(s)ds
g(t) "/1-‘_- dt J — "'—1—/2" ds .

t (s-t)

The function g(t) will be continuous for t = bo only if f'(bo) =0, i.e.

if bo = (0, In that case we have
g(t)=7-;r— /-t ao<c<0.

The noint ao is then easily determined from the load equation. However,
we shall postpone this calculation until the general case has been considered.
When 0 < a < 1/2 we seek a solution to the Riemann problem that is
bounded at both ao and bo' The index of the problem is then ~1 and the function
g(x) may be obtained by solving either of the Abel equations (18) and (19)
.ot

with B = 0. Before describing the solution g(x) it is convenient tc determine

the endpoints of the contact interval [ao,bo].
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The orthogonality condition (20) becomes

: b
0 - -

(29) f (12 ) M2 0" "2 =
. a

o

From (29) it is evident that a <0 < bo’ i.e. the material wraps around

the indentor. (See Figure 3.) The integral in (29) is easily evaluated

and yields

(1/2 ~ o)

ﬂ -—
L 8(1/2;1/2 = a)[L (l’a) - bO] =0

where L denotes the length of the contact interval (bo—-ao) and B(+,*)

is the beta function. We therefore obtain the relation

- L(1/2 - o)

(30) bo (1~a) )

- ‘t’ The parameter L will be determined later from the load equation.
nser
'3 3.4 To determine g{x) it is convenient to first evaluate the Cauchy
. 9,

a5

integral defining p(x). It is straight forward to show that

oy 4%

T

e
R

oa+1/2

e,
:

:\k‘-im‘ a; sk
TR ¢
o

p(x) = ~x tan on - T'(1/2)T(1/2 - o) (bo—x)

b
L] - * * - — —9. --—g—-—
{F, (1/2,0-1/2;0+1/2; b 0 /L) - 2 (7753)

. 2F1(1/2, a+1/2;a+3/2;(b -x)/L)}.
(o]

The derivative of p(x) may now be taken and yields

p'(x) = —-tan o7 - T(1/2)T(1/2~a) (bo--x)OL"l/‘Z

1/2

. !
H{LGma ) /L1 5[ 0/l + (1/2 = 0] = oF) (12,0~ 112304 1/2; (b ) /L ‘
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Since tan(aﬂ)f'(bad p(bdd, the solution of (19) is given by

b
- o -
(32) g(t) = sin(az)F(a I (x-t) Ot[sinomf"(x) ~ cosanp '’ (x) Jdx.
t

Using (31), (30) and the fact that f"(x) = -1, the integral defining

g(t) in (32) may be evaluated and after some manipulation yields

b
1 ° ~1/2 1/2-¢«
(33) 50 =ty [ 60 )
b -1/2 a=1/2
_ramair -t J o (tmay) b dr
P(l-a)T(2~)T(a+1/2) ¢ (r-t)® .

(See Figure 4.)

Now assume 1/2 < o < 1. For this case it 1s necessary to seek a solution
of the Riemann problem that is bounded at only one endpoint since the
orthogonality condition (29) is satisfied only for a degenerate interval
a = bo and allowing this requires the material to pass through the asperity.
It is easy to see that we must require the solution to be bounded at a,
and hence unbounded at bo' The function g(x) may therefore be determined

from either of equations (21) and (22) with 8 = 0. Evaluating pi(x) we

obtain




r(1/2)T(3/2 - o)
nF(1-)

) -1/2
3[ ?1 i{z L+ bo] [kx—ao)/y] (1La) oF (/2,0 3/2;0-1/2;(b_~x) /L)

p '(x) = -tanom  + =

T TR

(b O-X)

P 4 e

Wl o g

)
s

Since for 1/2 < a < 1 the orthogonality equation (29) does not hold, some

g

other condition must be imposed to specify a and bo. It is natural to

GO b

choose the points ao and bo so as to enhance tho endpoint behavior of g(x).

Choosing

s S o o

(34) b 3/2 a) L

o}

forces g(x) to be continuous at x = a while, as with the case 0 < a < 1/2,

choosing

b, lﬁa )
forces continuitv at bo. However, the condition (34) is physically impossible
since it predicts, among other things, a total load of the wrong sign.
The function g(x) must be positive. From equation (8), it is clear that
if 1/2 < a <1 then £'(s) must be positive on [ao,bol. Since f'(s) = -s “this
means that bo <0, whereas_line (34) results in b°> 0. Hence, we conclude that
the condition (30) obtained for 0 < o < 1/2 is valid also for 1/2 £ o < 1.
Note, then that for 1/2 < & < 1 the material leaves the indentor before the
apex. (See Figure 3.)

Given relation (30) it is straight forward to show that the formula (33)

obtained for g(t) when 0 < & < 1/2 is valid for 1/2 < o < 1, It should be

observed that ot

a~3-/2L1/2-0L .
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1
0([b° s] for s ”‘bo

g(s)

1/2 -

O({s-aol for s - 33 .

Therefore, the stress is continuous at bo for all 0 < a < 1; whereas .f
o= 1/2 it has a jump discontinuity at s = a_s if 0 < a <1/2 it is continuous
at g = a, and if 1/2 < o <1 it has a singularity of order a - 1/2, (See

Figure 4.)

In order to determine L, and hence a and bo, we apply the total load

condition
b
o
A= J o (s,0)ds
a y
o]
a bo
=Y 61‘“’%"& J g(s)ds.
2(1-v7) a

For g(s) given by (33), this integral is readily computed and yields

u* Er(3/2)1(3/2 - yL2~®
2(1-0) T (3-0) (1-¥2)

from which it follows that
1/(2-0)

L J2aa-ere-o 1-v%)
v’ 6 P(3/2)T(3/2 - o)

It is useful to examine the stress and displacement profiles. We consider

first the stress oy(s,o). The derivative of g(s), given by (33), may be

calculated easily and gives

~1/2 -o-1/2
(by-s) """ “(sma) t -y, S] '

g'(s) = l-a

F(1-o)

4o
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Hence it is apparent that when a > 1/2 g(s) is monotone decreasing on

(ao.bo). However, when 0 < ¢ < 1/2, g(s) has a unique maximum occurring

at the point

s = ié%) L.

i e

(See Figure 4.)

k3
3
%
£

& The behavior of the displacement profiles may be deduced from equations

? (27) and (28). It should be noted that the displacement has a continuously

varying tangent over the whole line.
Mention should be given to the question of uniqueness for the parabolic
indentor. As was demonstrated in the last section, when 1/2 < @ < 1 uniqueness

is assured, whereas, when 0 < a < 1/2 the solution to (8) is non-unique

in the class of integrable functions., However, only one of the solutions
. is continuous. Adding to (33) any non-zero solution of the homogeneous

24 problem results in a displacement profile whose tangent becomes vertical

el

upon approaching the contact interval. This is obviously physically

e
iy Y

impossible since it corresponds to the material passing into the indentor.

0

S & o

B As was indicated earlier, a quantity important in predicting the response

of a viscoelastic material tc loading is the friction coefficient given

f=i

E- 5‘1
o

by (23). For the parabolic asperity CE ig e; sily computed. In particular

' = -
if £'(x) = -x on (ao,bo) then

a{2-a

£° (T-0)(3-0) L.

For completeness we shall indicate what the solution for the parabolic

asperity looks like when the frictiom term is included. For g(t) we obtain
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b

1 o (B-1)/2
8(t) = r(l“'d) Jt (bo"X)

(x_ao)(1~ﬁ—2a)/2dk

bO (bo__x) (B+2Q"1) /2 (x_ac)“(8+1) /2

_ I((BH)/2) -20-pyL "% J dx.
t

2T (1-0) T(2-0) P ((1+6+20) /2) (x-t)®

The trailing contact point becomes

(1-2a-8)

bo = L/2 (1-a)

where L comes from the load condition

U & P((3-p-2a) /2) T ((8+3) /2)1. 2"
2 (1-9°) (1-0) T (3-c0)

Finally for Cf we obtain

_ (a+B) (2-0) L.

¢ = (o) (I<0)

It should be noted that the parameter that governs the essential behavior
of the solution in this case is a + 8/2 rather than a.
We next consider a wedge shaped punch for which
S x < 0

1

—S2 x>0

£'(x) =

where S1 and S2 are positive constants. Assume first that & > 1/2. Since

g(t) must be non-negative, we see from (8) that a and bo must be such that

£'(x) > 0o (a ,b ). Hence b < 0.
- o’ o o=

For O = 1/2 the problem is again trivial. The function g(x) is given by
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S
g(x) = 7—% (b -4 /2,

(See Figure 6.) Recall that

0
£ = (o1
5 % ~1/2 -1/2
7: J (bo—t) (t-x) dt
a
(o]

Obviously, from physical considerations we must take bo = 0. The leading

contact point is now easily determined from the load equation. (See Figure 5.)
It should be noted that the stress is singular at the trailing contact point

..

(the apex of the wedge) and has a jump discontinuity at the leading point.

(See Figure 6.)
When 1/2 < g < 1 we seek a solution to the Riemann problem that is bounded

at ao and unbounded at bo' As before we solve the Abel equation (22) for

g(t) where g = 0 and pl(s) is given by

ST(1/2)1(1/2-0) (bo—s)“‘” 2 M2

7l (1-a)

pl(s) =8 tanam ~

JF (12,0 - /250 + 1/2;(b0-8)/L)-

This reduces to solving

b
(o} -,
(35) J L
s (t=~s)
where )

-

i

F B A b A 1 g
Sl s A

5
=2
%
i
z

LR b it




*"}

5, T (@)T(1/2) (b s 1/2,1/2 -«

r(1-o)I'(1/2 + o)

(36) h(s) = JFy (12,0 = 1/250 + 1/2;(b_-8) /1.

The derivative of h(s) is easily taken and yields

S F(a)F(l/Z)Ll-a(b _S)a - 3/z(s-—a )_1/2.
hl(s) 2 - (o] (4]
r(l-o)r(a - 1/2)
Solving for g(t) we obtain
bo
in om h'! (s)ds
g(t) = - 2 J
T £ (t-s)®
5, T(@sin(mI(1/2) | by (b -5)* " 32(g-a y71/2
= L - f 2 9 ds.
al(1-0) T (o ~ 1/2) t (e=t) L

(See Figure 6.) It is easily seen that again we must choose bo = 0. 1Indeed,
recall that

b

o
(37) £'(s) = ~cos an FQ-a) J (t)dt s§>b . e
w a (s~t)1-a o £

B

For s > bo f'(s) is a decreasing function. Since f'(s) = S1 for a <8< bo ’%
we conclude that f'(s) < Sl when s > bo. This is possible only if bo = 0. ;%
Therefore, when 1/2 < o < 1 the material leaves the wedge indentor at the ‘§

";Z-fé

ik

apex in contrast to the parabolic indentor for which it leaves in front

of the peak. (See Figure 5.)

The load equation is readily computed and yields

ST 3/2 - @) Ll‘ﬁ

A:
2nF(2—a)(l-%2)
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from which L, and hence a_, may be determined. Note also that for 1/2 < a <1

the friction coefficient, Cf, is just the slope of the leading face of
the wedge, i.e. Cf = Sl'
It should be observed also that the stress is singular at both a, and

bo. In particular

0((s-a )1/2'-a) s »a+ -
- o 0
g(x) = -1/2

0((bo-s) ) s + bo- .

(See Figure 6.)

Assume now that 0 < o < 1/2. We may observe first that in this case

:§

bo >0 > a i.e. the material must wrap around the indentor. (See Figure 5.)
Indeed, from (37) we conclude that for 0 < o < 1/2, £'(s) is nonnegative

vwhen s > b _, from which it follows that b, > 0. Moreover, if b = 0 then

we may appeal to the analysis for the case 1/2 < a < 1 to conclude that

g(t) must solve (35) with h(s) given by (36). Inverting (35) yields

b
i fo
g(t) = - s 11an.é% J h(s)d; .
t (s-t)

1/

Observe that h(s) = O[(bo-s)a - 2] for s »-bo- which implies that

-1/2

g(t) = O[(b-t)

£f'(s) = 0{(s-b e - l/2] for s » b + , from which it follows that the
o o

] for s + bo- .  This, together with (37) shows that

displacement possesses a vertical tangent upon approaching bo. The last
statement is a physical impossibility. Hence, bo > 0.

To solve for g(t) we seek a solution of the Riemann problem that is
bounded at a and bo. It is required, then, to solve equation (19)

. !
subject to the orthogonality constraint (20). However, for the wedge

punch with a < x< bo’ the solution of equation (19) is not expressible

il
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in terms of elementary functions but may be estimated numerically. Moreover,
simple expressions for a, and bo are not obtainable, though it is possible
to calculate a and bo numerically as follows. Define a new parameter ¢ to

be g = -aolL. The orthogonality relation (20) becomes

o 1
(38) 0=, J Y2 e = 12y, s, I 2 Y2 gy = M2y,
o o

The load equation is

b
A, n
(39) A= —E~£i*{%:gl [ ° g(s)ds .
2(1-v7) a

From (18) with B = 0 we obtain

X
J __ELEL‘_C_ = - l‘(a)p(x)

10
a (x-t)

where p(t) is given by

b -1/2 ~ - 1/2
o (t-a) (b -1)
p(t) = (t-a )l/z(b -t)* +1/2 1 I o o £ 0yt .

o [s] ™ a (T ~ t)

[o)
Hence,
J g{t)dt = - 1 J p(t)de
a, '(l<a) ‘a (bo_t)a

s !
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° b 1/2 1/2

et (% 12, - - 1/2 I o (t~a )" “(b_-t)
ar (1-a) Ja (0 (t-a)) 7 1) dt . P
° (o]
bO
—t -1/2 -a ~ 1/2

T T T [a T(t-a ) 77 (b -T) dr

o

l-a 0]
(40) = - Pos [sl f 2212y " M2z - s, [

Line 40 follows from an obvious change of variables and repeated applications

of (38). To determine a and bo, one need only solve (38) numerically for ©
and then use (39) and (40) to obtain L.

Aé was indicated above, it is not possible to express g(t) in terms
of elementary functions. Once a and bo are known g(t) ma; oe approximated
numerically. However, due to space limitations we shall not address this
question here.

We remark at this time that our analysis yields as a special case,
namely @ = 0, the solution to the problem of an indentor pressed into an
elastic half space. Indeed, setting @ = B = 0 in the above expressions
for g(t) produces the results obtained by Muskhelishvilli [5] for the
elastic contact problem. It.should be noted that, as expected, the friction
coefficient, Cf, vanishes when @ = 0 and the pressure distribution is
symmetric on the contact interval for a symmetric punch.

As another remark we include a brief discussion of the problem of
multiple asperities. In particular, assume that several indentors are
presgsed into the half-space and are moving with the same constant velocity.

Assume that the indentors have shapes éfven by fl(x),...,fn(x) and that the

dt

s
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total pressure under each of the punches is known. Hence, we assume as

known the n parameters

b

i
Xi = I oy(x,o)dx 1=1,...,n
8

where Ii = [ai’bil is the unknown contact interval for the 1th indentor.
Letting gi(t) denote the restriction of g(t) (given by (1)) to the interval
Ii’ it is straight forward to show that fi(x) and gi(x) i=1,...,n are
related by the system of dual integral equations

F T (0x) = £, (x) xel,i=1,...,n

F a0 e @ - )
. ;oyx)l o= ) Xp (g, (x)
i=1 i

1 xEIi
Xy (x) =
i 0 x¢ Ii

For simplicity, assume n = 2, Analogous to (8) we obtain the coupled

system of integral equations for gi(t)' i=1,2

T, ' (o) f’l g, (t)dt r g, (D)t ["2 g, (1)t .
= _— = CO0Ss QT ———wre o e ———— X €
FZl—a) (t_x)l-a al (x_t)l-a az (t_x)l—a
(41)
3 (x) by g, (0)dt b, g,(t)at x g (t)dt
=cosomj ———-]—_-:_-—+j —-—-—-l—_--—cosa7rf -—-—--i-:—
r(l~o) a, (x-t) R D e e a, (x-t) ¢

1
»
.




The elastic contact problem for multiple indentors is no more difficult
cé golve than for a single punch. The situation for the viscoelastic half-
space is considerably different. For the elastic half-space it is possible
to reduce the problem to that of solving a single Riemann boundary value

problem. Because of the occurence of branch points on each of the intervals

i

Ii’ no such reduction is possible for the viscoelastic problem. Rather

=

one obtains a coupled system of Riemann boundary value problems for which

no simple uncoupling seems to exist. In general, the system (41) must

be solved numerically,

There is, however, one special case for which (41) is easily inverted.

B ot

In particular, when q= 1/2 the second equation uncouples and is easily

inverted to determine gz(t). With gz(t) known, the first equation may be

solved for gl(t). The four parameters a;s bi' i=1, 2, are still to be

deduced. The contact points a2, b2 for the trailing indentor are determined =

_%

i

i

independently of the first indentor since the first indentor produces no
effect on the second. The obvious coupling in (41a) is reflected in the
choice of a; and bl and the resulting relative displacement of the two
punches., For example, if fi(x) = -x and fé(x) = -(x-c) for 0 < ¢ then
b2 = ¢,
“Az(l-%z)a/i}z’ 3
a, =c-

21’2 g

and al and b1 may be calculated from the equations

__2 1/2,, . \-1/2
b1 =~ Ja (e-t) (t bl) dt

2
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If the coordinate system is chosen so that f(x) = - %? xeI, thenonl
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e gl
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t

1 ¢
g,(0) = % (b -0t - 2 I o J ()2 (pmyy ™3 2,
g4
x  (y=x) a,

g,(x) = 3 ()12,

2
2

f(x) =d - (c-x)2/2 where the relative displacement d is given by

nd
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TR
ol g2

c

/

(c-'Z)l
2

PN B 2, .-1/2
d = (by-a,)" -2 J (z-b) "' “az

a

(o

/2

[
-4 J (c-z)llz(z—bl)l

a

dz + (4 + 4/1) J (c~z)1/2(z—a1)
a

2 2
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Section 4. Observations on determining the contact interval.

In the last section the criteria for determining the contact interval

for each of the examples depended upen the particular indentor shape
considered. No general principle other than preserving the physical
integrity of the asperity was invoked. For more general indentors it may

be very difficult to apply this criterion due to the complicated nature

of the integrals involved.

RN S R P e T s i s bém‘mmn '

ey
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In attempting to circumvent this difficulty, we conjectured that for
a fixed loading, A, the correct choice for ao and bo should correspond

to a minimum, or at least stationary, print of Cf when considered as a

o D)

St kO

function of a, and bo' In particular, we tested the conjecture by considering

the following constrained minimization problem in the case of a parabolic
indentor without friction: i

v b

(o] (o}

g(s)f'(s)ds subject to [ g(s)ds = v
a a
o )

(42)  minimize YC (L,a ) = I

where g(s) is given as the formal solution of (18) for 0 < g < 1/2 and of

N2
(21) for 1/2 <o <1l and Y = iA(l-v ) '
U T(1-0)

The problem (42) may he solved by a standard Lagrange multiplier argument.

=
2
B
b=

We present the analysis for the case 1/2 < a < 1; the other cases may be

treated samilarly. 3

It may be shown that for f'(s) = -s

b
O
T(L,ao) = f g(s) (~s)ds

a
o .t
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_ o p,(s)ds o -
— -g- b I Ly J p,(s) (b_-)'"ds
I (1-a) °Ja bogt T ] D 0
(o] o] 0
43) = - ey | A+a ) [B3/2,3/2 - 912 + 4 B(1/2,3/2 - 1Y)
"5?%557“’(5/2’3/2 - L3 s op2,5/2 - w2
+a8(3/2,3/2 - L*™% - a B1/2,5/2 - w1¥ N |,
Similarly,
b(.')
(44) fa g(s)ds =-F(%:;;[B(3/2,3/2 - u)Lz_a + aoB(1/2,3/2 - a)Ll“a].
(]

Hence we consider the problem of minimizing T(L,a ) subject to G(L,ao) =0
0 .-

b
where G(L,ao) =y -J ° g(s)ds. Using Lagrange multipliers, we consider the
a

o]
function
F(L,a ,£) = T(L,a ) + €G(L,ao).
. OF OF oF i
The partial derivatives 300 Ba and BF Aare easily computed from (43)
o 3

and (44). 1t may be shown that the resultant variational equations possess

a unique soiution for which

2-0 Y (2~) T'(3-0)

L TGID G2 - @
and
a = :ilﬁ L
[} l-a

. !
This is the solution obtained in Section 3 and is the unique stationary
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point of Cf.

For constant sliding velocity U and load A, the coefficient of
friction, Cf, is proportional to entropy production. Hence the above
technique would be justified theoretically by proving a minimum entropy
production principle. This topic will be considered in a subsequent paper.
In this way it is possible to cast the moving asperity problem in a variational
framework which provides a useful numerical approach for obtaining all the

relevant physical quantities for general asperities.
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Conclusion.

Morland (4] has shown that for the relatively general case of a Kelvin
material the contact pressure distribution over a smooth indentor vanishes
at the leading and trailing edges of the contact area, just as it does for
elagstic media. In contrast, however, we have found that for the parabolic
asperity the pressure at the leading edge has a finite discontinuity when
& = 1/2 and an infinite discontinuity when 1/2 < a < 1. This behavior is
apparently closely related to the fact that the initial value of the power
law relaxation modules is infinite whereas the inltial value of the Kelvin
modulus is finite.

Nevertheless, the utility of our results, aside from the fact that
closed form solutions are provided, Is reflected by the formula for the
friction coefficient. This coefficient, like the stress intensity faector
for crack problems, has proved to be a useful characterization of the
response of viscoelastic material to sliding contacts. When one recalls
that linear elasticity theory predicts a physically unrealistic singular
stress field at a crack tip but a finite, acceptably accurate intensity
factor the analogy becomes even more appropriate.

The other interesting deviation from classical behavior that should
not go unmentioned is the aigcbraic displacement to *® of the material

behind (ahead of) the aspe ity when o > 1/2. This is to be contrasted

to the two-sided logarithmic displacement to -® for an elastic half space.
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Figure 6. Normal traction fields over the contact interval for a
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