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SOM E PRELIMINARY RESULTS ON DETECTION IN LAPLACE NOISE

by
Robert J. Marks 11 ,* Gary 1. Wi se ,** Douglas C. Ha ldema n , and John L. Whi ted~~

V i
The problem of the discrete time detection v = h - 1

Abstract No t ice tha t i f  we l et 

- -

of a known constant si gnal In additive white sta-
tionary Laplace •~oise is considered. Both the then
Neyman—Pearson optima l detector and the linear
detector are treated. Convenient expressions for lim f(x) ~~~ . 0
the distribution functions of the test statistics h’~
are given. These expressions allow one to deter— Thus the limiting case of the Mertz model for
mine the performance of the detectors in a compu- the amplitude distribution of impulsive noise is
tationally convenient manner. identical to the distribution of the ampli tude of
Introduction Laplace noise. Kanefsky and Thomas [6] consid-

ered a class of generalized Gaussian noises , ob-
Recently, there has been considerable in- tam ed by generalizing the Gaussian density to

terest in the detection of signals in non—Gaussian obtain a variable rate of exponential decay. The
noise. Al though the assumption of ~ “ssian noise Laplace distribution is within this class of gen-
is frequently justified , such as in UHF . in other eralized Gaussian distributions . Also , Dutt-
cases, such as ELF, the assumption is definitely weiler and Messerschmitt [7] refer to the Laplace
unjustified. One form of f requ en t l y encountered distribution as a model for the distribution of
non-Gaussian noise is that known as impuls ive speech.
noise. Impulsive noise is typically character- In the next sec t ion we pre sent a br ief
ized as noise whose distribution has an assoc i- 3umary of the problem. Then in the following

p ated heavy tail” behavior . That is , the prob- section we develop convenient expressions for the
ability density function (pdf) approaches zero distribution functions of the test s tat is t ic  Un-
more slowly than a Gaussian pdf. The references der both hypotheses . Finally, some coninents on
in [1] and [2] give a sunana ry of some forms of the linear detector are given and several exam-
impulsive noise and situations where it arises . ples are given to il lustrate the usefulness of
In this paper we consider the discrete time de- the resul ts .
tection of a known constant signal in additi ve
white Laplace noise. That is , the pdf of the Preliminaries
noise is given by We consider testing for the presence or

absence of a positive , consta n t s igna l s , in
f(n) ~ e . (1) additive Laplace noise. We assume that the noise

samples are stat ist ical ly independent. (A re-
Notice that Laplace noise has the “heavy tall” stricted receiver bandwidth might cause this as-
behavior associated with impulsive noise. sumption to be violated.) The problem is modeled

The Laplace distribution is popular in sta- as the following hypothesis testing problem :
t ist ics and many of Its properties have beenr : studied [3]. Furthermore, It is used as a noise H0: X 1 I = 1 ,2 N
model in engineering studies. For examp le, s > o
Miller and Thomas [13 used Laplace noise In a H1 : x, = s +
numerical study of relative efficiency. Bern-
stein , et.al . [4] coninent on the non-Gaussian Based on the observations {x1, =

nature of ELF atmospheric noise, and they give a we are to decide to announce that the signa l is
plot of a typical experimentally determined 7~’Jf 

absent or present. The quantity a will denote
associated with such noise [4, Figure 10]. This the probability of false alarm; that is , a is the
experimentally determined pdf is similar to a probability of Incorrectly announcing H1. Sim— .-=
Laplace pdf, and on a linear graph the difference ilar ly, B, the detection probability , is the
is barely distinguishable. Mertz [5] proposed probability of correctly announcing H1 c
the following pdf for the amplitude distribution The Ne nnan-Pearson optimal detector is a ~~

.

of Impulsive noise: detector which , for a fixed a , will maximize B.
The optima l detector for our problem Is well

f(x) = vh~(x + ~~~~~~ , x > o . known [8], and is illustrated in Figure 1. The
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observations are passed through a zero memory I 
~~, lx i .

nonlinearity g(.), and then sunwned.~ The result G ( x )  =is then compared to a threshold. The threshold o, xI is chosen to give the desired false alarm
probabi lity . The nonlinearity g(.), illustrat ed The distribution function FN(.) of the testin Figure 2, is given by the following expres- statistic t is given bySion: ( y 5 , x 5

g(x) = 2~x -s , 0 x < s (2) 
FN(x) = J :FN l x-v dF v

— e s , X < 0 . where F1(x) = F(x).
The Fourier-Stielt ies transform of Eq. (3)

For the optimal detector , the test statis- i~ gi ven by
t ic t is given by the fol l owing sum of i ndepen-
dent , identically distributed random variables : 

= i_: e~~~~~r(x )
N

i~ 1~~~~ 
where j denotes the imaginary unit. A straight-
forward calculation yields that

If the distribution of this sum were known , then
the detection and false alarm probabilities could
be found , and the performance of the detector 

~(~) = ex p [_ ~j)(cosh[[~-f ic~)is]wou ld be known. However , past attempts at ob-
taining a simple expression for this distribution
have not been successful . A lengthy and comp lex

has been considered by Miller and Thomas [1 , 9]. 1 + 2jw 
) (4)recursion scheme for obtaining this distribu tion + — ____________

If N were sufficiently large, the Central Limi t -

• Theorem would apply, and the distribution of ~ 
Letting rN(~

) denote the Fourier-Stieltjes trans—
would be approximately normal . However , the form of F N(x ) ,  we get that
small s amp le performance of the detector wou ld - N
still be unknown (see , for examp le, [1, 10]). FN(~

) = [F(~ )] 
. (5)

Al ternatively, one could establish bounds on the
detection and false alarm probabilities , and thus Us ing the bino mial expansion , it fo l lows from
establish a bound on detector performance ; or Eqs. (4)  and (5) that
Monte Carlo simulation may be employed, in gen-

• era l, however , it would be desirable to have a k
convenient expression for the probability dis- N (~~~sInh{J~4j t

J~ 5]ur
tribution of the test stat ist ic t. FN(w )  = exp~

_ N
2 J k~O 1ki 

2k 1 +~ ~kThe Neyman-Pearson Optimal Detector
p. In this section we derive an expression for N— k

the distribution of the test statistic for the . 
( cosh[{~

-I.i~ ) vs]}
Neyman-Pearson optimal detector. The test sta-
tistic is obtained by passing each of the obser—
vations through the nonlinearity g(.), given by Expressing the hyperbolic sine and hyperbolic
Eq. (2), and sumi ng the outputs . cosine in terms of complex exponentia ls results

• We first consider the case of no signal , in
i .e. H0. If X~ has a Laplace distribution given 

~~~~~~~~ N N 1by Eq. (1), then g (X 1) will have the following F
distribution function: ~~~ 

exp [ 2 
~k=O

k 1 ~k

F(x) = 1 u(X + ys) + 11 exp[- l(ys+v)]Gi~~~ )dv 
2

s2 4~J~= 2

+ 1 e~~
5 u(x- -y s) , (3) 

. ~~~~~~~~~~~~~~~~~~~~

where u( ’ )  denotes the unit step function given
by

I l , x > O  _________

u (x) —

(0 , x 0
Using the binomial expansion again yields

and G ( ’ )  denotes the gate function giv en by

t 

I
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- N -k k-N N -( N+k )
F (~) exp _!tt~ ~ N 2 2 

A (x )  = N! exp[_~ (x+N~s)] ~N 2 k=O k k 1 . k k=l (k—l)!2 ~*Jw

• : k 1k 1 1 • ~ (-lj~~ 
N~k j~j~ N-2p-2q)ys]~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ p=O p!(k-p) !  q=O q !( M- k-q) I

:~: 
[N_ k) exp[_ 

{~
.i.

~w ) y sq] exp[[~.+i~ ) i
s ( N_ k_ q)] ‘ 

Let 

u[x+(N-2p-2q )-I

A straightforward simpli f icat ion results in the B(x )  = I A(v )  dvfollowing expression:

- N 2- (N+k) ~ k) , 1~ p Upon performi ng the integration (see [12]), we

• :- 
FN~~ J 

k~ 1 k 0~
pj ’ ‘ obtain

.~~~(P4_k)exp [_ (p+q)ys]~~~ i~~~ 2P_2~~151 8(x) = 

N-k 

~~~~~~~ p!(k-p)!

u[x+ (N-2p-2q)-ys]

+ 2’~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
q 0  q! ( N-k-q) !

m=0 k-
i
l t N_2 P_ 2 JY5]

k_ r_ l

Let A ( , )  = FN (
~

) - 2-N 
~ (~)exP(~ mvs) r=O (k-r-l) !

m=O r w+l
‘ exp(j .(N-2m)ys] w~O { ( ( p q ]

Notice that A (~) belongs to L2 and thus possesses 1 -x/2 r-w
an inverse Fourier transform ~(x) , defined as a exp[~-(N-2p-2q)ysJ - e x

• limit in the mean.
N j  k / \ Thus we get

• A(x) = y ( N)2 (N+k ) ~ ~~~~~~~ .
k=l ‘. / p=0 ~ A(~) J

A (x) e ”3
~~ dx = J e ~~~ dB(x)

N-k
• ~ (N_ k)exP[_ (P+q)Ys]
q O  q Letting

b 1 
J 

exp{~~~(N-2p-2q)y5+x~) d~ . C(x)  = 2~~ ~ (N) exp(-m ys) u[x-(N-2m)ys]2i~ -~~ 

{
~~ j J k  

m=O

we get
Using contour integration , the residue theorem,
and Jordan s lenina [111, we obtain , for k>l , 

dC(x) = 2_ N

mL1 
(
~
) ex p(-m-ys )

1 exp{jw [(N-2p -2q)ys+x J} d~ = 
-
~

~~~~ ~~-~‘ 11 1k . exp[jw(N-2m )ys]
• L~~lwj Thus

fx+(N-2p-2qhs1~~~ exp{ - ~fx +(N-2p-2q)ys]} FN(
~

) = 
J 

e”~~ dB(x) + J ~~~~~~~~ dC(x )

u [x+ (N-2p-2q)ys]

After simplification , we obtain = J e 1
~~ dFN(x)  .
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Therefore, we see that FN(x) = B(x) + C(x). 
1 N-l _ (N+k)(N+kl)[ YXLetting F~°~(x) denote the distribution

thesis H we have , after a straightforward ma-
x > 0

function of theNtest statistic under the hypo- 2 k 0

nipulati8n , G~
o)(x) = ‘ e~_~~1 (Yx)] , — (8)

F~
0)(x )  = ~~~~ (k) ~ (_ l)P( 

N-k N-k’ 1 - G~
o) (_x) , x < 0

p 0  ~
)q_

~o 
(
~

)
In the signal present case, the test sta-

.[exP[_ (p+~)Ys] exP[J~(x +NYs)~ (6) t lst ic is given by
N• ekl{~~

+ (N_ 2P_2~ ) r~}] 
.u[x+(N-2p-2q)ys] = 

~~ 

X 1 + Ns ,

+ 2’N 

~ 
(
~
) exp(-mys). u[x+(N-2m)ys] , where, once again , the X 1 are independent iden-

• m=O tical ly distributed random variables with the
where e- (‘) ,  the incomplete exponential , is density function of Eq. ( 1). Let G~~~(x) denote
def I nedkas the distribution function of the test statistic

k of the linear detector under H1. Then we have
ek(x) =

m=O ~! G~1~~(x )  = G~°~(x-Ns) . (9)
We now consider the signal present case ,

i.e. H1. We let F~~~(x) denote the distribution 
Eqs . (8) and (9) completely determine the perfor-
mance of the linear detector.

• function of the test statistic under H1. Since
the Laplace pdf is syninetric, it can be shown [1] Examples
that As an example, assume that y=l , s 1 , N 6 ,

F~
1
~ (x)  = - F~0)(_x) (7) and that we set a=O.1. Then for the optima l

detector, we find that the threshold is given by
T=O.4044 and the detection probability is given

Eqs. (6) and (7) thus completely determine the by 8=0.809. For the linear detector , we get that
• performance of the Neyman-Pearson optimal detec- the threshold Is T=4 .3265 and the detection pro-

tor. babi lity Is given by 8=0.696.
Now we set a=O .Ol , with -y= l , s=l , N=6 , as

• The Linear Detector above. For the optimal detector , we find that
T=2.7321 and that 8=0.418. For the linear de-By a linear detector, we mean a scheme such tector, we get that T=8.43 and 8=0.23.as that illustrated In Figure 1 , but where the As another example , assume that y=l , s=l ,

• function g(’) is g(x) x. That i~ , the test N=36, and that we set c, 0.l. For the optimal• statistic is simply the sum of the observations , detector, we find that the threshold is given by
The linear detector is Neyman-Pearson optima l for T=-6.9234 and the detection probability is givenGaussian noise and is a coninonly used detector. by 6=0.999957. For the linear detector , we getConsider the signal absent case, i.e. H0. that T=lO.824 and 8=0.9982.• In this situation, the test statlitic is given Now we set cz O.O1 with y=l , s=1 , and N=36.
by For the optima l detector, we get T=-l.5093 and

• N 8=0.998. For the linear detector , we find that
r=?9.g and 8 0.97.t = ~ X l As above , we let -~=l , s=l , N 36; and now1=1
we set a O.OOl . For the optima l detector we find

where the Xj are Independent identically dis— that T=2.503 and 8=0.9837. For the linear de-
tributed random variables with the pdf of Eq.(l). tector, we get that T=26.7935 and 6=0.8625.
Let pN(x) denote the pdf of t. Then we have
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announce H1 (signal present)

g(.) L9(Xi) =1 ~ 
] t

announce H0 (signal absent)

Figure 1

The Structure of the Optimal Detector

S

g(x)

Figure 2

The Nonlinearity In the Optimal Detector


