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SOME PRELIMINARY RESULTS ON DETECTION IN LAPLACE NOISE

by

Robert J. Marks I1,* Gary L. Wise,** Douglas G. Ha]deman,+ and John L. Whited

Abstract

The problem of the discrete time detection
of a known constant signal in additive white sta-
tionary Laplace iwoise is considered. Both the
Neyman-Pearson optimal detector and the linear
detector are treated. Convenient expressions for
the distribution functions of the test statistics
are given. These expressions allow one to deter-
mine the performance of the detectors in a compu-
tationally convenient manner.

Introduction

Recently, there has been considerable in-
terest in the detection of signals in non-Gaussian
noise. Although the assumption of faussian noise
is frequently justified, such as in UHF, in other
cases, such as ELF, the assumption is definitely
unjustified. One form of frequently encountered
non-Gaussian noise is that known as impulsive
noise. Impulsive noise is typically character-
ized as noise whose distribution has an associ-
ated "heavy tail" behavior. That is, the prob-
ability density function (pdf) approaches zero
more slowly than a Gaussian pdf. The references
in [1] and [2] give a summary of some forms of
impulsive noise and situations where it arises.
In this paper we cansider the discrete time de-
tection of a known constant signal in additive
white Laplace noise. That is, the pdf of the
noise is given by

£(n) =32te'*’"' . (1)

Notice that Laplace noise has the "heavy tail"
behavior associated with impulsive noise.

The Laplace distribution is popular in sta-
tistics and many of its properties have been
studied [3]. Furthermore, it is used as a noise
model in engineering studies. For example,
Miller and Thomas [1] used Laplace noise in a
numerical study of relative efficiency. Bern-
stein, et.al. [4] comment on the non-Gaussian
nature of ELF atmospheric noise, and they give a
plot of a typical experimentally determined pdf
associated with such noise [4, Figure 10]. This
experimentally determined pdf is similar to a
Laplace pdf, and on a linear graph the difference
js barely distinguishable. Mertz [5] proposed
the following pdf for the amplitude distribution
of impulsive noise:

#(x) = h®(x + n)"V*1)

x>0

Notice that if we let
vehog

then
lim f(X) ol T 0
h
Thus the 1imiting case of the Mertz model for
the amplitude distribution of impulsive noise is
identical to the distribution of the amplitude of
Laplace noise. Kanefsky and Thomas [6] consid-
ered a class of generalized Gaussian noises, ob-
tained by generalizing the Gaussian density to
obtain a variable rate of exponential decay. The
Laplace distribution is within this class of gen-
eralized Gaussian distributions. Also, Dutt-
weiler and Messerschmitt [7] refer to the Laplace
distribution as a model for the distribution of
speech.

In the next section we present a brief
summary of the problem. Then in the following
section we develop convenient expressions for the
distribution functions of the test statistic un-
der both hypotheses. Finally, some comments on
the linear detector are given and several exam-
ples are given to illustrate the usefulness of
the results.

Preliminaries

We consider testing for the presence or
absence of a positive, constant signal s, in
additive Laplace noise. We assume that the noise
samples are statistically independent. (A re-
stricted receiver bandwidth might cause this as-
sumption to be violated.) The problem is modeled
as the following hypothesis testing problem:

Ta@sas
0

v n

i
H]: X, =S + n; 2
Based on the observations {x;j, i = 1,2,...,N},

we are to decide to announce that the signal is
absent or present. The quantity a will denote
the probability of false alarm; that is, a is the
probability of incorrectly announcing Hy. Sim-
ilarly, B, the detection probability, is the
probability of correctly announcing Hy.

The Neyman-Pearson optimal detector is a
detector which, for a fixed o, will maximize 8.
The optimal detector for our problem is well
known [8], and is illustrated in Figure 1. The
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observations are passed through a zero memory
nonlinearity g(-), and then summed. The result
is then compared to a threshold. The threshold
T is chosen to give the desired false alarm
probability. The nonlinearity g(+), illustrated
in Figure 2, is given by the following expres-
sion:

YS» X 5§
g(x) = { 2yx-ys, 0 <x<s (2)
=YS, x <0

For the optimal detector, the test statis-
tic t is given by the following sum of indepen-
dent, identically distributed random variables:

] o)
et

If the distribution of this sum were known, then
the detection and false alarm probabilities could
be found, and the performance of the detector
would be known. However, past attempts at ob-
taining a simple expression for this distribution
have not been successful. A lengthy and complex
recursion scheme for obtaining this distribution
has been considered by Miller and Thomas [1, 9].
If N were sufficiently large, the Central Limit
Theorem would apply, and the distribution of t
would be approximately normal. However, the
small sample performance of the detector would
still be unknown (see, for example, [1, 10]).
Alternatively, one could establish bounds on the
detection and false alarm probabilities, and thus
establish a bound on detector performance; or
Monte Cario simutation may be employed. In gen-
eral, however, it would be desirable to have a
convenient expression for the probability dis-
tribution of the test statistic t.

The Neyman-Pearson Optimal Detector

In this section we derive an expression for
the distribution of the test statistic for the
Neyman-Pearson optimal detector. The test sta-
tistic is obtained by passing each of the obser-
vations through the nonlinearity g(-), given by
Eq. (2), and summing the outputs.

We first consider the case of no signal,
i.e. Hy. If Xj has a Laplace distribution given
by Eq. (1), then g(X;j) will have the following
distribution function:

F(x) = u(x+v5) + lj xexnt- %(ys+V)]G(§$; )dv

tre " ulxs) (3)
where u(+) denotes the unit step function given

by
[ ™ x >0
u(x) =
0, X <0

and G(-) denotes the gate function given by

Il [x] <

N = N|—

G(x) = 3

0, [x|

The distribution function FN( ) of the test
statistic t is given by

Fy(x) = [ Ry (evdi(v)
where Fq(x) = F(x).

The Fourier-Stieltjes transform of Eq. (3)
is given by

Flo) = f " edexgr )

where j denotes the imaginary unit. A straight-

forward calculation yields that

Flw) = exp[- 323] (COSh[[Z**JuJ ]

N |

sinh||5+jw|vs

+ __U_Z__]__l) . (a4)
1 + 2jw

Letting FN(“ ) denote the Fourier-Stieltjes trans-
form of Fy(x), we get that

I [ (5)

Using the binomial expansion, it follows from
Eqs. (4) and (5) that

—

Js1nh[£z+3m vs]}

[kJ k(1. )k
k=0 Jw}

o)

ExpreSSIng the hyperbolic sine and hyperbolic
cosine in terms of complex exponentials results
in

'\)

N—k

; N g
Fyla = eof2g2) 3 (91
k=0\"/ k (1, 'k
2t

o, - k
i eXD[['Z‘.'JmﬂS 'EXD[‘ ?Jm}ys]

2
|' 1., - ] N-k
eXDL[‘Z“'JleS] 4‘E)(p[' 1_24']“} YS]
2

Using the binomial expansion again yields




?N(m) = exp[-!%E} g (N]g:E_ZE:ﬁ_

k=0 Zk[%+jw]k
TR

':i:[“;k}exl’[-[%‘*Jw]vSQ]exp[[lZ*jw]ys(N-k-q)] G

A straightforward simplification results in the
following expression:

Fylw) =kg][:]z‘(N*k)p§0[:](-l)p

jw(N-2p-2
[%qu

N NN :
# 2 {o(m)exp(-mys)exp[Jw(N-Zm)ys]
m=

N-k
) (N; )exp[-(p"q)vs]ex
0

q=

YR N NN
Let Alw) = FN(w) =2 mzo 5 exp(-mys)

« exp[ ju(N-2m)ys]
Notice that A(m) belongs to Li(and thus possesses

an inverse Fourier transform A(x), defined as a
1imit in the mean.

N K
3 N, - (N+k) (k) P
e (;)2 pZO “ad

N-k
N-K
'qzo ( 4 )exp[-(p+q)YSJ

1 J ™ expljuf (N-2p-29)ys+x]} 4
LS w
2n ) 1.. 7k
[z

Using contour integration, the residue theorem,
and Jordan's lemma [11], we obtain, for k>I1,

1 (% exp{ju[ (N-2p-2q)ys+x]} dis =
ol 1, »
(73]

k-1
["("Eip;i?)’sJA* exp{- 3 x+(N-2p-2q)vs]}

+ u[x+(N-2p~2q)ys]

After simplification, we obtain

gk

N
)

A(x) = N! exp[-(x+Nys)]
K1 (k1)

P N o nezp-2q)ys ]!
p=0 p!(k-p)! g=0 q!(N-k-q)!

« u[x+(N-2p-2q)ys]

Let %

B(x) = J A(v) dv

-

Upon performing the integration (see [12]), we
obtain

N vk _1\P
B(x) = N! exp[-lzNys] ) 2~ (N+k; ' R
k=1 p=0 p!(k-p)!

."ik u[x+(N-2p-29)ys]

q=0 q!(N-k-q)!

,ﬁ‘uyaJQﬁf“J
r=0 (k-r-1)!

r o owtl
-t {('1)r-w[(N'2P'ZQ)YS]r-w
w=0 (r-w)!

. exp[%{N-Zp-?q)ys] . g K/2 }

Thus we get

Am>=j3un*“ax=jlﬂﬂdun

- -

Letting

AN N

C(x) =2"] (m> exp(-mys) u[x-(N-2m)ys] ,
m=0

we get

@« . N
J e 9% 4c(x) = oM ) (:) exp(-mys)

m=

« exp[jw(N-2m)ys]
Thus

?N(m) = J ue'ij dB(x) + J Qe'j”x dc(x)

- -t

= [ Terdux dFy(x)

-




Therefore, we see that Fy(x) = B(x) + C(x).

Letting F(o)(x) denote the distribution
function of the"test statistic under the hypo-
thesis H_, we have, after a straightforward ma-
nipulatisn,

(o) = =N L, N) k p(k Nok (N-k)
F = 2 -1
N o kzl (k péo( ) p) qZO q

L exp[- (p+a)ys]-exp[-3(x+hys)] (6)
: ek-l{%f*‘"’ZP‘ZQ)Y }] -u[x+(N-2p-2q)ys]

m

N
+ 2N ¥ (N) exp(-mys). ulx+(N-2m)ys] ,
m=0

where ek(-), the incomplete exponential, is
defined as

m
X

ek(x) E m!

Il %

m=0

We now consider the signal present case,
i.e. H. We let F&l)(x) denote the distribution

function of the test statistic under H. Since
the Laplace pdf is symmetric, it can be shown [1]
that

P00 =1 - fl (7)

Eqs. (6) and (7) thus completely determine the
performance of the Neyman-Pearson optimal detec-
tor.

The Linear Detector

By a linear detector, we mean a scheme such
as that illustrated in Figure 1, but where the
function g(-) is g(x) = x. That is, the test
statistic is simply the sum of the observations.
The linear detector is Neyman-Pearson optimal for
Gaussian noise and is a commonly used detector.

Consider the signal absent case, i.e. H,.
In this situation, the test statistic is given

by

where the X; are independent identically dis-
tributed random variables with the pdf of Eq.(1).
Let py(x) denote the pdf of t. Then we have

[3, p.24]

o YIx| N1 2-(N+k)_(N+k-1)!4{le')N-k-1_

it = (N-1)! k=0 k! (N-k-1)!

After a straightforward integration [12], we ob-
tain G&o)(x). the distribution function of the
test statistic of the linear detector under H,,

sh=

N-1
1 - (N+k) N+k-1 -yX
P RE ( k )["e

6l = : eN-k—l(Yxﬂ Sk S
1 - Gko)(-x) s x<0

In the signal present case, the test sta-
tistic is given by

N
e ] K N,

i=]
where, once again, the X; are independent iden-
tically distributed random variables with the

density function of Eq. (1). Let Gél)(x) denote

the distribution function of the test statistic
of the linear detector under Hy. Then we have

© M) = 6l (xens) (9)

Eqs. (8) and (9) completely determine the perfor-
mance of the linear detector.

Examples

As an example, assume that y=1, s=1, N=6,
and that we set o=0.1. Then for the optimal
detector, we find that the threshold is given by
T=0.4044 and the detection probability is given
by g=0.809. For the linear detector, we get that
the threshold is T=4.3265 and the detection pro-
bability is given by 8=0.696.

Now we set «=0.01, with y=1, s=1, N=6, as
above. For the optimal detector, we find that
T=2.7321 and that 3=0.418. For the linear de-
tector, we get that T=8.43 and g8=0.23.

As another example, assume that y=1, s=1,
N=36, and that we set «=0.1. For the optimal
detector, we find that the threshold is given by
T=-6.9234 and the detection probability is given
by 8=0.999957. For the linear detector, we get
that T=10.824 and 8=0.9982.

Now we set a«=0.01, with y=1, s=1, and N=36.
For the optimal detector, we get T=-1.5093 and
g=0.998. For the linear detector, we find that
T=19.9 and 8=0.97.

As above, we let y=1, s=1, N=36; and now
we set a«=0.001. For the optimal detector we find
that T~2.503 and g=0.9837. For the linear de-
tector, we get that T=26.7935 and g=0.8625.
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Figure 1

The Structure of the Optimal Detector

g(x)

YS

wl=——-—

Figure 2

The Nonlinearity in the Optimal Detector




