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PREFACE

The original objective of this contract was to devise a means of
creating a well-defined dust cloud for testing heat shield materials in
dust erosion. This work has been completed and the final report, en-
titled "The Feasibility of Generation of Linear Particulate Clouds,"
has been submitted. The contract has been modified to include a task
to develop a technique for simulating the impact loads on earth pene-
trating structures. This final report describes the experimental
apparatus constructed for that purpose and some initial test results.
The contract monitor was Mr. M, J. Rubenstein of DNA. Technical assis-
tance was also provided by Lt. R. Nibe of DNA.
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Conversion factors for U.S. customary
to metric (SI) units of measurement.

SR —ts = > e
i> To Convert From ‘ To l Multiply By ‘
i angstrom } meters (m) ‘ 1.000 000 X E -10 1:
| atmosphere (normal) kilo pascal (kPa) 10013125 X'E %2 {
| bar kilo pascal (kPa) ' 1.000 000 X E +2
' bam | meter? (m>) 1.000 000 X E -28
; British thermal unit (thermochemical) ’ Joule (J) ! 1.054 350 X E +3

calorie (thermochemical) loule (J) 4. 184 000
: cal uhvrm(whvmlcul)/cmz mega juulc/'m2 (A!.J,/lxlg) 4.184 000 X E -2 E
curie *giga becquerel (GBqg) 3.700 000 X E 41 |
degree (angle) radian (rad) 1.745 329 X E -2
degree Fahrenheit | degree kelvin (K) e = ("0 + 459.67)/1. 8
electron volt joule (J) 1.60219 XE -19
erg joule (J) 1.000 000 X E -7
erg/second i watt (W) 1. 000 000 X E -7
foot meter (m) 3.043 000 X E -1
| foot-pound-force | joule (J) 1.355 818
| gallon (U S liquid) ' mc!er3 (mg) | 3.785412 X E -3
| inch ‘ meter (m) 3 2.540 000 X E -2
Jerk ! joule (J) | 1 000 000 X E +9 ;
joule /kilogram (J /kg) (radiation dose E 1‘ 1
absorbed) Gray (Gy) 1.000 000 ; 1
Kilotons ‘ terajoules 4.183 |
| kip (1000 1bf) . newton (N) | 4.448222 X E 43 :
; kip 'm«-h:Z (kst) Kilo pascal (kPa) [ 6.894 757 X E +3 i
i ktap newton -second "m: | i
i (N-s/m=) ‘ 1.000 000 X E +2
| micron meter (m) 1 000 000 X E -6 !
| st meter (m) 2.540 000 X E -5 |
! mile (international) meter (m) | 1.609 344 X E +3 ‘
i ounce Kilogram (kg) ! 2.834 952X E -2 ;

i } pound -force (Ibs avoirdupois) | newton (N) | 4. 448 222 i
I pound-force inch newton-meter (N-m) | 1.129 848 X E -1
! pound -force /mvh“ | newton /meter (N/m) ' 1.751 268 X E 42 |
| pnund—fur('t',r’[nul'; ' Kilo pascal (kPa) | 4,788 026 X E -2 !

pound -force /inch™ (psi) - Kilo pascal (kPa) " 6, 894 757 {
pound-mass (Ibm avoirdupois) ) | Kilogram (kg) | 5924 X E -1 ‘L
pmmd—m:l.s.s-[nu(z (moment of inertia) lriilu;.',r:m\-m(\lvl‘"z [ |

: ' (kg-m?) | 4.214 011 XE -2
pound -mass fioot” Kilogram /mete r:; ‘ :’
| (kg /m) | 1.601 846 X E +1 |
rad (radiation dose absorbed) “*Gray (Gy) | 1.000 000 X E -2 |
| roentgen coulomb /Kilogram |
. (C /kgg) 2.579 760 X E -4 \
E shake | second (s) 1.000 000 X E -8 !
| slug ‘ Kilogram (kg) | 1.459390 X E +1 |
;. ,,,l"” (mm Hg, 0°C) ‘l kilo pusv.'fl_(kl’ni)ﬁ Ll [ 1.‘.711”'.12 ; \ E :l" 2 7741

*The becquerel (Bq) is the SI unit of radioactivity; 1 Bq 1 event/s.
**The Gray (Gy) is the SI unit of absorbed radiation,
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INTRODUCTION AND BACKGROUND

As part of the development of earth-penetrating weapons, the im-
pact response of the penetrator casing must be understood so that it
can be designed to stay intact and allow penetration of the target to
the required depth. This report describes the work under contract
DNAOO1-75-C-0257, in which a technique for simulating the impact loads

on earth penetrator structures was developed.*

The immediate use for a simulation technique is to apply well-
defined loads to scale model structures. The response data obtained can
be used to verify mathematical analysis of the penetrator response.

A simulation technique would also be useful for loading full-scale struc-
tures in the elastic range so that many tests could be performed on a
single structure. Therefore, the design of the loading device developed
here for scale model structures was made suitable for fabrication in a

larger size for loading full-scale structures.

For angle of attack impacts, large strains and failures in penetra-
tor structures have been observed to occur at distances greater than one
diameter from the penetrator nose.” The stress distribution over the
cross-section at these locations depends only on the resultant forces
applied to the end of the structure. Thus, the simulation technique
need only produce the resultant axial and lateral loading forces with
the appropriate time-history but need not produce a particular load

distribution.

Further testing using this technique, and an analysis of the
impact response, are being performed under Contract DNAO01-74-C-0140.

M. L. Anthony, "Impact of Earth Penetrator Models into Simulated Rock
largets,'" Martin Marietta Aerospace Company, Final Report for Contract

DNAOO1-75-C-0161, November 1975.

wv




Both calculated impact loads* and measured acceleration response
show that the resultant force-history for normal impact consists of two
distinct parts, as Figure 1 illustrates: an approximately linear rise
to a peak over the time 1 required for the structure to penetrate to -
its full diameter, and a very gradual decay associated with the rigid
body deceleration of the structure. For a nominal full-scale structure
[6 in. (15.24 cm) in diameter, 60 in. (152.4 cm) long, and weighing
400 1bs. (181 kg)] impacting sandstone at 1500 ft/sec (457 m/sec), the
loading rise time is about 1 msec and the peak force is about 500,000 lbs.
(2224 kN). For impacts with nonzero angle of obliquity or angle of .
attack, a lateral force is also applied to the structure. In the
simulation technique described here, it was assumed that the lateral

load is proportional to the axial load (i.e., that F /FA is constant |

with respect to time). Since an earth penetrating slructure would fail

during the load rise time or at about the time the load reaches its

peak, the simulation technique must produce the axial and lateral

loading forces until they reach their peak values. A simulated impact

load history, in the axial or lateral direction, is illustrated in

Figure 1, which shows a linear increase in amplitude during Tys @ constant

or slowly decaying history after the peak value for a time Tos and a

decay over a time Tqe

APPROACH |
A load simulation device to meet these requirements was developed

for a nominal scale factor of 1/4. For this scale factor, a device was

designed to produce a simulated load such as that shown in Figure 1
within the nominal ranges: 0 < FO < 35,000 1b. (155,700 N), 100 < i

< 500 usec, 100 < Ty < 200 usec, 300 < Ty < 1000 usec. These loads are

"

*

"Internal Response in Earth Penetrators,” Presented by K. Kreyenhagen,
California Research and Technology, at the DNA Earth Penetration
Technology Review Meeting, October 1975.

Paul F. Hadala, "Evaluation of Empirical and Analytical Procedures
Used for Predicting the Rigid Body Motion of an Earth Penetrator,"
Waterways Experimental Station Paper S-75~15, June 1975.
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FIGURE 1 MPACT LOAD-TIME HISTORY ON EARTH-PENETRATOR STRUCTURES




produced with an explosive loading technique similar to that used suc-
cessfully in other applications where a prescribed load history was

required. :

In the current load-simulation application, the controlled rlow of :
high-pressure gases from a confined explosion produces the desired pres- 1
sure pulse in a cylinder containing a piston. The piston transmits the
load to the medel structure. Since the model structure is initially
at rest, the total kinetic energy associated with this load-simulation
technique is substantially less than that of reverse ballistics. Also,
starting the model at rest allews hard-wired measurement of the loads

and strains.

LOAD SIMULATION DEVICE

Operation--Figure 2 is &z sectioned assembly drawing of the fixture
in configuration for simulating normal impact loads on 1/4-scale model
penetrators. The fixture operates as follows: high-pressure gaseous
explosive products are produced in the explosive chamber by detonation

of a solid explosive. The gas flows through an orifice plate and into

a cylinder containing a piston that is in contact with the penetrator.
The load is transmitted to the penetrator through the piston (the details
of this interface are discussed later). The rise time ] of the load

can be varied by using different initial piston displacements or dif-
ferent orifice areas. The duration Ty of the constant load can be varied
by using vent holes at different locations along the cylinder. The decay

time T4 can be varied by using different size vent holes.

The pulse produced by a given geometry may be predicted using the
*
GASLEAK computer code that models the flow of gases in a series of

chambers connected by orifices. The theoretical model of the flow

*
D. J. Cagliostro, "Experiments on the Response of Hexagonal Subassembly
Ducts to Radial Loads,'" SRI Interim Report for Argonne National
Laboratory, August 1975.
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FIGURE 2 ASSEMBLY DRAWING OF TEST FIXTURE FOR SIMULATING IMPACT LOADS
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assumes that (1) the duration of the loading pulse is long compared with
the transit time of pressure waves in each chamber (quasi-steady flow);
(2) negligible heat is transferred from the hot gas to the surrounding
cylinder (adiabatic flow); (3) the hot detonation products behave as a
perféct gas. Experience in other similar applications has shown excel-
lent agreement between the theoretically predicted pressure pulse and

the experimentally measured pulse.

Construction--The device is constructed of a stack of alloy steel
rings and circular plates clamped together by eight tie rods. The ex-
plosive chamber is formed by a thick-walled annulus that fits between
the base plate and the orifice plate. The cross-sectional area of each
of the six orifices may bé varied by inserting plugs drilled with the
proper size hole into the recesses on the lower side of the orifice

plate. The cylinder in which the piston travels is formed by the vent

ring and the cylinder plate. The initial volume of the piston chamber
is controlled by a spacing washer between the piston and orifice plate,
which sets the initial piston displacement. The vent ring has three
pairs of vent holes, each pair at a different axial locaticn. These
holes vent the piston chamber to the atmosphere as the piston passes.
The size of the vent area may be varied wich threaded plugs that reduce

the area of the vent holes or close the holes completely. The a

location of the holes is set by the thickness eof the spacing ring.

pressure gages are mounted diametrically opposed in the vent ring tc
g b

measure the chamber pressure. After the pulse is prod

decelerates by impacting the energy-abscrbing aluminum honeycomb.

To simulate the load on a penetrator that

acttack, the piston is designed to produce both and lateral loading
and to measure directly the resultant load applied to the penetrator.

The combined loading is produced by tilting the penetrator
angle 8 with respect to the piston axis, as shown in tt
drawing of the piston in Figure 3. The vertical force
with a piezoelectric load cell (Kistler 906A). Two di
the load

between cell and the penetrator and the interi

10
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them is lubricated with a high-pressure, low-friction solid lubricant*
to minimize frictional forces parallel to the face of the load cell.
By allowing the loaded end of the penetrator to slide across the load
cell with negligible friction forces, the vertical force F is parallel
to the piston axis. The axial load applied to the model SBM structure

is then F.cos8, and the lateral load is F.sin€.

Figure 4 shows the assembled device with a scale model SBM struc-
ture in position for a normal impact simulation. After the load simu-
lation, the penetrator leaves the device and is stopped by an external
energy absorber (aluminum honeycomb or Styrofoam) located in a 5-ft-long
(1.52-m-long) safety shroud. The shroud ensures containment of the
model penetrator after the simulation. Figure 5 shows the device with

the safety shroud in place for testing.

The fixture can also be used to test larger models. In this case,

two parts (the piston and the top end plate) would need to be changed.

EXPERIMENTS WITH PISTON

A series of 11 tests was conducted with the loading device but
without a model penetrator. The purpose of these tests was to check
the operation under simplified conditions and to compare the piston
chamber pressure and the rigid body motion of the piston with the motion
predicted by the GASLEAK code. In all tests, the high explosive used
was a mixture of PETNT and hollow glass microspheres (90% and 107,
respectively, by weight). The explosive was detonated by a mild deto-
nating fuse that entered the explosives chamber through a small hole in
the chamber annulus. The piston chamber pressure was measured with two

piezoelectric pressure gages (PCB 113A) mounted in the vent ring

180 degrees apart. An accelerometer (Endevco 2225) mounted on the top

*
Several brands used, most frequently SprayKote, manufactured by
Dow Corning.

T

PETN (C_H,O

sHg 12N4) pentaerythritol tetranitrate.

12
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FIGURE 4 ASSEMBLED TEST FIXTURE FOR SIMULATING IMPACT LOADS
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face of the piston recorded the axial acceleration of the piston during

the tests. A 1/16-in.-thick (0.16-cm-thick) rubber pad was bonded be-
tween the accelerometer and the piston to suppress ringing in the

accelerometer.

Figure 6 shows the chamber pressure and piston acceleration in

Test 11 without a model penetrator. The device set-up parameters were

1 gram 90/10 PETN/usphere explosive charge; all orifice plate holes open;
0.060-in. (0.152-cm) initial piston displacement; bottom two pairs of
vent holes closed, top pair open; and no spacing ring. The pressure
measured at this point oscillates because of pressure waves in the gas,
Figure 6(a). However the average pressure over the piston face produces
a smooth piston acceleration history, Figure 6(b). The high-frequency
oscillations in the acceleration record are caused by the accelerometer

and flexible rubber mount vibrating as a simple mass-spring system.

Figure 6 illustrates that, in the absence of a model penetrator, the
desired type of pulse is produced: a steep linear rise, an approximately

level plateau, and a gradual decay at a rate slower than the rise.

Other tests in the calibration series show that the impact load-
time history can be varied by changing the geometry of the device, as
described above. For example, Figure 7 shows the results from Test 9
in which the initial piston displacement and explosive charge were in-
creased from those of Test 11. The device set~up parameters for Test 9
were 2 grams 90/10 PETN/usphere explosive charge; all orifice plate holes
open; 0.300-in. (0.762-cm) initial piston displacement; bottom two pairs
of vent holes closed, top pair open; and no spacing ring. Comparing
Test 9 with Test 11, we see a longer rise time due to the greater ini-
tial piston displacement, and higher peak pressure and acceleration due
to the larger explosive charge. Table 1 lists the complete series of

alibration tests conducted without a model penetrator.
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CONCLUSIONS

The initial results indicate that the apparatus operates as de-
signed. However, to determine whether the loading pulse applied to a
structure accurately simulates the expected impact loads, the apparatus

needs to be tested with a model earth penetrating structure in place.*

"Additional testing is being performed under Contract DNAOO1-74-C-0140.
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