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THE EFFECTS OF SYSTEM AND ENVIRONMENTAL FACTORS UPON EXPERIENCED
PILOT PERFORMANCE IN THE ADVANCED SIMULATOR FOR PILOT TRAINING

L INTRODUCTION

Problem Statement and
Study Rationale

Three primary sources of cues used for aircraft
control are provided to the pilot by cockpit instru-
mentation, the extermnal visual scene, and vehicle
motion. Because pilot performance is fundamen-
tally dependent upon information originating from
these sources, modeling these aspects of the
environment has been considered of vital
importance in the design of flight simulators.
Although satisfying simulator motion and visual
requirements is difficult, the situation is further
compliceted by possible interaction effects that
may occur between them. The present study is a
preliminary investigation of these phenomena and
their effects upon experienced pilot performance.

An aircraft in flight has unhmited freedom of
rotational and transitional movement around three
axes. Rotational movement consists of roll, pitch,
and yaw, and translational movement is comprise
of lateral, longitudinal and vertical displacements.
State-of-the-art motion simulation devices (e.g.,
motion platforms, G-seats and G-suits; individually
and in combination) can generate movenients in
these dimensions to various levels of fidelity.

Visual scene generation also has a varety of
state-of-the-art systems which have been utilized
to inciease the fidelity of aircraft simulators (e.g..
computer image generation, model board, and
calligraphic displays). The fidelity of visual
simulation may be enhanced by: (a) increasing the
fielc of view (FOV), (b) expanding the edge
generation capacity in computer image generation
systems, or (c) increasing the resolution and the
FOV of camera probes used with model boards.
Thus, the fidelity of the outside-the-cockpit visual
scene, as well as the fidelity of kinesthetic cueing
mechanisms, must be selected based upon
decisions on which essential cues are required by
the pilot and in what manner they should be
presented. .

Considering the extensive future use of fhight
simulation projected by the Air Force, infor-
mation on simulator design requirements is
urgently needed. To accomplish this task, ideally,
a large factorial study could be conducted that
sunultaneously addressed all facets of the problem.

Such an approach is impractical, and an alternative
strategy must be adopted. This study was the first
of a series developed according to this strategy.
and was intended to provide a “first look™ at
certain major variables of motion, the visual
scene, and their interactions. The experiment was
limited to what could be reasonably accomplished
in light of subject availability, equipment
capability, and software support development at
the time of the study.

Study Objectives
The purposes of the study were:

First, to assess the relative contribution of plat-
form motion, G-seat, and visual factors to pilot
perfornance under systematically varied environ-
ment:d conditions. The results of this evaluation
shoutd begin to define the variables and ievels of
variasles to be utilized in follow-on studies in this
serie,

Second. to acquire information on the relation-
ships between system output measures and pilot
input measures as measured in the Advanced
Simulator for Pilot Training (ASPT) when flown
under specified tasks, environmental conditions,
and simuiator configurations.

Third, to evaluate the utility of economical
multifactor designs to Air Force Human Resources
Laboratory, Flying Training Division (AFARL/
FT) investigations into the contributions of
motion and visual factors upon pilot performance
in flight simulators.

Background

Historically, the art of aircraft simulation has
had as one of its foremost goals the development
of a maximum fidelity device which could prowvide
realistic cues matching those present in the
aircraft. Currently, the major areas of concern lie
in motion and visual cue generation.

Movement andfor tactile pressure is a necessary
condition for motion cueing. One recent technical
approach for providing realistic sensory infor-
mation has resulted in the creation of
pneumatically-driven seats (e.g., Gseat, dyna-seat).
Air-driven bladders (located on the seat and back
rest) inflate or deflate to provide the “seat of the
pants” cues which are normally expenenced in

ot
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flight (Bell, 1974). Research pertaining to these
newly developed “G-seat” devices has been under-
standably limited due to the small number which
have been installed for use on sophisticated
simulators. In one study on G-seat cueing, how-
ever, performed by Taylor and Gerber (1969), it
was reported that improvements in pilot training
resulted when “G-seat forces” were provided in
conjunction with n.otion cueing.

Kinesthetic and vestibular cueing are also
provided by the use of complex platform motion
systems. Probably the most recent and most
commonly used are the synergistic six degree of
freedom (DOF) systems of various excursion
lengths. In the area of platform motion simulation,
research has been prolific. Numerous investigations
have been directed towards determining which
DOF are required for motion systems in particular
settings as well as what levels of fidelity are needed
(Bergeron, 1970; Jaccbs, Williges, & Roscoe,
1973). This body of research, however, is equi-
vocal, and findings have often not been consistent
from study to study.

Much of the research to date has shown that
simulator motion produces improved pilot.
performance in controlling the simulator (Borlace,
1967; Brown, Johnson, & Mungall, 1960). Addi-
tionally, Rathert, Creer, and Sadoff (1961)
demonstratedr that varying the fidelity of motion
cueing correspondingly improved the pilot’s
performance in the simulator. Koonce (1974)
investigated the effectiveness of platform metion
using threc conditions of motion cueing (i.e., no
motion, sustained motion cueing, and washout
moticn cueing). This study also showed an in-
crease in pilot performance in the simulator when
motion cueing was present.

The evidence supporting the positive effects of
high fidelity motion platforms is not unchallenged.
Demaree, Norman, and Matheny (1965) concluded
that in many mstances the level of motion fidelity
could be reduced without any appreciable
performance decrement on tracking tasks.
Huddleston (1966) reported that motion may not
be necessary for those tasks performed in the more
stable flight regimes, although it may be beneficial
m highly dynamic regimes Finally, the study
conducted by Jacobs and Roscoe (1975) high-
lighted a wital 1ssue  Roscoe found that pilot
performance, 1 tepns of errors commtted,
iumproved i the simulator with the presence of a
type of motion, erther normal washout or random
washout, The critical pont was that the random
washout conditton provided essentially appropr-
ate onset cuemg. but random directional cuemng.

6

Recent development in visual system technol-
ogy_have dramatically increased the amount and
quality of visual information displayed to the
pilot. One important aspect of visual dispalys that
has received considerable research is the FOV
required to successfully perform certain tasks in
the simulator. Roscoe (1951) ascertained that
piluts were able to land safely with a very limited
FOV ( 10° horizontal and vertical). However, he
also concluded that increasing the FOV improved
pilot performance on the landing task. Armstrong
(1970) examined landing performance of military
pilots under a restricted (+ 25°) horizontal display,
vertical FOV being unlimited, and discovered that
pilot performance was nearly unchanged with this
loss in peripheral vision cueing. Reeder and
Kolnick (1964) reported similar results. Wolff
(1971), using these findings, suggested that a 60°
horizontal display was usually adequate for most
piloting tasks requiring visual cueing.

The majority of research on the interactive
effects of motion and visual cues deals with
visually induced motion (Young, Dichgans,
Murphy, & Brandt, 1973; Young, Oman, Curry, &
Dichgans, 1973). Associated with this phenom-
enon is the problem of disorientation and
simulator sickness thought to be caused by
conflicting cues; i.e., a moving visual display
accompanied by a stationary cockpit. Although
such psychophysiological effects have been studied
rather extensively, there is a lack of information
relating to the relative contributions of the
interactions of various visua! displays and motion
configurations to pilot performance.

It should be noted that the research findings
reviewed are extremely subject, task, and vehicle
specific. For example, the visual/motion cues
required to simulate an air combat engagement in
an F-15 aircraft undoubtl differ greatly from
those required for a straight-in approach and
landing in a T-37 aircraft. Further, these studies
were concerned with pilot performance in the
simulator, which may or may not be related to the
training effectiveness of the simulators.
Considerations of this type usually place stringent
limitations on the generalizations that may be
made from a study. The present study is no
exception to thss rule, and its findings are subject
to the same caveats.

Il. METHOD

A rather complex experiment was required in
order to achueve the purposes of the study. This
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resulted because the first and third objectives (i.e.,
irvestigatior of multifactor expeimental space and
use of a % ily economical desigr.)y were difficult
to comoine in one package. The design that
satisfied these objectives became the driving
element that determined the methode and
procedures:

Subjects

Three experienced pilots were selected as
subjects in order to remove the confounding effect
of leaming from the performance scores. The
subjects were T-37 instructor pilots (IP) at
Williams Air Force Base, Arizona, whose flying
time ranged from 550 to 900 hours.

Apparatus

The ASPT located at AFHRL/FT was used for
the duration of the study.

The following description of ASPT briefly
delineates those capabilities of ASPT used in this
experiment. In-depth technical references are
found in Bell (1974); Hagin and Smuth (1974); and
Rust (1975).

ASPT has two fully instrumented T-37 cockpits
mounted upon six DOF motion platforms. The
synergistic motion system has six active drive legs
with approximately three feet of vertical travel
and four feet of horzontal travel. Displacement
capabilities include: pitch —20 degrees to +30
degrees; roll £22 degrees; and yaw %32 degrees.
These displacements are intended to provide initial
(on-set) cues for all maneuvers, The 31-bellow
pneumatic G-seat in ASPT is designed to provide
more continuous cues than the motion platform
and accomplishes this by the orderlv inflation and
deflation of the bellows in response to the require-
ments of each particular maneuver.

The visual system of ASPT is comprised of
seven 36-inch monochromatic cathode ray tubes
(CRT) placed around the cockpit giving the pilot
+110 degrees to —40-degrees vertical cueing and
+150 degrees of horizontal cueing. The computer
generated visual scene has the capability to display
information for most pertinent ground references
(meuntains, runways, hangars, tc.) within a 100
square nautical mile area of Wilhams AFB. As the
T-37 moves through this environment, the visual
imagery 15 updated 30 times per second such that
the presentations are similar to what a prlot would
see 1 the real world.

Automated performance measures are collected
and stored at an iteration rate of 3.75 to 15 times
per second

The computer system also possesses a
Cognitronics voice capability for ground-
controlled approaches (GCA). All systems of
ASPT (motion, visual, etc.) can be degraded to
match a wide variety of environmental conditions
or aerodynamic characteristics.

Design

One of the principal considerations of any
projected research is that of economy resources.
There are practical limitations to the . wmber of
individuals chosen to participate, the number of
observations selected, the amount of time available
to gather the information, and most critically, the
expenses incurred. Generally, two approaches have
been used to circuravent this problem: methodi-
cally developing a research strategy; or statistically
controlling the experimental design. Under the
second approach, countless racthods have been
developed to achieve economy in the collection
and analysis of informatjon ranging from the
traditional one-way analysis of variance to the
fairly recent response surface designs. Simon
(1973) has written extensively on the use of
screening studies for achieving a maximum amount
of information with a minimum expenditure of
effort in terms of time, sample size, and equip-
ment usage. Simon proposed the use of multilevel,
multivariable designs wherevy analysis provides an
economical “map” of the significant experimental
space. This “map” is then used to guide more
thorough research in the area. The design used in
this stiidy followed the “mapping” approach.

Two separate experimental designs were
utilized. The first design, structured to cvaluate
main, first-order interaction and second-order
interaction effects of all six independent variables
was configured as a 3* 2° randomized block
partially confounded factorial.

The six independent vanables, three with two
levels each (ceiling/visibiity. field of wiew,
G-seat) and three with three levels each {winds.
turbulence, motion), generated 216 umque
treatment combimnations. Using randomization,
each of the three subjects was assigned a block of
72 treatment combmnations under wlich they flew
takeoffs, (LCAs, and 360 degree overhead patterns
Eacn of the three pilots flew one-third of all pos-
sthle treatment combmauons, reducing total cell
numbers from 216 1o 72 per subject
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The second design, a 3* randomized block
partially confounded factorial, used four indepen-
dent variables (turbulence, motion, field of view,
G-seat) each with three levels which generated 81
unique treatment combinations. Field of view
(FOV) and G-seat were modified from their two-
level configuration in the 3° 2% design to three-
level variables in the 3* design. Each of the three
subjects flew aileron rolls and slow flights under
27 of the 81 conditions.

In both designs, the confounding occurred in
the third order and higher order interactions.
These interactions we:e hypothesized to contri-
bute little to the experinental variance and were
thus deemed to be of shight interest. To increase
statistical power, these confounded interactions
were added into the error terms,

Independent Variables

Six independent variables (IV) were employed
in the first design. These were selected so that the
subjects performed the designated maneuvers
across a wide va.ety of environmental conditions
and simulator configurations.

Three IVs (wind, turbulence, and eiling/
visibility) dealt with ecnvironmental conditions.
Three levels of the wind variable were selected:
zero, 12, or 24 knots all generated from 60 degrees
left of the runway centerline. The turbulence
variable was composed of no turbulence, light, or
moderate tuibulence conditions. The ceiling/
visibility (C/V) variable had two levels: clear and
minimums. The mininums were defined as 200
feet ceiling and % mile visibility (200 feet/% mile)
for the GCA maneuver and 1200 feet/3 miles for
the 360 degree overhead pattern maneuver, and
represented real-world minimum allowable condi-
tions for those maneuvers. These three IVs yielded
18 unique environmental conditions ranging from
no wind, no turbulence, and clear C/V to 24 knots
crosswind, moderate turbulence, and clear C/V to
24 knots crosswind, moderate turbulence and
minimum C/V.

Three IVs dealt with the configuration of
ASPT. Zero, three and six DOF levels were
selected for the motion variable. The three DOF
condition included motion only in pitch, roll, and
heave (vertical translation) dimensions. The six
DOF condition consisted of motion in pitch, roll,
yaw, longitudinal, vertical, and lateral displace-
ment. The FOV variable had two conditions:
masked and full. The full condition utilized all

.seven cathode ray tube (CRT) channels. The

masked FOV, designed to represent the FOV of
many small visual displays currently in use, had a
36-degree vertical and 48-degree horizontal FOV,
The 36 degree by 48 degree masked FOV was
created by shutting down five of the seven CRTs
and placing a portable black cardboard mask over
portjons of the two remaining CRTs to reduce the
FOV to 36 degrees by 48 degrees. The G-seat
variable possessed two levels: functional or non-
functional.

The combination of environmental and ASPT
configuration IVs (18x12) produced 216 unique
treatment cells.

The second design used four Vs, each having
three levels (3*). Two of the four variables used in
this design, motion and turbulence, were
configured exactly as above. The third variable,
FOV, had masked and full FOVs as in the first
design, but added a third level in which there was
no visual scene present in order to simulate a
completely instrument flight rules (IFR) condi-
tion. The fourth variable, G-$eat, similarly was
either functional or non-functional as in the first
design, but added a third level which directed that
only the G-seat’s pan was functional. The Seat Pan
Only configuration made use of only those
pneumatic panels located in the area of the pilot’s
buttocks in order to estimate the separate contri-
butions of these panels.

These combinations of environmental and
ASPT configuration IVs produced 81 unique treat-
ment cells.

Flight Tass

In this study, the term “flight tasks” refers to
the five specitic maneuvers flown by the subjects.
These manecuvers were selected to' encompass a
broad spectrum of represer(ative subtasks in the
undergraduate pilot training (UPT) curriculum
(Meyer, Laveson, Weissman, & Eddowes, 1974).

In the first design, each subject flew 72 take-
offs, 72 GCAs, and 72 360-degree overhead
patterns for a total of 216 maneuvers (under the
varying environmental/system configurations) per
subject. In the second portion of the experiment,
each subject flew 27 aileron rolls and 27 slow
flights for a total of 54 maneuvers (under the
various configurations) per subject.

Dependent Variables

The dependent vanables used in this study were
derived from the ASPT Automated Performance
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Measurement System (APMS). The APMS is
basically a criterion-referenced approach to
measurement. Because most skillful piloting
involves the attempt to maintain or change to
specified flight parameter criteria (e.g., airspeed,
altitude, vertical velocity), deviations from these
desired parameters provides a method of quantita-
tive objective performance measurement.

For this study, sets of dependent variables
believed to be of relevance were selected indepen-
dently for each maneuver and were recorded via
the APMS at an iteration rate between 3.75 and 15
times per second. The variables monitored are
listed in Appendix A. These dependent variables
were classified into three categories: (a) system
output measures, (t) pilot input measures, and (c)
derived measures.

System output measures were used to measure
deviations from desired criteria via root mean
square techniques (Waag, Eddowes, & Fuller,
1974), which have been demonstrated to be
reliable descriminators of pilot performance.

Pilot input measures were computed to deter-
mine an analog to how much effort or work was
expended by the pilot on the aircraft controls
during the maneuver. It has been generally
accepted that pilots with more experience make
fewer, more precise correctional movements than
relatively inexperienced pilots. This analog was
measured for aileron, elevator, and rudder control.
This analog of pilot effort was computed as work
per unit of time and was expressed by the
foliowing equation:

n
Pilot Input = r/niEiIPi ~P_ Xl + fi 4l
2

where r is the sampling rate, n is total number of
les, P is, control rosition, and f is control
1orce.

The derived measures were a set of measures
that produce a single composite score for a
particular segment of a maneuver or a complete
maneuver. For the most part, this score was based
on the pilot’s proficiency in simultaneously
staying within several tolerance bands constructed
around the desired criteria. The score was a
percent-time-within-tolerance measure. Tolerance
bands were constructed using the performance of
experienced pilots for each maneuver or maneuver
segment as a basis.

This approach to performance nicasurement
was implemented through use of the ASPT Pre-
programming System. This system permitted
generation of FORTRAN programs, called exercise
segments, which used simulator flight variables as
input data. (For a complete description of the five
exercise segments, see Appendix A).

Table 1 lists all dependent variables by
maneuver. Because system measures used deviation
scores, a smaller score indicated better perforin-
ance. Similarly, on pilot input scores, smaller
forces applied by the pilot to remain within the
established tolerances produced smaller scores,
indicative of better performance. The derived
measures, however, were based on percent-time-
within-tolerance scale with 100% being defined as
remaining within the given tolerance bands for the
entire duration of observation. Thus, higher
percentages indicate better scores.

Procedures

The procedures used in the study can conveni-
ently be separated into two classes: subject
pretraining, and data collection procedures.

1. Subject pretraining. Each subject was given
approximately 3.5 hours in ASPT for the purpose
of familiarization and warmup one to two days
before the start of the study. During this time, two
separate mission profiles with varying environ-
mental conditions were briefed to and practiced
by the subjects.

PROFILE I (3% 2° Design Maneuvers)

a. Takeoff and climb on course (begun at
takeoff clearance).

b. GCA (begun at five miles from touch-
down gate).

¢. VFR “overhead” traffic pattem (begun
on initial).

PROFILE II (3% Design Maneuvers)

a. Slow flight (initialized at 100 kts, 12 K
ft).

b. Aileron roll (initialized at 160 kts, 15K
ft).

2. Data Collection Procedures. In the course
of the study, each subject flew Profile 1 72 times
and Profile 1I 27 times as required by the experi-
mental design. On the average, Profile I required
19 minutes for completion and Profile 11 required
6 minutes. The two profiles were randomly
ordered for all subjects. The mission profiles were
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Table 1. Dependert Variable Listing

Dependent Variable Name Type Units
Takeoff and Climb on Coupe

1. Heading Deviation System Degrees

2. Pitch Deviation System Degrees

3. Course Deviation System Degrees

4,  Airspeed Deviation System Knots

5.  Elevator Power Pilot bs-deg/sec

6. Aileron Power Pilot. Ibs-deg/sec

7.  Rudder Power Pilot Ibs-deg/sec

GCA and Landing

1. Total Score Derived Percent

2. Touchdown Score Derived Percent

3. Altitude Deviation System Feet

4,  Airspeed Deviation System Knots

5. Centerline Deviation System Feet

6. Glidepath Deviation System Feet

7. Elevator Power Pilot Ibsdeg/sec

8.  Aileron Power Pilot 1bs-deg/sec

9. Rudder Power Pilot Ibs-deg/sec
10.  Elevator Power Pilot 1bs-deg/sec
11.  Aileron Power Pilot Tbs-deg/sec
12.  Rudder Power Pilot 1bs-deg/sec

360° Overhead Pattern and Landing
1 Pitchout Altitude System Feet
2. Pitchout Bank System Degrees
Elevator Power Pilots Ibs-deg/sec

4.  Aileron Power Pilot lbs-deg/sec

S.  Rudder Power Pilot 1bs-deg/sec

6. Downwmd Altitude Deviation System Feet °*

7 Downwind Score Derived Percent

8. Flevator Power Pilot Ibs-deg/sec

9.  Aileron Power Pilot Tbs-deg/sec
10.  Rudder Power Pilot Ibs-deg/sec
11 Final Turn Bank Deviation System Degrees
12, Final Turn Airspeed Deviation System Knots
13.  Elevator Power Pilot Ibs-deg/sec
14.  Aileron Power Pilot 1bs-deg/sec
1S Rudder Power Pilot 1b: -deg/sec
16.  Ghdepath Deviatton System Feet
17.  Centerline Deviation System Feet
18.  Final Auspeed Deviation System Knots
19.  F'inal Score Derived Percent
20.  Elevator Power Pilot lbs-deg/sec
21.  Aileron Power Pilot lbs<Ceg/sec
22, Rudder Power Pilot bs-deg/sec
23.  Landmng Score Derived Percent

Slow Flight

i Altitude Deviation System Feet

2. Awuspeed Deviation System Knots

3. Shp Indicator Deviation System Degrees

4. Total Score Derived Percent,

5. Elevator Power Pilot Ibs-deg/sec

6. Atleron Power. Pilot Tos<deg/sec

7. Rudder Power Pilot Tbs-deg/sec

Aileron Roll

1 Bank in Deviation System Degrees

2 Roll Acceleration System Degrees/Sec?

3. Roff Score Derived Percent

4. Bank Out Deviation System Degrees

S Aileron Power (In) Pilot 1bs-deg/sec

6. Aicron Power (Roti) Pilot Ibs-deg/sec

7. Alleron Power (Qut) Pilot Ibs-deg/sec

8. 7Votal Score Derived Percent




flown consecutively within a data collection
period, which varied from one to two hours in
length dependent upon ASPT system availability.
Rest periods were provided whenever requested by
the subject IPs.

After the pilot strapped into the cockpit, each
session was begun with instructions provided by
the Cognitronics computer-driven word generator.
During strap-in, the console operator entered
identification information into the APMS files,
modified the simulator configuration, and set the
environmental factors. Each maneuver was begun
on command and completed when selected criteria
were satisfied; i.e., the takeoff and climb on course
was terminated when the altitude equalled 3,000
feet mean sea level (MSL). An aural tone signified
termination of the maneuver. In the case of the
GCA, the Cognitronics generator provided all
verbal information to the subject, including glide-
slope and centerline deviations. At the completion
of each maneuver within the profile, the console
operator entered comments on any system mal-
functions, operator or subject error experienced
during the maneuver.

All profiles were flown in cockpit A of the
ASPT to control for possible inter-cockpit
differences.

In setting up those treatment conditions which
required the motion system to be inoperative, the
console operator initially raised the platform and
then froze it in an attempt to preclude subject
awareness of the simulator configuration. During
the course of the study, however, the subjects
became “experiment wise” and were often able to
discern the exact configuration.

Prior 0 the execution of each maneuver, all
environmental conditions, (i.e., ceiling/visibility,
winds, turbulence) were given to the pilots as they
would be in the real-world of flying,

Due to a hardware configuration error in the
method of setting the particular Gseat configura-
tion, each IP had to refly 18 profiles, resulting in a
total of 117 profiles flown per subject.

The major constraint in subject scheduling was
ASPT system availability. Subjects were scheduled
on a day-to-day basis. Data collection began on 25
June 75 and was tenninated on 30 October 75.
System reliability during the conduct of the study
was approximately 62 percent, as measured by the
following ratio: hours of successful data
collection/hours scheduled for the effort.

11

Analysis

The analysis presented in this technical report
differs significantly from that given in a previous
one (Waters, Grunzke, lrish, & Fuller, 1976). The
earlier report was based on a univariate analysis of
each dependent variable. The present report
utilized a multivariate approach.

In recognition of the intercorrelations between
the dependent variables of each specific maneuver
measurement set (Waters et al.,, 1976), a multi-
variate analysis of variance (MANOVA) was
selected as the appropriate omnibus test (Harris,
1975). A MANOVA was performed for each
maneuver which resulted in five overall tests of
significance. The statistic used in determining
significance of effects was the Wilks Lambda (A).
The Wilks Lambda statistic, while not only being
less difficult to compute than the greatest charac-
teristic root (GCR) method, also provided a more
powerful test than the latter (with the assumption
of nearly equivalent characteristic roots). Upon
reaching significance, traditional step-down uni-
variate F's were computed for each dependent
variable. Means and exact probability levels
p(F>F,) were also computed for each dependent
measure. The alpha level for this study was set at
.05,

Additional multivariate post hoc tests were not
pursued for two reasons. First, the Wilks Lambda
does not lend itself to further multivariate
contrasts; and second, the sample size employed
was not sufficient for extensive multivariate com-
parison using a multiple discriminant or principal
components analysis.

Although the step-down F's are subject to
similar inflation of the Type 1 error rate as are a
series of conventional univariate ANOV As (Harris,
1975), a screening study of this type would prefer
minor inflation in Type I rather than Type 11 error
rates in order that all possible sources of variance
may be identified for future studies. Additionally,
percent of non-error variances (% NEV) were
computed for each source of variance so that the
relative importance of each effect could be
estimated.

The matrices used to construct the MANOV A
tables were structured such that all main effects,
first order interaction effects and second order
interaction effects were orthogonal to one another
in the 3° 2% design with the exception of the Wind
by Turbulence by Motion interaction which had




two of its degrees of freedom confounded with
between block variation. All third order and higher
interactions were assumed to be negligible. The 3%
design was structured so that all main effects and
first order interactions were orthogonal, with
second order and bigher order interactions
assumed to be zero.

The final statistical procedure performed upon
the data consisted of rank ordering the
performance of each dependent measure for those
interactions of statistical significance. Becauce the
dependent variables varied greatly in the nature of
their units and the direction of best performance
in terms of their absolute values, a procedure was
required which accounted for these differences.
The selected method included the rank ordering of
performance on the dependent measures from best
to worst performance within every treatment cell
of the interaction. The ranks were then summed
across all dependent measures for each cell and an
average rank was determined. Nemenyis’ test
(Kirk, 1968) was employed to determine the
location of significant differences between the
average ratings in the treatment cells. This method
allowed the dependent measures to be summed
into an unweighted linear combination, thus
providing insight into the relative strength and
direction of the performance measurement sets
within each interaction. Since it was impossible to
empirically determine what the individual variable
weights should have been, this procedure used
equivalent weights for all variables. Although this
method varied somewhat from a more traditional
approach, it offered a straight-forward and
relatively economical method of describing the
underlying processes at work within each
interaction.

I1i. RESULTS

Because of the sizeable quantity of information
this study produced, the results section is
structured in the following manner. Initially
reported are the main effects which reached
significance. These effects are classified into two
categories: environmental variables, and system
configuration variables. Presentation of the
significant first order interactions follows; these

' he disparity between the multivariate and univariate
source tables for the mamn and nteraction effects stems
from the method m which the DOT have been pattitioned
n the two analyses. Both analyses are correct, however,
the umivanate tests give a more conservative, more
po ~erful test of sigmficance.
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were subdivided into three major classes. These
¢lasses are: interactions of environmental variables
with environmental variables, interactions of
system variables with environmental variables, and
system variable by system variable interactions.
Finally, the one second-order (three variable)
interaction which reached significance was
reported. This scheme was followed in reporting
the results of the 3 2% design, and then repeated
for the 3* design.!

33 23 Environmental Variables

Wind. The first environmental main effect
considered was the wind factor. The wind main

‘effect, as expected, evidenced consistent linear

effects. As wind velocity increased, flying perform-
ance decreased. Table 2 depicts the means,
univariate F's and the Wilks Lambda for the wind
matrix for the takeoff, GCA, and overhead pattern
maneuvers.

The wind effect was significant in the omnibus
multivariate test across each of the three
maneuvers measures (p<.001). The direction of
significance as indicated by the tabled means
shows that under increasingly windy conditions,
deviations from the desired course were greater
and that more subject effort was needed to fly the
simulator.

For the univariate analyses, of the seven vari-
ables in the matrix for the takeoff maneuver, three
(heading deviation, aileron power and rudder
power) were significant at the univariate level
(p<.00}) and had relatively consistent effects;i.e.,
increased wind intensity produced more course
deviation and effort.

The GCA larding task showed five dependent
variables with significant univariate F ratios
(p <.001). Four of these measures (rudder power
(final), aileron power, elevator power, rudder
power (landing)) were pilot input measures and
one derived measure (touchdown score)
demonstrated linear effects. Of the remaining
three variables (rudder power (2), and aileron
power) curvilinear effects were manifested. The
last measure, elevator power (landing phase)
showed best performance, assuming that fewer and
smaller corrections indicated better flying, under
the maximum wind condition followed by no
wind and lastly 12 knots of wind. This was likely a
maneuver-specific artifact due to its inconsistency
with all of the other measures.

In the overhead pattern mancuver, 12 of 23
dependent variables were significant at p<<0S in
the univariate analysis. These 12 dependent van-
ables included four system output dependent
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Table 2. Wind Main Effects Across Takeoff, GCA, and Overhead Pattem Maneuvers

3 Source §(0 Knots) X(12 Knots) 7(24 Knots) SSBET SSW/IN F P
‘: Takeoff
5 Heading Deviation 2.10 2.66 539 448 225 2.11 .000*
v Pitch Deviation 1.7 1.89 1.89 1.57 115 145 .236
Course Deviation 926 1.10 1.30 5.05 216 249 .086
s Airspeed Deviation 5.55 4.66 5.01 290 3550 871 420
Elevator Power 245 2.54 2.67 1.63 113 1.53 219
E: Ailercn Power .606 766 977 5.00 53.5 9.94 .000*
’ Rudder Power 279 468 S19 242 23.3 11.07 .000*
Pt Wilks Lambda df, df, p(F>Fy)
: 278 14 414 .000*
[ GCA
Total Score 25.7 23.5 251 182 26100 744 476
* Touchdown Score 87.3 84.2 79.2 2400 28700 8.89 .000*
Altitude Deviation 40.9 39.8 38.1 289 91700 335 715
Airspeed Deviation 2.44 2.47 2.86 8.10 350 246 .087
3 Centerline Deviation 96.0 103 106 3900 28200 1.47 232
Glidepath Deviation 384 359 336 837 42600 2.09 .126
2 Elevator Power 436 463 447 .027 12.3 231 .7194
; Aileron Power 419 516 457 .350 300 1.24 291
o Rudder Power .067 .098 .168 397 4,76 8.87 .000*
% Elevator Power 4.28 491 340 83.1 1300 6.82 .001*
. Aileron Power 1.04 2.03 1.96 44.0 363 129 .000*
Rudder Power 1.72 5.89 17.0 8960 9120 104 .000*
& Wilks Lambda df, df, p(F>Fy)
349 24 404 .000*
: Overhead Pattem
. Pitchout Altitude Deviation 40.8 41.7 428 145 172,000 .090 914
E: Pitchout Bank Deviation 6.25 10.9 149 2680 4,090 699 .000*
3 Elevator Power 246 1.81 1.40 414 324 13.6 .000*
4 Aileron Power .688 537 393 3.13 39.7 8.41 .000*
3 Rudder Power 049 078 089 064 974 698 499
Downwind Alt Dev 423 36.2 420 1710 122,000 149 .227
E: Downwind Score 66.8 71.2 62.0 3060 134,000 243 .090
- Elevator Power 2.24 2.10 1.91 3.86 301 1.36 .258
- Aileron Power 1.31 1.23 L1l 151 220 732 482
Rudder Power .106 101 .093 .006 7.06 094 910
Final Tur Bank Dev 9.55 109 11.2 109 5130 225 107
Final Tum Airspeed Deviation 4.42 4.58 8.51 772 2370 346 .000*
Elevation Power 1.22 1.59 2.08 26.7 251 113 .000*
Aileron Power 739 51 932 1.67 51.9 343 034
p Rudder Power .287 378 600 3.73 116 343 034+
Glidepath Deviation 875 1.28 1.30 8.25 285 3.08 .047*
2 Centerline Deviation 924 159 155 170,000 1,350,000 133 .264
: Final Airspeed Deviaiion 3.79 3.92 6.69 388 3020 13.7 .000*
Final Score 12.2 15.1 3.50 5270 73,600 763 .000*
i Elevator Power 2.71 3.07 3.29 12.5 548 242 .091
ok Aileron Power 1.29 1.81 2.76 80.8 276 1.2 .000*
Rudder Power 1.16 4.07 6.74 1120 2060 58.2 .000*
:. Landing Score 774 76.2 759 859 23,700 385 .680
4 Wilks Lambda df, df, p(F>F,)
224 46 382 .000*
*‘ Note. — All univariate F-ratios evaluated at F,, ,, ,.
* p <.05.
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variables, seven pilot input dependent variables,
and one derived dependent measure. Of these
variables which exceeded the significance criterion,
three *(elevator power (pitchout), aileron power
(pitchout), and final score) ihdicated better
performance under increased wind conditions. The
final score measure demonstrated slightly
curvilinear effects by showing best performance in
the 12 knot condition, slightly deteriorated
performance with no wind followed by a marked
decrease in performance in the 24 knot condition.
The remaining nine dependent variables indicated
decreased performance as a function of increased
wind conditions.

Turbulence. The analyses of the second
environmental variable, turbulence, are presented
in Table 3.

The turbulence variable demonstrated an
overall multivariate effect only on the GCA
landing mancuver (p<.001).

In the univariate analysis, the takeoff maneuver
produced one dependent variable (elevator power)
that reached significance. This measure manifested
a clear linear effect; i.e., best performance was
recorded under no turbulence followed in
sequence by light and moderate turbulence.
Rudder power was the only dependent measure
to achieve significance in the overhead pattern
univariate analysis,

Ceiling/Visibility. The analyses of the final
environmental variable, ceiling/visibility, are listed
in Table 4 for the takeoff, GCA, and overhead
pattern mancuvers.

As Table 4 shows, all three maneuvers had
significant multivariate ceiling/visibility main
effects (p<.03).

Under the univariate analysis, all dependent
variables for the takeoff, excluding rudder power,
had means in the expected direction (i.e., with
restricted visibility conditions (minimums)
performance deteriorated). The effects of reduced
ceiling/visibility were * particularly apparent on
variables related to heading, airspeed, and amount
of elevator power used (p<.035).

The GCA maneuver analysis has similar bui not
quive as powerful results. Of the 12 variables
measured, six variables (two significant) suggested
improved performance in the clear conditions
while three variables demonstrated wirtually no
change under either condition. The remaining
three vanables suggested superior performance in
the mimmums condition. Nevertheless, the overall
multivariate test, as previously mentioned,
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indicated improved subject performance in the
same direction as the majority of the individual
dependent variables.

Ten of the twenty-three measures used in the
analysis of the overhead pattern, reached
significance in the ceiling/visibility univariate
contrasts. All ten measures demonstrated superior
performance was evidenced under ‘thes clear C/V
condition. These measures cover the full range of
system output, pilot input and derived scores.

33 23 System Variables

The system variables consisted of platform
motion, field of view, and G-seat.

Motion. The results of the analyses of the first
variable of interest, platform motion, are displayed
in Table 5.

Significance was reached on the multivariate
test for all three maneuvers (p<.001).

In the takeoff maneuver, the univariate analysis
of four of the seven dependent measures (three of
which were system output measures) indicated
superior performance in the absence of motion;
however, review of the three DOF and six DOP
motion conditions gave highly inconsistent results,
thereby negating the establishraent of a perform-
ance hierarchy.

The GCA maneuver showed a more consistent
pattern of results. Of the 12 dependent variables
measured in the GCA,’eight measures (five
significant) demonstrated superior performance in
the absence of motion. The remaining dependent
measures indicated superior performance under
the three DOF when compared to the six GOF
modion condition.

Similatly, the overhead pattern evidenced
performance trends consisting of improved
performance without motion followed by inferior
performance with three DOF and six DOF motion.

Field of View. The analysis of tne, FOV main
effect is listed in Table 6 for the takeoff, GCA,
and overhead pattera maneuvers.

As shown in Table 6, none of the multivariate
omnibus tests were significart at p<.0S.

In the univariate analysis, the variables
measured in the takeoff maneuver consistently
pointed towards better performance under the full
FOV. A majority of the dependent measures in the
GCA, also suggested improved performance under
the full FOV although less strongly than did the
takeoff maneuver. The overhead pattern produced




Table 3. Turbulence Main Effects Across Takeoff, GCA,
and Overhead Pattern Maneuvers

A Source X (None) X (Light) X (Moderate) SSBET SSW/IN F »
% Takeoff
\ Heading Deviation 3.32 3.46 3.39 710 672 112 .894
Pitch Deviation 1.92 1.86 1.71 161 115 149 .226
3% Course Deviation 1.01 1.24 1.08 2.11 219 1.03 .361
¥ Airspeed Deviation 4.81 5.06 5.34 10.2 3570 305 737
I Elevator Power 2.39 2.60 2.67 3.19 112 3.05 .050*
g Aileron Power 698 816 836 795 57.8 147 .233
4 Rudder Power 374 402 485 484 25.2 2.04 132
.
Wilks Lambda df, dfy p(F>F,)
b 922 14 414 2576
GCA
Total Score 26.5 22.7 25.1 506 25,800 209 .126
f Touchdown Score 82,5 826 85.7 503 20,600 175 17
¢ Altitude Deviation 346 403 439 3,170 38,800 3.80 .024¢
Airspeed Deviation 2.02 2.62 3.13 139 314 14.8  .000*
i Centerline Deviation 102 105 98.7 1310 285000 491 612
A Glidepath Deviation 339 36.5 374 472 42,900 1.17 .311
e Elevator Power 351 452 543 1.34 11.0 129 .000*
4 Aileron Power .383 47 533 822 29.6 2.96 .054
a Rudder Power 070 109 147 213 4.95 459 .011*
: Elevator Power 3.8 4.03 4.75 34.2 1,350 271 .069
4 Aileron Power 1.76 1.58 1.68 1.24 406 325 723
'. Rudder Power 8.03 7.43 9.12 106 18,000 627 535
3 Wilks Lambda df, df, p(F>Fg)
A 708 24 404 .000*
Overhead Pattern
Pitchout Altitude Deviation 41.5 45.0 38.8 1,380 171,000 .861 424
- Pitchout Bank Deviation 10.6 11.1 10.3 23.5 6,750 371 .690
A Elevator Power 1.77 2.00 1.88 1.90 363 556 575
i Aileron Power 527 543 547 016 42.8 039 962
Rudder Powcr 041 095 081 A16 9.69 127 .282
Downwind Altitude Deviation 374 38.8 443 1,920 122,000 1.67  .190
Downwind Score 71.5 66.3 66.2 3080 134,000 245 088
Elevator Power 1.96 2.07 222 2.56 303 899 408
Aileron Power 1.16 1.28 1.21 545 221 262 170
Rudder Power 041 1§ 144 402 6.66 642 .002*
Final Turn Bank Deviation 11.0 10.5 10.1 26.1 5,210 534 5%
Final Turn Airspeed Dev 5.56 5.99 5.96 849 3,130 289 750
Elevator Power 1.52 1.67 1.70 1.39 276 535 .586
Aileron Power 738 838 .846 521 53.0 1.05 .352
Rudder Power .367 499 449 329 119 294 745
Glidepath Deviation 1.05 1.28 1.12 1.88 291 .087 .504
Centerline Deviation 141 138 116 27,600 13,600,000 .211 810
Final Airspeed Deviation 4.54 4.18 567 87.4 3,320 2.80 .063
Final Score 11.1 9.46 10.2 103 78.800 139 870
Elevator Power 2.89 3.00 3.17 2.85 558 544 581
Aileron Power 1.93 1.88 205 1.15 355 346 .708
Rudder Power 3.36 3.83 4,78 75.4 3,110 2.58 .077
Landing Score 764 753 77.6 193 23,600 869 421
E Wilks Lambda df, df; p(F>Fo)
: 755 46 382 133

T

Note. — All urvariate F ratios evaluated ot F,,, 5.
*p <.05
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Table 4. Ceiling/Visibility Main Effects Across Takeoff,
GCA, and Overhead Maneuvers

Sour-. X (clear) X (minimums) SSBET SSW/IN F [
Takeoff

Heading Deviation 3.01 3. 309 €42 10.3 .002*
Pitch Deviation 1.79 1.87 350 116 646 423
Course Deviation 1.07 1.15 388 221 376 541
Airspeed Deviation 3.68 6.46 419 3160 284 .000*
Elevator Power 245 2.65 2.18 113 414 .043*
Aileron Power 720 .847 873 577 3.24 073
Rudder Power 430 411 .018 25.7 153 696
Wilks Lambda df, df, p(F>Fg)

.840 7 208 000*

GCA

Totai Score 26.9 22.6 1020 25200 8.66 .004*
Touchdown Score 8.9 82.2 390 30700 272 101
Altitude Deviation 40.4 38.8 146 91800 340 .561
Airspeed Deviation 2.59 2.59 .003 358 002 962
Centerline Deviation 95.0 108 9520 277000 7.36 .008*
Glidepath Deviation 34.7 372 358 43000 1.78 184
Elevator Power 429 469 087 12.2 1.53 218
Aileron Power 464 464 .003 304 .000 988
Rudder Power .108 109 .000 5.16 000 986
Elevator Power 428 4.11 1.51 1380 234 629
Aileron Power 1.54 1.81 3.74 404 1.98 161
Rudder Power 8.22 8.17 129 18100 .002 969
Wilks Lambda df, df, ${(F>Fy)

.896 12 203 .020*

Overhead Pattern

Pitchout Altitude Dewviation 36.3 473 6,540 166,000 843 .004*
Pitchout Bank Deviation 11.4 9.95 117 6,650 3.7 .054
Elevator Power 1.81 1.97 1.40 364 823 365
Aileron Power 475 .603 .886 419 4.52 035%
Rudder Power 083 062 .024 9.78 .524 469
Downwind Altitude Deviation 35.8 44.6 4,150 119,000 7.43 .007*
Downwind Score 70.4 629 3,020 134,000 4.82 .029*
Elevator Power 1.71 2.46 30.2 275 23.47  .000*
Aileron Power 1.07 1.36 446 217 4.40 .037*
Rudder Povwver 106 .094 008 7.06 239 626
Final Tura Bank Deviation 9.83 11.20 108 5,130 4.49 035*
Airspeed Dewviation 5.07 6.60 126 3,020 8.93 003
Elevator Power 1.47 1.79 5.61 272 4.41 .036*
Aileron Power 745 .870 852 52.7 3 46 064
Rudder Power 515 328 1.90 117 3.45 064
Clidepath Deviation 1.09 1.22 927 292 678 411
Centerline Deviation 110 154 107,060 13,600,000 1.68 196
Final Awspeed Dewiation 423 5.37 70.8 3,340 4.54 .034%
Final Score 12.7 7.87 1,250 77,700 345 .064
Elevator Power 2.86 3.18 5.50 535 2.12 146
Aileron Power 1.77 2.14 7.58 3.49 465 .032%
Rudder Power 3.63 4.35 28.4 3,150 1.93 .168
Landing Score 77.1 75.8 87.2 23,700 786 .376
Wilks Lambda df, df, p(F>F,)

754 23 192 .000*

Note. — All univanate F's cvaluted at t

1 21
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Table 5. Motion Main Effects Across Takeoff,
GCA, and Overhead Pattern Maneuvers

Source %(0 DOF) x(3 DOF) (6 DOF) SSBET SSW/IN F b
Ey : Takeoff
4
5 Heading Deviation 3.33 3.42 341 377 672 060 942
Pitch Deviation 1.70 1.96 1.83 239 114 2.24 109
‘ ' Course Deviation 1.30 1.03 1.00 3.83 218 1.87 156
- Airspeed Deviation 412 5.81 5.28 107 3470 329 039
i Elevator Power 2.52 2.48 2.67 1.47 113 1.38 254
i Aileron Power .582 .801 967 538 53.2 10.77 .000*
%:‘ Rudder Power 487 346 428 719 25.0 3.07 .048*
& Wilks Lambda df, df, p(F>Fy)
.823 14 414 .000*
2 GCA
= Total Score 27.3 24.3 22.7 711 25,500 3.23 042%
2 Touchdown Score 84.4 834 829 26.8 31,100 .298 743
Altitude "eviation 33.2 41.2 443 4,720 87,300 5.76 .004*
' Airspeed Deviation 240 244 2.92 12.0 346 3.70  .0206*
5 Centerline Deviatica 96.7 102 106 3060 283,000 1.15 319
: Glidcpath Deviation 36.3 35.6 36.0 19.6 43,400 048 953
Aiteron Power 379 395 572 1.66 10.7 16.6 .000*
Rudder Power 276 457 .660 531 25.1 22.5 .000*
Elevator Power .091 A13 123 039 512 806  .448
Aileron Power 4.29 3.7 461 309 1,350 2.44 .089
Rudder Power 1.53 143 2.06 16.9 390 4.61 .001*
4 Elevator Power 8.56 6.83 9.20 216 17,900 1.29 278
Wilks Lambda df, dfy p(F>F)
695 24 404 .000*
3 Overhead Pattern
? Pitchout Altitude Deviation 36.9 40.6 478 4390 168000 2.78 064
2 Pitchout Bank Deviation 10.1 11.2 10.8 395 6730 625 .536
S Elevator Power 2.16 1.72 1.79 8.16 357 243 .090
' Aileron Power 439 513 666 1.93 40.9 5.092 .007*
Rudder Power .062 .069 .087 024 9.78 258 173
Downwind Altitude Deviation 34.0 414 453 4750 119000 4.26 .015*
Downwind Score 70.2 65.5 64.2 1430 135000 1.12 327
Elevator Power 2.22 1.74 23.0 13.0 292 4.74 .009*
Aileron Power .895 1.17 15.8 17.0 205 8.85 .000*
Rudder Power .098 110 .092 013 7.05 191 .82¢
Final Turn Bank Deviation 9.95 10.6 11.0 43.9 5200 .899 409
Final Turn Airspeed Deviation 5.68 6.14 5.69 9.74 3130 331 119
Elevator Power 1.55 147 1.88 6.59 271 2.59 077
Aileron Power .605 830 987 5.31 58.2 11.73  .000*
Rudder Power 483 418 365 S04 119 452 637
. Glidepath Deviation 1.14 1.12 1.20 233 293 .085 919
Centerline Duviation 128 134 134 1,810 13,700,000 .014 986
kS Final Airspeed Deviation 4.88 473 4.79 .867 3140 027 973
Final Score 8.20 12.2 10.5 574 78300 781 459
e Elevator Power 3.28 2.74 3.04 106 550 2053 131
kS Aileron Power 1.70 2.05 2.12 7.28 349 220 111
& Rudder Power 440 348 4.09 31.0 3150 1.05 352
Landing Score 78.1 76.2 15.2 314 23500 1.42 244
4 Wilks Lambda df, df, p(F>Fy)
3 657 46 382 .000*
*p <05,

Al umivanate F's evaluated at F2,213.

17




R T AT T T W -
T B R

o r—

A LT s vt e, -

R R T e )
%

». Table 6. Field of View Main Effects Across Takeoffs,
i GCAs, and Overhead Pattern Maneuvers
' Source X (mashed) % (tutn) SSBET SSW/IN F p
- Takeoff
X Heading Deviation 350 3.28 272 670 869 .353
Pitch Attitude 1.8t 1.86 1.80 .150 116 211 .599
Course Dewiation 1.23 963 2.96 219 290 .089
i Airspeed Deviaticn 5.52 4.62 43.5 3,530 2.63 106
. Elevator Power 2.61 2.56 615 114 1.152 284
- Rudder Power 868 698 156 57.0 5.85 .016*
i Airleron Power 428 413 013 25.7 107 144
- Wilks Lambda df, df, p(F>Fp)
949 7 203 141
?._ GCA
& Total Score 25.1 24.5 18.7 26,200 153 .696
- Touchdown Score 83.0 84.2 88.5 31,000 610 436
Altitude Deviation 420 372 1,260 90,700 296 .086
s Airspeed Deviation 27.1 246 3.35 355 2.02 157
1 Centerline Deviation 994 104 1,150 285,000 867 353
i Glidepath Deviation 34.8 37.1 296 43,100 1.48 225
i Elevator Power 472 425 122 12.2 2.14 .145
? Aileron Power 530 398 938 294 6.82 .009*
3 Rudder Power 102 115 .008 5.15 333 564
b Elevator Power 4.18 4.21 .061 1,380 009 922
b Aileron Power 1.76 1.58 1.77 406 934 335
'f' Rudder Power 8.72 7.67 60.4 18,000 718 .398
2, Wilks Lambda dfl dfz p(F>F0)
: 922 12 203 155
4 Overhead Pattern
it
4 Pitchout Altitude 44.1 394 1,200 171,000 150 221
o Pitchout Bank 11.0 10.4 23.0 6,750 731 394
2 Elevator Power 1.87 191 081 365 047 828
Aileron Power .595 483 681 42.1 3.46 069
b Rudder Power .087 .058 043 9.76 977 329
Downwind Attitude Deviation 411 393 164 123,000 284 595
Downwind Score 62.9 70.5 3,130 134,000 5.01 .026*
Elevator Power 2.13 204 519 305 364 547
Aileron Power 1.34 1.09 3.16 218 3.09 .080
Rudder Power 092 108 013 7.05 397 530
Final Turn Bank Dewiation 11.5 9.62 181 5.060 7.67 .006‘.
Final Turn Airspeed Deviation 5.75 592 1.57 3,140 107 744
Elevator Power 1.65 1.62 .054 218 042 .839
Asleron Power .891 .724 1.51 52.0 6.19 .014*
Rudder Power 404 439 .064 119 d14 735
Glidepath Deviation 1.26 1.04 2.67 291 1.97 162
23 Centerline Deviation 165 99.1 233,000 1,340,000 3.71 055
E/ Final Airspeed Deviation 5.51 4,09 108 3,300 7.01 .009*
E Final Score 9.24 11.3 233 78,700 .635 426
3 Elevator Power 3.02 3.03 006 560 002 962
*‘ Atleron Power 2.07 1.84 2.76 354 1.67 198
ES Rudder Power 402 3.96 151 3,180 010 919
e Landing Score 76.4 76 6 261 23,800 023 878
Wilks Lambda df, df, P(F>F,)
- 843 23 192 0572

Note. — All Univartate F's evaluated at Fy 294

*p< 05,
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Of the three system main effects evaluated by
multivariate techniques in the slow flight
maneuver, the most prominent was the motion
effect (p<.001). Those variables which attained
significance 1n the univariate analysis also
indicated that subject performance was superior in

o few cases of significance in the univariate analysis.
A Eighteen of the 23 vanables measured in the over-
head pattern showed better, although not
necessarily significantly better, performance under
the full FOV,

G-Seat. The final system main effect evaluated
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3 was the G-seat. The data analyses on the Gseat ~ the absence of platform motion.

3 variable are listed in Table 7. The FOV and the Gseat variables produced
i The G-seat variable reached significance in the mixed results in the slow flight maneuver as
-4 omnibus multivariate test for the takeoff and GCA evidenced by the nonsignificant multivariate and
maneuvers, but not for the overhead pattern. univariate tests (Table 9). Surprisngly, the
3 majority of the dependent measures in the slow
o Inspection of the univariate analysis data in flight manecuver suggested that superior
3 Table 7 reveals three significant F ratios (p<.05) performance was evidenced in the masked FOV
7. for the takeoff maneuver. Overall, three of the condition.

3 seven dependent measures show improved The FOV man cffect was signi

3 s . gnificant 1n the
i performance with the G-seat present. multivariate analysis of pilot performance of the

The GCA maneuver produced two significant
univariate F ratios, both of which indicated better
performance with the G-seat on. Of the 12
variables in the matrix, although only these two
were significant, seven of the 12 suggested
improved performance under the G-scat on
condition.

In the overhead pattern maneuver, 13 of 23
variables favored the Gseat condition; however,
the effect was so small that overall performance
was relatively unchanged as a function of Gseat
conditions.

The maneuvers used in the second design were
sow flight and aileron roll. The independent
variables manipulated in the performance of these
tasks were turbulence, platform motion, FOV, and
Gseat.

3* Environmental Varigble. Table 8 lists the
means, sums of squares, univariate F-statistics, and
associated probability levels for the single environ-
mental variable (turbulence) investigated in the
slow flight and aileron roll maneuvers. As can be
discemed from iaspection of these tables, the
omnibus “tests were nonsignificant; however,
examination of the individual variable means dis-
closed that four of the seven dependent measures
in stow flight suggested that superior performance
was evidenced under no turbulence conditions.
Contrary to this finding, seven of the eight
dependent measures used in the aileron roll
suggested that performance improved when some
level of turbulence was present.

3* System Variables. Table 9 lists the cffects
observed when the system configuration variables
were analyzed.

aileron roll. The step-down univariate analysis
confirmed this effect with a majority of the
system output and pilot input dependent measures
reflecting improved pertormance under the full
FOV condition.

The G-seat main effect did not attain statistical
significance in this maneuver for cither the multi-
vanate analysis or for any of the individual
measures at the univartate level.

Environmental by Environmental
Variable Interactions in the 3° 2° Design

None of the environmental by environmental
variable inwractions reached sigmficance in the
omnibus tests for any of the three maneuvers. This
obvious lack of synergistic cffects between
environmental factors was somewhat surprising
and will be pursued in the Discussion Section.

System by System Variable
Interactions in the 3* 2° Design

The system vanables, consisting of platform
motion, FOV, and G-seat, produced the intes-
actions shown in Table 10.

Considering all three maneuvers used in this
design, only two of the three possible first order
interactions of the system variables attainec
statistical sigmficance. The FOV by G-seat 'nter-
action did not 1each significance m any o. the
three maneuvers

Motion by FOV. The motion by FOV
interaction was statistically sigmficant 1 the
multivanate analysis for both the takeoff and GCA
mancuvers. Table 11 and 12 give the dependent




Table 7. G-Seat Main Effects Across Takeoffs,
GCAs, and Overhead Pattern Maneuvers

Source % (Off) X (On) SSBET SSW/IN F »
Takeoff
Heading Deviation 3.34 344 .594 672 .189 664
Pitch Attitude 1.96 1.70 3.63 113 6.91 009*
Course Deviation 1.02 1.20 1.66 220 1.62 205
Airspeed Deviation 5.63 4.51 68.0 3,510 4.15 043+
Elevator Power 247 2.63 1.36 113 2,559 111
Rudder Power 825 741 376 58.2 1.38 241
Aileron Power 367 474 619 25.1 5.28 022%
Wilks Lambda dfy df, p(F>F,)
909 7 208 .005*
GCA
Total Score 23.5 26.0 355 25,900 2.93 .088
Touchdown Score 84.0 83.2 375 31,100 258 612
Altitude Deviation 440 352 4,240 87,800 10.2 .002*
Airspeed Deviation 2.70 248 2.76 356 1.66 199
Centerline Deviation 108 95.3 8,760 277,000 6.76 .010*
Glidepath Deviation 373 34.6 414 43,000 2.06 152
Elevator Power 425 472 118 12.2 2.07 151
Aileron Power 483 445 075 30.3 .529 468
Rudder Power Jd13 104 005 5.16 186 .666
Elevator Power 3.97 442 11.1 1,370 1.73 .189
Aileron Power 1.66 1.69 035 407 018 .893
Rudder Power 7.77 8.62 394 18,000 468 495
Wilks Lambda dfl dfz p(F>Fo)
.855 12 203 001*
Overhead Pattermn
Pitchout Altitude 42.3 41.3 529 172,000 066 798
Pitchout Bank 11.7 9.67 221 6,550 7.23 .008*
Elevator Power 1.68 2.09 9.19 356 5.53 .020*
Aileron Power 525 553 042 42.8 208 649
Rudder Power 062 .083 025 9.78 .553 458
Downwind Altitude Deviation 40.8 39.6 726 124,000 126 723
Downwind Score 67.2 66.1 63.7 137,000 100 753
Elevator Power 1.94 2.23 4.27 301 3.04 .083
Aileron Power 1.16 1.27 721 221 698 404
Rudder Power 116 .084 .053 7.01 1.599 207
Final Turn Bank Deviation 10.6 10.5 1.34 5,240 055 815
Final Turn Airspeed Deviation 5.89 5.78 738 3,140 050 .822
Elevator Power 1.52 1.74 2.73 275 2.126 .146
Aileron Power 816 .799 .017 53.5 067 196
Rudder Power 411 432 .023 119 041 .840
Glidepath Deviation 1.27 1.03 3.14 290 2.32 130
Centerline Deviation 159 105 153,000 1,350,000 243 121
Final Airspeed Deviation 4.89 4.7 1.717 3,410 11 739
Final Score 12.5 8.05 1,080 77,800 296 .087
Elevator Power 2.78 3.27 1,229 548 5.05 .026*
Aileron Power 2.03 1.87 1.36 355 821 366
Rudder Power 4.00 3.98 .040 3,180 .003 958
Landing Score 76.0 77.0 54.0 23,800 487 486
Wilks Lambda df, df, p(F>Fy)
.864 23 192 159

Note. — All univariate Fs evaluted at F, ,5,,.

*p <.05.
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Table 9 (Continued)

Source X (Ot X (SP Only) X (On) SSBET SSW/IN F p
G-Seat
Bank In Deviation 217 212 1.87 1.39 149 .363 .696
Roll Acceleration 13.1 12.9 12.5 153 3,690 .080 924
Roll Score 42.8 36.3 36.4 761 38,600 769 467
Bank Out Deviation 3.75 3.39 3.32 2.85 214 .520 .596
Aileron Power (In) 2,03 143 1.60 5.10 263 .756 473
Aileron Power (Roll) 1.49 1.22 1.23 1.28 129 387 .681
Aileron Power (Qut) 1.45 1.16 968 3.20 143 875 421
Total Score 29.1 29.0 212 61.8 32,900 073 929
Wikks Lambda af, df, p(F>F,)
824 16 142 570
Note. — All univariate F's evaluated at F2 78.
*p < ,05,
SP only = Seat Pan Only.
Table 10. Significant System by System Variable Interactions
Across All Maneuvers
Source Wilks Lambda (A) daf, dt, Fo P(F>F,)
Takeoff
Motion by G-Seat 667 14 220 3.52 .000
Motion by Field of View 787 14 220 1.98 .019
GCA
Motion by Field of View 585 24 210 2.69 .000
Overhead Pattern
Motion by G-Seat 494 46 188 1.72 .006
Table 11. Field of View by Motion Interaction Cell Means for Takeoff
Floid of View (fuk) Field of View (maskea)
-~ 0 3 s u 3 s
Source por DOF DOF DOF DOF DOF
1. Heading Deviation 3.24 3.55 3.69 3.41 3.28 3.13
2. To/Ati Deviation 1.04 1.97 1.75 1.56 1.93 1.91
3. Course Deviation 1.63 1.05 1.00 96 1.01 1.00
4. Airspeed Deviation 461 572 6.22 3.63 590 432
5. Elevator Power 246 2.49 2.86 2.57 2.45 247
6. Aileron Power .57 .88 1.15 .59 72 .78
7. Rudder Power 46 35 47 Sl 34 38

Noke. — DOF = degrees of freedom, motion platform.
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Table 9 (Continued)

Source x (Ot) X (SP Only) X (On) SSBET SSW/IN F P
G-Seat
Bank In Deviation 217 212 1.87 1.39 149 363 .696
Roll Acceleration 13.1 12.9 12.5 1.53 3,690 080 924
Roll Score 42.8 36.3 36.4 761 38,600 769 467
Bank Out Deviation 3.75 3.39 332 2.85 214 .520 596
Aileron Power (In) 2,03 143 1.60 5.10 263 .156 473
Aileron Power (Roll) 1.49 1.22 1.23 1.28 129 387 .681
Aileron Power (Out) 145 1.16 968 3.20 143 875 421
Total Score 29.1 29.0 27.2 61.8 32,900 .073 929
Wilks Lambda df, df, p(F>F))
SA 16 142 579
Nots. - All univariate F’s evaluated at F2 78.
*p <,05,
SP only = Seat Pan Only.
Table 10. Significant System by System Variable Interactions
Acros All Maneuvers
Source Wilks Lambda (N daf, dt, Fo P(F>F,)
Takeoff
Motion by G-Seat 667 14 220 3.52 .000
Motion by Field of View 187 14 220 1.98 .019
GCA
Motion by Field of View 585 2 210 2,69 .000
Overhead Pattern
Motion by G-Seat 494 46 188 1.72 .006
Table 11. Field of View by Motion Interaction Cell Means for Takeoff
Fleld of View (ful) Fisld of View (masked)
-0 3 s v 3 s
Source por’ DOF DOF DOF DOF DOF
1. Heading Deviation 3.24 3.5 3.69 3.41 3.28 313
2. To/Att Deviation 1.04 1.97 1.75 1.56 1.93 1.91
3. Course Deviation 1.63 1.05 1.00 96 1.01 1.00
4. Airspeed Deviation 4.61 572 6.22 3.63 5.90 432
5. Elevator Power 2.46 249 2.86 2.57 245 2.47
6. Aileron Power 57 .88 1.15 .59 72 .78
7. Rudder Power 46 35 47 S1 34 38

Note. — DOF = degrees of freedom, motion platform.
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Table 12. Motion by Field of View Interaction Cell Means for GCA

¥ull Fleid of View Maskeg Fisid of View

0 DOF 3 6 0 DOF 3 s
Source Motion DOF DOF Motion oOF DOF
1. Total Score 28.15 23.92 23.07 26.39 24.62 22.37
2. Touchdown 83.74 84.15 80.94 85.12 82.70 84.86
3. Altitude Deviation 53.20 44.14 46.65 31.22 3833 41.94
4,  Airspeed Deviation 2.47 2.63 3.Q2 233 2.24 2.81
5. Centerline Deviation 9547 100.46 102.12 97.93 104.52 109.48
6. Glidepath Deviation 34.91 36.48 32.94 37.67 34.63 39.08
7. Elevator Power 38 41 61 36 37 .53
8.  Aileron Power 25 49 .83 29 41 48
9. Rudder Power .07 .07 A5 10 14 .08
10.  Elevator Power 3.92 340 5.21 4.64 3.98 4.00
11.  Aileron Power 1.36 1.56 236 1.69 1.29 176
12.  Rudder Power 7.47 7.54 11.13 9.62 6.11 7.25

variables means for the treatment cells of both
maneuvers. Table 13 gives ratings of the mean
performance for these maneuvers. Inspection of
this table reveals best performance falling in the no
motion, full FOV condition in the GCA. In this
mancuver, performance generally deteriorates with
the introduction of platform motion. The same

off maneuver under the three and six DOF
platform motion conditions. The analysis of the
data from both maneuvers suggests that superior
performance occurred under the masked FOV
condition. The best performance in the takeoff
maneuver occurred with the masked FOV, but
when 6 DOF of platform motion was present.

deterioration in performance occurred in the take-

Table 13. Motion by FOV Interaction Mean Ratings
for the GCA and Takeoff Maneuvers

i

sca
Field of View
Full Masked
0 DOF 2.29* 2.83
Motion 3 DOF 3.37 2.83
6 DOF 5.33* 4.33
x? crit = 2.99
Full Masked
0 DOF 3.00 2.85
Motion 5 DOF 442 3.14
6 DOF 4.78 2.78
x?ent =332

*Indicates sigmficant difference.
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Table 16. Motion by G-Seat Interaction Mean Ratings for the Takeoff
and Overhead Pattern Maneuvers

Takeofs
G-Seat
off On
0DOF 2.64 3.28 .
Motion 3 DOF 3.21 n
6 DOF 4.57 3.57
x* crit =332
Overhead Pattern
G5t
ot on
0DOF 2.48* 3.22
Motion 3 DOF 3.76 3.20
6 DOF 4.37* 3.98
x? crit = 1.82

*Denotes significant difference.

System by Environmental Variable
Interactions in the 3° 2° Design

The third type of interaction considered in this
study was the system by environmental variable
interaction. These data are listed in Table 17.

Of the nine possible first order interactions
between environmental and system variables, only
three attained statistical significance in the multi-
variate test.

Turbulence by Motion. The turbulence by
motion interaction was significant in all three
maneuvers. Table 18, 19, and 20 present the treat-
ment cell means across all dependent variables.

Table 21 shows the mean ratings of perform-
ance for this interaction across the three
maneuvers. In all cases, best performance was
demonstrated in the no motion, no turbulence
conditions. Thercafter, pilot performance
consistently became poorer as turbulence and
platform motior increased.

C/V by FOV. The second interaction, ceiling
visibility by FOV, and the final significant inter-
action of this type, C/V by G-seat, were

26

manifested only within the analysis of the GCA
maneuver. Table 22 gives the mean performances
for the C/V by FOV treatment cells.

C/V by G-Seat. As stated above, this interaction
was statistically significant only for the GCA
mancuver, Table 23 lists the mean performance
observed for the C/V by G-seat treatment cells.

Analysis of C[V Interactions, Table 24 shows
the differences in the mean ratings for the two
C/V interactions. In both instances, superior
performance was evidenced in the dear C/V
conditions. This performance was accompanied in
the first interaction with the masked FOV, and in
the second with the Gseat being operational.

The Second Order [nteraction in*the 3% 2°
Design. The most surprising interaction produced
was a second order interaction, C/V by FOV by
G-seat, that reached probability levels of
p =<025, p=<01, and p=<00! in the multi-
variate analysis ut the takeoff, GCA, and overhead
pattern maneuvers, respectively. Tables 25, 26 and
27 contain the mean performance data on these
maneuvers. Table 28 contains the mean ratings of
performance for this interaction across all three
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Table 16. Motion by G-Seat Interaction Mean Ratings for the Takeoff
and Overhead Pattern Maneuvers

Takeoff
G-Seat
otf On
0DOF 2.64 3.28 .
Motion 3 DOF 3.21 3.71
6 DOF 4.57 3.57
x? crit =3.32
Overhead Pattern
oft on
0 DOF 2.48* 3.22
Motion 3 DOF 3.76 3.20
6 DOF 4.37* 3.98
x? orit = 1.82

*Denotes significant difference,

System by Environmental Variable
Interactions in the 3% 2° Design

The third type of interaction considered in this
study was the system by environmental variable
interaction. These data are listed in Table 17.

Of the nine possible first order interactions
between cavironmental and system variables, only
three attained statistical significance in the multi-
variate test.

Turbulence by Motion. The turbulence by
motion interaction was significant in all three
maneuvers. Table 18, 19, and 20 present the treat-
ment cell means across all dependent variables.

Table 21 shows the mean ratings of perform-
ance for this interaction across the three
maneuvers. In all cases, best performance was
demonstrated in the no motion, no turbulence
conditions. Thereafter, pilot performance
consistently became poorer as turbulence and
platform motior increased.

C/V by FOV. The second interaction, ceiling
visibility by FOV, and the final significant inter-
action of this type, C/V by G-seat, were

manifested only within the analysis of the GCA
maneuver. Table 22 gives the mean performances
for the C/V by FOV treatment cells.

C/V by G-Seat. As stated above, this interaction
was statistically significant only for the GCA
maneuver. Table 23 lists the mean performance
observed for the C/V by G-seat treatment cells.

Analysis of C/V Interactions. Table 24 shows
the differences in the mean ratings for the two
C/V interactions. In both instances, superior
performance was evidenced in the clear C/V
conditions. This performance was accompanied in
the first interaction with the masked FOV, and in
the second with the Gseat being operational.

The Second Order Interaction in*the 3% 2°
Design. The most surprising interaction produced
was a second order interaction, C/V by FOV by
G-seat, that reached probability levels of
p=<025, p=<0l, and p=<00! in the multi-
variate analysis ui the takeoff, GCA, and overhead
pattern maneuvers, respectively, Tables 25, 26 and
27 contain the mean performance data on these
maneuvers, Table 28 contains the mean ratings of
performance for this interaction across all three




Table 17. Significant System by Environmental Interactions Across all Maneuvers

Witks
Source Lambda (A) daf, dt, Fy P(F>F,)
Takeoff
Turbulence by Motion .639 28 398.03 1.877 005
C/Vby FOVby G .867 7 110 2.414 .024
GCA
Turbulence by Motion 480 48 406.50 1.77 .001
(VMY by FOV 174 12 105 2.54 .005
C/Vby G 774 12 105 2.54 .005
C/V by FOV by G .688 12 105 3.95 .000
Overhead Pattem
Turbulence by Motion 312 92 374.56 1.39 .017
C/Vby FOV by G .586 23 94 2.88 .000
Slow Flight
None
Aileron Roll
None

CIV = Ceiling/ Visibility
FOV = Field of View
G = G-Seat

Table 18. Turbulence by Motion Interaction Cell Means for Takeoff

0 DOF Motion 3 DDF Motlon 6 DOF Motion

No Light Mod No Light Mod No Light Mod

Source Turd Turb Turb Turb Turb Turb Turb Turb Turb
Heading 3.32 343 3.22 3.60 3.43 3.2 3.01 3.50 3.72
Altitude Deviation 1.86 1.55 1.68 1.79 2.20 1.87 2.09 1.82 1.57
Course Deviation 1.13 1.55 1.20 .90 1.12 1.05 98 1.05 97
Airspeed 5.27 326 3.82 4.60 6.16 6.69 4.54 5.75 5.52
Elevator Power 2.29 2.74 2.51 244 2.42 2.56 2.42 2.63 2.94
Aileron Power .53 39 60 78 83 77 76 1.01 1.12
Rudder Power 38 48 58 26 38 .39 47 33 48

Note. — Turb = Turbulence.

27




- P e S -
cemg ar . -, . - J b e A s Amm—

Table 19. Turbulence by Motion Interaction Cell Means for GCA

0 DOF Motion 3 DOF Motion 6 DOF Motion
No Light Mod No LIght Mod No Light Mod
Source Turb Yurb Turb Turb Turd Turd Turd Turd Turbd
Total Score 26.601 27.23 2798 2569 2296 24.16 27.06 18.05 23.06

Touchdown Score 83.56 8296 86.76 8031 83.05 8642 8350 81.65 83.56
Altitude Deviation 3094 3270 3599 3743 37.51 4876 3535 50.67 46.87
Airspeed Deviation  1.74 242 3.04 219 248 264 213 2.95 3.68
Centerline Deviation  102.53 9223 95.3° 101.92 106.26 99.29 100.21 11573 101.4¢6
Glidepath Deviation 3430 3594 38.62 3532 3579 3556 32.15 37.85 38.03

Elevator Power 30 40 42 35 33 49 39 61 70
Aileron Power 23 28 31 44 42 A9 47 1 79
Rudder Power .07 07 12 05 .09 A8 .08 15 13
Elevator Power 4.03 413 469 3.5% 3.26 423 3.84 4.67 5.30
Aileron Power 7.44 831 992 874 5.60 6.14 7.89 838 11.31

Note. — Turb = Turbulence.

Table 20. Turbulence by Motion Interaction Cell Means for Overhead Pattern

No Turbulence Light Turbulence Moderate Turbulence
0 DOF 3 6 0 DOF 3 6 0 DOF 3 6
Source Motion DOF DOOF Motion DOF DOF Motion DOF DOF
1. Altitude Deviation 38.65 38.59 4736 37.79 4408 53.03 3432 39.06 4292
2. Bank Deviation 8.91 1146 1135 1094 1264 9.79 10.51  9.36 11.15
3. Elevator Power 1.29 1.64 148 2.22 1.64 2.13 2.06 1.85 1.73
4, Aileron Power AS 63 49 48 .39 75 37 Sl 74
5. Rudder Power 05 .02 04 .08 .03 16 .04 .14 .05
6. Altitude Deviation 35.79 38.85 37.64 3291 38.14 4647 33.i18 47.13 5270
7. Downwind Score 7017 71.74 7244 6928 6632 6332 7121 5848 59.65
8. Elevator Power 2.15 1.76 195 2.38 1.46 2.37 2.11 1.99 2.56
9. Aileron Power .80 .29  1.38 94 1.13 1.76 94 1.09 1.58
10. Rudder Power .05 .04 02 .08 12 13 15 .16 11
11. Bank Deviation 10.11  11.58 11.12 1027 11.05 10.18 945 9.18 11.73
12. Airspeed Deviation  4.36 6.30 6.00 519  7.54 5.24 747 4.56 5.83
13. Elevator Power 1.32 .52 171 1.78 1.47 1.75 1.53 1.41 2.16
14. Aileron Power .56 83 80 62 .89 99 £2 5 1.15
15. Rudder Power 33 S50 25 .70 27 36 40 47 A7

16. Altitude Deviation 117 .89 109 113 109 1.60 111 135 .88
17. Centerline Deviation 183.57 9639 14372 73.68 14135 20007 12531 16329 59.01
18. Airspeed Deviation 570  4.15 377 349 353 550 544 648  5.09

19. Final Score 5.86 1739 1037 1290 1009 5.36 5.82 9.05 15.85
20. Elevator Power 3.25 235 3.07 305 29  3.03 3.53 2.96 3.01
21. Aileron Power 1.59 1.91 227 1.58  2.12 1.92 191 2.09 2.14
22. Rudder Power 3.64 322 320 4.72  3.26 350 4.81 3.96 5.55
23. Tota! Score 80.57 73.14 7590 7331 75.02 77.53 8036 8034 72.10
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Table 21. Turbulence by Motion Interaction Mean Ratings for the Takeoff,

GCA and Overhead Pattern Maneuvers
Takeoft
Turbulence
None Light moderate
0DOF | 4.07 4.7 4.78
Motion 3 DOF | 4.28 6.07 4.78
6DOF | 492 6.00 6.35
X’ crit = 5.74
GCA
Turbulence
None Light Moderate
O0DOF | 3.08 3.58 5.08
Motion 3DOF | 4.33 4.41 533
6DOF | 3.83 3.75 741
x? crit=4.37
Ovsrhead Pattern
Turbulence
None Light Moderata
ODOF | 4.06 4.69 4.52
Motion 3DOF | 4.1 4.60 532
6 DOF | 4.52 6.65 6.39
x? crit =3.17
29




Table 22, Ceiling/Visibility by FOV Interaction Cell Means for GCA

Full Fisid of View Masked Fleld of View
Source Clear Minimums Clear Minimums
Total Score 25.51 24.58 28.34 20.58
Touchdown Score 85.29 80.61 84.58 83.88
Altitude RMS Error 46.57 3742 34.23 40.10
Airspeed RMS Error 2.82 2.59 234 2.58
Centerline Deviation 98.17 100.54 91.88 116.07
Glidepath Deviation 34.80 34.75 34.53 39.73
Elevator Power 46 47 39 45
Aileron Power .57 48 35 44
Rudder Power .10 10 A1 A1
Elevaror Power 4.63 3.72 392 4.50
Aileron Power 1.78 1.74 1.30 1.86
Rudder Power 9.70 7.74 6.73 8.59

Table 23. Ceiling/Visibility by G-Seat Interaction Cell Means for GCA

G-Seat Off G-Seat On
Source Clear Minimums Clear Minimums
[J
Total Score 25.25 21.69 28.61 23.46
Touchdown Score 84.57 33.44 85.29 81.05
Altitude RMS Error 49.87 38.11 3093 3941
Airspeed RMS Error 2.72 2.68 244 2.50
Centerline Deviation 100.14 11593 89.91 100.68
Glidepath Deviation 34.68- 3799 32.65 3649
Elevator Power 40 44 45 48
Aileron Power 49 46 42 46
Rudder Power g1 10 09 A1
Elevater Power 3.92 4.01 4,63 4.21
Aileron Power 1.52 1.78 1.54 1.82
Rudder Power 7.91 7.61 8.52 8.72
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Table 24. Ceiling/Visibility by FOV and Ceiling/Visibility by G-Seat
Interaction Mean Ratings for the GCA Maneuver

Fleld of View

Full Masked
Clear 2.95* 1.37%°
Ceiling/Visibility
Minimums 2.54 3.29°
¥ crit =1.47
G-Seat
off on
Clear 2.37 1.66*
Ceiling/Visibility
Minimums 2.70 3.25%
2 i
x* crit=1.47

*°Denotes significant differences.

Table 25. Ceiling/Visibility by FOV by G-Seat Interaction Cell Means for Takeoff

G-Seat Off G-Seat On
Futl Masked Full Masked
Field of View Fleld of View Fletd of View Field of View
Source Clear Minimum Clear Minimum Clear Minimum Clear Minimum

1. Heading Deviation 3.08 3.86 2.83 355 3.12 392 2.99 371
2. To/Att Deviation 1.90 196 1.92 204 1.70 1.85 1.62 1.61
3. Course Deviation 8a, 99 98 1.24 1.53 1.51 88 86
4. Airspeed Deviation 5.59 6.26 315 7.51 294 7.27 3.01 4.79
5. Elevator Power 2.24 2.71 222 27 2.76 2.69 2.57 249
6. Aileron Power 96 85 .57 90 70 92 62 69
7. Rudder Power 42 32 31 39 54 40 42 S1
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Table 26. Ceiling/Visibility by FOV by G-Seat Interaction Cell Means GCA

G-Seat Off G-Seat On
FloldF:: 'VI ow Flol':.:'( .\’Iow FloldF:f“Vlow FluMd.::.\’low
Source Ciear Minimum  Clear Minimum Clear Minimum Clear Minimum
1. Total Score 2229 2515 2821 18.24 2874 2402 2847 2191
2. Touchdown Score 8452 8433 8462 8254 8605 76.88 84.54 85.21
3. Alt Deviation Error 62.04 3296 376+ 4326 31.10 4188 30.76 36.9%4
4. Airspeed Deviation Error  3.08 2.58 235 277 2.56 261 232 229
5. Centerline Deviation 107.89 104.17 9240 12768 8845 9690 91.37 10447
6. Glidepath Deviation 3723 3464 3613 4134 3238 3486 3292 38.11
7. Elevator Power 44 46 35 43 48 49 42 A8
8. Aileron Power 63 44 36 49 .51 52 33 39
9. Rudder Power 12 .08 A1 12 08 11 A1 10
10. Elevator Power 3.84 342 4.01 4.60 542 4.03 384 439
11. Aileron Power 1.96 1.32 1.10 2.24 1.60 2.16 1.49 1.48
12. Rudder Power 9.35 6.62 6.47 8.61 10.04 8.87 7.00 8.57
Table 27, Ceiling/Visibility by FOV by G-Seat Interaction
Cell Means for Overhead Pattern
G-Seat Off G-5eat On
Fult Masked Full Masked
Field of View Fieid of View Fleid of View Fleid of View
Source Clear Minimum Clear Minimum Clear Minimum Clear Minimum
1. Altitude Deviation 4704 3745 29.74 54.78 27.00 6498 4124 31.82
2. Bank Deviation 13.93 10.58 1236 990 8.74 10.78 10.63 8.52
3. Elevator Power 1.16 2.16 1.73 1.66 2.08 2.05 2.24 1.98
4. Aileron Power 47 .69 37 .56 .62 59 43 S5
5. Rudder Power 06 .06 06 .04 .16 05 .02 08
6. Altitude Deviation 4539 3477 3247 5049 27.93 56.19 3747 36.88
7. Downwind Score 57.58 6938 69.30 62.55 76.03 4841 68.67 735
8. Elevator Power 1.32 2.54 1.59 231 2.11 2.54 1.81 143
9. Aileron Power 1.04 1.29 82 147 1.45 1.56 96 1.11
10. Rudder Power 14 .07 d1 13 .07 07 .09 08
11. Bank Deviation 12.03 1255  7.17 10.68 1030 1090 9.79 10.81
12. Airspeed Deviation 4.80 6.07 5.27 742 5.13 6.98 5.06 591
13. Elevator Deviation 1.20 1.85 1.29 1.72 2.00 1.52 1.37 2.06
14. Aileron Power 93 .86 .66 .79 T2 1.03 65 77
15. Rudder Power 43 25 .58 37 64 29 39 39
16. Altitude Deviation 1.46 1.50 94 1.16 1.04 1.02 88 1.16

17. Centerline Deviation 2059  268.0 42,56 117.75 88.88 9620 101.43 134.62
18. Airspeed Deviation 4.63 6.87 3.06 497 5.06 544 4.14 4.18

19. Final Score 12.22 11.28 1698 9.55 7.54 5.90 14.00 4.74
20. Elevator Power 2.46 3.31 243 2.89 343 2.85 3.11 3.66
21. Aileron Power 2.14 2.09 1.60 2.29 1.73 2:29 1.58 1.88
22. Rudder Power 3.66 4.23 3.23 4.87 423 392 3.36 4.37
23. Total Score 7706 7632 71.05 7347 75.14 7694  79.19 76.63
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Tuble 28. Ceiling/Visibility by FOV by G-Seat Interaction Mean Ratings

for the Takeoff, GCA and Overhead Pattern Maneuvers

]

G-Seat Off G-Seat On

-; Full FOV Masked FOV Full FOV Masked FOV
1 2 3 4

Clear 428 243 5.00 292
8 Ceiling Visibility . 5 3 5
Minimum 5.50 6.07 6.00 3.50
| ,

:f x* crit =491

Significant Cell Differences: None

i

aca

,@ G-Seat Off G-Seat On

- Ful FOV Masked FOV Full FOV  Masked FOV
,; ] 2 3 4

i Clear 633 2.83 375 2.46
” Ceiling Visibility 5 6 7 8
Minimum 3.45 6.70 592 4.54
i X? crit =3.75

Significant cell Differences: 14, 2-6, 46

Overhead Pattern

G-Seat Off G-Seat On

Full FOV—_—_;;:kod FOovV Full FOoVv Masked FOV
1 2 3 4

Clear 465 2.80 4.06 332
Ceiling Visibility 5 5 7 5

’ Minimum 5.56 534 5.52 460

x? crit =2.70
Significant Cell Differences: 25
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manecuvers. Best performance was demonstrated
under the Gseat off, masked FOV, and clear
ceiling/visibility conditions for two of the three
maneuvers. Generally, performance became poorer
with the introduction of minimum C/V as well as
introduction of the full FOV Wwhen considered in
conjunction with G-seat on condition.

Interactions in the 3% Design.
Environmental by environmental interactions
were nonexistent in the 3* design, as
only one environmental variable was
utilized. Environmental by system
interactions and system by system
interactions were nonsignificant as evaluated
by the Wilks Lambda.

Subject Effects

Measures of subject differences were obtained
on all five maneuvers. In both designs, these
effects showed that each pilot had particular areas
of expertise and sophistication; however, one of
the three pilots was more consistently rank
ordered in the first position than the other two.
The significance for each of the subject effects is
available in Appendix B where the MANOVA
results for each of the maneuvers are listed.

IV. DISCUSSION OF RESULTS

Introduction

Before proceeding to the discussion proper, a
cautionary note must be sounded. Because of the
Air Force’s urgent need for empirical data dealing
with the material in this study, the real danger
exists that overgeneralization or misgeneralization
of the results may occur, thus leading to inap-
propriate or perhaps even incorrect decisions.

The experimental results of this study should
be considered with the following facts in mind:

1. This study dealt only with experienced
pilot performance so no generalizations should be
made to the naive student training situation.

2. Performance in the study is reflected only
in scores attained in the ASPT simulator and might
in no way generalize to either performance in the
aircraft, another simulator, or even to ASPT if it
were programmed using different equations of
flight.

3. Generalizations to the population from
which the thres subject pilots came are valid only
to the extent that this small n is representative of
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the population of experienced T-37 instructor
pilots. An attempt was made to partially control
for this source of :xternal invalidity through
selection of the pilots used, but to the extent that
the matching process was incomplete, the results
could be misrepresentative.

4. The results of this study should probably
not be generalized to maneuvers other than those
flown during the experiment. The effects of
motion, visual scene and G-seat are most likely
quite task specific, and thus a particular set of
design configurations that yielded no significant
effect on the five maneuvers tested in this study
could have produced different results had other
tasks beer tested.

5. The issue of training transfer to the aircraft
cannot validly be addressed based upon the data
collected in this study. Thus, although no motion
performance was generally superior to
performance in either 3 DOF or 6 DOF motion
configurations, performance could be better
simply because it is easier to fly the simulator
without the task load added by a moving platform.

6. The basic purpose of the study was
exploratory in nature. Hopefully, more definitive
statements about the simulator design configura-
tions issue can be made as follow-on study results
are made available.

With the foregoing as a preamble, the remainder
of this section will deal with an interpretation of
the experimental findings. The general approach
will parallel that used in the Results Section.

Environmental Variables

Part of the rationale for inclusion of environ-
mental variables in this study was an attempt to
provide face validity for the performance measure-
ment algorithms as currently implemented in
ASPT. Additionally, these variables provided a
more realistic setting for the completion of each
maneuver.

Overall, the environmental variables produced
the anticipated results; that is, superior perform-
ance as demonstrated by system output, pilot
input and derived scores was generally evidenced
in “clear weather” conditions. Normally, as the
weather conditions deteriorated, so did the pilots’
performance. These results strongly indicate that
the scoring algorithms were valid and that they
operated in the intended manner. Specifically,
only the turbulence variable failed to reach
significance in all of the maneuvers where it was
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evaluated. This was not surprising in that
turbulence is always present to some degree in
actual flight. The pilots, therefore, probabiy had
the most experience in adapting to the disturb-
ances produced by this variable.

System Variables

The variables of primary concern, platform
motion, FOV and Geat all evidenced significant
impact upon the pilots’ performance in the
simulator. The first system configuration variable,
platform motion, evidenced significant main
effects on every maneuver investigated. This
result provided evidence that although an
individual may not be able to discern the
operation or nonoperation of the motion plat-
form, the status of the motion platform directly
affected performance in the simulator. Generally,
the pilots’ performance was best under the no-
motion condition and deteriorated with the
addition of degrees of freedom of simulator move-
ment. From a performance standpoint then, as the
simulator became less stable, the pilots’ scores
became poorer, perhaps indicative of a more
difficult task. Another possible explanation which
accounts for the poorer performance under condi-
tions of motion is that the motion platform may
have provided inadequate or inappropriate cueing.
The time lag between pilot input and system out-
put may have contributed to the increased
difficulty of achieving successful pesformance.

The G-seat significantly affected performance
on two of the five maneuvers: the takeoff, and
GCA maneuvers. One obvious characteristic
common to the two maneuvers is the inherent lack
of violent movements around the roll axis and to a
lesser degree, the pitch axis. The overhead
maneuver, the aileron roll, and to a limited extent,
the slow flight maneuvers all incorporated
rotational movement along the lateral axis. The
lack of significance in the roll-oriented maneuvers
may have been due to an engineering flaw which
surfaced after the completion of dataxollection. It
was discovered that the Gseat was functioning as
if it were located at the center of gravity of the
simulated T-37 aircraft rather than forward and
slightly tc the left of the CG as in the aircraft
itself. This decreased the moment arm of the
pilots’ position relative to the longitudinal axis of
the aircraft to near nonexistence. Thus, the G-seat
may have been prevented from providing cues of
the necessary magnitude. In those instances where
the Gseat did produce significant effects, how-
ever, the performance was generally superior when
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the Gseat was functional as compared to when it
was not. The differences between the seat pan
only and full G-seat conditions in the aileron roll
and slow flight maneuvers were inconsistent.
Therefore, no interpretation should be drawn as to
which was the superior condition.

The FOV variable evidenced significant
differehces in only one of the five maneuvers,
aileron roll, and approached significance on one
other maneuver, the overhead pattern. Inspection
of the dependent variable values, however, con-
sistently suggested that overall, the full FOV
condition produced somewhat better performance.
In spite of this, it seemed that on the basis of the
overall  nonsignificance, the additional cue
information provided by the wide visual display
was either not particularly vital or could be
acquired from other sources (e.g., the
instruments).

The performance of the aileron roll maneuver
was superior under the full FOV condition as
compared to no display and masked FOV display
conditions.” When the aileron roll and GCA’s
dependence upon precise rotational movement
around the longitudinal axis of the aircraft was
considered, it appeared that FOV is an important
factor. In these cases, the wide FOV provided
additional information regarding the bank position
of the aircraft,

System by System Variable
Interactions

All of the significant first order interactions of
the system variables included the platform motion
variable. This coupled with the relatively strong
motion main effects attested to the power of this
factor upon pilot performance. Consistently, the
addition of some level of platform motion, either
three or six DOF, in the presence of a full or a
masked FOV, caused pilot performance to be
degraded. This performance decrement was
observed in the presence (or absence) of the G-seat
as well. The deterioration in the scores was
somewhat lessened by the presence of the G-seat
or the masked FOV. Obviously, the G-seat was
providing important cues to the pilot when used in
conjunction with ASPT’s platform motion system.
But, it should not be forgotten that the best
performance on the maneuvers was observed when
neither motion cueing system was functioning.
The better scores produced by the masked FOV,
when used in conjunction with platform motion, is
somewhat more difficult to explain. Possibly, the
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limitations in the visual scene caused the pilot to
seek the information from other sources, most
likely the instrument panel. Instrument flight is
commonly accepted to be a more precise mode of
flight than is contact or visual flight.

System by Environmental
Variable Interactions

The turbulence by motion interaction consis-
tently demonstrated a synergistic effect between
motion and turbulence variables. Both variabies
independently caused performance decrements
when added in increasing amounts and when used
in conjunction, these variables caused even greater
deterioration. A simple explanation is that both
the platform motion and the turbulence adversely
affected the stability of the pilots’ vehicle, thus
causing more random fluctuation of the vehicle’s
flight path. The significant motion by turbulence
interaction supported this argument.

Other significant interactions were the C/V by
G-seat, C/V by FOV, and the second order C/V by
FOV by G-seat interaction. These factors (C/V,
FOV and Gseat) showed a surprisingly strong
interactive potential. In the C/V by Gseat inter-
action in the GCA, best performance under clear
weather conditions was evidenced when the Gseat
was functional. However, when the weather
deteriorated to minimums best performance
occurred when the G-seat was inoperative. This
interaction seemed to emphasize the differences
between piloting processes in instrument and
visual flight. Under IFR conditions, the pilot is
trained to disregard kinesthetic information and
relies upon the information provided by the
instrument display. In visual flight, the pilot makes
more use of “seat-of-the-pants” cues in controlling
the vehicle.

The C/V by FOV interaction was somewhat
more difficult to interpret. Under clear weather
conditions, superior performance in the GCA was
produced when the FOV was masked. Conversely,
when the visibility was poor, the pilots performed
better with the visual display at its full extent. It
would appear that the additional information
provided by the full FOV was beneficial in poor
weather, but distracting in the clear conditions.
This seems reasonable in that the cues necessary to
perform a GCA in clear weather are largely
concentrated directly ahead of the aircraft.

The C/V by FOV by Geseat interaction was
very surprising due to the consistency and size of
this second order effect. In all the maneuvers
where this effect could have occurred, it was
significant and large. Best performance occurred
with clear C/V as compared to minimum C/V. This
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result remained constant across all conditions of
FOV and Geseat. Similarly, the masked FOV
consistently produced better performance than did
the full FOV condition. The G-seat variable, how-
ever, did not demonsirate the consistency that the
other variables manifested, and no interpretation is
readily apparent when the G-seat contrasts are
considered. One possible explanation for this
phenomenon was that the visual information
required to successfully complete the manuevers
used in this study was concentrated directly
forward of the aircraft, and that the additional
information provided by the wide FOV was
unnecessary. This, coupled with the information
degradation caused by poor visibility, could have
negatively affected the pilots’ performance.

Subject Effects

Individual differences ar¢ not unusual in
psychological research, and consistent significant
subject effects were found throughout all of the
maneuvers. These data strongly suggest that the
pilots’ pattemns of vehicle control were quite
individualistic. It also strongly implies that when
presented new system or environmental
conditions, pilots adapt to these changes in
different ways. This evidence discredits the theory
that ali pilots would respond t. simulat~r system
configuration changes in like manner, or that
system output measures are the only dependent
variables of interest in simulation research.

Dependent Mv .ures

An investig tion of the dependent measures
revealed basic differences in the sensitivity of the
types of measures as a function of the simulator
and environmental conditions presented to the
pilot. Using the ratio of the non-error variance of
each dependent measure on one effect to the
remainder of the non-error varance, it was seen
that if a change to the vehicle’s environment
occurred, the system output variables were most
responsive. If changes to the vehicle’s configura-
tion occurred, the pilot input measures were most
sensitive to the changes. This finding provided
additional face validity for the dependent measure-
ment set, The derived scores were equally
distributed in their sensitivity to either environ-
mental or configuration modification. Thus, if one
wished to assess differences in performance
occurring due to changes in simulator configura-
tion, pilot input measures would seem to be most
appropriate. On the other hand, if differences due
to environmental alterations are sought, system
output measures would seem fto be most
appropriate.
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V. DISCUSSION OF METHOD

There are two aspects of the methodology
selected for use in this study that deserve further
discussion. The first issue deals with the design and
analysis of the study; the second involves the types
of measures used as dependent variables.

Study Design and Analysis

The problem faced at the conception of the
study was multi-faceted. It was necessary to
explore a large number of simulator configura-
tions. The constraint was, however, to conduct the
evaluation as economically as possible in terms of
the number of subjects, the number of data
measurement points and the amount of system
time required. The selection of an economical
multifactor design provided the vehicle that met
these requirements.

Several trade-offs, therefore, were incurred asa
result of the particular experimental designs used
in this study. First, replication of measurement
points became impossible. Although the lack of
redundancy in the measurement process was
expected to cause an increase in the variability of
certain descriptive indices, it was outweighed by
the confidence vested within the dependent
measurement set.

Second, subject by treatment interactions, and
third order interactions were unavailable for
analysis due to the extremely small number of
subjects. To counter part of this limitation,
experienced pilots were selected as subjects to
minimize the subject by treatment interactions.
Also, past experience had shown that third and
higher order interactions rarely contributed much
to the non-error variance.

The results of this study substantiated the
majority of the original assumptions. The major
sources of variability were identified. Only one
second order interaction reached a level of
appreciable significance. All indications supported
ey of this type of research design for the
investigation of a multitude of independent vari-
ables upon task-experienced subjects. If, however,
the research interest were in training paradigms,
this type of design does not appear to provide the
same benefits, largely due to the underlying
assumption that subject by treatment interactions
are of negligible importance, which is likely not
true in training studies.

In this study a vast number of dependent vari-
ables were collected for the purpose of evaluating
the measurement set. Therefore, the multi-variate
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approach was chosen. The MANOVA permitted
the measurement set as a whole (taking into
account all of the inter-correlations of the
individual dependent measures) to be evaluated for
its responsiveness to the independent variables. It
should be pointed out that the analysis of this
study solely from an univariate standpoint, would
encounter two problems: (a) each dependent
measure would have been assumed to be orthog:
onal (2n obviously fallacious assumption), and (b)
the Type t error rate would be enormously
inflated. If this study had been conducted only at
the univariate level, the Type I error rate would
have been: (assuming p < .05 significant)
1 - (1-.05)7 = 947, which is quite
unacceptable.

Dependent Measures

The dependent measurement set used in this
study was large. It was decided at the inception of
this project that in order to fully describe the
impact of the independent variables upon the pilot
performance in the simulator, two areas must be
measured: the aircraft’s flight parameters and the
work done by the pilot.

The resu'ts of the study clearly indicated that
ne one typc of measure was sufficiently descrip-
tive. Review of the non-error variances for the
dependent measures illustrated that system output
measures were sensitive to environmental changes
and that pilot input measures were morc
responsive to system configuration changes.

This study provided basic information on the
utility of the dependent measurement sets. A
second study currendy underway will provide
additional data. Taking the two studies tugether
should allow a reduction in the number of depen-
dent measures require¢ to describe pilot
performance, yet not decrease the discriminability
or explanatory pioperties of the measurement
system.

VI. SUMMARY AND CGNCLUSIONS

This study demonstrated the complexity of
advanced simulation systems and reinforced the
postulation that investigations stressing only one
aspect of the sumulation are somewhat naive.
Research must be concerned not only with the
particular system uader question, but the task to
be performed, the configuration of other portions
of the simulation, and what types of measure-
ments are employed. All of these factors mteract




with each other and continually affect the
resultant data.

In this study, each of the system configuration
variables produced significant effects. The plat-
form motion variable had a striking impact upon
pilot performance. Almost inyariably, the addition
of platform motion cueing produced a con-
comitant decline in performance. Interest in this
particular variable has prcmpted continuing
research efforts in all major simulation devices
including the ASPT. Further detailed aspects of
motion cueing will be explored at AFHRL/FT.

Another system variable, the G-seat, although
less dominant than the platform motion variable in
its main effects, demonstrated a strong interactive
potential. Interestinigly, the interaction often
occurred with a visually oriented incependent
variable.

The FOV variable showed tendencies to have
extremely maneuver-specific effects. Since the
magnitude of this effect changed as a function of
maneuver and other system variable configura-
tions, the implication is obvious: specifyirig an
optimal FOV across several different maneuvers
would be very difficult indeed. Considerable
future research activity will be spent studying this
particular system variable in the following areas:

(a) FOV width and height, (b) content and density
of visual information, and (c) texturing to produce
accurate depth cues.

The interactions of significant impact in this
study, as stated previously, confirmed the
difficulty of attempting to isolate individual
effects. These interactions, having becn outlined in
this study, are Leing pursued in a second study.
The emergence, of a strong.second order
interaction across all threc maneuvers in the 32 23
design indicates how completely multiple events
affect pilot performance. This and other inter-
actions must be further examined before definitive
statements can be made on simulator design
configurations.

The dependent variables used to measure
performance in this study showed, as expected,
that :nanipulation of the three environmental vari-
able combinations produced changes in the system
oriented dependent variables. Similarly, changes in
the pilot input variables was concomitant with
simulator configuration changes. Further research
will be aimed at reducing the dependent measure-
ment sets for certain maneuvers in order to more
effectively and economically describe performance
in the simulator.
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APPENDIX A: DESCRIPTION OF PERFORMANCE MEASUREMENT ALGORITHMS

The performance measurement algorithms used in this study subdivided each maneuver into several
exercise segments. For each exercise segment, special computer programs, labelled “cases,” w ere developed
that determined simulator system conditions and defined the parameters to be measured in that segment,
The operation of these cases may, be described in the following manner. An initialization case set the
simulator at the maneuver starting conditions. Intermediate cases executed a FORTRAN program with a
3.75 Hertz iteration rate. These were used to sample system outputs. A special case was provided which
measured the pitot outputs at an iteration rate of 15 Hertz. An end point case froze the simulator when the
end conditions for the maneuver were met.

Descriptions of the performance measurement algorithms for the five maneuvers are as follows:

Takeoff* The starting condition for the takeoff was on centerline, Runway (RW) 30L at Williams
AFB, with the aircraft configured for takeoff. The pilot set the power at 100%, released brakes, and
mantamed runway heading using nose-wheel sicering. When the airspeed reached 65 knots, the aircraft was
rotated to hold approximately five degrees pitch. The rotation speed was allowed to increase in high
crosswinds. The aircraft lifted off at approximately 90 knots. The pilot was instructed to maintain the
takeoff attitude as he raised the gear and flaps.

After the flaps were raised, the pilot adjusted the pitch to smoothly chimb and accelerate to 1,900
feet above mean sea level (MSL) and 196 knots while maintaining runway heading. Durning this initial climb,
the pilot also maintained vertical velocity between 500 and 1,000 feet per minute (FPM). After passing
1,900 feet MSL, the pilot continued the climb at tech order airspeed and turned to intercept the 302 degree
radial outbound from the Chandier VOR. The mancuver was terminated and the simulator frozen after
passing 3,000 feet MSL.

GCA and Landing: The starting condit*on was 2,400 feet MSL, 300 degree heading, and 160 knots on
an eight mule final for Runway 30C, Williams AFB. The pilot maintained starting conditions until the
Cognitronics Voice System began giving GCA “controller” mstructions. The pilot slowed to 110 knots and
lowered the landing gear and flaps at the appropriate airspeeis. He followed the “controller” heading
instructions to maintain course. At 4.5 mules, the pilot intercepi °d the glidepath. The controller then gave
information on aircraft position above or below and left or right o glidepath.

When the pilot had the runway in sight, he should have made approprnate corrections to maintain the
extended centerline and glidepath visually. The pilot was instructed to land on the runway centerline,
approximately 1,000 feet down the runway. The mancuver was terminated on landing roll after airspeed
decreased below 50 knots.

360° Overhead Pattem and Landing: The starting condition was 2,500 feet MSL, 300° heading, and
200 knots on four mile initial for RW 30L, Williams AFL. The pilct flew down initial, maintaining altitude,
aispeed, and runway centerline. Approximately halfway down the runway, the pilot pitched out by
reducing power to 50 or 60% rpm and made a steep tum to the left not to exceed 60° bank. After
completing a 180° tum, he lowered the specdbrake and landing gear, maintaining 2,500 feet MSL and 120
knots mimmum, Approximately 3/4 mile past the end of the runway, he lowered the flaps and started a
descending turn to the left. He was to maintain 110 knots nunimum and adjust the bank and descent rate
s0 as to roll out on runway centerline at 1,700 feet MSL.

Once on final approach, the pilot was told to mamtam 100 knots minimum and a constant glidepath.
He adjusted pitch and power so as to touch down in the first 1,000 fect of the runway between 75 and 80
knots. The maneuver termunated when airspeed decreased below 50 knots during rollout.

Slow Flight The starting condition was 12,000 feet MSL, 180° headng, and 100 knots. The pilot
lowered speedbrake, landing gear, and full flaps while mamtaiming altitude and decreasing airspeed to 76
knots, approximately four knots above stalling auspeed. After holding airspeed for about 30 seconds, the
Cogmtronics Voice System directed him to start coordinated turns The pilot performed shallow turns,
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turing approximately 20° to each side of a central reference point or heading. After three tums were
accomplished, the exercise was terminated.

AIRSPEED AIRSPEED 3 TURNS
EVENT =100 KNOTS <78 KNOTS +30 SECONDS COMPLETE
b SEQUENCE ¢ = + -

- ALTITUDE

AIRSPEED

% SLIP INDICATOR
PILOT OUTPUT

ﬂf Figure A4. Slow flight scoring sequence.

Aileron Roll: The aileron roll was performed under two conditions:

1. Instrument. The starting condition was 15,000 feet,_ 160 knots, and 180° heading. The pilot
lowered the nose to accelerate and set the power at 90%. He then raised the nose, so as to pass through level
flight between 200 and 230 knots. He continued to bring the nose up smoothly with a wings level attitude

| until the nose was 25° above the horizon.

At this point, he started a roll in either direction, adjusting the roll rate as necessary so the wings were
3 level in the inverted position as the nose passed through the horizon. He continued the roll and, after
:,_ completing the maneuver in a nose-low, wings-level attitude, returnied to level flight. At this point, the
' exercise was terminated.

2. Contact. The starting conditions, entry and airspeed and power setting were the same as in the
instrument aileron roll. The entry pitch attitude was 20° to 30°. The roll was executed smoothly to
. maintain a constant roll rate. As the wings-level attitude was approached, aiieron pressure was gradually
released to rofl out with the nose on the horizon. The exercise was terminated five seconds after the roll

3 was complete.

.

4

START  PITCH >0 .

4 MOLL  AIRSPEED>200  PITCH>20° BANK>20" BANK<165 BANK <1.5 i
: — + —t ——t

,' BANK IN ROLL RATE BANK OUT

i Figure AS. Aileron roll scoring sequence.
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APPENDIX B: MULTIVARIATE ANALYSIS OF VARIANCE SOURCE TABLES
1 (ALL MANEUVERS)
. This appendix provides the original MANOVA output.
To facilitate understanding of this Appendix, the following guides are presented:
1. The order of the maneuvers is Takeoff, GCA, Overhead Pattern, Slow Flight, Aileron Roll.
2. Coding for independent variables was as follows:
3°2° Design 3* Design
3 A =Wind A = Turbulence
1 B = Turbulence P. = Motion
3 C =Motion C = Field of View
p: D = Ceiling/Visibility D = G-Seat
B E = Field of View Blocks = Subjects
- F = G-Seat
Blocks = Subjects
“ 3. Coding for dependent variables is as follows:
Takeoff
ﬁ Text Dependent Variable Name Computer Dependent Variable Name
P 1. Heading Deviation Head (2)
2, Pitch Deviation To Att (2)
% 3. Course Deviation Crs Dev(2)
4, uirspeed Deviation KIAS (2)
! 5. Elevator Power Elev Pwr (1)
5 6. Aileron Power Ailr Pwr (1)
7. Rudder Power Rudr Pwr (1)
GCA and Landing
? 1. Total Score TT Score (1)
2. Touchdown Score TD Score (1)
1 3. Altitude Deviation AH(2)
b 4. Airspeed Deviation KIAS (2)
i 5. Centerline Deviation C L Dev(2)
k: 6. Glidepath Deviation GPDev(2)
g 7. Elevatot Power Smooth L(7)
: 8. Aileron Power Smuoth 1 (8)
9. Rudder Power Smooth 1 (9)
i 10. Elevator Power Elev Pwr (1)
. 11. Aileron Power Ailr Pwr (1)
& 12. Rudder Power Rudr Pwr (1)
i Overhead Pattern and Landing
; 1. Bitchout Altitude ALT1(2)
2. Pitchout Bank BNK 1(2)
3. Elevator Power Smooth 1 (7)
4. Aileron Power Smooth 1 (8)
5. Rudder Power Smocth 1 (9)
- 6. Downwind Altitude Deviation ALT2(2)
% 7. Downwind Score SCR2(2)
A 8. Elevator Power Smootii 2 (7)
?‘ 9. Aileron Power Smootk 2 (8)
. 10. Rudder Power Smooth 2 (9)
L i
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Overhead Pattern and Landing (Continued)

11. Final Turn Bank Deviation
12. Final Tum Airspeed Deviation
13. Elevator Power

14. Aileron Power

15. Rudder Power

16. Glidepath Deviation

17. Centerline Deviation

18. Final Airspeed Deviation
19. Final Score

20. Elevator Power

21. Aileron Power

22. Rudder Power

23. Landing Score

Slow Flight

1. Altitude Deviation

2. Airspeed Deviation

3. Slip.Indicator Deviation
4. Total Score

5. Elevator Power

6. Aileron Power

7. Rudder Power

Aileron Roll

1. Roll In Deviation

2. Roll Acceleration

3. Roll Score

4. Bank Out Deviation
5. Aileron Power (In)
6. Aileron Power (Roll)
7. Aileron Power (Out)
8. Total Score

47

BNK 3 (2)
SPD 3 (2)
Smooth 3 (7)
Smooth 3 (8)
Smooth 3 (9)
GSL4(2)
CAE4(2)
SPD4(2)
SCR 4 (1)
Smooth 4 (D
Smooth 4 (8
Smooth 4 (9)
SCRL(1)

ALT(2)
KIAS(2)
Ball (2)

Tot Scre (1)
Elev Pwr (1)
Ailr Pwr (1)
Rudr Pwr (1)

Bank in (2)
Smooth 2 (4)
Roll rate (1)
Bankout (2)
Smooth 1 (8)
Smooth 2 (8)
Smooth 3 (8)
Totscore (1)
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Table 4. Ceiling/Visibility Main Effects Across Takeoff,

# GCA, and Overhead Maneuvers
\‘ Sours. X (clear) X {minimums) SSBET SSW/IN F P
£ Takeoff
Heading Deviation 3.01 3.77 309 642 103 .002*
5% Pitch Deviation 1.79 1.87 350 116 646 423
3 Course Dewiation 1.07 1.15 388 221 376 541
i Airspeed Deviation 3.68 6.46 419 3160 284 .000*
s Elevator Power 245 2.65 2.18 113 4,14 043
Aileron Power 720 .847 873 57.7 3.24 073
Rudder Power 430 411 .018 25.7 153 .696
Wilks Lambda df, df, p(E>Fy)
i .840 7 208 000*
8 GCA
A Totai Score 26.9 226 1020 25200 866  .004%
9 Touchdown Score 84.9 82.2 390 30700 2.72 101
g Altitude Deviation 40.4 38.8 146 91800 .340 .561
k- Airspeed Deviation 2.59 2.59 .003 358 .002 962
E: Centerline Dewviation 95.0 108 9520 277000 7.36 .008*
% Glidepath Deviation 34.7 372 358 43000 1.78 .184
3 Elevator Power 429 469 087 12.2 1.53 218
i Aileron Power 464 464 .003 304 .000 988
2 Rudder Power .108 .109 .000 5.16 000 986
E Elevator Power 4.28 4.11 1.51 1380 234 629
Aileron Power 1.54 1.81 3.74 404 1.98 161
3 Rudder Power 822 8.17 129 18100 002 969
o Wilks Lambda df, df, HE>Fy)
.896 12 203 029*
Overhead Pattern
Pitchout Altitude Deviation 36.3 473 6,540 166,000 843 .004*
V Pitchout Bank Deviation 114 9.95 117 6,650 3.7 .054
Elevator Power 1.81 1.97 1.40 364 823 365
Aileron Power 475 .603 886 41.9 4.52 .035*
Rudder Power 083 062 .024 9.78 .524 469
4 Downwind Altitude Deviation 35.8 44.6 4,150 119,000 743 .007*
b, Downwind Score 70.4 62.9 3,020 134,000 4.82 .029*
Vs Elevator Power 1.71 2.46 30.2 275 23.47  .000*
g Aileron Power 1.07 1.36 446 217 4.40 .037*
3 Rudder Power 106 .094 008 7.06 239 626
"51;' Final Turn Bank Deviation 9.83 11.20 108 5,130 4.49 035*
Airspeed Deviation 5.07 ().60 126 3,020 8.93 .003*
2 Elevator Power 1.47 1.79 5.61 272 4.41 036*
Aileron Power 745 .870 .852 52.7 346 064
Rudder Power 515 328 1.90 117 3.45 .064
Clidepath Deviation 1.09 1.22 927 292 678 411
Centerline Deviation 110 154 107,600 13,600,000 1.68 196
Final Airspeed Deviation 4723 5.37 70.8 3,340 4.54 .034%
Final Score 12.7 7.87 1,250 77,700 3.45 .064
Elevator Power 2.86 3.18 5.50 555 2.12 146
Atleron Power 1.77 2.14 7.58 3.49 465 032*
Rudder Power 3.63 435 284 3,150 1.93 168
Landing Score 77.1 75.8 87.2 23,700 786 376
Wilks Lambda df, df, p(F>Fg)
754 23 192 .000*

Note. — Al umvaniate Fly cvadnated at
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