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INTRODUCTION

In the late 1960's the aeronomy branch at the BRL needed the solu-
tions to sets of stiff ordinary differential equations (ODES) that
describe the positive and negative ion chemistry in the earth's D-region
(~ 60-85 km). Adequate mathematical techniques for handling stiff ODES
were unknown to us at that time. Kregel, a physicist, approached this
problem empirically and developed a stiff ODE integrator. This report
sketches the K-method of integration and provides a few examples of the
uses of this integrator. Our aim is two-fold: to interest mathematicians
so that this method may be placed on a firmer mathematical foundation
and to inform potential users so that they may apply this algorithm to
their particular problem.

TWO BASIC PROBLEMS

Before we discuss the sketch and the examples let us briefly review
two problems that are basic to any numerical solution to ODES, stiff or
not. These problems are truncation error and stability. According to
Dahlquist and Bjdrcek,l..."(truncation errors) are committed when a
limiting process is broken off before one has come to the limiting
value." Truncation errors result from mathematical approximations. For
example they arise when a finite series approximates an infinite series
or when a linear function approximates a non-linear one.

Stability, or its better known opposite, instability, is associated
with the idea of feedback.? As the name implies, part of a program or
code has a loop in which the numbers produced at the output of one cvcle
are used as the input for the next cycle. The errors associated with these
numbers may then be amplified in such a way as to destroy the solution.

The purpose in recalling these nemeses is to justify the effort
that has gone into the K-method algorithm to reduce truncation error and
to maximize stability consistent with a reasonable execution time.

1Numcricul Methods, by G. Dahlquist and A. Bjdrck, Trans. by N.
Anderson, 1974, Prentice-Hall, Inc., Englewood Cliffs, NJ, p. 22.

3

“See for example Numerical Methods for Scientists and Engineers, by

R. W. Hamming, 2nd Edition, 1973, McGraw-Hill, Inc. p. 5.




SKETCH OF THE K-METHOD

Figure 1 schematically shows the main functional steps in the K-
method algorithm.3 A third-order predictor-corrector method is employed.
As soon as the initial corrector is formed, the diagonal of the Jacobian
(i.e. 3y.'/3y.) is examined to determine those dependent variables that
are stiff and'those that are not (not shown in Fig. 1). This is done in
order to select the method with the least computational overhead for
updating each of the initial predictor values.

At this stage of the algorithm neither the predictor values nor
corrector values are presumed acceptable and an error vector is gener-
ated from their difference. This vector, in conjunction with the Jacobian
including, now, the off-diagonal elements, is used to modify the pre-
dictor values. The modifications to the predicted values, which involve
a matrix inversion, are first attempted iteratively using a Gauss-Seidel
method. During the iteration, checks are made on the estimated computa-
tional overhead burden. Should the iteration method prove too tedious,
the remaining 'mon-converged' correction elements are solved by direct
matrix inversion. The corrector is recomputed and another error vector
1s generated.

Truncation error is then checked by comparing the fourth derivative
of each dependent variable against a predetermined relative error toler-
ance. If any one of these variables fails this test, the truncation
error is judged 'poor," the step size, h, is reduced by a factor of two
and this cycle of the computation is begun anew. This test is especially
useful, as we shall see later, in the case of discontinuous driving
functions,

When all the dependent variables have passed the truncation test,
(i.e., are "OK" in Fig. 1) a check is made on the predictor-corrector
agreement. Should all elements of the predictor-corrector difference
vector be less than a predetermined minimum error (i.e. are "OK'), thc
corrector values are accepted as the solutions at this time step and the
step size is adjusted for the next cycle. If any element of this differ-
ence vector is greater than a predetermined maximum error tolerance the
agreement is judged "poor,'" the step size is reduced by a factor of two
and this cycle begun anew. For the intermediate case, in which all
elements of this difference vector are less than the maximum error test,
and in which at least one is greacer than the minimum error test, the
difference vector is judged '"so-so,”* When this is the case the predicted
values are again modified and the process begun anew until an acceptable

An earlier version has been reported. See '"Description and Comparison
of the K-Method for Performing Numerical Integration of Stiff Ordinary
Differential Equations,'" by M. D. Kregel and E. L. Lortie, BRL Report
No. 1733, July 1974, AD #A003855.




h+h/2

POOR

POOR

ENTER

v

PREDICT

v
CORRECT

¢4—

MODIFY PREDICTOR VALUES

v

RECOMPUTE CORRECTOR VALUES

;

TEST FOR
® TRUNCATION ERROR
Jo

® PREDICTOR- CORRECTOR
AGREEMENT

OK

ADJUST STEP SIZE

:

EXIT

SO -S5O
. st e

Figure 1. Schematic of K-method of integration; h is the step size.
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solution is obtained. It is important to note that the K-method conserves
both charge, if any, and chemical balance to within the round-off error
of the machine since the corrector formulation itself is conservative.

The methodology outlined in Figure 1 and above shows that a solution
over one time step is considered valid if the corrected values map into
the predicted values within a specified error tolerance. Since small
differences in the predicted values are magnified by a factor of the
order of the stiffness, we have attempted to formulate a predictor-
corrector scheme which has minimum error and maximum stability. How
this has been empirically achieved is outlined below.

To be solved are vector equations which may be cast in the form of
Y' = F - RY, (1)

where Y is the dependent vector, and a function of the independent variable
X, F the formation vector [ = F(Y,X)] and R the removal vector [ = R(Y,X)].
The predictor is chosen to be quadratic in form; i.e.,

P =Y e RO, X B, - %)

1 0 1 0 1 Qa0
where (X - X ) is the local step size and where the subscript zero
denotes the current location. A and B are to be determined. To do this
we require two independent equations. One is obtained from equation (2)
by "looking backward' from the current location, XO, to the time X—l'

In this case YlP is replaced by Y_1 which has been evaluated, i.e.,

2
Y_1 = Y0 + A(X_1 - XO) + B(X_1 - XO) : (3)
Obviously another equation could be written for Y_, but an alternate, more
stable and error-free method has been found. Consider the derivative of
equation (2) at Xl’ namely,
pl

Y, = A*2Bi% - X)), (4)

(2)

and the predictor in the form of equation (1),

p! P P, P :
Y1 = Fl - R1 Y1 . (5)
Substituting the definition of Y . from equation (2) into equation (5)
and equating the right hand sides of equation (4) and equation (5) we
have

A"ZB(X-X - p- P 2
1 0) F1 Rl [YO + A(X1 - XO) + B(X1 - XO) IRt 6)

Provided F % and R J are known, equation (6) provides the second equation

required to determine A and B.




)

: ) I ; o
Let us now consider how F,P and R,  are determined. Figure 2 shows
the current and three previous discrete values of the formation element
for a given dependent variable. A parabola of the form

F(X) = Ll + CZ(X - XU) + C3(X = XU\ - {7)

is passed through these four points. The C.'s (j=1,2,3) of equation (7
are found from a least squares fit where thé function to be minimized
with respect to the Cj is

¥, = F R
gwi[li F(x;)]1°, - 3<i<0. (8)

The Wi are weighting functions, chosen so that periodic fluctuations in
3 : e — 2 A
the Li values will not propagate into bl « (The relative weights are

determined by adding a quantity a(—l)1 to each of the four Ii and requir-
2
ing that the identical Flp be found.) Rll is found in a similar fashion.
D

el P ] :
Once Pl and R1 are determined, A and B can be determined, and conse-

quently, Ylp.

The corrector is given by

€ 4 pt
i = & -, ! ] Y (
\1 \:\_2 o+ AlY—l AO Y0 + (X1 XO](I\_1 ot B\O * (\l b G

where D and B are preselected to minimize both truncation error and
noise amplification, and to maximize relative stability. Values for the
coefficients in equation (9) can be found in Reference 3.

EXAMPLES

We shall now consider three examples of the types of problems the
K-method has been called upon to handle. They are all drawn from the
field of aeronomy. Figure 3 shows a linear plot of a piecewise con
tinuous driving function [Q(t), solid line]. The discontinuities are
instantaneous since they were formed by reading from a DATA block with
(J) and (J + 1) subscripts interchanged. (The reverse of each of the
slopes in Figure 3 gives the desired driving function, which is still
discontinuous in the first derivative.) The dashed lines are the
response of the electron density and a primary positive ion density,
here the nitric oxide ion, as a function of time. The curves have been
vertically displaced for ease in reading. It is seen that the K-method
enables the dependent variables to follow the input discontinuities of
the driving term. (Departures from a perfect matching of the input
slopes can be explained by chemistry competing with the driving term.)
This example demonstrates the effect of careful monitoring of the trun-
cation error.

11
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Figure 3.

The driving function, Q(t) (solid line) and the response
of two primary charged particle densities (dashed lines)
are shown as a function of time, t. Abscissa is linear

with dimensions ion-pairs cm'; s'] for Q(t) and cm'3 for

both e(t) and NO*(t). Curves have been vertically dis-
placed for ease in reading.
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The second example, Figure 4, shows histograms of the number of
species that lie in the decade interval, h/t., where h is the local step
size and where T is the instantaneous charaCteristic time constant of
the ith species.” (The total area under each histogram corresponds to 64
species.) The numbers to the far right are the decade model times in
seconds (i.e., computer execution time runs from bottom to top in this
figure). The histograms are divided into a stiff segment to the right
of the daghed line, and a non-stiff segment to the left. On the first
plot (10 ~ seconds) only a feg species are stiff while at the upper |
limit of this integration (10~ seconds) the number has significantly |
increased, with stiffness factors (h/ri) greater than 107.

el bl

The last example is shown in Figures 5 and 6. Figure 5 shows the
log of the input or driving function, q(e), plotted against the log of

time. In the interval 10°% - 1072 seconds those negatively charged

N e st

species more strongly coupled to the driving function, (e.g. e, O, or
03—) follow the discontinuities exhibited by the driving term. These
details tend to be ''washed-out" in the species that are weakly coupled

to the driving term (e.g. COS- or CO4-). Near 102 seconds the strongly

coupled species again track the discontinuities in q(e). The dynamic

range in the dependent variables is about six orders of magnitude.

Figure (6) shows the broad range response of the neutral species. This
graph shows those species that follow the driving term [e.g. O(lh), N(:H)],

those that are independent of the driving term [e.g. N,O, CO| and those

2
that tend to be chemistry dominated [e.g. H,, HNO,, Nﬁog].

In summary, we have empirically derived a third order, variable
step size method for efficiently handling stiff ODES that appears to
work for discontinuous driving functions. We anticipate with some
further work that this method will be put on a firmer mathematical foun-
dation.

AT
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