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1. INTRODUCTION

The research described in this report , as was the case in the previous

interim report [1] (AFO SR-T R-76— 084 l , May 1976) , is generally concerned with

the analysis of stress in the vicinity of cooling holes in a gas turbine

engine blade with transpiration or fi lm cooling 1 . A schematic diagram of a

typical blade is shown in Figure 1. As previously described , when such a

blade is in service , the blade material is subjected to a thermomechanical

stress environment. Of particular interest for purposes of the ongoing re-

searc h is the I vicinity ls of a single cooling hole , Figure 2, where the ther-

momechanical stress concentrations of interest are likely to occur.

2. BRIEF SUMMARY OF RESEARCH
THROUGH 30 APRIL , 1976

As was reported in [1] , two basic computer programs were created , based

on the Boundary Integral Equation (BIE) method of numerical anal ysis for

thermo-mech ani ~al problems .

The f irst program , now designated L3CV , is a s teady-state heat-transfer-

anal ysis program capable of providing, numer ically, those values of tempera-

ture ~ and normalize d heat flux on the surface of a body which are not

initially prescribed as part of a well posed heat transfer problem. Speci-

f ical ly , the formula wh ich forms the basis of this program may be written

(1)

where ~ and are discrete values of temperature and normali:ed flux at

Specific blade configurations and data supplied by General Electric,
Evendale , Ohio. 

___ 1~ , . 
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selected nodal points on the body surface and E and G are square matrices

derived from the integrals of the kernel functions and shape functions over

a surface pattern of elements. The basic ideas surrounding formula ( 1) are

given in some detail in [1].

The second program , now designated TE3D , is a thermomechanic al stress

analysis program capable of providing, in its basic form , numerical values

of thermoelastic surface traction t from input data for a well posed thermo-

elastic problem . Specifically, the formula which forms the basis of this

program may be written 2

[A ~~~ {~} - [~ ~ {~} = [ c  ~
{
~
} 

- 

[D ~
{
~

} 
(2)

in which u is a column of discrete surface displacement components , ~ and

are the same as in (1) , and the matrices A , B , C , 0 are derived from kernel

and shape functions as are E and G. Again , detail surrounding formulas (1)

and (2) is found in El] .

As employed for purposes of report [1], and as described therein , form-

ulas (1) and (2) were subject to a number of limitations in generality and

efficiency , which to a large degree have been removed . Details concerning

such improvements are described in the present report.

The problems , described in [1], upon which programs L3CV and TE3O were

brought to bear were , it will be noted , largely of the ‘test’ variety , i.e.

problems with varying degrees of similarity to the research problem but suf-

ficiently idealized to check our programs by comparison of results with

2 Zero mechanical body force is assumed in (2). 

—- — 



3

accepted solutions. Although at this wri ting the “research problem ’ , as

described in [1] and as more fully discussed subsequently, has not yet been

fully solved , important steps toward this end have been taken as will be

apparent. All of this research , as previously and presently reported , is

directed toward a detailed investigation of the state of therma l stress in

the vicinity of a single cooling hole in the turbine blade (cf. Figs . 1 ,2,5).

Our specific progress since 30 April 1976 follows .

3. PROGRAM IMPROVEMENT FEATURES

3.1 MORE GENERAL BOUNDARY CONDITIONS

As actually used in El] for the reasons stated therein , the computer

programs to implement formulas (1) and (2) were wri tten to accept only ‘
~ as

input data for heat transfer problems , and non-zero t as input only on so-

called “top ” surfaces of the test problems .

Presently the heat transfer program L3CV will accept not only an appro-

priate description of e or at relevant places on the surface of a heat

conducting body , but also will accept a convective boundary condition of the

form

= hc (O o _ O ) (3)

in which h and S0 are known functions. This improvement in flexibility of

acceptable boundary conditions is not only an intrinsic improvement in the

program , but has made possible the acceptance of the same h and used by

General Electric to calculate the temperature field in the vicinity of a

cooling hole via their finite element scheme . A description of our heat

trans.fer study based on General Electric data is given in Section 4.2 of

the present report.

____ 
--..__-~~
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As an additional improvement the thermoelastic program TE3O will now

accept non-~~ro t on all surfaces of an essentially prismatic body so that

bending and twisting or other more general loading effects may be imposed on

a body and not just simple “tension ’ as in the earlier versions of the pro-

gram . Moreover , a built-in symmetry feature has been incorporated which per-

mits , in a problem wi th “half” symmetry, the surfaces coincident with the

plane of symmetry to not be discretized. This feature , although not always

desirable to use even when pos sible (for reasons to be mentioned in Section

3.5), permits the use of a fewer number of nodes , with attendant saving in

computer cost and other analysis effort. A “quarter” symmetry feature ,

allowing additional saving in this regard is currently being built into the

program.

3.2 NEW QUADRATURE RULE FOR TRIANGULAR ELEMENTS

Upon mapping a curvilinear triangular element to a plane equilatera l

triangle , which is a basic process in the formation of matrices A , B, etc.

recall that we were faced wi th the task of perform i ng an integration over

the plane triangle to obtain a number 1T in the form

I~. 
= I F(P ,i~)da . (4)

n

where P~~~\ and where F(P ,~ ) is the product of a shape function , kernel

function , and the Jacobian of the mapping (cf. El] Eq. 13 and Figs . 3 ,4).

To accomplish the integration in a symmetric fashion , the triangle was sub-

divided into three parts , over each of which a product Gaussian integration

rule was used . However , the scheme used was somewhat artificial as applied

to a triangular domain and was inefficient in terms of the total number of

-- ~~~~-~~~- - -.
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integration prints used , since an unnecessarily high minimum number of prints

was required over each of the three subdivisions .

As an alternative, we implemented a much more efficient and somewhat

more analytically rigorous formula , given by Lyness [2], for quadrature over

a triangle. Lyness’ quadrature rule is exact for polynomials of given degree

of not necessarily product form defined on an arbitrary plane triangle. De-

spite the fact that our integrands F(P~~.~) are not polynomial forms in ~~~,

the Lyness scheme provided a noteworthy measure of improvement in our basic

computational scheme as regards accuracy vs computer time in both basic pro-

grams .

3.3. THE ELEMENT SUBDIVISION QUESTION

The issue of subdividing an element into subelements before integrating ,

as referred to above and discussed in some detail throughout [1], was exam-

ined at some length in the course of the present research. Despite the seem-

ingly heavy emphasis on this matter by Lachat and Watson [3,4], we found it

to be relatively unnecessary to the success and basic efficiency of our in-

tegration schemes , and steps were taken to remove previously imp l emented

subdividing processes . In addition to the case mentioned above with the

triangles for ~~~~ we removed the circular subdivisions (cf. [1] Fig. 5)

for the P~ E i~ orD case wi th no loss in accuracy and some gain in efficiency .

A private comunication from Lachat and Watson indicated an overemphasis on

the subdivision issue in their work in retrospect. The process was used less

in actua l fact than reading their papers would indicate and is an issue sub-

ject to reexamination from their point of view .

3.4 SELECTIVITY IN DEGREE OF INTEGRATION

Lachat and Watson [3 ,4] describe criteria for subdividing an element before

- ‘a-. . . - -  . - ~~~~~~~~ I
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integrating and for selection of the number of integration points to use to ob.-

tam a sufficiently accurate value for a required integral , e.g. (4). This

process (cf. [3] pg. 104 et. seq.) is based primarily on the behavior of the

kernel function and i gnores completely the variation in the Jacobian func-

tion. In our experience , most if not all of the kernel function variation ,

assuming constant Jacobian , could be handled well with a threshold number of

integration points , whereas the variation in the Jacobian is the i tem most

requiring the selectivity process. More specifically, since in our programs

all quadrilatera l elements are mapped to a square and all curvilinear “ three-

sided ” elements are mapped to an equilatera l triangle , the variation in Ja-

cobian is directly related to the distortion or departure of a given element

from the mapped shapes . Thus , we have implemented a process whereby we

choose the “degree of integration ” for a given segment. i.e. ‘how many in-

tegration points to use ” on the basis of distortion of the element. Present-

ly this process is an observational one and we are taking Steps to automate

it. Nevertheless , this process has been responsible for some measure of ac-

curacy vs running time efficiency in our programs and often allows us to

“ get by ” with a cruder surface discretization and hence a smaller number of

nodes (and consequentl y reduced overall problem size) for a given thermo-

mechanical stress analysis problem . This matter is discussed further subse-

quently.

3.5 BOUNDARY AND INTERNAL STRESS CALCULATIONS

As indicated in the discussion of formula (2), the thermoelastic trac-

tion t is usually, and has been , the output of greatest interest in test

problems thus far. Specifically, problems have been model led with surface

nodes placed in such a manner that the t3 component of t has been identical

________________ - —-- . -. —,-. —.--- -.&-. _,_, -___.,~a,_,_ .—-—.-.-- -—----..-—.____---__. — ..- -  —- .  - —- --- ~~~~~~~~~~~~~~~~~ -
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with the peak normal stress 333 of greatest interest. Nevertheless , if the

built - in symmetry feature is used and/or i f other components of boundary

stress not identical with the components of t are desired , it is possible

to obtain such boundary stress components according to the following scheme .

At the surface of a body the traction components t.~ are related to the

stress components and components of the unit normal n~ according to

= ~y ..n. (5)

Further , Hooke ’s Law ,

3jk 
= um m  ~jk~ ~

i[u
~ k

+u
k~~
] - 

~jk
’
~ 

(6)

relates the surface stresses to the components ~~~ of displacement gradient

and the temperature . Now , since these same displacement gradient components

are related to in-plane deriva tives u. of u. according to

u j~~p 
= ~~~ ~~~ ~ = 1 ,2 (7)

it is possible to solve (5), (6), and (7) simultaneously for the desired

components c,f surface stress and , incidentall y, the surface displacement

gradient components , if desired .

As is apparent , the traction components t.~ and in-plane derivatives

u. , along with the coordinate gradients x. , norma l components n. and
,‘-,p 3 ,~

_ ,J 1

elastic constants are required as input, tn-plane gradients are input in

terms of nodal values of u
~ 

and x . with the aid of the shape function repre-

sentations

= M~~~) u~
(3’)

x .(~ ) M’~~ ) x~

L . . .4
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The boundary stress field obtained as described above depends most , for ac-

curacy , on the accuracy with which the u. ~ and x . are given by (8). Re-
1 ,._rn~

_ 3,.,,)

suits using this process are largely satisfactory with , perhaps , the

being of lesser accuracy than ~~~~~~~~~~~ in any given problem . Nevertheless , we

generally expec t the t~ components themselves to be of greater accuracy

than any of the boundary obtained from them as described above Thus,

whenever the t.~ components can be made identical with the boundary of

greatest interest , equations (5) through (7) need not be used and this is often

the recommended procedure . However , the boundary stress process above is

required , as is the internal stress procedure to follow , whenever the built

in symmetry feature is used , or , of course , when components of 3i ,j not ide~

tical wi th t~ are required .

Regarding the internal stress field 3i ,j which may be desired at an ar-

bitra ry vo l ume point p, consider first the internal displacement field

which , under the discretization assumptions described full y in [1] and zero

body force,takes the form

u.(p) = t~~~i M )U
~
.(p,Q (

~
))J (

~
)d
~ 

- u i~
tc

J
. 

M )T..(p,Q (~))J (~ )d~3 S.. S.-.

+~~~ye~~ f M ~ (:) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

m
+~~ i k V n

~
(Q(.

~
))r(p,Q (E))J(

~
)d
~ 

(9)
~ ~ 3 l  S~

1

where 
~
3 ’’H k0. Notation and definition of variables in (9) is exactly the

same as that for equations (1) through (8) in [1], and it is important to

note that all quantities to the right of the equal sign are known followin g

‘ ‘ ‘  ., ..~~ ... ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —- . ~~~~~~~~~~~~ - - ——.- — -., ,
~~~ ~~~

. -
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the solution of the boundary integral equation (2). Should u~(~) be desired ,

it suffices to evaluate the above integrals and perform the indicated summa-

tions upon specifying the coordinates of p. Further , p being an interior

point , all evaluation of the integrals (cf. Eq. (11) in (1) and Eq. (4) of

the present report) are in the p~ S~ category and thus , although requiring

careful attention , they are non-singular.

With formula (9) in hand , the internal stress field 
~jk 

is related to

the displacement gradient field u . according to Hooke ’s Law (6) referred3 , ’.’
to the interior so that gradients of u~(~) via equation (9) are required .

Explicitly, since only the kernel functions under the integrals in (9) are

functions of p. the appropriate expression for the gradient field u
~~k

(P)

is identical with (9) with ~~ ~~ ~~~~~~ ~~~ and r replaced respect-

ively by Ujjk~ 
Ti jk ~ ~

r,.k/~
n and r ,k. Subsequent insertion into equation

(6) in a straightforward manner yields the appropriate interior stress field

directly. Again , of course , the integrals are non-singular.

4. SOLVED PROBLEMS

4.1 ANOTHER TEST THERMAL STRESS PROBLEM

In section 4.5 of [1], an elementary test thermoelastic problem was

briefly mentioned as a check on our program ’s capability to incorporate sat-

isfactorily the two terms on the right side of Equation (2). No data were

reported for this problem in [1]. Subsequently we have used a finer discre-

tization to obtain a more accurate solution. A detailed description of the

problem and results follows .

Consider a hollow cylinder with inner and outer radii , a , b , respect-

ively, and height h. We subject the cylinder to the steady-state tempera-

ture S(p) = C1 ÷ C2 ~ a , a < p < b , where C1 and C2 are conveniently chosen

. ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ .- .- - - 
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constants , i.e., C1 
= 1 , C2 = -l/t~n(O.4). The top and bottom surfaces of the

cylinder are held against normal displacement , while the lateral surfaces .

though not traction free , are subj ect to zero net force and moment. ( See

[5] pg. 290 for specific traction distribution and associated analytical

thermoelastic stress field with which we compare results). We model one

quarter of the cylinder as shown in Fig. (3) , with n= 24 segments and n 74

nodes . Using a = 0.4, b = 1.0, h = 1.0 with convenient values for all other

relevant parameters , numerical results for values of therma l stress and dis-

placement compared with expected analytical results are as reported in Table

Using the same geometrical and material parameters and discretizat ion

pattern , we now subject the cylinder to the temperature distributio n 39(z) =

(l/h2)[h2-z2+hz], a< z < h .  Here the top and bottom surfaces of the cylin-

der are traction free and hence free to warp. The lateral surfaces , while

again not traction free, are subjected to a specified traction distribut ion

(see Reference [5], pg. 278) with zero net force and moment. Results for

relevant values of thermal stress and displacement are as reported in Table

II. For each of the above problems we used “degree 3” integration for all

segments (see discussion in Sections 3.4 and 4.3) and the CPU times on an

IBM 370, model 165 , (et. seq . for all subsequent computations) are 2 nu n.

31 sec . and 2 m m .  52 sec.,  respectively.

3Note 72B = -2~0/h
2
~ 0 here , but since 7

2~ = constant , equation (2) is still

valid with the simple addition of another known term,cf. [6], Eqs. (7 )  and

(10). 

- - - - -
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Table I Results for Thermoelastic Cyl i nder
with Radial Temperature Variation

Radial Transverse Axial
Coordinate Displacement Stress Stress

p BIE Exact BIE Exact BIE Exact

0.40 0.325 0.322, 0.837 0.357 0.198 0.215
0.55 0.347 0.346 0.262 0.254 -0.237 -0.248
0.70 0.454 0.453 -0.088 -0.082 -0.610 -0.599
0.85 0.6 15 0.611 -0.302 -0 .307 -0.884 -0.882
1.00 0.807 0.806 -0.473 -0.474 -1.1 16 -1. 118

Table II Results for Therinoelastic Cylinder
with Axial Temperature Variation

Radial Axial Transverse
Coordinates Displacement Displacement Stress
z a BIE Exact BIE Exact BIE Exact

0 0.40 0.266 0.267 -0.081 -0.080 -0.459 -0.444
0.70 0.468 0.467 -0.246 -0.245 -0.452
1.00 0.670 0.667 -0.500 -0.500 -0.439

0.25 0.40 0.368 0.367 0.247 0.248 -0.356 -0.361
0.70 0.643 0.642 0.082 0.083 -0.349
1.00 0.917 0.917 -0.173 -0.172 -0.346

0.50 0.40 0.467 0.467 0.586 0.587 -0.124 -0.111

0.70 0.818 0.817 0.420 0.422 -0.119
1.00 1.170 1.167 0.164 0.167 -0.103

0.75 0.40 0.569 0.567 0.882 0.884 0.319 0.305

0.70 0.993 0.992 0.717 0.719 0.319
1.00 1.418 1.417 0.460 0.464 0.319

1.00 0.40 0.667 0.667 1.084 1.087 0.883 0.889
0.70 1.170 1.167 0.920 0.922 0.883
1.00 1.672 1.667 0.661 0.667 0.391
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4.2 HEAT TRANSFER ANALYSIS FOR THE RESEARCH PROBLEM

With the program improvement features described above and the general

increased l evel of confidence in our computer programs , we attempted a heat

transfer analysis of the “research problem ” as depicted in Figure 2 and some-

what more to scale in Figure 4. From General Electric we obtained the neces-

sary geometrical , mechan i cal ,and therma l material data for the body of Figure

4, along with data for hc and in the boundary condition Ecuation 3. More

specif cally, numerical values of the film coefficient hc and the adiabatic

wall temperature 
~ 

were provided , more crudely than we would have liked , but

nevertheless in sufficient detail to describe proper boundary conditions over

the surface element pattern of Figure 4. After some experimentation we used

a total of 48 surface elements and 142 nodes . Via program L3CV (re . Eq. (1 ) )

we calculated (67 sec. CPU time ) surface values of temperature S .

Agreement wi th corresponding values of 0 as provided by Genera l Electric

via a finite element analysis was generally satisfactory although checking

the integrity of our calculated surface values of ~ by direct detailed com-

parison point by point with those values of 0 accepted by General Electric is

difficult for the following reasons. Their heat transfer analysis was a fi-

nite element analysis of essentially a whole cross-section of the blade of

interest , where temperatures associated with the elements in Figure 5, assum-

ed cons tant over the el ements , are obtained. Our BIE solution for the body

of Figure 4 (cf. shaded region Fig. 5) is based on a somewhat finer surface

grid, although no finer than that justified on the basis of the somewhat

crude hc and S~ input information mentioned earlier. Moreover , we considered

temperature to vary quadratically over each element. Thus , since our temper-

atures are obtained at our surface element nodes , we have a finer picture of

~ 

. .  
. ,- .  
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the temperature distribution in the region of interest. Nevertheless , our

solution is basically consistent with the Genera l Electric solution , show-

ing temperatures of comparable magnitude (approximately 1700-1800°F) with

expected hotter and cooler areas in the proper locations although their solu-

tion is a bit cooler than ours (by 1 700 or so) in the upstream vicinity of

the cooling hole. One reason for this difference is that we chose to ignore

the effect of a “junction” hole (between the two left—most c ircular cooling

chambers of Figure 5) which , according to a recent communication with heat-

transfer personnel at General Electric , would have an additional cooling ef-

fect and could easily account for some of the differences. Nevertheless , as

this report is being written , we are obtaining from General Electric a better

description of h
~ 

and over the surface than was initially used . This is

not so much for purposes of the heat transfer analysis itself , but for input

into TE3D for the same body (Sec. 5.2) and for input into our proposed param-

eter studies (Sec. 5.3).

An additional check on the reliability of our heat-transfer anal ysis

described above was made prior to that analysis and is described in the fol-

lowing. A block of material of identical shape and properties as the body of

Figure 4 , but wi thout the cooling hole (lower curved surface of Fig. 4), was

imagined i mbedded in a thick plate in a state of one-dimensional heat flux.

Values of hc and ‘

~~~~ 

for use in Equation (3) for the test temperature field

could thus be calculated analytically and then put on as boundary conditions

for the mentioned block of material. Surface temperature data were then ob-

tam ed from program L3CV and compared with analytical temperature data . This
I

was carried out using the same discretization described above. Agreement was

excellent everywhere , as expected . This little exercise provided a meaning-

ful test of the workings of L3CV insofar as its ability to handle the types

.--
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of boundary conditions and the basic bcdy shape needed above. It also pro-

vided some measure of the basic adequacy of our discretization for this type

of problem , keeping in mind , of course , the absence of the cooling hole.

4.3 ISOTHERMAL ANALYSIS OF PLATE WITH SKEW HOLE

One big issue , perhaps the biggest , to face in the stress analysis of

the “research problem ” is the s kewness of the cooling hole; speci f ica l ly ,  the

angle of the axis of the hole is 60° with the “front” surface norma l (cf.

Figs. 2 and 4). In our previous experience with stress concentrations induc-

ed by holes (e.g. [1] Secs. 4.3, 4.4), we put off the skewness issue which

now we must face.

Ellyin [7,8] has conducted a series of experiments to determine the

stress concentration in the vicinity of such skew holes in flat plates. Ap-

propriate analytical results seem to be unavailable for understandable rea-

sons. Thus , we decided , as a meaningfu l and prudent prelude to the ‘research

problem ” , to attempt a BIE anal ysis of a portion of an “Elly in type” plate

and compare results .

In Figure 6 is shown one symmetric half of a plate with a 60° skew hole

loaded in tension at the top with a uniform norma l traction 
~~~~~ 

The bounda ry

condition at the bottom of the plate is zero norma l displacement and zero

shear traction as is dictated by symmetry . The unknown norma l traction on

the bottom therefore is coincident with the component of stress of most in-

terest. The rest of the surfaces of the plate are assumed traction free.

Width , thickness , and hole diameter dimensions and material properties are

chosen as in [8]. Note, except for the width and thickness dimensions and ,

of co urse , the flatness of the “back side ” of the Ellyin plate compared to

the irregularity of the “back side ” of the research problem body Fig.  4 ,

there is essential similarity of geometry in the v ic ini ty of the skew hole. 

.-~~~~~~~~ 
. .. 
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Ellyin [8] predicts a stress concentration 
~max’~ o at or near

4 the feath-

er edge of the hole of slightly more than 8. Our first attempts to reproduce

this value based on the somewhat crude discretizat ion pattern of Figure 7 with

m = 53 segments , n 122 nodes were high of the mark. Three computer runs were

made with three levels of sophistication in the “degree of integration ’ as

discussed in Section ~.4.

The first and crudest run yielded a highly fictitious stress concentra-

tion 
~max~~o 

31.4 in 163 sec. CPU time . This “degree 1” run involves a mini-

mum , threshold number of integration points (4 for rectangular segments,6 for

triangular segments) in all integrations. The second run yielded 
~max ’~o

15.1 in 337 sec . CPU time , where we were selective in the degree of integra-

tion , from “degree 3” for certain integrati ons , “degree 2” for others , and

“ciegree 1’ for the remaining integrations. Degree 2 i nvolves 9 integration

points for rectangles and 7 integration points for triangles , whereas degree

3 requires 16 integration points for both rectangles and triangles. Select-

ivity was based primarily on the distortion of the element as discussed in

Section 3.4 but also to some extent on the proximi ty of the element to the

region of interest. As mentioned in Sec . 3.4, we are still experimenting

wi th this selectivity feature . A third run using degree 3 for all integra-

tions yielded 
~max’~ o 12 in 579 sec. CPU time , which is closer to the ex-

pected value of 8, but still unacceptable , of course.

Clearly, our discretization of Figure 7 is too crude to obtain an accept-

able stress analysis for this problem . However , rediscretizing, i.e. adding

more segments and nodes to the full half-plate would have required more nodes

The magnitude and precise location will be discussed further subsequently.

—,--*—
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than we cared to deal with. Thus , we considered the consequences of cutting

the half-plate in half , norma l to the top surface and along the axis of the

hole , yielding the “quarter-plate ” shown in Figure 8. The problem of a suit-

able boundary condition on the new cut surface was resolved in favor of as-

suming zero in-plane shear traction and normal displacement of zero . We be-

lieve that whatever departure from this boundary condition is present in the

full plate would have a minimum effect on the stress concentration of inter-

es t.

Our renewed attempt on the problem using the quarter-plate of Fi gure 8

involved m=54  segments and n= 136  nodes . Not only is the discretization ,

shown in Figure 9 , much finer wi th fewer distorted elements , and thus more

appropriate to the task , but the, height of the quarter-plate (at the top of

which the load is appl i ed) was made greater to better agree with~ the

height dimension chosen by Ellyin [8], who also was trying to simulate uni-

form tension at infinity . Our first “degree 1 everywhere ” computer run (CPU

221 sec., called Run a) revealed the dramatic improvement associated with the

mentioned changes . A second “selective degree ” run (CPU 406 sec ., ca l led

Run b) using degree 1 on most segments away from the hole, degree 2 on nearer

segments , and degree 3 on all non—plane segments (i.e. those on the hole) and

those nearest the feather edge produced our best results . Results from both

runs are shown in Figure 10.

In Figure 10 is plotted the variation of normal stress along the edge of

the hole (l ine AB of Fig. 7) as predicted by the two runs described immediate-

ly above , along with Ellyin ’ s [8] experimental data. In Figure 11 is shown

the variation of normal stress along line AC (of Fig. 7) of the plate. (El-

ly in has no corresponding results for comparison.)

- - - -~~~~~~~~~~~~ -~~ ~~~~~~ -- . .
~~~~~~~~~~~~~~
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We regard our results , especially Run b of Figure 10 , as an acceptable

solution to this skew—hole problem . All obvious features of the solution

such as smoothness of the data shown (as well as that not shown), balaice

of equilibrium, and of course closeness to Elly in ’ s [8] believable results

are better than in any of our previous runs. Moreover , our experience with

similar (albeit less demanding) problems would i ndicate that any further

refinement in surface element resolution and/or degree of integration would

yield negligible further improvement in results . This would be done , we

might add , only at considerable effort and expense.

Regarding the all— important l evel and distribution of stress along the

edge of the hole as shown in Figure 10 , Ellyin [7] h~’ a number of plots ,

similar to Figure 10, where the angle of inclination of the hole with the

plate norma l varies from 00 to 45° in 150 increments . (Our treatment of

the 0° case is discussed in [I], Sec. 4.4.) He shows that the l ocation of

the stress concentration moves nearer to the surface of the plate (i .e.

point A) as the angle of inclination increases . However, he suggests that

in each case the level of stress right at the surface of the plate is l ower

than the peak value some distance in from the surface. The precise location

of the peak value , as Ellyin [7] discusses , is subject to some uncertainty,

and how close to the surface its precise location is for a 600 hole is not

at all clear in [8]. Nevertheless , on theoretical grounds , a smooth pro-

gression from 0° to 60° or larger angles , with peak stress moving nearer

the surface of the hole but having an ever smaller ‘tail” (as suggested in

Fig. 10), is most bel i evable. Our best data , Run b , suggests such a tail.

In any case , the picture of “edge-of-the-hole ” stress in Figure 10 accord-

ing to our computations agrees sufficiently well with Ellyin [7,8] for us

_____________________———-——
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to proceed with confidence to the next phase of the research problem . The

above represents the most stringent test of our BIE anal ysis capability thus

far, and we are pleased with the results . These results were comunicated ,

at a conference on June 29, 1977, to the interested people at Genera l Elec-

tric. They are , as are we , anticipating with great interest the therma l

stress analysis results we are prepared to obtain.

5. RESEARCH IN VARIOUS STAGES OF COMPLETION

5.1 ISOTHERMA L ANALYSIS OF THE RESEARCH PROBLEM

Before beginning a description of the analysis of this problem the fol-

lowing comments are in order. Although it was possible to employ the built-

in “half-syninetry ” feature of our program in the skew hole analysis of sec-

tion 4.3, we did not do so, in order to obtain the stress concentration direct-

ly in the form of tractions , as discussed in Section 3.5. Further , the sav-

ing in nodes and surface discretization would have been minima l due to the

thinness of the plate . However , for the research problem body , (cf. Fig. 4),

using the symmetry feature and thus not having to discreti ze the lower plane

horizontal surface would clearly be most advantagous . There would be con-

siderable saving in discretization effort as well as nodes . Even so , the

total number of nodes needed promises to be considerable , i.e. upwards of

n= 160. We are presently working on a discretization pattern , with a feasi-

ble number of nodes , that will be adequate not only for our isotherma l analy-

sis but also for our thermomechanical analysis.

Concurrent with this activity is calculation of the stress-patterns of

Figure 10 via the boundary stress process of section 3.5 in order to compare

with the data of Figure 10 , obtained by direct traction output from TE 3D as

explained earlier. This more stringent test of our boundary stress capabi li t~’
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is necessary , as is additional checking of our interior stress capability ,

since we will rely exc l usively on these capabilities (rather than direct

tractions) to yield the stresses of interest when using the built -in symmet-

ry feature for the research problem .

The bounda ry condition on the “top ” surface of Figure 4 for the isother-

mal stress analysis is , more properly, a prescription of uniform norma l dis-

placement rather than uniform normal traction as was used on the plate of

the previous section . This is dictated by the assumption of conditions of

symmetry across “horizontal” planes between cooling holes (cf. Fig. 1). The

two boundary conditi ons are not equivalent except in the limit as the dis-

tance between holes becomes arbitrarily large . Thus , it is of interest to

note the difference in “stress concentration ” between uniform traction and

uniform norma l displacement as the prescribed boundary condition on such a

top surface a finite distance from the hole. We are in the process of in-

vestigating this difference , to assess its si gnificance , in connection with

the skew-hole problem of the plate of the previous section. We anticipate

that the appl i ed traction on the top of such a body corresponding to a uni-

form displacement is nonuniform in such a manner as to relieve the stress

concentration from its former value. Thus we expect , on that ground alone ,

l ower levels of isotherma l stress concentration for the research problem.

Further , the thickne ss of the body and the less-severe “feather ” edge condi-

tions at the upstream end of the hole should contribute further to l owering

the stress concentration. If this is true , the anal ysis of the previous

section is more demanding than for the research body , and the results pre-

dict a more conservative (highe’- ) isothermal stress concentration . In any

cas e, General Electric currently has no other basis for isotherma l stress
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concentrations for such skew holes and they conservatively use the higher

va l ue. The thermoinechanical state of stress , however , is another story .

5.2. THERMOMECHANICAL ANALYSIS OF THE RESEARCH PROBLEM

The analysis to be outlined in this section is the focus of the entire

investigation , insofar as the specific body configuration we have been work-

ing with is concerned. Since the body geometry and discretization are to be

identical with those of the previous section , the basic issue here is that

of thermal boundary conditions , i.e. we now have non-zero thermal input terms

to TE3D for the research problem surfaces .

Specifically, surface temperature 0 and fl ux 0n as obtained and discussed

in section 4.2 are presently available although we will make a preliminary

L3CV run to fit the data to our new discretization.

Mechanical boundary conditions of zero traction on all surfaces except

the “top” and “bottom ” surfaces are reasonable statements although , as men-

tioned in [1], non—zero tractions are possible across “cut” (vertical) sur-

faces of Figure 2, i.e. surfaces which join the research problem body to the

rest of the blade (junction of shaded with non-shaded solid portions of the

blade in Fig. 5). The norma l component of displacement will be taken as

zero at the bottom and uniform at the top, while in-plane tractions are as-

sumed zero on both top and bottom surfaces . These boundary conditions are

sufficient input to TE3D,and the output of interest (wi th the aid of the

stress programs of Sec. 3.5) will be the non-prescribed tractions and ther-

mal stress on the top and bottom surfaces of the research body .

The outcome of this investigation , based on the above input to TE3D ,

will be the therma l stress distribution due to the nonuniform therma l field

in the body . A thermal “stress concentration ” concept is more difficult to 

-.. - -.~~~~.-_  . -  
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define than is the case with an isotherma l problem. Nevertheless , a pattern

of stress variation , wi th peak stresses , should emerge in the vicinity of

the hole. An order of magnitude comparison for these stresses due to the

therma l field with the stress-concentration of “8” discussed previously is

of prima ry interest to us and to Genera l Electric. Such information is at

hand , pending the “tidying -up ’ operations described in section 5.1.

5.3 PARAMETRIC STUDIES

However much the analysis of the previou s section may be the focus of

this research project and however interesting the result , its outcome never-

theless provides information based on very specific geometrical , mechanical ,

and therma l data for a very specific blade configur ation. It is therefore

only sensible to ascertain the most important parameters of the input con-

tributing to the therma l stress , vary these in a systematic fashion , and use

the descri bed analysis capability to provide information pertinent to a range

of values of the important parameters . General Electric supports this view .

Specifically, we agreed that the geometrically -most -important feature of

the cooling —hole configuration is the angle of the hole to the blade surface ,

and to a lesser extent the length of the hole is significant. Of least im-

portance , we think , is the fairl y comp licated geometry at the upstream end of

the hole (“backside of Fig. 4). Thus , an essential geometry to deal with

for the parameter studies is the familiar plate -with -skew-hole , i.e. the

geometry of section 4.3, Figure 6, and Figure 12.

Regarding the therma l boundary conditions , after a recent lengthy con-

ference wi th ~he heat transfer personnel at Genera l Electric , we decided on

the following. A reasonable boundary condition on the back , or upstream

side , of the plate is a constant hc and constant coolant temperature in

_  _ _ _ _ _  _  ~~~~~~~~~~~~~~~~
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Equation (3). The front , or downstream side , of the plate is more complicat-

ed in that the gas mi xes wi th the coolant in zone A (shaded region , Figure 12).

In the unshaded portion we again have constant hc and but in the shaded

zone A , a variable h
~ 

and are to be used over the region according to cer-

tain emperical relations currentl y under investigation . Source material for

this investigation is forthcoming from General Electric with guidance to some

extent by the studies in [9]. Al so forthcoming is information to determine a

suitable hc and over the length of the cooling hole surface. Here , we

understand , an emperical duct-fl ow equation involving these parameters is to

be used with an entrance correction to give a more realistic set of values

for hc and on the hole surface near the unstream end. On the remaining

surfaces , we may sensibly take a zero flux condition. With this basic setup,

we regard the thermal patterns and consequent therma l stress to depend most upon

variability of h
~ 

from place to place on the surfaces and variability of the

angle of inclination of the cooling hole. Further , these are the parameters

most subject to change from hole to hole in a given blade and from one blade

configuration to another. Thus , variation of these parameters will form the

basis of our study .

The two basic steps in the analysi s for a given set of parameters w i ll

be to i) solve via L3CV for the surface values of ~ and ~n ’ 
and then i i)

find ‘;ia TE3D the therma l stress distribution with value and location of

peak stress. Hopefully, information correlating the peak therma l stress as

a function of the hc distribution and hole inclination will emerge.

5.4 OTHER RESEA RCH

Following the completion of the research in the previous three sections

we hope to have provided General Electric with useful information regarding 

~~~~~ . - —-- --, -“--. . . .- ~~~~~~~-- -~~
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the nature of stress in the vicinity of cooling holes in the film-cooled

blades . Still in hand of course are the two programs which provide the anal-

ysis and which , we feel , remain quite valuable ~s tools for similar analyses .

Two major i tems in connection with the use of the programs require fur-

ther investigation. Such investigation would contribute greatly to their

ultimate efficiency . The first i tem is an optimizati on study regarding the

degree of Gaussian integration to use as a function of i) shape of el ement

to be integrated over , ii ) proximity of the element to the region of inter-

est, and ii i ) proximi ty of the point P to the element , for a given discre-

tization . These items were discussed at some length earlier in the report .

Basically, it will be recalled that choices of degree of integration present-

ly are manually made on the basis of experi ence, prirna—ily, and CPU time de-

pends heavily on how often “high” degrees of integration are used . Further ,

fine, “regular ” discretizations permit l ower degrees of integration to be

routinely used . However since such discretizations require increased prob-

lem size and consequent elevation of CPU time , the question of optimization

wi th changes in discretization as a parameter also remains.

The second i tem, more straightforward , is the body -subdivision issue.

Lachat and Watson [3,4] have shown that analysis efficiency , primarily in

terms of reduced formation and solution time , can be introduced into compu-

ter programs of the present type by subdividing the body under investigation .

This means that the body is imagined to be cut into two or more subbodies by

means of imaginar$’ surfaces on which are located a’iditional nodes . Such sur-

faces, across which continuity of variables is maintained , introduce addition-

al equations and unknowns into the system. However , if this process is im-

plemented wisely (see criterion proposed [3,4]) not only is sparseness

~
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introduced into the final matrix of coefficients, resulting in reduced solu-

tion time, but often fewer total non-zero coefficients need be calculated .

This feature of body subdivisions becomes of greater importance as the size

of the problem (size of n) necessarily increases . It can always be used

wi th profit when surfaces across which gradients in variables are low are

used for subdividing.

Both efficiency items are regarded as important , now that the programs

have developed in sophistication sufficient to handle problems such as those

‘4 described and even larger-scale problems . Investigation of these efficiency

items are currently underway.

Finally, a program of research outl i ned in our most recent renewal re-

search proposal (transmittal date March 1977) centers around modifications

in our present capabilities and possible creation of new areas to include

certain kinds of material anisotropy and possible inhomogeneity . This re-

search is also underway . 
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F i g u r e  1. Schematic Diagram j f Ty~~icaI T’~i rb t n e  B lade 
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