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ABSTRACT

In this paper, we consider the problem of state estimation for

discrete systems with parameters which may be switching within a finite

set of values. In the general case it is shown that the optimal estimator

requires a bank of elemental estimators with its number growing exponen-

tially with time. For the Markov parameter case, it is found that the opti-

mal estimator requires only N2 elemental estimators where N it the number

of possible parameter values.
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1. Introduction

-• In most practical applications of recursive estimation theory, there

are difficulties in obtaining an exact mathematical model of the physical
dynamic process. The uncertain parts of the system are sometime repre-
sented by an unknown parameter vector. When the state estimation for this

type of syatem has to be carried out, the variations of these parameters and

their identification play a critical role.

Many approaches have been proposed in attempting to perform state

estimation together with parameter identification. There is one class of

adaptive estimation scheme which calls for the construction of a bank of

elemental estimators with each matched to a possible parameter value [C1 -

(7]. The optimal state estimate is obtained via a weighted sum over the

elemental estimates with the a posteriori hypothesis probabilities as

weighting factors. Based upon this idea, algorithms for both adaptive esti-

mation and control have been designed. These algorithms are optimum if

1) one of the assumed model matches with the physical process and 2) the

unknown parameter is a constant vector. Various arbitrary modifications

have been suggested to alleviate the above restrictions.

The purpose of this paper is to present the extension of the above
- adaptive estimation scheme to the case when the parameter vector is

assumed to vary within a finite number of values. For a general parameter

"process when the present parameter value can depend on the Bast history of

the parameter values, the optimum state estimate is found to be the weighted

sum of elemental estimates obtained by estimators matched to all possible

parameter histories. The weighting factor is the a posteriori hypothesis

probability determined by 1) residual pr-cvkses of all e.emental estimators

and 2) the conditional probability chAracterising properties of the parameter

process. Since each elemental estimator has to match to a given parameter

history and the number of possible hihtories grows with time, the optimal

estimator requires exponentially growing memory. When the parameterI follows a Markov process, L. e., th*_gresent parameter value depende

on the previous parameter value, this great computational and memoryI
31



requirement is relaxed. It is shown that the required number of elemental

estimator stays at NZ for the Markov parameter case where N is the number

of possible parameter values. Since the estimator for the Markov parameter

allows the parameter to change with time and its computational requirement

is quite modest (when compared with the exponentially growing memory

requirement). it may be used as a feasible suboptimal estimator design for

the general time varying parameter estimation problem.

There are a number of potential application areas of the above

proposed scheme. For example, the constant parameter multiple elemental

estimator algorithm was applied in the F-8C aircraft real-time control

problem [6]. In that application, the aerodynamic constants were discre-

timed into several sets of values. A bank of Kalman filters were constructed

"to match each s~t of parameter values. The switching parameter algorithm

discussed here will allow a more rapid switching among different sets of

parameters when the true aerodynamic constants have indeed changdd.

Another potential application of this scheme is in the Re-entry Vehicle (RV)

tracking area [8]-110]. A RV reenters the atmosphere following a ballistic

trajectory. It may perform aerodynamic maneuvers at a medium altitude

region and return to ballistic at low altitude region. A detection scheme

was suggeeteif in (81 and (91 allowing the detection of a RV maneuver. Thic

scheme suffers from detection delay and filter transients in the switch-over region.

In addition, it cannot identify the change to a trajectory from maneuver to

ballistic. Another solution is to construct two filters, a ballistic filter and

a maneuvering filter. If one chooses the constant paramnster algorithm, then

a large bias error will develop in the ballistic filter when the RV initiates a

maneuver. It therefore cannot identify the maneuver quench. The proposed

algbrithm allowing transition probabilities to exist between ballistic and

maneuvering filters thus allow the rapid identification of a maneuvering as

well as a ballistic trajectory.

The optimal estimator for continuous systems with continuously

time-varying parameters was considered before, e.g. see References t21-

(4]. A representation theorem was given in [2 1 and [31 and the differential

z



equation for the a posteriori hypothesis probability density function was

given in (4]. It is, however, very difficult to derive the algorithm for the

discrete case by directly discretizing the results of [Z]-[4]. The derivation

used in this paper is that of Bayesian approach (111. Similar derivations

were used in [5J and [7] where the adaptive control problem was discussed

in (5] and a tutorial treatment of the multiple elemental estimator approach

to adaptive estimation was presented in [7].

This paper is organised as follows. The state estimation problem

considered in this paper is stated in Section Z. The optimal state estimators

for 1) a general parameter process and 2) a Markov parameter process are

presented in Section 3. The time evolution of the parameter process it

characterized by a set of hypothesis processes which is also discussed in

the Section 3. The implementation of the optimal state estimator depends

upon the elemental estimators. This subject is briefly discussed in Section

4. Derivations of the estimation algorithms are given in the Appendix.

Z. Problem Statement

Consider the following discrete system and measurement equations.

a(t+1) f WO M) .6) 31(t), () (.I

'0t+1) h= ~ ) 0 (t+I))( .2

where x(t) is the state vector

u(t) is the known control vector

E(t) is the measurement vector

1(t) is the system noise vector

0(t) is the measurement noise vector

y.(t) is the random, unknown, and time-varying parameter vector

t is the discrete time index

3



The parameter vector is restricted to take values from a finite set.

SI Define a finite-dimensional parameter vector set R containing N distinct
q

parameter vectors, i. a.,

R = (y:Y = -i 1,...,NJ (2.3)q

The parameter may switch to any parameters in R at the next discrete
qStime, i. e, ,

'Y at t for y4 C Rq

and

at T for Yj lRq

when t 0 r, i may or may not be equal to j. Due to this property, Y is called

a stochastic jump parameter. A similar parameter process was considered

earlier in a control design problem (121.
Given the problem defined above, we would like to find the minimum

variance estimator (true conditional mean) of the state

S= / P. [_.xt)/Z(t)] (2.4)

and the conditional covariance matrix

E (t/t) cov x(t) ;x(t)IZ(t) (. 5)

where Z(t) ts the set of all past measurements and controls, i.e.,

Zlt) M au(O), u(l),..., u(t-l) , A(1 ) ,..,,_(t) J (2.6)

i""th is clearly a discrete nonlinear estimation problem. With the parameter

*•l 4
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vector defined above, it can be shown that the optimal estimator has a fixed

structure. That is, the optimal estimate is a weighted sum of eiemental

estimates with each matched to a possible parameter history. Furthermore,

when the system becomes linear even though the parameter process is still

related to the state vector nonlinearly, the optimal estimates can be computed

for a finite discrete time t.

3. Problem Solution

In this section, we present solutions to the described estimation

problem for 1) a general parameter process, and Z) a Markov parameter

process. In order to mathematically characterize the time evolution of the

parameter process, we first define a set of hypothesis processes in the

following subsection.

3. 1 Hypothesis Processes

The parameter vector may switch to any vector 8 in R at the next
q

discrete time, the number of parameter permutation therefore grows

erponentially. A set of indices ts defined to represent the time evoluation

of the parameter permutation.

.I) is an index set denoting

I1 1 i ' . .. N ( 3. 1)

Z) It is a t-tuple index set, i.e.s

I , (i I= xl x*** xi ; ***of ell (3.2)
t t t-l I cIJ 3

3) 1 1, for 1 el
5+I : +l j t+l



Notice that I is the index for parameter vectors in R q and It is the
index for the permutation of the parameter vector from the initial time to

time t. In the following, two hypothesis processes representing the param-

eter time history are defined.

I) Hi(t), i c I: the hypothesis that Y at t. It is a "local"

hypothesis since it only concerns the status of

at t.

2) 7i(t), i c I t the hypothesis that a given history of I for up

to time t is true. This history Is indexed by

a i C Y. It is a "global" hypothesis since it

concerns the time history of Y. For all

i C I, it defines alU possible I sequences for

up to time t,

Clearly, the global hypothesis describes the time evoluation of the

parameter process. It is specified by local hypothese at each discrete

time instance, i.e.,

Mt) u (H Wt), H (t-l), ... , H( ) (3.3)

it it-I

where i t

It ..*oo Ill
i is determined by a given sequence of I ... I

In the discussiasn to follow, we will frequently refer to the a

pgotertori hylothesis probabtl.y. It is the probability of a given hypothesis

being true conditioned upon the past meauurements. t. 4.,

Pi(t) a Prob (the i-th hypothesis it true I Z(t)) (3.4)

6
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1) ~For statec estima~te and covari&,,CC

where

I ) or the a 1 otti hypothesis probability

P s(t+I) i, H(w +), R fk (t)e z(t))

P ((Hi p(t+~ l ) Z(t))P

wvhere

tell(, )~~andj vIK~

Z) P(141(t+l) I ~t.Z(t) Prob 1~t~) Y T fkte Z (t)

We fitnak the followlAg remar~kst



1) The elemental estimate, xptl/t), is obtained by constructing a

minimum variance estimator based upon systems and measurement equations

defined by (2. 1) - (2.2) with the parameter process matched to the i-th

global hypothesis, li(t).

2) The elemental estimptes, ci(t/t), and covariances, E (t/t), are

combined to obtain the optimal estimate i (t/t) and covariance E (t/t) by using

a weighted sum. The i-th weighting factor, Pi(t), is the a posteriori

hypothesis probability of the i-th global hypothesis being true conditioned

upon all the past measurements and controls.

3) The above equations are independent of whether the system is

linear or nonlinear. When the system is nonlinear, the elemental estimates

can, of course, only be obtailnd approximately. The problem of realization

will be discussed in the next section.

4) The probability density functions of (3.9) are computed by

using residual processes of elemental estimators. That is

a) p (_(t+l) / H It+l) 'k(t), Z(t)

the density of the residual process of the elemental

estimator matching to !?k(t) and H1(t+l).

b) p (_I(t+ 1) ' Z (t))

Eai p(-(t+l) /•(t), Z(t) ) Pro(t)

SP(HnI (t+l) / •/m(t), Z(t) )]Pm(t) (3. 10)

9



5) The conditional hypothesis probability, P(H, (t+l)/Yik(t), "It )
represents the property of the hypothesis process. It characterizes the

evolution of y in R q* Notice that we do not restrict the behavior ofy

variations. In the most uncertain situation such that the parameter may

change to any parameters in R qwith equal probability one obtains

P(H (t+l) / ROOt, Z(t) ) ~ for ali i c 1 (3. 11)

If the parameter is a Markov process, it becomes the transition probability

P( t 1 f () t

-P(H 1 (t+l) / H k(t) ) for i, k e 1 (3. 1 Z)

6) Clear' y, the difficulty of implementing this estimator lices in

the fact that the number of elemental estimators grows exponentially with

time. The time evolution of elemental estnimators for N =Z is shown in

Fig. 1. Notice that at time t. the number of elrnentAl estimators grows to
Zt.

This difficulty is however, alleviated when the parameter follows a

Markov process. It can be shown that for a Markov parameter process, the

number of elemental estimator is limited to N. This cast io discussed in

the next section.

3. 3 The Markov Parameter Case

In presenting the algorithm for the Markorv parameter case, we use

the following simplified notation*:

E (t/t) coy 1 (t); x(t) H M.t) Z (t)
Z44



4,

Ei (t/t-) El x(t)/Hi(t), H.(t-1), Z(t-1) 1 the predicted state

X., (t/it) E ( _x(t)I/H(t), H (t-1), Z(t) I the updated state
-13

-. Pi(t) = Prob (Hi(t) is true / Z(t)

P = Prob (Hi(t) is true / H.(t-l)

the transition probability

SPlt M plz(0) 1 (lt), H (t - ), Z(t-) 1)

the residual density of the (i, j)-th elemental estimator

We now proceed to state the estimator. The derivation is included

in the Appendix.

1) For state estimate and covariance calculations:

. 1. 1) At time t-1, we have

It. (it-I /t- 1), Eilt- I /t- 1), Pi(t-l1); fort 1=I , N

1.2) Compute

m• • xAj(t/t-11, .Ei (t/t-1); for i,j 1 , , N

using N *tate and coveriance predictors.

1, 3) Compute

A_•j(t/t), r. (t/t); for i,,J= I,#.. N

using N state and covariance updators and the new measurement L(t).



1.4) Compute 1.i(t/t) andE.4/t) for i=I, ... , N using-1-

N
RAt/A) - Wt) P (H.=1

Ni; •i~/t)= •'•IP (Hi(t-l) /Himt, Z(t) )(3.14)

i• [lj(t/t) + •l(t /t) - i(t /t) )•j(t/A) - _i(t/t) )T

S~where

P(H(t-)/Ht), Z(t) t)P (t-1) (3.15)
N

Pjj~tP P(t-1)

1. 5) The minimum variance (true conditional mean) state estimate x (t/t)

and covariance E (t/t) are obtained by

¢ •(t/t) P 0l) Uit/t) (3. 16)

1 x (t /t )T 317

S(t/0) Pi(t) [ jlt/t) + •(t/t) - - (t/t) _i (it /t) -(/) J3 7

The above completes one cycle of the state estimate and covartance

computation.



2) For the a posteriori hypothesis probability calculations

N
pi PM~ Pi P (t- 1)

Pilt) N ( t P P (t-) (31)18)

We make the following remarks:

1) The above algo,.•thm require s implementing N2 elemental

estimators. If the elemental estimator is a minimum variance estimator,

then the state estimate X^(t/t) is optimum in the minimum variance sense.

2) Equation (3.18) may be re-written In a matrix form, let

& (t) be anNxl column vector consisting of all a posteriori

local hWvothes's grobabtlitinU at time t

p(H (t) / Zt)

P(HN(t) /Z (t)

and let

S(t+I/t) be an (OxN)matrlx with the (i. J)-th element sl being

equal to the product of the residual density of the elemental

estimator matched to Hi(t+l) and Hi(t) and the probability

of H (t+1) being true conditional upon Hi(t).

13



I•1 I ij~t p (z (tl/H i(t+l), H(t), Z(t) ) (H i(•I/it

Then

1(t+l) = S (t+l / t) (t) (3.19)
p(z(t+l) / Z(t)

The time evolution of the hypothesis process for a Markov parameter

process is illustrated in Fig. 2 for N = 2. A detailed flow chart illustrating

the state estimation process for N = Z is shown in Fig. 3.

A special case of the above is when the parameter is known to be

time invariant. Under this condition, the above estimator is reduced to the

estimator derived by Magill [1]. This can be obtained by substituting

1 when i= j
P (Hi(t)/Hj(t-1)) = otherwise (3.20)

into the estimator equations.

4. Elemental Estimator Implementation

The significance of thw estimator presented in the previous section

in that the estimator structure is the same for both linear and nonlinear

systems. This conclusion was also found in the continuous case (Z] - t4].
The estimator realization therefore depends on: I) the realization of the

elemental estimator and 2) the practicality of constructing a large num~ber of

elemental estimators. Three cases can be considered.

14



a) General Case

For the system and measurement equations considered in equations
(2. 1) - (2.2), i( /t) and E i(t/t) cannot be computed exactly. Suboptimal

nonlinear filters such as the extended Kalman filter [131 or the second order

filter [14] must be used. These filters have found many practical applica-

tions. They can be applied to approximate the optimal estimators.

b) Linear System Case

When the system is linear and noise vectors are additive, the

optimal estimate can be computed exactly. In this case, the elemental

estimator is constructed by using the discrete Kalm-an filter. In the

general case, the numbar of Kalman filters grows exponentially with time.

For the Markov parameter case, the number of Kalmnan filters is N2 .

c) Linear System and Constant Parameter Case

This is the case considered by Magill [1]. The estimator presented

in this paper can be reduced to the Magill's estimator by properly setting

thri conditional probabilities.

5. Di3cussion and Conclusions

In this paper, we have presented the optimal estimator for discrete

systems with finite-valued switching parameters. For a general parameter

p rocess in which the present parameter value can depend on the past history

4:the parameter values, the memory requirement of the estimator grows

nentially with time. Wheoi the present parameter value depends only on

t.ita previous parameter value and this dependence can be characterized by

-it•e transition probability, the required number of elemental estimator is

46itnd to be equal to N1 where N is the number of possible parameter vectors.

Sith this modest memory requirement, this algorithm is felt to be feasible

.460o suboptimal estimator design for the general time-varying parameter

ei i"imation problem.



APPENDIX DERIVATIONS

A. 1 Derivation of Equatins (3.7) and (3.8)

This derivation involves a straightforward application of the defini-

tions of (t/t) and (t/t) and

i P(-lt) /Z(t) )= Pllt pt(_t) /Rl(t), Zlt) )(A. 1)
it ItCi t

The details are omitted here.

A. 2 Derivation of Equation (3. 9)

Using the conditional probability relation yields

Pl(t+l) = P(Hit+1) /fk(t), Z(t+l ) P (Rk(t) / Z(t+1) ) (A. 2)

where i I and keI.
It

Using the Bayest rule one obtains

P(Htlt+lflk•)(t), Zlt+')

p L8(t+l) / Rlk(t), Z(t) )

k (t)k Z (t) •.4

p~L*t+l/Z(t) .16

16



Substituting (A. 3) and (A.4) into (A. 2) one obtains (3. 9). This completes

the derivation.

A. 3 Derivation of Equations (3. 13). (3.14), and (3. 15)

Using the definitions of Ai(t/t) and E (t/t), t. e.

Ai(t/t) = (t) /Hi(t), Z(t) ) dx (A. 5)

Et •(t /t0 zf L(t) - (t/0t))Lx(t) - -(t/t))jT P L(t)/Hi(t)' Z (t))dx (A. 6)

and the relation

--/ ~~pWlt / H!(t) ZWt

=W /Ip~ t)H(t), H lt-I), Z(t) )P{H lt-1) /H Wt, Zlt) ) (A. 7)

Jul

equations (3.13) and (3. 14) follow immediately. It remains to show equation

(3. 15). Using the conditional probability and the Bays#' rule yield

P(H (t-l)/ Hi(t)0 Zt) )

[; ~p{HP~-I), Himt / Z(t))

:i- - . . .... (A . 8)P1 (t)-

and
=-!;jlt. H. itlt) / Z1t)?

,'•" p•s(t)/H I(t}, .... I(t-1), Z(t-1))

"PW pt)Zlt- I IP (Hit() /Hilt-l) )Pjlt-1) (A. 9)

i 17



Notice that p(_z(t) / Z(t-1) ) is computed by using

N Np(_Z(t)/Z(t-l)) = = •!P(-Z(t)/Iii(t),IH(tall), Z~t'))P(Hi(t)/H (t-l))PJ(t-l)

j=1 l

(A. 10)

&Sbstituting (A. 9) and (A. 10) into (A. 8) and using (3. 18) one obtains (3. 15).

This completes the derivation.

A. 4 Derivation of Equations (3. 16) and (3. 17)

This derivation involves a straightforward application of the

definitions of A (t/t) and E (t/t) and

N
p(t) / Z(t) Pi pi(t) PL(t)/Hi Z M (A. 11)

The details are omitted here.

A. 5 Derivations of Equation (3. 18)

Using the conditional probability yields

I f P(Hi(t) /Z(t)

--•P(Hi(t)/H (t.-I)# Zt )P(H 4t-1)/Z(t) )(A.1iZ)JulJ

Using the Bay**' rule one obtains

P(H(t)/H0t-14, Z)

PLO /Hi(t), H 01iI(t-l),

4 Pp Mt H~-l (t-M) t-1 A3
-- • = - P(•~~~ft(t) /H J tl(t_~ ) ... P(zt/jt')Zt It (A1)3



and

P(H 3(t-1))/ Z(t) )

•i[ p(_z~t)/ z (t- 1),Z-l)

Substituting (A, 13) and (A. 14) into (A. 13) and using (A. 10) one obtains (3. 18).

This completes the derivation.

!9
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