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ABSTRACT

In thia paper, we consider the problem of state estimation for
discrete systems with parameters which may be switching within a finite
set of values, In the general case it is shown that the optimal estimator
requires a bank of elemental estimators with its number growing exponen-
tially with time. For the Markov parameter case, it is found that the o{;ti-
maeal estimator requires only N2 elemental estimators where N is the number
of possible parameter values,
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1. Introduction

In most practical applications of recursive estimation theory, there
are difficulties in obtaining an exact mathematical model of the physical
dynamic process. The uncertain parts of the system are sometime repre-
sented by an unknown parameter vector. When the state estimation for this
type of system has to be carried out, the variations of these parameters and
their identification play a critical role,

Many approaches have been proposed in attempting to perform state
estimation together with parameter identification, There is one class of
adaptive estimation scheme which calls for the construction of a bank of
elemental estimators with each matched to a possible parameter value [1} -
[7]s The optimal state estimate is obtained via a weighted sum over the
elemental estimates with the a posteriori hypotheais probabilities as
weighting factors. Based upon this idea, algorithms for both adaptive esti-

mation and control have been designed, These algorithms are optimum if
1) one of the aseumed model matches with the physical process and 2) the
unknown parameter is a constant vector, Various arbitrary modifications
have been suggested to alleviate the above restrictions,

The purpose of this paper is to present the extension of the above
sdaptive sstimation scheme to the case when the parameter vector is
assumed to vary within a finite number of values. For a general parameter
process when the present parameter value can depend on the past history of
the parameter values, the optimum state estimate is found to be the weighted
sum of elemental estimates obtained by estimators matched to all possible
parameter histories. The weighting factor is the a posteriori hypothesis
probability determined by 1) residual procsases of all elemental estimators
and 2) the conditional probability characterizing properties of the parameter
process. Since sach elemental estimator has to match to a given parameter
history and the number of possible histories grows with time, the optimal
estimator requires exponentially growing memory. When the parameter
follows s Markov process, i.e,, the present parameter value depends only
on the previous parameter value, this great computational and memory
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requirement is relaxed. It is shown that the required number of elemental
estimator stays at N? for the Markov parameter case where N is the number
of possible parameter values, Since the estimator for the Markov parameter
allows the parameter to change with time and its computational requirement
is quite modest (when compared with the exponentially growing memory
requirement), it may be used as a feasible suboptimal estimator design for
the general time varying parameter estimation problem.

There are a number of potential application areas of the above
proposed scheme. For example, the constant parameter multiple elemental
estimator algorithm was applied in the F-8C aircraft real-time control
problem {6]. In that application, the aerodynamic constants were discre-
tived into several sets of values. A bank of Kalman filters were constructed
to match each set of parameter values. The switching parameter algorithm
discussed here will allow a more rapid switching among different sets of
parametare when the true aerodynamic constants have indeed changeéd.
Another potential application of this scheme i{s in the Re-entry Vehicle (RV)
tracking area [8]-[10]. A RV reenters the atmosphere following s ballistic
trajectory, It may perform aerodynamic maneuvers at & medium altitude
region and return to ballistic at low altitude region. A detection acheme
was suggested in (8] and [9] allowing the detection of a RV maneuver. Thic
schems suffers from detection delay and filter transients in the switch-over region.
In addition, it cannot identify the change to & trajectory from maneuver to
ballistic. Anothar solution {s to construct two {ilters, s ballistic filter and
a mansuvering filter, If one choosas the constant paramater algorithm, then
s large bias error will develop in the ballistic iilter when the RV initiates a
mansuver, It thers{ore cannot ideatify the maneuver quench. The proposed
algorithm allowing traneition probabilities to exist between ballistic and
maneuvering filters thus allow the rapid identification of a maneuvering as
wall as a ballistic trajectory.

The optimal estimator for continuous systems with continuously
time -varying paramoters was considered before, ¢.g. see References {2}-
[4). A representstion theorsm was given in {2 ] and [3] and the differential
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equation for the a posteriori hypothesis probability density function was
given in [4]. It is, however, very difficult to derive the algorithm for the
discrete case by directly discretizing the results of [2]-[4]. The derivation
used in this paper is that of Bayesian approach [11]. Similar derivations
were used in [5] and [7] where the adaptive control problem was discussed
in [5] and a tutorial treatrment of the multiple elemental estimator approach
to adaptive estimation was presented in [7].

This paper is organised as follows. The state estimation problem
considered in this paper is stated in Section 2. The optimal state estimators
for 1) a general parameter process and 2) a Markov parameter process are
presented in Section 3. The time evolution of the parameter process ig
characterized by a set of hypothesis processes which is also discussed in
the Section 3, The implementation of the optimal state estimator depends
upon the elemental estimators, This subject is briefly discussed in Section
4. Derivations of the estimation algorithms are given in the Appendix.

2. Problem Statement

Consider the following diacrete systom and measurement equations.
x(t+l) = f(x(t), y(e), ult), §t)) ' 2.1)
£(t+]) = h(x(t+l), @ (t+1)) 2.2)

where  x(t) is the state vector
uft) is the known control vector
z(t) is the measurement vector
£(t) is the systern noise vector
8(t) is the meuuromﬁ:_t noise vector
y(t) is the random, unknown, and times-varying parameter vector
t is the discrete time index
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The parameter vector is restricted to take values from a finite set.

Define a finite-dimensional parameter vector set R_ containing N distinct

q
parameter vectors, i.e.,

Rq=[y_:1=y_{; i=z1,...,N} (2.3)

The parameter may switch to any parameters in R q at the next discrete
tiﬂ\e. io ec s

[1

Yy =y at ot for Yy ¢R

and

l=j_j at v for ijeR

when t # 7, i may or may not be equal to j. Due to this property, Y is called
a stochastic jump parameter. A similar parameter process was considered

earlier in a control design problem [12}].
Given the problem defined above, we would like to find the minimum

variance estimator (true conditional mean) of the state

x(t/t) = E [x(t)/Z(t)] 2.4)
and the conditional covariance matrix

L (t/t) = cov{x(t); x()/Z(t)] (2.5)
where Z(t) is the set of all past measurements and controls, i.e,,

Z®) = (w0, ull) oo, ult-1), 2(1) ,0en, 2(t) } (2.6)

This ie clearly a discrets nonlinear estimation problem, With the parameter
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vector defined above, it can be shown that the optimal estimator has a fixed
structure, That is, the optimal estimate is a weighted sum of elemental
estimates with each matched to a possible parameter history, Furthermore, ,

when the system becomes linear even though the parameter process is still
related to the state vector nonlinearly, the optimal estimates can be computed
for a finite discrete time t.

3. Problem Solution

In this section, we present solutions to the described estimation
problem for i) a general parameter process, and 2) a Markov parameter
process., In order to mathematically characterize the time evolution of the
parameter preocess, we first define a set of hypothesis processes in the

following subsection.

3.1 Hypothesis Processes

The parameter vector may switch to any vectors in R(‘l at the next
discrete time, the number of parameter permutation therefore grows
erponentially. A set of indicee is defined to represent the time evoluation
of the parameter permutation,

1} Ilis an index aet denoting
I.':[i;‘:l'c‘OQNJ (3.1)
2) I, isa t-tuple index set, i.e.,

It=(i:izitx‘t-leQQXil;it.oo.ail CI} (3'2)

3 Lyy = Ry @ fordy,, el

O P S Xt




Notice that I is the index for parameter vectors in R q and It is the
index for the permutation of the paramater vector from the initial time to
time t. In the following, two hypothesis proceases representing the param-
eter time history are defined.

1) Hi(t), iel: the hypothesis thaty = Y att. It is a "local"
hypothesis since it only concerns the status of
l at t,

2) ﬁ;(t), iel: the hypothesis that a given history of y for up
to time t is true., This history is indexed by
aiecl. Itisa 'global" hypothesis since it
concerns the time history of Y, For all
icl, it defines all possible Y sequences for
up to time t.

Clearly, the global hypothesis describes the time evoluation of the
parametsr procass. It is spacified by locz] hypotheses at each discrete
time instance, i.e,,

Hie) = (H &),8 @1, ..., H (1)) (3.3)
1 W g 4

where icl‘
it’ [N '] il‘x

i is determined by a given sequence of fyo coen ‘l

In the discussicns to {ollow, we will frequently refer to the &

posteriori hypothesis probability. It is the probability of a given hypothesis
being true conditioned upon the past measuremaents, i.e.,

Py(t) = Prob (the i-th hypothesis {s true / Z(t)) (3. 4)

Gdr ot 5V e o
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1) For state estimate and covariance

k0 = & P X & (3.7)
idt
Tt = P (5, (t/0) + & (/0) - X /) & /0 - @) 1 (3.8

1) lel kel, sndj=ixk

where
%, @/ = Elz) /20 H o)

_ L,/ = cov [ x(e): x(t) / 2&) H /)]
2) For the a_posteriori hypothesis probability
g p (elt+l) / H i), H ), 2¢)
, P,(t+l) =
5 } plateed) / Z(8)
. P H e /R, 2 ) P (8) 3.9
vhere

2) P v [ Hl), 28] = Prob (y(t+1) =y, / H (), 280)

We make the following remarks:




1) The elemental estimate, _;gi(t/t). is obtained by constructing a
minimum variance estimator based upon systems and measurement equations
defined by (2.1) - (2.2} with the parameter process matched to the i-th
global hypothesis, 'ﬁi(t).

2) The elemental estimates, gi(t/t). and covariances, Ei(t/t)' are
combined to obtain the optimal estimate X (t/t) and covariance I (t/t) by using
a weighted sum. The i-th weighting factor, Pi(t), ia the a posteriori
hypothesis probability of the i-th global hypothesis being true conditioned
upon all the past measurements and controls.

3) The above equations are independent of whether the system is
linear or nonlinear., When the systemn is nonlinear, the elemental estimates
can, of course, only be obtained approximately. The problem of realization
will be discussed in the next section.

4) The probability density functions of (3.9) are computed by
using residual processes of slemental estimators. That is

a)  pls(t+d) /H(t+1), Bt 20))

= the density of the residual process of the elemental
estimator matching to H, (t) and Hi(t+1),

b)  pletel) "2

= Z -
mdt plzit+l) / Hm(t). Z(t) ) Pm(t)

)3 [ E pleit+1) / B_ @), H_(t+1), 2())
mel, | ndd e m n

P(H_(t+1) / Hm(t). Z(t) }] P ) (3.10)




5) The conditional hypothesis probability, pmi(m)/'ﬁk(t). Z(tj),
represents the property of the hypothesis process, It characterizes the
evolution of y in R_, Notice that we do not restrict the behavior of y
variations, In the most uncertain situation such that the parameter may
change to any parameters in Rq with equal probability one obtains

PH t+1) / H 1), Z(t)) = -‘ﬁ for all icl (3.11)

If the parameter is a Markov process, it becomes the transition probability
P(H,(t+1) / H (t), Z(t))

= P(Hi(ti»l) / Hk“’ ) for i, kel (3.12)

6) Clearly, the difficulty of implementing this estimator lies in
the fact that the number of elemental estimators grows exponentially with
time. The time evolution of elemental estimators for N = 2 is shown in
Fig. 1. Notice that at time t, the number of elamental estimators grows to
2t,

This difficulty is however, alleviated when the parameter follows a
Markov process. It can be shown that for a Markov parameter process, the
number of elemental eetimator is limited to N2, This case is discussed in
the next section.

3.3 The Markov Parameter Case

In presenting the algorithm for the Markov parameter case, we use
the following simplified notations:

[}

Xt/t) = E[x@) /Ht), 2 ]

{t/t)

£

A cov [ x(t); x(t) / H,t), Z(t) ]

i0

L;,:»M.ﬁv.&».a;« Pt s
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g_ij(t/t-l) = E [ x(t)/H,(t), Hj(e-1), Z(t-1) ] = the predicted state

;-gij(tit) = E [ x(t)/H,{t), Ht-1), Z(t) ] = the updated state

j(

Pi‘t) = Prob (Hi(t) is true / Z(t) )

Pij = Prob (Hi(t) is true / Hj(t-l) )
= the transition probability
Pyl = B(z(t) / Hi), Hyt-1), 2(-1))

the residual density of the (i, j)-th elemental estimator

We now proceed to state the estimator. The derivation is included

in the Appendix.

1) For state estimate and covariance calculations:
1.1) At time t-1, we have
X, (k-1 / t-1), L;(t-1 / ¢-1), Pyt-1); fori=1, ..., N
1.2) Compute
g‘j(t/t-l). §1j(t/t-l); fori,j = 1, ..., N
using Nz state and covariance predictors.

1,3) Compute

g‘j(t/t). g."(t/t): fori,j = 1, oo, N

using Nz state and covariance updators and the new measurement g(t).

11
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1.4) Compute & (t/t) and §i(t/t) for i=1, ..., N using

B AR W%Wm‘“ﬁﬁ:s;@wﬁ& i

N
R (t/t) = 32 & /) P (H,(6-1)/H,0), 2()) (3.13)
=1
N
I;t/e) = f_‘, P (H(t-1) / H;(t), Z(t)) (3. 14)
1
& T
g - [ It/ + (gﬁ(t/t) - X, (t/t) ) (i:,ij(t/t) - X, (t/t) )]
{
? where
P, () P P (t-1]
P(H(t-1)/H,(t), Z(t)) = o 4§ (3. 15)
N
?.
: 1, 5) The minimum variance (true conditional mean) state estimate _;_5 (t/t)
‘ and covariance I (t/t) are obtained by

amepn s e

2t/ = ﬁ P,(t) &, (/t) (3, 16)

=1

L(t/t) = ‘il Pi(6) [T,(6/8) + (X, (t/t) - X(e/t) ) (G (t/8) - x(t/e) 17T (3.17)

The above completes one cycle of the state estimate and covariance
computation.

12




2)

P(t) =

For the a posteriori hypothesis probability calculations

iz; g Py t) Pyy Bylt-1)

(3.18)

We make the following remarks:

1)
estimators.

The above algo:.thm requires implementing Nz elemental
If the elemental estimator is a minimum variance estimator,

then the state estimate X (t/t) is optimum in the minimum variance sense.

2)

git) =

and let

Equation (3. 18) may be re-written in a matrix form, le:

q(t) be anNxl column vector consisting of all a posteriori

local hypothesis probabilities at time t

p— -

P, (®) / Z®))

- o LN 2

pH M) / Z() )
- -

S{t+1/t) be an (NxN)matrix with the (i,j)-th element .U being
oqual to the product of the residual density of the elemental
estimator matched to H,(t+1) and Hj(t) and the probability

of Hi(tﬂ) being true conditional upon H 4 (t).

o e R AR 05 . R R




5,0 = [p@(ED/H;E), Hi), Z(t) ) P(H,(t+1) /H(t) ) ]

Then

1
pla(t+1) / Z(t) )

q(t+l) = S (t+1 /t) gqft) (3. 19)

The time evolution of the hypothesis process for a Markov parameter
process is illuatrated in Fig. 2 for N = 2, A detailed flow chart illustrating
the state estimation process for N = 2 is shown in Fig, 3.

A special case of the above is when the parameter is known to be
time invariant, Under this condition, the above estimator is reduced to the
estimator derived by Magill [1]. This can be obtained by substituting

P (H(t) /H. (t-1)) = (3.20)

J

{ 1 when i = j
0 otherwise

{nto the estimator equations.

4. Elemental Estimator Implementation

The significance of thu estimator presented in the previous section
is that the estimator structure is the same for both linear and nonlinesr
systems. This conclusion was also found in the continuous case [2} - {4].
The estimator realization therefore depends on: 1) the realization of the
elemental estimator and 2) the practicality of constructing a large number of
elemental estimators. Three cases can be considered.

14
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a) General Case

For the system and measurement equations considered in equations
(2.1) - (2.2), 3i(t/t) and Ei(t/t) cannot be computed exactly. Suboptimal
nonlinear filters such as the extended Kalman filter [13] or the second order
filter [14] must be used. These filters have found many practical applica-
tions. They can be applied to approximate the optimal estimators,

b) Linear Systermn Case

When the system is linear and noise vectors are additive, the
optimal estimate can be computed exactly., In this case, the elemental
estimator is constructed by using the discrete Kalman filter. In the
general case, the numbser of Kalman filters grows exponentially with time.
For the Markov parameter case, thie number of Kalman filters is N2,

c) Linear System and Constant Parameter Case

This is the case considered by Magill [1]. The estimator presented
in this paper can be reduced to the Magill's estimator by properly setting
thu conditional probabilities,

5. Discussion and Conclusions

In this paper, we have presented the optimal estimator for discrete
:lyltems with finite-valued switching parameters. For a general parameter
.process in which the present parameter value can depend on the past history
6& the paramater values, the memory requirement of the estimator grows
;f{akﬁonenthliy with time. When the present parameter value depends only on
tlu previous parameter value and this dependence can be characterized by
f-‘t?no transition probability, the required number of elemental estimatoris
.ﬁldund to be equal to N% where N is the number of possible parameter vectors.
With this modest memory requirement, this algorithm is felt to be feasible
Jor suboptimal eatimator design for the general time- varying parameter
¥ ,ciﬂmation problem.




APPENDIX DERIVATIONS

Al Derivation of Equations (3.7) and (3, 8)

This derivation involves a straightforward application of the defini-
tions of X(t/t) and T (t/t) and

i)/ Z(t)) = iZI P, (t) px(t) / F, (), Z(t)) (A.1)
€
t

The details are omitted here.

A.2 - Derivation of Equation (3, 9)
Using the conditional probability relation yields

Pyt+1) = P t+1) /By (), Z(41)) PR, 1)/ Z(t+1) ) (A.2)

where {¢] and ke It'
Using the Bayes' rule one obtains

P(H (t+1) /R, (), Z(t+1) )

p(e(t+i) / H,(t+1), Rk(t). Zit))
. PHt+1) /R (), Z(0))  (A3)
plelt+l) /R ), Z(t) )

and

PM, (t)/Z(t+1))

Palt+l) /R ®), Z(t))
e W P('Rkl Z(t) ) (A.4)

16
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Substituting (A.3) and (A.4) into (A.2) one cbtains (3.9). This completes
the derivation.

A3 Derivation of Equations (3. 13), (3.14), and (3,15)
Using the definitions of g_i(t/t) and Qi(t/t). {,e.,

£t/ = f x(t) Px(t) /H,(t), Z2(t) ) dx (A.5)

g6/0 = [ ) - 6/ @ - 0T Pae)/H®, Z6)) dx (.6)
and the relation

plx(t) /H(t), Z(t))

- T pt /0, Hyt-1), 20)) PHE-D/H®), 20)) A7)

isl

équationo (3.13) and (3, 14) follow immediately. It remains to show equation
(3, 15). Using the conditional probability and the Bayes' rule yisld

P(Hi(t-l) /Hi(t}. g(t) )

P(Hj(t-l). H (8 /1 Z@))
® F{(t‘) (A. 8)

P(H(t-1), Hy®)/2())

p(at) /H (L), H(-1), Z2¢-1)) i

17 1
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Notice that p(z(t) / Z(t-1) ) is computed by using
N N |
p(z(t)/Z(t-1)) = FZ 21 plz(t) /H, (t), H,(t=1), Z (£~ 1))P(H,(t) /H; (- )P (t-1)
(A.10) ;
Substituting (A.9) and (A, 10) into (A, 8) and using (3. 18) one obtains (3, 15). ;

This completes the dsrivation,

A4 Derivation of Equations (3, 16) and (3.17)

This derivation involves a straightforward application of the :
definitions of X (t/t) and T (t/t) and )

N
pit) /2(¢t)) = {2:1 P,(t) P(x(t) /H ), Z(t)) (A.11)

The details are omitted here.

. ' A.5 Derivations of Equation (3,18)
Using the conditional probability vields

P(H, 1)/ 2())

= jgl P(Hi(t)/Hj(t-i). Z(t) )P(Hj(t-l)/Z(t) ) (A.12)

Using the Bayes' rule one obtains

EBIAR AU it AT i, Sl

P(H, () /H (1), Z(t) ) :

j
p((t) /H ), H (t-1), Z{t-1))
pllt)/ ,e.mﬂi-m P(H,(t) /H,(t-1),2¢-1) ) (A.13) :

18




i

TR

and

P(Hj(t-l)/Z(t) )

p(z(t) /Hylt-1), Z(t-1) )

Y OQIEATIIRE {t-1)/ 2(t-1) ) (A. 14)

P(H

3

Substituting (A, 13) and (A, 14) into (A, 13) and using (A. 10) one obtains (3, 18),
This completes the derivation,
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F1GURE 3 STATE ESTIMATOR FOR MARKOV PARAMETERS WITH N=2
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