
*D~ A Qi+ 3 093 ILLINOIS UNIV AT URBANA— CHAMPAIGN CENTER FOR ADVANCED——ETC FIG 912
RESEARCH IN NETWORK DATA I’ANAGEMENT AND RESOURCE SHARING. SYNCH——ETC (U)
MAR 76 P A ALSBE~ G. 6 6 BELFORDI $ P BUNCH DCAIOO—7 5—C—0021

UNCLASS IFIED UIUC CA C—1N 76— t85 CC TC— WA D—650 3 ML
II

A _____________________________ _______________
I U —

ø

I I I —Lii

‘ O ~~~~~ 11 2.5
I. L

•
L ~ 3 2 IIIJI~.2

I ~
IIIII~.25 IIIH~ ~im~

• MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU UT SIANOARDS- 1963 A

— — ~~
-.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— .- 
~

—. .-.-—
~ 

—-

- - . a. • ~• . . •.

CAC Document Number 185
CCTC-WAD Document Number 6503

Research in
Network Data Management and

Resource Sharing ‘
~

Synchronization and Deadlock

March 1,1976

ISTRIBUTION TEMENT A
Approved for public release;

Distribution Unlimited

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -~~-—



~ .-. -- 

. 1 _ .1-.LJiFJI ‘

~~~~

CAC cument Number 1
CTC—W Document Numb 65fr~3

Synchronization and Dead1ock~~

by

Peter A./A1sber~~ J, Enrique/Grapa~jGeneva C. IBe1ford~ ~~ ~~vid C. ~~ea1y
Steve R./Bunc~~ ~~win 3. McCauleyJohn D. Da David A. Wilicox

Prepared for the
Command and Control Technical Center D D C ~.WWMCCS ADP Directorate

of the
Defense Communication Agency

Washington, D.C. AUG 1

.7

Center f or Advanced Computation
University of Illinois at Urbana—Champaign

Urbana, Illinois 61801
~~~~

. ~~~~~

Approved for 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~? 
_ _ _ _



—- -—
~~~

—--,
~~~~~~~~~~~~~

.-
~

- ~ - ~~~~~~~~~~~~~ ~~~~~ L

Table of Contents

Page

Executive Summary 1

Background 1

Overview 1

Process Synchronization 2

Data Base Access Synchronization 3

Deadlock 

Introduction 7

The Problems of Synchronization and Deadlock 7

Example 1: Transmission of Data Between Processes 8

Example 2: Accessing a Data Base 10

Process Synchronization 12

Single—site Synchronization 12

Introduction 12

Dekker ’s algorithm 13

The primitives P and V 14

Test and set 15

Waiting on an event 16

Multi—site Synchronization 16

Introduction 16

Lamport ’s algorithm 18

The Alsberg—Day model 20

Summary 28

Data Base Access Synchronization 29

Introduction 29

Single—site Data Base Access Synchronization 29

— ~~~~~~~ —. -~~~~-.-.. rn ~~~~~~~~~~~~



r 
_ _ _ _-

~~~~~~~
— —-

~~~~~~

Table of Contents (continued)

Page

Introduction 29

The single—user illusion 30

Transaction sequencing 31

Levels of synchronization 33

Techniques for synchronization of data base access . .  35

Summary 38

Distributed Data Base Access Synchronization 39

Introduction 39

Evaluating synchronization techniques for distributed

data base access 41

Maintaining consistency among multiple copies . . . -
.  42

Summary 47

The Deadlock Problem 48

Introduction 48

Treatment of Deadlock 54

Detection and recovery 54

Avoidance 57

Prevention 58

Ignoring the problem 59

Combinations of techniques 63

Techniques proposed for distributed data bases 65

Assessment of the State of the Art 67

Complexity of avoidance 67

Feasibility of detection and recovery 67

Difficulties of prevention 68 —

Elimina tion of concurrency 71

-- --——-i -— -- —- — ,- -~—.- -—.- - — _ _ _ __rn~~~ 
.——



-— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—.
~~

-—-. .r—.- -~~~- -
~

• - -
~~

Table of Contents (continued)

Page

Distributed Deadlock Detection in a Network 72

Conclusions, Areas Needing Further Study 77

References 80

ii

_ _ _ _ _

~TI$ Nilia SectIsu

~~ ~~~~~~ ~~

0
~~~~ . ~~ A T~~ ~~~~~~~~~~~~~~~  

.——.—..- 

B, -

1. ~T~ l?~fl IO~ - HAR I~~UT~ Cc~n

Aft  s .~ e~ S1~C~AL 

_ _ _ _ _ _ _  
4 -[A 

_ _ _ _  _ _ _ _ _ _ _ __ _ __ _ _ _ _- ~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~ .-— ~~~~ —~~—-~-—-— -
-
~~~~~~~~~~ ~~~~—- -~~~~~~~~~ —- ~~~~~~~~~~~~~~~~~


_ —~~ -“—~~~~~~~ - - . .

Executive Summary

Background

This document presents the results to date of a research study

of the problems of synchronization and deadlock, particularly as they

arise in a network environment. The study is part of a larger, compre-

hensive investigation of problems in network data management and resource

sharing. The goal is to develop techniques applicable to the World—Wide

Military Command and Control System (WWMCCS) Intercomputer Network

(WIN). The work is supported by the WWMCCS ADP Directorate, Command and

Control Technical Center, of the Defense Communications Agency .

Overview

In the introduction to this document, we briefly define and

give examples of both synchronization and deadlock. The remainder of

the document is divided into three sections:

1) Process Synchronization

2) Data Base Access Synchronization

3) Deadlock

In each section we discuss the technical problems and assess possible

solutions, particularly with reference to a distributed environment.

In general, we find that there is no lack of available techniques

for handling the problems of synchronization and deadlock. However,

previous study of the techniques has largely been limited to single—site

environments. We have identified those techniques which seem most

readily applicable to a network environment.

Extending single—site techniques to a network necessarily

gives rise to new problems. Among these problems are resiliency and the

1 —

L~~~~-_ - -~
._. . _

~~ . . ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ — -~~~~~-~~~~

--.
~--v —-

~~~
--

~~ ..~~~~~~~ —_ --__--- .-- ---- ---- .— —.---
~
-.--- -‘

~~
----- -.—.— .- -

~

lack of a central control. We have made some progress on developing

solu u ion~ to these problems . In particular , a promising resiliency

scheme and an algorithm for decentralized deadlock detection are presented

in this document .

However , further work is needed . Analysis of how well the

techniques work (e.g., cost and response) in a distributed environment

is reqt;ired . We expect that the mathematical models we are now develop—

ing will be useful in such an analysis. Furthermore , the experimental

distributed data management system that we are designing will provide a

vehicle for practical tests of the techniques. More definitive con—

clusions and recommendations on deadlock and synchronization techniques

may therefore be expected in the future.

Process Synchronization

The section on process synchronization first reviews the basic

techr.iques for ensuring that processes concurrently in the system do not

interfere with one another. In one way or another , these techniques all

involve “semaphores” — variables which can be accessed (read and altered

in a strictly defined way) by all the processes to be synchronized . By

modifying the values of such variables, a process can communicate its

state to the other processes. Conversely, by examing the values of the

semaphores, a process can determine whether or not it is safe to proceed .

Many schemes exist in the literature for defining semaphores

and primitives to operate on them. In this document we briefly describe

only a few of the schemes most frequently implemented in computer systems :

Dekker ’s algorithm , Dijkstra ’s P and V operations, test and set, and wait

on an event.

2

~~~~~~~~~~~~~~~ ~~~ __~~~ , i ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .:


- ~~~~~~~~~~~~~~~~~~~~~~~~ — - -~~- -— ----- --- ~~-~~~~~ — - -~~~~——

All of these schemes run into difficulties in a distributed

environment. First , semaphores reside in shared memory; all the processes

to be synchronized must have ready access to the semaphores. Second , even

if it is feasible for the semaphores to be stored at one reliable site

on the network, the time delays involved in network communications are

likely to make synchronization prohibitively slow. Third, the time

delays, which may vary considerably, have other adverse affects. They

make the problem of races much more severe than it is within a single

system. Furthermore , extraordinarily long delays may be virtually in-

distinguishable from failures. Serious trouble can be caused if a pro-

cess attempts error recovery on a (remote) process which is still

working properly, albeit slowly. Fourth, problems of errors become more

severe. Much care needs to be taken to see that communication among pro-

cesses is resilient to lost and delayed messages, and to other common

errors.

We discuss two schemes for multi—processor synchronization in

this document. The first , Lamport ’s algorithm , was not designed for a

network environment and appears to suffer from serious resiliency prob-

lems. The second, which we call the Alsberg—Day scheme, was recently

developed to solve some of the resiliency problems. The key idea is to

provide that at least two hosts know what is happening before an action

is allowed to proceed . Network time delays however, remain a problem

which may become particularly accute in synchronizing data base usage.

Data Base Access Synchronization

As in all synchronization, the goal is to keep processes, or

user transactions, from interfering with one another. Each user should

have the illusion that he is alone on the system. To achieve this

3

- ~~ .~~~~ - . —.rn~~~--

- ___ ._T:. ~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~
- -

- .

“sing le—user illusion ”, it is possible to apply a standard process

synchronization technique. Certain questions arise , however , which are

specific to data bases. One of these is the data “level” at which

exclusive use is assigned . It may be that usage is assigned on a record—

by—record basis. Or , at the other end of the scale , only one user at a

t ine may be allowed access to the entire data base. The choice of level

is a difficult decision . We discuss some of the tradeoffs which should

be considered .

If the data base is distributed throughout a network, network

delays affect the decision on synchronization technique. In particular ,

there is a need to minimize the number of synchronizing messages which

must be sent across the network. Looking at current single—site techniques

in the light of this requirement , we find that the frequent, explicit

setting of semaphores or locks appears to be too time—consuming. The

most promising techniques seem to be those in which only the transaction

requests themselves, with perhaps some information on the order in which

they should be performed , are transmitted across the network. The local

data managers are then responsible for setting locks or enforcing a

usage protocol that avoids interference.

The question of maintaining an order among transactions is

particularly important in a multi—copy environment. Applying updates in

different orders to different copies can cause inconsistencies among the

copies. One way to maintain the ordering is to attach a “sequence

n~ nber” to each transaction. The concept of sequence number assignment

is specific to distributed data management and hence is relatively new.

Two of the strategies which we discuss have been developed at the CAC ,

and research on this topic is ongoing.

4

_ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _

;... i,
si-. - ——. . .. _____- -. -.- _~~_ M~~~mà~~~~~~~— ~~~~~~~~~~~~~~~~~~~~

- .. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘__,. —‘... .,w~’—.- - ——‘~ -~~~—-- — - . - -

— —9-- . - . ‘-.——- ._____.__$n_-_-_ , .————— —

We conclude that at this time the state of the art does not

permit the recommendation of a “best” technique for data base access

synchronization, particularly in the distributed case.

Deadlock

The last major section of this report deals with the problem

of deadlock. That is, several processes may mutually block each other

from further progress, each holding a resource needed by another. This

problem has been very heavily studied over the last six years. The

basic techniques for handling deadlock fall into three classes:

1) Detection and recovery.

2) Avoidance, or elaborate schemes for assigning resources to

processes only when it is “safe” to do so.

3) Prevention, or the imposition of some discipl:~ne on the

processes (e.g., requiring them to ask for needed resources in a pre-

scribed order) which precludes the circular blocking configuration

characteristic of deadlock.

We have assessed the applicability of these techniques in a

distributed environment, and particularly with reference to data base

access control. We conclude that avoidance is ,‘robably too expensive

and time—consuming to be practical. The prevention schemes also may

impose too much of a burden on the system or, alternately, on the

application programmer . Simple detection schemes may be feasible in a

network. We propose one such scheme which, unlike one previously

discussed in the literature, does not require a central monitor.

There is also the possibility that deadlocks occur infre-

quently enough that the problem may be ignored; i.e., that a deadlock

may be handled like any process failure. Several studies exist in the

_

5 _L
~~~~~~~~~

l
~_ :___ 4 _ . ~~~~~

_
~~ — —~~---—- .



r 

- - - - ________ - .-- ,.- 
- - - ~~~~~ 

.— -—-

literature on the expected frequency of deadlock. As one might in-

tuitively expect , as data bases grow larger, contention for the same

items (and hence the probability of deadlock) should decrease.

Existing computer systems tend to use a combination of techniques

for handling deadlock. Different schemes or disciplines are applied to

handling different types of resources. Some possible sources of deadlock

are even ignored. The practicality of combining techniques is worth

keeping in mind , since there appears ~o be no single “best” way to

handle deadlock.

Clearly, the choice of synchronization mechanism will impact

on the deadlock problem. Synchronization techniques need to be studied

with one eye on their potential for causing deadlock. If synchronization

is handled properly, the need for a separate concern with techniques for

handling deadlock can be minimized.

6

--- —~~~~~~- 
—.—-—--— 

--- ---—- — -,-- - 
- - - -.  

~~~~~~~ ~~~~~~~~~~~


- —
~~

_
~
______ . - —- ~~~~~~~~~~ - ...- ~. — r’ .rw.,

- - -

Introduction

The Problems of Synchronization and Deadlock

In any multiprocessing system — i.e. , computer system in which

several processes may be concurrently in the system — synchronization

becomes a concern. Simply stated , synchronization is some sort .~f

provision for the noninterference of these concurren t processes . In

some cases the noninterference is automatic. For example, in a single—

processor multi—programming system, only one process is actually using

the CPU at any given time. In other cases interference can be quite

subtle; e.g. an update to a data base may cause a concurrent retrieval

to give inconsistent results.

The basic apprDach to synchronization is to make a process

wait until it can proceed without interfering with other processes.

This waiting can be effected through various means. One way is for

processes to communicate with one another by setting values of special

variables (“semaphores”) which may be read by the other processes. This

- - approach is discussed in detail below in the section on process synchroni’-

zation. A variation on this approach is to “lock” resources to reserve

them for the exclusive use of the locking process. (This is only a

variation, since locking is generally implemented by setting a lock—

bit.)

In any case, the progress of a process may be blocked by

having to wait for needed resources. Two or more processes may then

reach a state where none can proceed since each is waiting for a resource

held by one of the others. Such an impasse is called a deadlock.

- -

In stud y i n g so lu t ions to the synch ron i za t i on problem , one mus t

t h e r e f o r e keep one eye on how they a f f e c t the deadlock pr oblem . A l t h o u g h

the so lu t ions to the two problems can to a large extent be s tudied

independently, any engineering solution must consider both problems.

Thus it is appropr ia te to merge the studies into this one document .

Before proceeding to considerations of the synchronization and deadlock

problems in some detail , we will g ive two examples . Par t icular emphasis

is placed on the complexities of the problems in a network environment.

Examp le 1: Transmission of Data Between Processes

This is the classic producer — consumer problem , discussed at

some length by Dijkstra [1968). There are assumed to be a number of

processes “producing” data or information of some kind . This data is

then to be sent to other processes which “consume” i t . Suppose , for

simplicity, that there is only one consumer . For example , the consumer

could be an output device, such as a line printer . Transmission is

assumed to be by way of a finite—sized buffer . Thus producers put data

into the b u f f e r as long as the b u f f e r is not f u l l . If the b u f f e r is

f ull , producers must wait until more space is provided . The consumer

removes data from the buffer until it is empty . Then the consumer must

wait for a producer to put more data in. Communication among the pro-

ducers and the consumer is necessary to ensure that they do not interfere

with one another when putting data into the buffer or when removing data

from the buffer . Thus, considerable synchronization is needed to guar—

antee the smooth and fault—free operation of this very simple transmission

process. Dijkstra presents a solution to the problem using semaphores

and hIs P and V operations. Dijkstra ’s solution is discussed in a later

section of this document.

8

- -- -—

If the operations which involve waiting are handled properly ,

there is no way that a deadlock can arise in this simple example. The

competition among the processes is only for a single resource — the

buffer. Only when processes are competing for several resources can

they entangle each other in deadlocks.

If the buffer is used for two—way transmission, it becomes

two separate resources — an I/O buffer at each end . Then deadlock can

occur. For example, consider the simplest case of two processes, A and

B, each putting into the buffer data which are to be extracted by the

other. Suppose that the buffer is full, and neither A nor B will read

any information from the buffer until it is able to put more into the

buffer . Then A and B are deadlocked . Each is waiting for the other to

open up the needed buffer space.

In a network setting, the processes sending information to

each other may be located at different sites. The paths between them

involve not only network transmission lines but buffers at the store—

and—forward nodes of the communications subnetwork. Simple semaphores

no longer suffice to tell a process when it is “safe” to send data

across the network.

Packet switching causes some mitigation of data—transmission

synchronization problems in a network. Since each packet independently

makes its way through the network, there is no need for synchronization

among the actual producers or consumers of the data.

Unfortunately, packet switching , though it solves some problems,

has the potential to create others. For example, a reassembly lock—up

may occur. This is a deadlock caused by filling the buffer space

available for the reassembly of packets into messages. Portions of

9
—

t
several messages can fill the buffer space. None of the partial messages

ca n be completed and read out because there is no space to read in the

missing packets. Notice that this serious problem arises from a l ter ing

just one assumption in the easily solved producer—consumer problem;

namely, the assumption that the consumer will extract any arbitrary

“un it ” of Information from the b u f f e r . As soon as the consumer can wait

for a particular unit or combination of units, deadlock can occur .

Example 2: Accessing a Data Base

If concurrent processes can read from and write to a data

base, they may interfere with one another. This interference could

cause both the retrieval of incorrect or inconsistent data and the loss

of integrity within the data base. The retrieval of incorrect data can

occur when a writer is altering the data as it is being read . Loss of

internal data base integrity can occur when two writers interfere with

one another . To prevent these problems , a writer is usually given

exclusive acc ess to the data base (or a portion of it) while he is modi-

fying it. Readers may all be reading concurrently , but not while a

writer is writing. In a single—site data management system , synchroni-

zation of data usage is readily handled . For example, semaphores can be

used or locks can be attached to units of data . (The problem and

possible solutions are discussed in some detail in the section on

synchronization, below.)

If processes can block each other from access to data units ,

however , the potential for deadlock may become large. For example,

suppose that two Navy supply officers, Jones and Smith , are charged

with keeping track of food and fuel, respectively, for the ships of the

fleet. Jones, in updating the information on food supplies , locks the

10

~~

— --..~~~
-

~~~ - - - - - - - - - -

file on the Monitor. Meanwhile , Smith , updating data on fuel , locks the

file on the Merrimac . Jones , before unlocking the Monitor f i le , needs to

consult the Merrimac f i le.  Similarly , Smith needs information from the

Monitor f i le before releasing the Merrimac file. Smith and Jones are now in

a state of deadlock. Neither can proceed , since each is tying up a

resource needed by the other .

In a distr ibuted , network environment , where access to the data

base can take place from remote sites , the problems of synchronization and

deadlock become much more difficult to solve. The source of the diff i-

culty lies primarily in two factors — the increased likelihood of errors and

the lack of a central system for monitoring and control. In a network,

synchronizing messages are easily lost or delayed. Without some scheme

for ensuring the resiliency of the synchronization protocol, there can be

no guarantee that a data base user will not inadvertently destroy a

colleague’s work.

The local system at the site holding the data base can perhaps

maintain the data integrity by standard techniques. But if, for purposes of

increased availability , two copies of the data are held at different

sites, maintaining their consistency is a formidable problem. If one

site is assigned the task of maintaining the integrity of both copies,

provision must be made for switching control to another site if the

first site fails. This switching of control itself is a nontrivial

problem , requiring the development of resilient techniques. Thus

solving one problem may only cause another to arise.

This document reports on what is perhaps the first comprehensive

attack on the problems of deadlock and synchronization in a distributed

environment. Many questions, however, remain to be answered .

11 

,-----— — 
~~~~—

- —---------—-.-- --— ---——- — - ---.—-— ..

r

- -

~~

-,.---- - ---—---—------ ---- --- - -

Process Synchronization

Single—site Synchronization

Introduction. The basic reason for synchronizat ion among

concurrent processes Is to ensure that the cooperating processes do not

interfere with each other. For the most part , of course, processes are

noninterfering . Only while executing certain critical sections may

processes interfere with one another. For example, the critical section

of a process which updates a data base might include the actual updating

of the indices to the data base, but not the preliminary decoding and

processing of the update request. Synchronization is required to ensure

that two or more processes do not update the data base indices at the

same time. If more than one process was allowed to update an index ,

the result could be indeterminate. Thus the essential information to be

transmitted among processes is whether or not they are within their

critical sections. Clearly the notion of “critical section” can be

generalized to include any section whose initiation or completion Is

“critical” to other processes.

The basic technique for synchronizing processes within a

single computer system is by means of semaphores. (We use the term here

in a more general sense than the restricted one of Dijkstra “semaphores”.)

In simple terms , a semaphore is jus t a variable which can be accessed

(read and altered in a strict!y defined way) by all the processes to be

synchronized . By modifying the values of such variables , a process can

communicate its state to the other processes . Conversely, by examining

the values of the semaphores , a process can determine whether or not it

is safe to proceed .

12 ‘—

.-.-.-—

- - -- -- -~~~~~~~~- - - - -~~~~~-- -——-—
~~~
-- -

As generally used , semaphores take on only integer values; in

many cases they are s imply binary (taking on only the values 0 and 1).

The basic arithmetic operations on semaphores can then be restricted to

addition or subtraction of one . It is clearly possible , unless other

restrictions are imposed , for processes to interfere with one another in

operating on the semaphores themselves. Such interference would cause

misunderstandings and loss of synchronization. In order to avoid such

interference — and to obtain other desirable effects — primitives (unin—
terruptible sections of code) are usually defined for operation on the

semaphores. The restriction is imposed that the semaphores can only be

accessed by means of these well defined semaphore primitives. In some

systems, the semaphores are handled only by the system . The process

“waits on an event” and is notified by the system when the event has

occurred .

Much of the literature on process synchronization deals with

alternative definitions of semaphore primitives and how they may be

implemented and applied. Although details may vary, the basic ideas re--

main the same. We will therefore only look briefly at the classic

synchronization techniques before proceeding to consider the process

synchronization problem in a network environment.

Dekker ’s algorithm. The first valid solution to the mutual

exclusion problem was discovered by Dekker. A good discussion of his

algorithm is contained in Dijkstra ’s classic paper [1968]. Three

integer variables (binary semaphores) are used for communication be-

tween two processes both of which are cycling through a program containing

one critical and one noncritical section. Two of the variables (C1, C2)

are used to indicate whether the corresponding process is in its critical

13 —
1



-— ---— -— -—- . —--- .~~~~~~~~—-  ~---- —--. .— -- -
~~~~~~

sect ion. Thus process I tu rns C 1 on and off , and looks at C 2 to see

w het h e r process 2 is a l r e a d y in i ts c r i t i ca l section . The t h i r d v a r i a b l e

is used to resolve an indeterminacy when both C
1
and C2 are on.

There are two disadvantages to this solution . One is its

complexity. Ideally , only one semaphore should suffice to pass the

information back and forth that a process Is in its critical section .

The other disadvantage is that , whenever a process is ready to enter its

critical section , it continually tests the other C variable un t i l the test

is satisfied (i.e., until the other process has left its critical

section). This so—called ~~~~ waiting is wasteful of CPU time. It

would be much better if the process could wait passively until the test

Is satisfied . As mentioned above, most techniques use uninterruptible

primitives to access the semaphore . Dekker assumes only that two pro-

cesses cannot read or write a location at the same time. This algorithm

is therefore useful, despite its disadvantages, in those applications

where it is impossible to allow more complex uninterruptible primitives.

The primitives P and V. One set of uninterruptible primitives

consists of the P and V operations defined by Dijkstra [1968]. The

operation P(S) decreases the value of a semaphore S by one. If the

resulting value of S is non—negative , the process perf ormi ng the P(S)

is permi t ted to proceed . If the resulting value of S is negative , the

process performing the P(S) is blocked and booked on a waiting queue .

The operation V(S) increases the value of S by one. If one or more pro-

cesses are waiting on the semaphore S, then one is removed from the

waiting queue and permitted to proceed . Both P and V are assumed to be

(in Dijkstra ’s terminology) indivisible operations. That is, each must

be implemented in an inseparable, uninterruptible fashion.

14

_ _ _ _ _ _ _ _ ~~~~~~~~~~ —-~~ — -S-
~~~~



_ _ _ _ _ _  - ~~~~~~~~~~~~~~~~~~ — - --~~~~ --~~~~~~~~ ~~~~
—--.-

~~~
-

~~~~~~~~~~
— 

~~
—-

Using these primitives, Dijkstra readily solves the simple

mutual  exclusion problem which Dekker ’s algorithm addresses . Only one

semaphore (5) is needed . Each process precedes Its critical section

by P(S) and follows it by V(S). Indeed, this simple scheme is not

limited to just two processes. Dijkstra’s scheme will guarantee that no

more than one of any number of concurrent processes is in its critical

section at any time.

Dijkstra’s primitives certainly avoid the complexities of

Dekker ’s algorithm. As defined , the busy waiting is also avoided .

Whether or not the P operation does involve busy waiting depends upon

how the primitive is actually implemented . It would clearly help to

have a primitive of this type built into the computer system as a single

operation .

Test and set. This operation is the indivisible testing and

setting of a binary semaphore. Test and set operations are built into

the hardware of modern computer systems. They permit a process to test

the value of a memory cell (the semaphore) and write a new value into

the same cell in one, uninterruptible memory cycle. Test and set is

frequently used with semaphore values zero and one. A zero means that no

process is in its critical section. To enter its critical section, a

process tests the semaphore for zero and sets it to one. If the test

for zero succeeded , the process proceeds to enter its critical section .

If the semaphore was a non—zero, the process must wait. When a process

leaves its critical section, it sets the semaphore back to zero. Test

and set, like Dekker’s algorithm , is busy when waiting . In actual use, a

programmer will take considerable pains to avoid cycling on the test and

set instruction. The techniques used to avoid busy waiting are dependent

on the facilities offered by the operating system and on the application.

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ - . -—


_ _

Waitin g on an event. An apparently sophisticated synchroniz ation

technique which is implemented (with some variations) in many computer .sys—

tens (e.g., UNIX , B6700, and Multics) is the wait on event. The idea

is that the programmer is provided considerable flexibility in naming

events and specifying , at any point in a process , that the process should

wait until a designated event occurs. The system will then wake up the

process after the event has occurred . The problem with this solution is

that if the event has occurred before the wait begins , the system will

not remember it and the waiting will go on forever. That is, there is

no queueing of events which processes may wait on in the future. The

Burroughs system does get around this problem by providing a HAPPENED

function , but it is rather cumbersome. This cumbersomeness Is inherent

in systems using wait on event , since the same events may be periodically

reissued (e.g., a buffer full and a b u f f e r available event) . In this

case it is not enough to know that, for example, a buffer available

event has happened . The process needs to know the sequence of the prior

event relat ive to other prior events. In contrast , P and V. as well as

test and set , provide a mechanism for remembering events through the

explicit setting of semaphores. Thus the extra flexibility supplied

to the programmer by the wait on event also causes him difficulty if

the event may occur before the wait (I.e., there is a race condition).

Multi—site Synchronization

Introduction. Problems immediately arise if one attempts to

apply the techniques described above to a multi—site environment . First ,

semaphores reside in shared memory ; all the processes to be synchronized

must have ready access to the semaphores. Second , even if it is feasible for

the semaphores to be stored at one reliable site on the network, the time

delays involved in network communications are likely to make synchronization

16

- —--—-—~~---———— _m —— -.-- ---- —-. - - —--- —

prohibitively slow. Third , the time delays, which may vary considerably,

have other adverse affects. They make the problem of races much more

severe than it is within a single system . Furthermore , extraordinarily

long delays may be virtually indistinguishable from failures. Serious

trouble can be caused if a process attempts error recovery on a (remote)

process which Is still working properly, albeit slowly . Fourth , problems

of errors become more severe. Much care needs to be taken to see that

communication among processes is resilient to lost and delayed messages

and to other common errors.

We discuss two multi—site synchronization schemes here. In

their present form , neither of these schemes will provide general solu—

tions to the problems of network partitioning and error recovery . Al—

though there are some obvious specific solutions to these problems , more

work needs to be done to determine what options are available and to

what degree general solutions are possible. A detailed discussion of

these problems and their solutions is beyond the scope of this paper . A

separate and more detailed paper is in preparation . A brief discussion

follows.

One of the most difficult problems for a network synchronization

scheme to handle is partitioning . (The network is said to partition when

subnet failure results in the network’s being cut into two or more sets

of hosts in such a way that communications are maintained within sets

but not between sets.) The diffirzdty in handling this situation is
—

.

that a host which cannot communicate with a remote host cannot tell

whether the host is dead or the network has partitioned . In fact , it

is only after commun li~ation is restored that it is possible to determine

which situation existed . For instance, suppose that several hosts are

synchronizing to use some resource and that one of them has access and is

in its critical section when the network partitions . To hosts on one

17

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—
..~~~ — --~~~~~~~~~~~~ - —.-

~~~~~~~~~~
- —--

~~~~~~~~ - .— -- - -
~~~~

~~~~~~~~~~-—



-- - ~~~~ —- —-~~ — _ - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

side of the partition it will appear that the host has died and that

recovery procedures should be instituted . But to the hosts on the other

side of the partition the host is still alive In his critical section ,

and all is well except that several of their cohorts appear to have died .

There are two cases where network partitioning can become

critical. The first is the example mentioned above where the network

partItions with some process in its critical section. The second is

when a network partition causes copies of the semaphore values (which are

duplicated for resiliency) to be separated . Various resiliency schemes

can be utilized to handle this latter case. In fact it is this case that Is

addressed by the two solutions which we discuss.

There appears to be no general solution in the first case. If

a process does fail while in its critical section, some sort of error re-

covery must be done. At present, it appears that this recovery will be

very application specific . However, more work needs to be done to

determine if there are basic strategies that synchronizing hosts can use

with a given synchronizing scheme to recover from errors and failures.

In the existing literature, we have found only one paper [Lamport,

1974] that attempts to provide a solution to a multi—processor synchroniza-

tion problem. We will briefly discuss that paper below . Following that, we

will discuss a technique for resilient synchronization that we have

developed .

Lamport ’s algorithm. The problem addressed by Lamport is that

of synchronizing a number of processors, each funning cyclic programs

with two parts, one critical and one noncritical. (This is the multi—

.l.P r 
processor analog of the classic problem addressed by Dekker and Dijkstra ;

see above.) It is tempting to try to adapt Lamport ’s solution to a

network environment. We shall see that it is not clear whether this can

be done.

- -- 18

—- — ~~~~~~- ‘— .__—.- —______.-__--—-—— - -—-—_— . - ... p - —-- — _~~ - — - - - -  .—~.-a- - ... i~~ ~~~~~~~~~~~~~



— — -— -, - -.---- —----- — —— — --——— -w__---__-~--— ~~~~~
- --

Lamport adopts the usual approach of assuming communication by

way of shared memory. However, each processor can only write into its

own memory , although it can read from the memory of any processor.

Whether or not a processor may enter its critical section depends upon

whether a priority—setting number it has “chosen” is lowest among those

of the waiting processes. (The waiting is busy , and thus wasteful of

processor time if other processes may otherwise be run concurrently.)

The principal difficulty with Lamport ’s algorithm is his

assumption that “a processor may fail at any time. We assume that when

it fails , it immediately goes to its noncritical section and halts.”

Clearly, there are snrious resiliency problems with such a solution .

The resiliency is highly dependent upon the nature of the operations

carried out inside the critical section. For example, if a processor

fails inside its critical block while entering or deleting an item in a

data structure — and it immediately exits — pointers could be left

poiflting all over the place. Furthermore, as the algorithm stands, it

is impossible for other processors to determine if the last one to be in

its critical block exited normally or if it exited due to a failure.

Finally, other resiliency problems arise since failures in a network may

include not only host (or processor) failures but also failures of com-

munication links. Lamport ’s algorithm assumes that the semaphores at the

remote hosts are always available for inspection by the other processes.

In summary , Lamport ’s algorithm does not completely solve the

synchronization problem in a distributed computing environment . The

main obstacle to adopting Lamport ’s scheme in a network context is the

long delays that would be necessary to synchronize. Laniport ’s scheme

requires at least 4(N—l) messages to be exchanged , where N is the

number of cooperating hosts. Even assuming some concurrency it can ’t

19

— S- — -— — 
~~~~~~~~~

- — -
~~~~

— —
~~~~~~~~~

.-
~~~~~~~~~~~~ 

— - —  
~~~~~~~~~~~ ~~~~~~~

- - - -—— .-— .—
~~

--—— — - - —~~~~~~~~~

-- —5---.--- . - --~-~~.--.- ~~~~~~~~~~~~~~ -S---- —
~~~~ - I

take less than 2N message times. It remains an open question whether ,

with appropriate modifications , the scheme could be turned into a viable

one.

The Alsberg—Day model. Several of the disadvantages of Lamport ’s

scheme can be overcome by applying the Alsberg—Day scheme for resilient

protocol design to the synchronization problem . The key idea of this

resiliency scheme, which will be described in detail in a forthcoming re—

port , is to provide that at least two hosts know what is happening before

an action is allowed to proceed . The Alsberg—Day scheme can be used to

provide resilient maintenance of the semaphore values. In addition to

the resiliency scheme, several sets of primitives must be provided to

allow creation, attaching/detaching, access control , message security,

and error recovery due to user software or hardware failures. It is be-

yond the scope of this paper to go into the details of these primitives .

We only mention them to assure the reader that they have been considered .

(The details of this synchronization strategy will be given in another

report.)

In order to see how the Alsberg—Day scheme is applied to the 
—

synchronization problem, let us consider, at least for purposes of des-

cription , that there is a set of hosts which do nothing but mediate the

synchronization of user processes. (This may appear to be somewhat ex-

cessive for the practical case; but if one is really concerned about

having reliable synchronization, it is unwise to make it susceptible to

the kind of environment found in the typical application host. However,

there is nothing about this scheme that requires that the synchronizing function

be in a devoted host.) One of the hosts of this set is designated as the

primary and the rest are backups. The backups are ordered in a linear

fashion. We will assume that recovery schemes are defined to maintain this

20 

- ~_s S.--  -—--.-——S~~-—-- — -— -- --5. — -——-~~ —- 5—— - -5 - - -5-- -- —~ ——~~ -~ S



-._.-__-,~_________5__~~’_S.-_._ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~5•’~~~~~~~~~ - -~~~ - - 
~~~~~~~~~~~~~~~~~~~ -

organization. Let us look at how a P operation is performed in this

scheme. (V is done in a similar manner.)

P operations may be sent to the primary or to any backup

synchronization host. One of two responses is returned to the applica-

tion host requesting the P. If the process does not block , then the

application host will receive a “proceed” message. If the process

blocks, then the application host will receive a “block” message. The

procedure for the blocked application host process is to issue a new net-

work read and to go blocked on that read waiting for a proceed message.

That proceed message will normally follow the issuance of a V operation on

the same semaphore by a different application host process.

Figure 1 shows the message flow f or a P operation which has

been transmitted to the primary synchronization host of a semaphore.

The first network message delay is incurred in figure la. The applica—

tion host transmits the P to the primary synchronization host.

The second network message delay is incurred in figure lb.

The primary syachronization host requests cooperation in executing the

P operation from the first backup synchronization host. The primary

synchronization host has already updated its information on the sema-

phore. It has also calculated whether the application process will

block or proceed . The first backup synchronization host will perform

the same update and calculation . The backup host will be expected to

issue the appropriate block or proceed message to the application host.

In figure lc the third network message delay is incurred.

Three messages are transmitted by the first backup synchronization host.

In terms of network delay, these messages are essentially simultaneously

transmitted . Small improvements in resiliency can be achieved by issuing

them in the designated order . First, the synchronization host passes

a backup P message to the next synchronization host. At this time only

- -
21

- -~~~~~~~~~~~~~~~~~~~~~~~~~ 5 - 5 - S-_ - - .~~~~~~~~~~~~~~~~ -~~~~~~~~- - - ~~~~~~~----- --~~~~- --—~~~—- — --~~~ S- —- 5 5~~~5 _ _ _ _

__ - - - - — — — s 5-— - —. — 5.. ’—— ’ _ ‘ • ___-____‘______-a.,——- _ ,~~~~ ,.- . _ ..—.,-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ !~
‘‘ F ’ - -

- -

sync. sync. sync. sync.
host0 host1 host2 host3

P

opplic.
host

la: Application host transmits P to primary synchronization host.

cooperate P

sync. sync. sync. sync.
host0 host1 host2 host3

‘

(c~~~.

lb: Primary synchronization host requests cooperation from the
first backup in executing the P operation.

Figure 1

P operation sent to a primary synchronization host

22

I
- —..~~~ ~~~

—
~~~~~~~

-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—.5- - - —-.

- - — - - - ----C- -

3: Cooperate 1: backup P
P ACK

sync. sync. Sync. sync.
host0 host1 host2 host3 ‘

applic.
host

lc: First backup issues three messages in the following order :
1. A backup for a P operation is sent to the next backup.
2. Either a block or a proceed (dotted line) message is

sent to the application host.
3. An acknowledgement of the cooperate message is sent

to the primary synchronization host.

Figure 1 (continued)

P operation sent to a primary synchronization host

23

~ ~ t~~
_
~~~- -- —-—5---. - ~~~~

— -.5—- - -  
— 5--.- 5-— -—-- -- -- --.5-5-



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

two synchronization hosts, the primary and the first backup , have

positive knowledge of the existence of the P operation. Should the

backup message be successfully received at the second synchronization

backup host, a third synchronization host would also be aware of the P

operation. The third host would be able to assist in recovery should

the first backup synchronization host or network fail to transmit the

next two messages. The second “simultaneous” message would be the

appropriate block or proceed message to the application host. The third

“simultaneous” message would be transmitted back to the primary synchroni-

zation host to acknowledge that the cooperation request on a P operation

has been received .

Once the primary synchronization host has received the cooperation

acknowledgement it is certain that the two—host resiliency criterion

has been met. Similarly, once the application host has received the

block or proceed message it is also certain that the two—host resiliency

criterion has been met. Should the primary synchronization host fail to

receive the cooperation acknowledgement, appropriate retry and recovery

techniques will be initiated . These techniques and the process of trans-

mitting backup messages down the backup chain will be discussed in a

later document.

Figure 2 shows the message flow for a P operation which has

been transmitted to a backup synchronization host. The first network

message delay is incurred in figure 2a. The application host transmits

the P to a backup synchronization host.

The second network message delay is incurred in figure 2b.

The backup synchronization host forwards the P operation to the primary

synchronization host. The application hosts have no knowledge of the

ordering of synchronization hosts for a given semaphore. However, each

24

5-—- - ----——5-- ‘— - .5- - - -—.- --.--—--.—. - -.5-—.--— —-5— 5- - . .. ‘——— - - ___ a___ ..-__ - - ‘-—--— - — —— —.-.——---—---— 5— ~.5 5-____ —~~~~~~ -— —  —S -.__ __-_ 
~~~~~~


- - - -—~~ - - 5-
~~~~

5-
~~~~~

2a: Application host transmits P to a backup host.

forward P

• • •

opplic.
host

2b: Backup host forwards P to the primary host.

Figure 2
r -

P operation sent to a backup synchronization host

25

g
- :~~

-- —
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  -- —-.~~~ -.-- —— —- -.

~~~~~
- - — - - —-

~~~~~~~~~~



—-5— - ‘- - .--— -~~~~~~~~~~—— .-——5----—- -- -

3: forward P ACK

1: backup P

sync5 sync. sync. sync.
host~ host 1 host 2 host 3

applic.
host

2c: Primary host issues three messages in the following order:
1. A backup for a P operation is sent to the first backup .
2. Either a block or a proceed (dotted line) message is

sent to the application host.
3. An acknowledgement of the forwarding message is sent

to the forwarding backup host .

Figure 2 (continued)

P operation sent to a backup synchronization host

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~

. - 5-

-~
. .——---

of the synchronization hosts is assumed to have explicit knowledge of the

-
- ordering . The backup synchronization host performs no updates on the

semaphore. All updates must be initiated by the primary synchronization

host. However , it now has knowledge of the existence of the P request

f rom the application host. It will not discard this request until a

backup message refcrring to that same P operation ripp les down the backup

chain and through it.

In figure 2c the third network message delay is incurred .

Three messages are transmitted by the primary synchronization host. As

was the case previously, these messages are essentially simultaneous but

a specific ordering can provide some small improvements in resiliency.

First , a backup message is sent to the first backup synchronization

host. Second , a block or proceed message is transmitted to the applica-

tion host. Third , a forward message acknowledgment is transmitted to

the forwarding backup host.

Resiliency is achieved in this scheme by a combination of

techniques. Basically , acknowledgements with time—outs and an “are you

alive” protocol are used to detect host failures. In addition , each

synchronizing host is notified that its request has been successfully forwarded

to the next backup by its immediate neighbor. This guarantees the two—host

failure requirement when propagating backup requests down the backup chain .

Also, sequence numbers are assigned to requests and acknowledgements to

allow detection of lost or duplicated messages. These techniques and var—

iations on them will be discussed in a separate paper.

There are two properties of this scheme that should be noted .

First, regardless of where the user process sends the P request , he

will get a response in three message delay times. (If the synchron-

izing scheme is moved into the application hosts , this delay can be cut

27

5- -—— 5 -.,-——.~~~~ -- ~.s - _~~~~~~5. 5 .~~~~~ 5

-

to two message times.) Second , two nearly simultaneous host failures are

required to disrupt the scheme.

Summary. As we have mentioned , there are still problems with

providing multi—site synchronization schemes. Lamport ’s solution as it

stands is not resilient to failures and entails very large delay times.

The Alsberg—Day scheme will probably be able to handle most of the resiliency

problems . It also keeps the delay at the theoretical minimum. However,

even with these minimal delays, the time required to synchronize

will be on the order of a few hundred milliseconds. This compares un-

favorably with the few hundred microsecond times required for synchronizing

in a single—site environment. Given this thousand—fold increase in delay

it is clear that frequent multi—site synchronization will not be practical

for most applications. For example, synchronizing multi—user access to

a heavily used , distributed data base will be much too time consuming .

The delays incurred will cause a degradation in response that is intol—

erable to the user. For this reason, we have begun an investigation of

techniques for synchronization avoidance.

28

5—.--—- - - _________— I —-—_._._ —.

~
__

~~~~~ __~~ 
. . . . .. —



- 5~~ 5_5-55 — --- .5-5- -- —, - 
- -  --

I
Data Base Access Synchronization

Introduction

In the next two sections we consider a specific application of

process synchronization, that of synchronizing the accesses to data

bases. We begin with single—site data bases in the first section. The

second section deals with distributed data bases. Throughout these

sections the terminology of the relational model is used. However, the

results are equally applicable to other data models. Where appropriate,

terminology and examples from these other data models are included. In

the interests of brevity, the phrase “data base synchronization” (or

just “synchronization”) will occasionally be used instead of the more

correct “data base access synchronization.” In all cases, it should

be clear that it is the use of the data base which must be synchronized .

Single—site Data Base Access Synchronization

Introduction. The data base environment is characterized by

two main features. First, the use of a large number of objects must be

synchronized. Potentially , access to each domain value in a tuple

(field in a record) must be synchronized . This is particularly true in

non—relational data models in which the fields may contain pointers to

other records. Unsynchronized updates of these pointers could render

parts of the data base hopelessly garbled or inaccessible.

The second distinguishing characteristic of data base applica-

tions is that complex constructs must be synchronized . For example, in

some data base systems there is no physical storage location that corre—

sponds identically with a record . When the user retrieves a record , it

is built for him. To synchronize access to the record , access to the

components from which it is built must be synchronized.

29

.5
- - -— - --~~--~~~-- --- 

—--5-



_ _ _ _ _  -a -- --~~ -5- ~~~~~~~~~~~
---

~~~~ 
-- -~~~~~~~

-

In this section , the single—user illusion and transaction

sequencing are discussed first. Synchronization entails guaranteeing

that one user ’s transactions will not interfere with another ’s. Thus,

each transaction must execute as if it were alone on the system . This

is the single user illusion. Although a system may permit transactions

to execute concurrently , their effect on the data base should be equiva—

lent to executing them with no concurrency .

Next , the level of synchronization is discussed . For each

application , data base access can be synchronized at a variety of levels.

The choice of level ranges from a single domain value in a single tuple

(a field in a record) to the entire data base. The level at which a

data base is synchronized is the same as the unit of the data base that

can be locked . If too large a unit is locked , then performance can be

degraded because other processes may be unnecessarily blocked . If too

small a unit is locked , then the integrity of the data base may be

threatened if one writer acts upon the partially completed updates of

another concurrent writer.

Finally, se’eral techniques for implementing various levels of

synchronization are discussed .

The single—user illusion. The goal of synchronizing data base

access is to implement the single—user illusion. The single—user illusion

implies that the final state of the data baøe will be identical to the

final state reached if all the concurrently executing transactions had

been applied sequentially. (Exactly which sequence is achieved is not

important at the moment.) By maintaining the single—user illusion the

system assures that the data base will always be in a well—defined

state.

In some environments the single—user illusion may cause an

increase in user contention . In extreme cases only one user may be

30

~~~i__ ~ T~~~~~~
__ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

..



- ‘ 5 - S  — - ——------ - ~-----— 5.  - 
—‘ —5-

active until his transaction is complete. Fortunately, this extreme

case is likely to be rare.

In many cases there is no possibility of interaction between

concurrent transactions. This occurs, for example, when all of a group

of transactions are readers. Since they do not modify the data base,

they do not interact with each other.

Non—interaction may also occur with writers if the data modified

by each is disjoint . For example , suppose transaction 1 is updating the

status of Army units in Korea, transaction 2 is retrieving the location

of a particular Navy vessel, and transaction 3 is updating the status of

Army units in Hawaii. All three of these transactions may be processed

concurrently because the three transactions are accessing disjoint data.

This principle has been directly employed as a synchronization mechanism

by Eswaran et al. [1974J, whose work is discussed later.

Transaction sequencing. In the discussion of the single—user

illusion we were careful not to specify what the sequence of transactions

should be. Different sequences may yield different final states. It is

not important exactly which sequence is selected. What is important is

that an unambiguous decision be made and adhered to.

Selecting a particular sequence may impact upon the possible

concurrency. To illustrate this, suppose there are two transactions A

and B. If it is decided that transaction A is to logically precede

transaction B , then this decision must be obeyed for the entire duration

of both transactions. This may seem fairly trivial, but consider what

must happen if A is doing an update and B is doing a retrieval. For

purposes of illustration, let an update consist of the following steps :

Ul. Use the indices to find the tuples to be modified.

U2. Retrieve each tuple, modify it and re—write it.

U3. Adjust the indices to reflect the changes.

31



— —-——-.. _-.._ —- — r——— .-~,- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A retrieval consists of the following steps:

Ri. Use the indices to find the tuples to be retrieved .

R2. Retrieve the tuples.

If there is any intersection between the tuples to be modified by A and

the tuples to be read by B, then B cannot perform step Rl until after A

has performed step U3. If this restriction were not followed , then B

may attempt to utilize a partially invalidated index. By changing the

values of the domains in the tuples, the old indices might point to

tuples which no longer have the desired values and might not point to

tuples which now have those values.

Suppose that the desired logical sequence is B, A; i.e. just

the reverse of the previous example . Now both B and A may concurrently

access the indices (steps Ul and Ri). Transaction A must delay step U2

urtil after B has completed step R2. The point of this second example

is that by a judicious choice of transaction sequence, it may be possible

to obtain more concurrency.

It is difficult to determine whether or not two transactions

may operate concurrently. (In fact, the general case is unsolvable.)

The basic condition is that the fir.al state of the data base is indepen-

dent of the relative order of the transactions. In some systems it may

also be difficult to force a particular , previously specified sequence

to be obeyed. In these systems, concurrent transactions freely contend

for the available resources. To force a particular transaction sequence

it may be necessary to modify the system so that the outcome of this

contention may be “fixed”.

The a priori establishment of a transaction sequence is not

required in systems where there is only one copy of each file. Any

sequence choice will leave the data base in a consistent state. When

32

— —--— .~~~~~~~ — -1 - ~~

—5--- - - - - - -~~~~~~~~~ -— -~~~~~~~~~~~~~~~~~~~~~ -— --—-—--,- — — - - ---- .----- -—- -



- ~~~~~~~~~~~~ —V.. - -~~~~~ - -~~~~~~~ ~~~~~~~~~~~~~~~~~~~ - - ,~~~~~~~~~~~~~~~~~~~~ _r~~~
_ -~~~~~~~~~~~

t lierc are multiple cop ies of f i l e s , each copy must chooseS t he  s~inie

scqucnce so tha t  t he  results  are ident ical  at  all copies . We will

discuss th i s  last point  in detail later.

Levels of synchronization. The choice of a particular level

of synchronization determines how and when process synchronization

primitives are used . In many contemporary systems there really is no

choice; the system provides only file level or only record level locking.

In other systems, the application programmer , in effect , selects a level

of synchronization in the design of his programs.

There are six levels identified here:

1. domain value level (field level),

2. tupie level (record level),

3. multi—tuple level (multi—record level),

4. relation level (file level),

5. cross—relation level (multi—file level), and

6. data base level.

Domain value level: The lowest level of data base synchroni-

zation is to synchronize the accesses to values of domains in a tuple

(fields in a record). It is difficult to conceive of a data base system

which did not provide this level. Consider the chaos which would result

if concurrent users could see domains in intermediate states (i.e. if we

did not provide domain value synchronization). To illustrate , suppose

user A is changing a value from “green” to “brown”. User B is a concurrent

reader . Without domain value synchronization user B could retrieve a

value of “breen” or “broen”, both obviously meaningless.

Tupie level: This is a commonly provided level of synchroni-

zation. It is often used in inventory systems where updates usually

affect individual records only.

33

.— -- -~~~~~~~~~. -5- - - -  — .5- 5- — -  —5 —i-—- 

-

_ _ _ _ _ _



- -.5-—---— 
.- .5---———- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~•~~~~ 5

Multi—tuple level: When updates must treat groups of tuples

as single units , the multi—tuple level is appropriate. For example ,

suppose there is a doubly linked chain of records (that is, each record

has a pointer to its predecessor and to its successor on the chain). To

de lete a single record , three records must be treated as a unit: the

predecessor , the record being deleted and the successor.

Relation level: This is the other commonly provided level of

synchronization. Logically, relation level synchronization is equivalent

to multi—tuple synchronization where all tupies in the relation are

locked. The major advantage of relation level synchronization is that

it substantially reduces the overhead of maintaining the synchronization

status of a possibly large number of individual tuples. At the same

time, concurrency may be reduced because more tuples may be locked than

are necessary.

Cross—relation level: In some applications tuples in several

relations are logically connected , and must be treated as a unit. For

example, consider an accounting system in which each account is a

different file and it is required that all accounts must always be in

balance. A normal double—entry bookkeeping transaction must be treated

as indivisible. These transactions always affect records in two files

(one for the debit and one for the credit). The cross—relation syn—

chronization level is a synthesis of previous levels. In the bookkeeping

example, record (tuple) level synchronization is used within each

account file (relation).

Data base level: At the highest level, access to the entire

data base can be locked . While this is simple to implement, it is

clearly devastating to the achievement of any concurrency.

34

—- - - -5 ----. --~~~- - - .—5-—- - -
~~~~~~~~~~~~~

- — — — - —--
~~~~~~~ -—— ~~— -~~~~~~~~~ --  -.-~~~~~ —~~~~~~~~~~~-—— -



- -~~~~~~~~~‘~~~~r” 
- - - .h-~~-- . ~~~~~~~~~~~ - s .s - -~~~~~ - -

Techniques for synchronization of data base access. This

section presents a brief summary of five techniques for data base access

synchronization. They are :

1. critical sections ,

2. tuple locks,

3. predicate locks,

4. passing rules, and

5. readers/writers.

For each, we discuss the basics of its mechanization and the levels of

synchronization for which it is appropriate. The techniques are not

independent of each other , but do represent significant conceptual

differences.

Critical sections: A critical section is a piece of code that

can only be executed by one process at a time. Critical sections are

used throughout most multi—programmed systems to guarantee th~ integrity

of tables, queues and other shared resources. Critical sections are

implemented by programmatically issuing process synchronization primitives

like P and V. Access to arbitrarily complex data units can be synchronized

in this way. The primary advantage of critical section techniques is

that they can be precisely tailored to the application and can lock the

absolute minimum of resources. Thus concurrency can be maximized . The

primary disadvantage is that they are implemented by convention in each

program and can not be institutionalized in the data management system.

Thus simple oversights or ignorance of other programs may cause synchroni-

zation failure.

Tuple locks: The most obvious way to implement tup le level

and multi—tuple level synchronization is through the use of tupie locks.

Conceptually , a semaphore is provided for each tuple. When exclusive

35

_ 5 — —— p - ~~
__ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - -~~~~~- - ~~~~.~~~~~~~— - --- . 5 — - - - - —- —



- - - — - 5- 5
~~~w -~---5- ’ __ 5 - .5-5-—— — ---- ---—— ---. _ -- ---- ~

_—__~_ --~~~-.-r ,.~~ - -
~~~ 

. 5 -  -5_in- —fl- —~~~——~~~~~~~ .--—— -5 5_~~

access to one or more tuples is required , the appropriate locking

primit ives  are executed on each semaphore. When the update is completed ,

th~ unlocking primitive is executed on the appropriate semaphores. (It

is also easy to implement a multiple—reader/single—writer scheme using

two semaphores per tuple.) If multiple tuples are involved , the locking

of several resources is required and deadlock becomes a concern. The

deadlock problem and its solutions are discussed in detail later.

Predicate locking: Predicate locking is a form of multi—tuple

locking. It was proposed by Eswaran et al. [1974] as an alternative to

explicit tuple locking. In predicate locking, the user specifies a

predicate (i.e. a Boolean expression) that describes the tuples he

wishes to lock based on the contents of the tuples. This predicate is

processed against the predicates from other concurrent users. If there

is no intersection, that is, no other user has locked any of the requested

tuples, the request is granted. If there is an intersection , the new

request must wait until the intersecting transaction completes. As

should be clear, predicate locking is functionally equivalent to explicit

tuple locking. Unfortunately , determining the intersection of two

arbitrary predicates is, in the general case, an unsolvable problem.

(By unsolvable we mean that there is no “program” which can determine

whether the intersection of two arbitrary predicates is null.) Fortu-

nately, if the predicates are suitably restricted , a “program” may be

written to determine their intersection. Predicate locking is a new

concept that has not been implemented except for limited demonstrations.

Passing rules: Passing rules are an even never technique for

multi—tuple synchronization. They work in the following way. First , a

sequence of transactions is established. Then, the transactions are

started through the relation at the “top.” A no passing rule is enforced .

36
•5

_ _ _ _ _ _ _ _ _ _ _ _ _



That is, no transaction may access a tuple farther down in the relation

than the tuple being accessed by its predecessor in the transaction

sequence. (Under tightly controlled circumstances, the no passing rule

may be relaxed to allow readers to pass each other. This is analogous

to the multiple—reader situations discussed elsewhere.) This appears to

allow more concurrency than some other schemes because a large number of —

concurrent transactions may be supported. Each transaction may pr oceed

as long as the next tuple needed has already been processed by the

preceding transaction. Simple passing rules will work as long as the

updates on one tuple can be performed independently of the results of

the updates on other tuples. For example, a double entry bookkeeping

problem applied on a single relation can be solved in this way. How-

ever, if the nature of the multi—tuple synchronization problem is that

the update of a later tuple is dependent on the modified values of an

earlier tuple, then later updates of the first tuple cannot be permitted

until the sec ond tuple is updated . In this case, simple passing rules

are not adequate to solve the problem. Passing rules may also impose

some possibly unacceptable constraints on the system designer. First,

it is a practical necessity that only a single process can access the

relation at any one time. Otherwise the enforcement of the no passing

rule will require excessive inter—process communication. Second , all

users must proceed through the relation in the same direction, e.g. top—

to—bottom. This may not be the optimum way to process every query .

However, mitigating this sc’cond point is the fact that the relational

model gives the user an associative interface, so he is unaware of the

actual tuple sequence. In at least one relational system [Schuster,

1976] all queries are processed top—to—bottom anyway. It is also not

clear exactly how to handle indices when using passing rules.

37

L - S 



-rv’
~~

-.--—-  
— S ~~~~~~~~~~~~ - - - 

5-—- —— -- -.5- 
~~~~~~~~~~~~~-r——-- - r ” ’  ~~~~~~~~~~~~~~~~~~~~~ -

Readers/wri ters: A readers/writers scheme separates the

reader synchronization problems from update synchronization problems.

Basically , two copies of the data are supported . All read requests are

directed to one copy. Since readers cannot interfere with each other by

altering the data base, there is no need to synchronize their activity .

All write requests are directed to another copy. The writers’ copy is

managed using any of the synchronization techniques presented above. If

wr iter s are a small fraction of the total load, the demands on the

writers ’ copy are small and contention is reduced . It may even be

tolerable to let the entire system handle only one user at a time. Even

this restrictive scheme will affect only the writers; it has no impact

on the readers. Periodically the copies are switched. A bulk update is

applied to the old readers’ copy, bringing it up to date. During the

bulk update, write requests must be stacked. Read requests can immedi-

ately begin to access the new readers’ copy. One can view any system

which batches its updates as a readers/writers scheme where the writers ’

copy is not actually maintained. A drawback of a readers/writers scheme

is that the most recent updates are unavailable. (It is possible for a

reader to become a writer to see recent updates, but this defeats the

purpose of the scheme.) Another consideration is that additional

storage will be required to hold the second copy. Finally, the switch—

over and batch update imposes an added workload that is not present with

the other schemes. The strongest argument for readers/writers is its

simplicity and its ability to support many concurrent readers.

Summary. This section has discussed the concepts of the

single—user illusion and of levels of synchronization. For some appli-

cations complex levels of synchronization are required . For many others ,

in which updates affect only individual and independent tuples, tuple

38

5--- 5 - - - - — - —~~——.--. :
_
_

~~~~~~~ -———-—-----5



level is sufficient. The major techniques for data base synchronization

were discussed . In a practical system it is likely that combinations of

these techniques would be used .

Distributed Data Base Access Synchronization

Introduction. In this section we present a discussion of

access synchronization in a distributed environment. First , we define

what we mean by a distributed data base. Then we outline the most

important considerations in the selection of a distributed data base

synchronization mechanism. Finally, we consider in some detail the

problem of maintaining consistency among multiple copies by sequencing

the transactions in a well—defined order.

Since “distributed data base” has become a catch—phrase , we

will define precisely what we mean. This work is oriented toward corn—

puter networks similar to the ARPANET. The kind of distributed data

bases considered here have the following four distinguishing properties :

1. geographic separation of the participating hosts,

2. limited host—to—host communication bandwidth ,

3. co—equal roles for the hosts (i.e., not a master—slave

relation), and

4. multiple copies of portions of the data base.

Let us briefly discuss the implications of these four properties.

The geographic separation of hosts creates irreducible time

delays resulting from the propagation of signals over long distances.

For example, in the ARPANET the transatlantic link and the Hawaiian link

are implemented using synchronously orbiting satellites. The great

distances involved with these satellites induce a propagation delay of

1/2 second on a Europe to Hawaii transmission. Other delays on the

order of 10—200 ms are introduced due to the nature of the store—and—

forward communication subnet. 

5-.- — -- -5 --~ -- 5
39 

----.5- —5- -,s_ ~~~~~~~~ -~~~~~~~~~~~ .- -— —5 - .~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~



- _____________________________
.5 

-- -—5-—-_- -- 5-- -- -- --.-

The second distinguishing property is that the host—to—host

communication bandwidth is a small fraction of the bandwidths to typical

secondary storage devices. For example , current disk systems (IBM 3330 ,

HIS DSS 190, etc.) can achieve transfer rates of approximately 800,000

bytes/sec (6.4 Megabaud) . In three days ’ routine ARPANET file transfer

traffic between two ARPANET hosts, we observed an average bandwidth of

about 4.3 ~(i1obaud . (Naturally, the reader should not infer much from

this very restricted example; it is merely intended to show the disparity

in bandwidth between local secondary storage accesses and network accesses.)

One important implication of the geographic distribution of

hosts and the limited bandwidth between hosts is that new operational

structures for distributed data bases must be devised. In particular ,

naive extensions of conventional techniques for synchronization, such as

locks , may lead to intolerably poor performance in a distributed

environment.

The third important characteristic of the distributed data

base systems discussed here is the equal status of the hosts. This

characteristic is the result of a design decision. It is not an un—

avoidable circumstance like the first two characteristics. By choosing

to give the hosts equal status, the resiliency of the overall distributed

data management system is substantially improved. There is no longer a

critical host on whose failure—free operation the entire system depends.

The failure of any participating host may cause aberrations, but not

disaster. In current systems when a host crashes, all the users at that

host also “crash”. In network systems, these users can be connected not

to an individual host but to the network itself via front—end machines

(mini—hosts). When a particular host crashes, these users can still

proceed by shifting their work to the surviving hosts. This type of

40 

-5  
- - - - —.5- - 

-:
~~

__
~~~~

__ _ _

_ _
.5 — —--- -— .--- - — - - - ---.-———• — --- -- -

~~~~~~~~

- -

co—equal structure means that new research areas are opened in designing

systems which operate effectively in such an environment. Specifically,

new types of synchronization techniques must be devised.

The last characteristic is that we allow the existence of

multiple copies of the data. Again, this is a design decision. Mul-

tiple copies of critical files greatly increase the availability of

those files, as was shown in Belford et al. [19751. Further, there is

no inherent requirement that all the copies have the same structure.

Each copy may have a structure which is best—suited to a particular

group of applications. The only requirement is that the information

contained in each copy be the same. This allows applications to be

moved to other copies. For example, suppose that we have an employee

file. One copy might be sorted on last names, and another sorted on

employee numbers. Another difference might be in the indices for the

various copies. Even two identical files may have different indices

associated with them. A major problem, then, is to keep the various

copies and indices consistent with each other. A query should get the

same answers regardless of which copy is actually used .

The implication of the co—equal status of the hosts and the

existence of multiple copies is that distributed control strategies must

be used. Considerable attention must be devoted to failure recovery.

These topics form the substance of a forthcoming technical report, and

will be touched on only lightly here.

Evaluating synchronization techniques for distributed data

base access. In the previous section we discussed the basic techniques

for single—site data access synchronization. In extending synchroniza—

tion to a distributed environment , complications can arise. A user may

need to coordinate access to several sites. Consistency among multiple

copies of the data base must be maintained .

41 

~1 
-~~~~~~~~ -- ——.5-- —— --- --—--~~~~~~~~~ -5-——~--—- --- -.- ---- - -5—.--- -- ---- --55-- _ --—- 55-A



A factor  which must be kept constantly in mind is the host—to—

host message delay . Frequent synchronization among different hosts is

infeasible because of this delay. In short , the number of synchronizing

messages which must be transmitted across the network should be reduced

to a minimum. The data base managers at the various sites should have

the burden of seeing to it that the access requests that they receive

are handled in an orderly manner. Any single—site synchronization

scheme is adequate for this purpose, although, as discussed above,

certain t radeof fs  should be taken into account.

If activity among several hosts must be coordinated , some

minimum number of interhost messages is unavoidable. This minimum

number will be affected both by the detailed scheme adopted and by the

need for resiliency. We are presently in the process of addressing

these issues. In par ticular , we are investigating how the Alsberg—Day

scheme for resilient process synchronization may be applied to data base

access. A report on this scheme is forthcoming. A lengthy discussion

of these issues would be premature at this time.

Maintaining consistency among multiple copies. In order to

maintain consistency among multiple copies of data, it is important to

ensure that the updates are applied to each copy in the same order. For

example, if one update adds 10 to a field and a second increases the

same field by 10 percent, interchanging the order of the operations will

change the final result. There are essentially two different ways to

maintain the update sequence. One way is by seeing to it that all sites

receive the updates in the same order. The second is by explicitly

attaching a sequence number to each update.

The f i rs t  approach can be handled by a scheme very similar in

spirit to the Alsberg—Day resiliency scheme. An ordering of the sites

4._ —

I- -

- 

. - - - . - -
5-

~~~


p.r
.5

holding a copy is established . Each update is first sent to the host

designated as the primary . The primary then sends the update to the

next host, and so forth. The precise sequence of the updates is there—

fore determined by the order in which they arrive at the primary. Some

safeguards must be taken to see that updates from the same user will

arrive in order (if that order is important) and that the primary (or

some later host) does not somehow mix up the ordering. Such resiliency

problems require further study . It may also be that certain complicated

data operations involving multiple sites are not readily handled by this

simple scheme. This question is another topic of current investigation.

The second approach is to attach explicit sequence numbers to

the transactions. If each update in the network, no matter where it was

generated , has a unique sequence number attached , then every data base

manager can use these numbers to order the operations. The question

that then arises is how the sequence numbers should be assigned . Three

different techniques are presented here. These are

1. centralized assignment,

2. partially distributed assignment, and

3. completely distributed assignment.

Centralized assignment : The most obvious way to assign sequence

numbers is to have a distinguished host (the primary) from whom sequence

numbers are requested . In this scheme, the host generating the update

sends it to the primary, where a sequence number is attached . At this

point , two variations are possible. (1) The update, with the assigned

number , m ay be returned to the originating host for transmission to the

various data base copies. This scheme envisions the number—assigner as a

very simple piece of software which does nothing but hand out numbers on

request. (2) The primary may have the responsibility of broadcasting

43

- -5- - - - -—,~~~~~~~~~~ _______ ~~~~~~~~~ — - - — - - -- —-- - -“ — I

_ _,
~~~~~~~~~— — ~~ ~—.--~~~ - — ---- --~~- i n

_
~~~~~~~~~~

the update (with its sequence number) to all the copies. This scheme is

functionally equivalent to the approach (discussed above) which orders

the sites. Adding sequence numbers can be thought of as one way of

providing some of the needed resiliency; i.e., of ensuring that none of

the sites destroys the order of the transactions. A centralized assign-

ment scheme with updates broadcast by the primary has been discussed in

some detail by Bunch [1975].

Centralized sequence number assignment has several defects.

First , the primary can be a bottleneck, because it must assign a sequence

number to each transaction. Second , each transaction can incur delay

because it must wait for the sequence number to be assigned. However ,

the bottleneck problem need not be severe. For example, different sites

could be designated as the primary for different parts of the data base.

And if the primary holds a copy of the relevant data, it would have to

receive and process the update eventually anyway. The overhead associated

with the actual number assignment should be minimal. The transaction

delay should also be negligible (a few hundred milliseconds). However,

the host generating the update might find it inconvenient to wait for a

number to be returned from a remote site before applying the update.

Partially distributed assignment: A more distributed scheme

that we are currently studying is the “reservation center” scheme of

Grapa [1975, 1976]. We will here use the more descriptive term “par-

tially distributed sequence number assignment”. The essence of the

scheme is that sequence number assignment is a two phase process.

First , the reservation center, a distinguished host, gives each host a

block of sequence numbers. These numbers are valid only during a

limited time interval. All numbers issued are ordered. When a host

wishes to ~.nitiate a transaction, it takes the next unused sequence

44 —

L ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

r - - -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — --—--.—-- -- - -~~~~~~~~~~-~ ~~~~~~~~~~ — -. -,.r,.~~~~~.-..- -- ~~~~~~~~~~~~ -

number from its block of numbers for the current t ime interval. Some

strategy must be devised to handle the case when more numbers are

requested than are available. However , this is not essential to our

purposes here. Some of the problems of the central number assigner are

ameliorated by using the reservation center . For example , when the

number assigner fails and this task is transferred to a new host , there

may be some difficulty in determining the “next” number to be assigned .

There is no such problem if the reservation center fails. Instead ,

sequence numbers from the next time interval are assigned. They will be

greater than any previously sent numbers. The reservation center is

also less likely to be a bottleneck because its response is not critical

for the continuation of an update , as was the case with a primary copy.

The workload of the reservation center is more periodic and predictable.

Every time interval it must make up and transmit new blocks of sequence

numbers. There is a minor problem in determining exactly which sequence

numbers have been used . This is necessary to detect a failure in which

updates have been lost.

Completely distributed assignment : The reservation center ’s

only critical purpose is to ensure that there are no duplicate sequence

numbers. This can also be achieved by other means. If we let each host

generate its own sequence numbers, we have a completely distributed

scheme. One such scheme has been described by Johnson and Beeler [1973]

and by Johnson and Thomas [1975]. Their scheme was more concerned about

maintaining the temporal sequence of updates; i.e., maintaining the

precise order in which the updates are generated by the users. They

tried to achieve this by generating the sequence numbers partly from the

local clock time. The required uniqueness of the sequence numbers may

be achieved by appending host Id, user id, etc. There is an interval of

45 

-
~~~~~~~~~~

~~~~

-
~
_ --

~~~~~~~~~
- - . _

~~~~~~~~~~~~~~~~~~~~~~~~~ _ 



.5 - —-- 5 —--r- - - --- --
~~~~~~~~-- 

- — ~~~~~~~~~~~~~~~~~~~~~~

uncertainty because the clocks on the various hosts may not ~.gree. One

would expect this interval to be small in the WIN environment because

the military already requires good time coordination. For other environ-

ments , there are techniques for detecting and correcting an inaccurate

clock [Grapa , 19761. However , there is a similar interval of uncertainty

in the other schemes considered . In a centralized scheme, network

delays may cause updates from different sites to be ordered quite

differently than their precise time of generation would indicate. The

reservation center approach was in large part developed to formalize the

viewpoint that the precise sequence of updates within a certain time

interval doesn ’t matter. It appears that overconcern with applying

updates in their “real” order is something of a red herring. Even for a

single—site time—sharing system, the order of transactions from different

users may sometimes be determined as a random outcome of the terminal

polling process.

In determining which of the sequencing schemes described above

is best used in any particular distributed environment, careful consideration

muc. be given to the operations that can be performed on the data. For

example, Johnson and his co—workers assume that only assignments are

allowed . This solves some problems. Superceded assignments may be

simply t -rown away. On the other hand , if only increments and decrements

are e.i’owed (as for an inventory system) the order in which these opera—

tior.s are performed doesn’t matter, and no sequencing scheme at all is

n- ’eded.

In a realistic, multi—operation system, assignments, increments,

decremen ts, etc., will all be allowed. If an update arrives at a site out

of order (as determined by explicit sequence number), it may cause

earlier arriving updates to have to be redone. That is, the system must

46 —

5 5 - --—- - - - 5 -
.5 ——-- 5——---— —5- —5- —.5 -.5---—-— — — —--- .5- -5--- —

- 5—--5~~~~~ . ——---- —5-

have some provision for undoing and redoing operations. As an alternative ,

the system could wait for “missing” sequence numbers — an approach that

is feasible only if all numbers are assigned centrally and all sites

receive all updates. Once one begins to consider problems of this kind ,

the implicit sequencing (by site ordering) discussed at the beginning of

this section looks very attractive.

If operations can be data dependent and modify multiple records

(e.g. increase the price of all blue uniforms by 5 percent), then the

analysis of the problems and of the costs of the various schemes becomes

very complex. We are presently in the midst of an intensive study of

these and related concerns. A detailed report will be produced in the

future.

Summary

In this chapter we have looked at the problem of data base

access synchronization. It should be clear that the state of the art

will not permit a clear—cut favorite technique to be selected . Rather,

each technique proposed has strengths and defects. Nowhere is this more

true than when distributed data base access synchronization is considered .

The basic characteristics of that environment are only now beginning to

emerge. While broad requirements may be formulated , advocacy of any

technique is premature.

47
‘I.

-.5 ___ __5_ —5- -.5——~~~~ —5.

.5 ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .5_ss ._s.____~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~ _~~~ _ ,55 5 - “~ ‘ w.5.r. ” P-rn-” ’ ‘ “!III~

The Deadlock Problem

Int roduction

Deadlock can occur when processes which concurrently compete

for resources have the power to lock those resources against access by

the other processes. Consider the following simple example. Suppose

process P
1 has locked resource R1

and requires the use of R2 before

unlocking R
1. But suppose that process P2

has previously locked R2 and

will not release it until after it has used R1
. Then P

1
and P2 are in a

state of deadlock. Each is unable to proceed until it can obtain a

resource locked by the other. This situation is easily pictured by a

bar graph (see figure 3). The bars indicate the periods of tin~e during

which each process would have the resources locked if it were the only

process in the system. In figure 3, process P1
becomes blocked at time

T
1 and the two processes become deadlocked at time T2.

A more complicated deadlock situation is pictured in figure 4.

At time T4, P1 requests R2
and is blocked from proceeding since P2

already has R2 locked. (This point past which P1 cannot proceed is

indicated by an arrow in the figure.) At T5, P2 becomes blocked by its

need for R4, which has been locked by P3. Finally, at T6, P3 also

becomes blocked , so that it never releases R4
to P2 , which in turn never

releases R2 so that P1
can proceed . The three processes are now dead-

locked. Notice that deadlock will occur in this example even if, after

the first resources are locked, the second (and later) resources needed

by each process are not requested to be locked but only accessed (e.g.,

a read operation to a file). Thus, even if many operations do not

require locks, the potential for deadlock may be substantial.

48

-— - - - —5-—-— -5 -5-55-—- — 5 —5——— —.5-—— ___.__~4 ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ -555-4~_••5 a - - -—,

—5- —~
---‘—- - — - .

.-- - . r-’~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ “ _____.

k
I L R I

PI ’~
_ _ _ _ _ _ _ _ _ _

J R 2

1
:

_ _ _ _ _ _ _ _

L _ _ _ _ _

T I M E T1 T2

FIGURE 3: SIMPLE DEADLOCK

49

—S ~~~~~~~s5 - 5~ 5 ~~~ —-—-—-

_ W _
—~-,,._-,.._

_ ~~

R~ 1

R~ I
Pt ____________________________

I R~ I

R2 I

P2 R~

R~ I
R1

I I I I

T0 TI T2 T3 T4 T5 T6 T I M E

F I G U R E 4 : COMPLEX DEADLOCK

50

~~~~~~~~ 

— - • - - 

- 

, 

S _____



- - - - S 
- - -~-~~~~-,~~- - ~~ -~ — . - - ------ - - -

The situation pictured in figure 4 may be generalized to ever

more complicated interactions in which large numbers of processes impinge

on each others’ needs in a way which ultimately causes deadlock. A

helpful alternative method of picturing processes and their resource

needs in complicated situations has been introduced by King and Collmeyer

[1973]. This alternative method uses what are called access state

graphs. These are snapshots, at successive instants of time, of processes

and the resources allocated to (and locked by) them. Figure 5 shows a

set of such access state graphs which give essentially the same information

as figure 4. At T0, the graph consists only of nodes for the three

processes in the system. As each process requests and locks resources,

arcs are drawn from the process node to the first re3ource node, and

then to successive resources. Thus, at T1, P
1 has locked and P2 has

locked R2. (Ordinarily these locks would be represented by two separate

graphical steps.) At T4, the dashed line from R3 
to indicates that

P
1 
is blocked from access to R2. At T5, P2 becomes blocked attempting

access to R4. And finally P
3 is blocked in accessing R1

. Notice that

the T6 graph contains a 
cycle, consisting of the arcs from to R

3 
to

to R4 to R1
. Indeed , King and Collmeyer show that, if the system at

time T~~1 
is not deadlocked, then the necessary and sufficient conditions

for the access state graph at T~ to represent a deadlock are:

1) the existence of a cycle, and

2) the fact that the last arc added is dashed (i.e., represents

a blocked access).

When resources are released or processes are completed , the corresponding

nodes and arcs are deleted from the graph. In this way, access state

graphs can be used by a system to keep a dynamic record of processes and

associated resources. Such a record is clearly of potential usefulness

51

—-SS- -—

~

———-5- -- -—5 --—5-55 - 5 - 5 _ S  - S



‘ ‘  :~~~~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~

•

-
~ T0 

I T1 12 
I

~ 

R2

P3 . P3 . P3 .

~~~lJP

\

RI

T3
\

T4
I

~2
’

~2
•

~~~~~~~~~~~~
>: 1 

• R3
~3 

~~~~~~~~. R~ 
~~~~~~~. R~

T5 ‘ 16 \ ‘

I~
5~ ~2 ~~~~~~ ~2 ~~~ 

)
~ R3 ~ ~~R3 1’

P .  ‘ ~~~~~~ 
/

~ 
R4 

~

FIGURE 5: ACCESS STATE GRAPHS CORRESPONDING TO FIGURE 4

1 52

-.5-- 
- . . —5-—-5~~~—55-5--S-- ,-—- ,S-—S 5~~~~~~~~~~~~~~~~~~~~~~~~~~ :.5 - ______________________



5— -

in Identifying a deadlocked state so that appropriate action may be

taken. But we leave the question of treating the deadlock problem to

the next section.

The reader should by now have gained some intuitive insight

into how deadlock may occur . More than intuition is needed , however.

Coffman et al. [1971] have helped to formalize the study of deadlock by

setting down four necessary conditions which must hold before deadlock

can occur in a system running processes concurrently. These conditions

are:

1) Mutual exclusion condition. (Processes can lock resources for

their exclusive use.)

2) Wait—for condition. (Processes may hold some resources while

waiting for additional ones.)

3) No—preemption condition. (No process can be forcibly required

to release a resource it holds.)

4) Circular—wait condition . (There exists a circular chain of

processes , each one holding resources needed by the next.)

In an interactive data management system many independent concurrent

users may be accessing and updating the data. Locks are a virtual

necessity to avoid severe loss of integrity and deadlock is a problem

which must be addressed. In a network environment the problems can be

accentuated by, for example , the absence of a central control.

In the remainder of this paper, we consider the various

approaches to handling the deadlock problem. Although terminology in

the literature tends to vary, these approaches can be divided into three

basic types:

- 5-—,- ,5-5——--5 - - 5   ,,-.-—--- -~~~~~-—~~~~~~~~~~~~-- 5 -—--—--— _



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1) Detection and Recovery. This involves monitoring the processes

and their resources to identify a state of deadlock — e.g., by

the use of access state graphs — and then backing out or aborting

one or more processes.

2) Avoidance. In this approach , even more comp lex graphs are

generated and studied to determine a safe strategy for resource

allocation before deadlock becomes inevitable.

3) Prevention. This involves setting up the system in such a way

that one of the four necessary conditions of Coffman et al.

does not hold.

In the next section , we will describe these approaches in more

detail — particularly those which seem to be most promising for use in

distributed data management. Following this general description of

techniques for handling deadlock , we provide an assessment of their

usefulness in the context of large , distributed data bases . A key

problem seems to be that most of the techniques described in the litera—

ture require some sort of central monitoring and/or control. We there—

fore present and discuss in some detail a new scheme for implementing

deadlock detection in a network without centralized control.

Treatment of Deadlock

Detection and recovery. The best comprehensive discussion of

detection and recovery techniques — at least in the context of data

management — is contained in the paper by King and Col]ineyer [1973]. We

have already described their access state graphs and their main theorem,

which may be applied to detecting deadlocks. Detection then becomes, at

least in theory , a rather straightforward procedure.

Other work on the deadlock detection problem has been based on

much the same principles — i.e., the construction (at least conceptually)

54 j 
S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5 5 - S~~~~~~~~~~ s - 5 - 5  J



of a graph linking processes and resources and the examination of this

graph f or con fi gurations (equivalent to King and Collmeyer ’s cyc les)

which indicate deadlock. Perhaps the earliest paper describing such

techniques was that of Murphy [1968]. Although Murph y primari ly dis—

cuss es mat rix t echn iques , they are equivalent to graphical ones . Indeed ,

the obvious way to represent graphs in a computer is as a matrix where

rows and columns correspond to nodes and non—null entries represent

linkages between node pairs.

A rather elaborate graphical approach was published by Holt

[1972]. Holt ’s analysis is complicated by distinctions between consum-

able resources (e.g., external interrupts) and reusable resources (e.g.,

I/O devices), and by the possibility of multiple units of each. In this

setting , a simple cycle in a graph is still necessary , but no longer

su f ficie n t , fo r deadlock. Holt ’s algorithms for deadlock detection

theref ore look far  more complicated than those of Murphy or of King and

Collmeyer , but Holt claims that they are practical to implement (with

execution times proportional to the number of resources times the number

of processes).

Recovery is a far more difficult problem than detection. Holt

dismisses the problem with the statement that “if deadlock has occurred ,

it will be necessary to terminate jobs or to pre—emp t resources from

job s. ” Bot h of these solutions constitute “recovery” from deadlock only

in the sense that the resources involved in the deadlock are released so

that the operating system may proceed normally. In many cases one also

wants “recovery” to include the preservation of the states of the aborted

processes so that they may be conveniently restarted and/or the return

of all resources (e.g. data which may have been left inconsistent) to a

usable state.

55

_ _ _  ____ . 5 -  5 - 5 — -— -5 — 5



S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Murphy suggests the possibility of requiring a process to

release resources and re—request them later .  This is basically a pre-

emption solution. Although there is a hint here that the backing Out of

the process may be orderly (hence making process recovery possible), no

details are considered .

King and Collmeyer , however , discuss recovery in some detail.

It may be worthwhile to quote their definition here before discussing

their approach. “Recovery is the procedure by which the effects of a

(necessarily) aborted process on the object data base are reversed so

that the proe’~ss can be restarted .” Their procedure has two main features:

1) A checkpoint (the recording of the state of the process)

is performed whenever a process begins to lock resources. Thus, if the

process must subsequently release its resources, it may be returned to

its previous state.

2) A process 
~~~~~~~~ (a device specific to deadlock in data base

management) essentially allows changes in the data to be made in a copy

of the locked portion of the data base. The changes become visible to

other processes only after an unlock is performed. Thus if the process

is aborted, the data changes vanish.

By using both checkpointing and a process map, King and Collmeyer

allow for full recovery of both the processes and the resources (data).

A price must be paid for this full recovery, however , since maintaining

checkpoints and process maps requires considerable CPU time and storage

space.

Another problem related to recovery is deciding which process

to abort. That is, if two processes are seen to be deadlocked , the

system must decide which should be allowed to continue. There is a

small amount of discussion in the literature on strategies for making

56

—
~~~~~~~ 

—---- -
~~~~~~~~~~~~~~~~~~~~~~~~~

~-

- - ~~~

this decision. Clearly the basic principles should be maximization of

ease of recovery (in some sense) and/or minimization of wasted effort.

Avoidance. The term avoidance does not always have the same

meaning in the deadlock literature. We are using it here in a technical

sense. Avoidance techniques handle deadlock by an elaborate scheme for

monitoring processes and the resources they request. Resources are allo-

cated only after a careful analysis of that allocation ’s potential for

causing deadlock. The techniques are very similar to those used for
S

deadlock detection. The only difference is that, instead of using access

state graphs (or an equivalent scheme) to determine when a deadlock has

taken place, the system subjects the graphs to an elaborate analysis

wheneve r a lock is requested. if there is any possibility that satis-

fying the request may lead to deadlock , the request is (temporarily)

denied.

The earliest scheme of this type to be proposed was the “banker ’s

algorithm” of Dij kstra [1968], which first appeared in 1965. The idea

behind this algorithm is that an allocation can be safely made as long

as there are enough resources left that, by allocating needed resources

to each process in turn, the system can run all processes to completion.

Thus the system must have a list of the maximum possible needs of all

processes. Before each allocation the system checks to see that all

processes can be guaranteed to be able to finish.

A formal study of this type of technique is contained in the

classic paper of Habermann [1969]. Essentially, Habermann defines the

allocation state of a process as a specification of

a) resources currently allocated to the process, and

b) resources claimed (i.e., which may be ultimately used) by the

process.

57 —

-
- - —--- - - -s -- _

~
S
~~~~~~~~~~~~

The set of the allocation states of all processes, plus information on

available resources, make up the overall allocation state which must be

exam4vted by the system. Certain allocation states are safe in that

“starting from a safe state there is at least one way to allocate the

claimed resources to each process even ... when each asks for all

the resources it has claimed and does not release any resources until it

has been allocated all its claimed resources.” Thus the system may

avoid deadlock by allocating resources in such a way that successive

allocation states are safe . Based on several theorems relating to

safety, algorithms for identifying safe states are given .

Molt ’s graphical approach to keeping track of processes and

resources also provides a mechanism for deadlock avoidance. In fact,

Holt claims to improve somewhat on Habermann’s algorithms.

Two features of these deadlock avoidance schemes should be

emphasized .

1) Processes must claim resources in advance.

2) The system must carry out a complicated analysis, which involves

examining all processes and their claims, before every lock.

Prevention. We are using the term prevention to denote tech-

niques which guarantee that one of the four necessaiy conditions for

deadlock do not hold. To repeat, these conditions are:

1) Mutual exclusion condition

2) Wait-for condition.

3) No—preemption condition.

4) Circular—wait condition.

Papers by Coffman et al. [1971] and by Havender [1968] discuss the

system constraints which can be used to eliminate each of these

58

-- 5--s.- --. 5-5~-5-s55~~~~~~~~~~~~~~~~~ 5_5 5~~~~~~~~~~~~~~ 5-5-~~ 5-’



. 5 5 -- ~~~~~~~~~~5 5_-5S -- -—-5- - -~~~~5.’—5-—--~~ 5--- —-5-,~~~—~~~~~~~~SS- -

conditions. Elimination of condition 1 simply means allowi ng processes

to interfere with one another — an unacceptable solution. Elimination

of condition 3 involves allowing the system to preempt resources from

processes using them. As we indicated above in the discussion of detec-

tion and recovery , the forcible removal of resources from a process

opens up the question of whether the process (and/or the resource) is

left in an undesirable state.

The way to eliminate condition 2 Is simply never to allow a

process to lock some resources and then request more. Practical

approaches to imposing this constraint are of two types.

(a) A process must preclaim any set of resources which are needed

concurrently , and the system does not lock any of them until all are

available for allocation to the process.

(b) A process is required to release all currently locked resources

before making new requests. Notice that this scheme differs only in

viewpoint from (a). Resources actually needed concurrently must still

be requested and allocated as a group.

Final ly ,  condition 4 may be avoided by imposing a linear

ordering on the resources and requiring that resources only be requested

in that order. Consider, for example, figure 3. Suppose the resources

are ordered R1, R2. Notice that deadlock would not occur if P2 were

required to request resources in the order R1, R2, for then P2 would

simply be blocked until after P
1 

released R
1
. This solution has many

attractions and will be discussed further below.

Ignoring the problem. One approach to handling the deadlock

problem is simply to ignore it. Specifically, one can assume that

deadlock occurs so infrequently that it may be handled like any of many

other unforeseen hardware or software failures — i.e., the of f e n ding

59

- - s — — S  _5~~~~~ ____~~~~S~~~~~~~~~~~~~~~ S 5 5 5555 -5.~~~~~S S5 -5S  ~5--5-55-5_5~~~~ -5~~~ s-s _, ~~~~~~~~ -- ~~s~ s s s 5.s s.5.~ —i- ‘ - -—-5



5-5.55 ~ S 5 5 5  — —-— -‘— ~~~ 
5 -- sss ————-._ -— 5-~~’ “~~~~~~~~~~ ‘~~~ •S” ~~~~~~ “ “

~ S~~~~ 5-_ -— __s _~S~~~~ S-5.5-5~.5_s55S55-5~~s S..SS!
~~~~~~~~~~~~~~~’ ’ ~IIIII~~~

Ii

processes are aborted with no attempt at recovery . This approach does

not require any elaborate detection mechanism . Processes may simply be

aborted for having been in the system “too long” — for whatever reason .

Or resources held by a single process “too long” may be preempted and

the process aborted .

One should be reluctant to adopt this solution unless there is

some rationale for assuming that deadlock will not be important. In an

interesting simulation study, Shemer and Collmeyer [1972] attempted to

assess deadlock frequency in the context of a shared data base. Because

of the difficulty of identifying true deadlocks, they define a simulated

deadlock as occurring when a process attempts to lock a resource already

held by a blocked process. In the situations pictured in figures 3 and

4, the simulated deadlock is a real deadlock. This is not always the
S

case. Suppose, for example, that, in figure 4, P3 releases R4 at T5.

Then P2 is allowed to continue and will ultimately release R2 and unblock

P
1. No deadlock occurs. But a simulated deadlock still occurs at T

6
.

The frequencies computed by Shemer and Collmeyer are therefore overestimates

of true deadlock frequency.

The parameters in their model are (with small changes in terminology)

a number of lockable blocks in the data base ,

b = percent of accesses that are updates ,

c = mean number of blocks hit per access, and

N = number of users.

To quote a typical result , they find that for a 300, b = 70%, c = 6,

and N 20, the average number of deadlocks in 10,000 accesses is about

35. They display their results graphically ; selected curves from this

graph are reproduced here in f igure 6. Some interesting features are

60

~~~~~~~~ 55 .~~~r-- -. - .~~~~~L ~~~~~~~~~~~~~~~~~ 
S~~~~~ 55 S555 5~~~~ S S s_ S5 s s .555~_ 55 5S_S.5s - s~~5~5 _ _ 5 -  _~~S S SSSSSS 5.55 5~5 _ 5 _ _  _~.



55~ _55-5S 
~s S5-555_5-_~~~~~~ .5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

5,

200 - 
100 ,70% , 6 100, 50% , 6 tOO , 70% , 3

180

160 -

Vi)
U)
w
U
C.)
‘

~~ 140 -

0
0 5

0 5

0
120 -

U)
C.,
0

~ 100 - 100, 30% ,6

IA. / 
I00,50%,3

0 8O

N

Figure 6

Selected results frost the deadlock
simulation study of Shemer and Collmeyer [l972~ .

Curves are labeled with values of a , b , c.

61 ~~~

‘

_ _ _ _ _- 
-~~~~ — --5 ~~ -S - , —5— 55 --~~~~~~~ ~~~~ - - 5 5~~~~~~~~~~~~~~~— ~~~~ - ~~~~~~~~~~~ _ .5- - -  - 55 ---- 55 - -



-55 - -~~~ -55-—-———— S’
~~~~~~~~~ w~~~

-__
~~ 5 5 S -5 5 5 -~~~~~__~-5,~~~~~~~ __-5 - 5- -~~~~~

worth pointing out. For example, there is a dramatic drop in expected

number of deadlocks as b decreases to reasonable levels. (Compare the

(100, 50%, 6) curve with the (100, 30%, 6) curve.) It would be inter-

esting to see curves for, say, b = 10%. The deadlock level may be

virtually negligible in this case. On the other hand, 10,000 accesses

is not very many, and any deadlock level visible in this simulation may

be unacceptably large in a real system.

Qualitatively, the results of Shemer and Collmeyer are what

one intuitively expects. As the numbers of users (or processes) increases

(while the number of resources Is held fixed), the probability of dead-

lock increases. This is due to increased contention for the limited

number of resources. On the other hand, if the number of users is fixed

and the number of resources increases, contention for those resources

decreases and so will the probability of deadlock.

Ellis [1973] has obtained these same results by analyzing a

probabilistic automaton model for processes and resources. In this

model, each state corresponds to a specification of those resources

available, those held by each process, and those requested by each

process. In addition, Ellis addresses the interesting question of what

happens when the number of resources is kept equal to the number of

processes and both increase. He finds that the probability of deadlock

then increases; i.e., the increase due to increased number of processes

outweighs the decrease due to increased resources.

Realistically, however , the growth of lockable units in a data

base will far outstrip the growth in concurrent usage. Thus we may

s af e l y conclude tha t as da ta base s grow increas ingly larger , the proba-

bility of deadlock in data access will decrease.

_________ _____ - S

62

5-5——- ’— — ‘-.5-S .55_s
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~ 55 55 ~~ ,__t— —5-- — 

~~~~~~~


fl
555 - -~~~~~~~~~~~ ~~~5 -5

I

I t is wor th noting that Shemer and Collmeyer also keep track

of the numh~r of occurrences of interference (retrieval blocked by an

update) and roadblock (update blocked by a user who is not blocked).

These events may also seriously degrade performance, but they do not

cause the pot en tia l loss of in tegr it y that the resolution of a deadlock

does. For example, they find that for a=lOO, b=30%, c=6, and N=2O, the

average number of users on the wake—up list (i.e., that have encountered

roadblock and are waiting for access) is seven. With the same parameters ,

the probability that a retrieval will encounter interference is about

0.45. Again , these are upper bounds and , provided that the blockages
S

are not long—lived , they do not indicate serious performance degradation.

The reader should consult Shemer and Collmeyer’s paper if he is interested

in seeing more results along these lines. We restrict ourselves here to

quoting from their conclusions.

“What is importa n t t o not e is t hat ... the performance of a
shared database system is still quite satisfactory unless the operating

situation is atypical [high percent of updates]. When the size of the

database becomes reasonably large, the number of deadlocks and inter-

ferences decrease more than proportionately . In the simulation when

there were more than 300 groups [lockable units] in the database, there

were virtually no occurrences of deadlocks and the number of interferences

was also very small... .“

Combinations of techniques. In many real systems, a combination

of techniques is used . One technique may seem most suitable for certain

r esou rces , while other resources are best handled in some different way.

Havender [1968] has described the approach taken in the design

of the SYSTEM/360 Operating System job initiator. In dealing with data

sets , the approach is to require a process to preclaim all needed data

63

L
_ _ _ _ _ _ _ _ _ _ _ _ _ _

- _ _ _ _ _ _ _ _ _ _ _ _ _

55

55.55-5-- 5-- — -5- —5- -—-~~~~~~ —-— £ _ s -.5

— ,— -~~~~~~~~ - S— -5~ -55 “WW ’~~~~~~~ W~ —

sets. The process is then not initiated until all preclaimed sets are

available to be allocated to that process. This is a prevention tech-

nique — the elimination of the wait—for condition. In allocating devices,

the same basic approach is used — elimination of wait—for. But instead

of requiring that all needed resources must be pre—claimed and pre—

al located , the process is simply required to release the presently held

group of resources before requesting more. Main storage is also allo—

cated on essentially this basis. There are therefore three types of

resources — main storage, other devices, and data sets — and within each

type a deadlock prevention mechanism is defined . But something more is

needed — a way to avoid conflict between allocation of these types . The

approach taken was to define an order in which the three types are

allocated, with the goal of eliminating the circular—wait condition.

The system, however, does not have the complete information (i.e., the

future plans of all processes) needed to guarantee a correct allocation,

and a certain amount of deadlock will occur and is “ignored.”

Frailey [1973] describes the resource management system

developed for Purdue University ’s MACE operating system (for a d C

6600). In this system, many devices (core memory, I/O channels, etc.)

are allowed to be preempted . The state of the process using the pre-

empted resource is saved so that the process may be restarted. The

resources determined to be preemptive are just those for which restart

is not too troublesome . Certain resources , such as data files , are non—

preemptive . These are handled as follows (in Frailey ’s words).

“Each claim is treated as a request and, if the resource is not

available, the task waits for it. Otherwise, access is granted . In

this method , no more than one resource is requested at any time by

a single task . . . Multiple claims are not allowed.”
S

64

5 5 5 - ~~~~~~~~~ -55 - - 5 - - --5 — ~~~~—— 5-—--55-5 S -5-5- -5—

-~~~
S~S_.5_5~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ SS _5 _5_5-55_5-5-S_555~ -- 5 . 5.5S~~~S~~~~~-_s-5S

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - r ’ ~~ ‘~~ —..~.

Notice that nothing is said about releasing previously held resources

before making such a claim. The system does nothing to prevent deadlock

that may arise from locking of non—preemptive resources. However,

Frailey reports that very few deadlocks actually occur (two in a year),

probab ly becaus e “ the most frequently used resources are treated as

preemptive.” Frailey concludes: “In the final analysis, the cost of

full deadlock prevention was felt to be too high for complete

implementation.” S

Sekino [1975] describes a deadlock prevention mechanism

implemented within a Bell Laboratories data management system. The

basic scheme is to eliminate circular waits by ordering all elements in

the data base. However , because of the inefficiencies which may arise

if the user is always required to access elements in , say, ascending

order , the user is allowed to access data elements in arbitrary order .

If he is blocked in accessing an element with a lower number than is S

attached to one he already hold s locked , then he must release all higher

numbered elements. Consider the example pictured in figure 4. When P
3

fails to obtain R1, it must release R4. This prevents the deadlock

which would otherwise occur at time T6. On the other hand , when P
1

failed to obtain R2 it would release R3 
— an unnecessary action. This

scheme is therefore a variation on the standard approach for elimination

of the wai t—for  condition . The difference is that instead of requiring

that all currently held resources be released before more are allocated ,

only the set which might become involved in circular wait ( i.e . ,  the

lower ordered ones) need be released .

Techniques proposed for distributed data bases. There is very

little in the literature on the deadlock problem in a network environment.

In fact , the only two relevant papers that we know of have appeared

5-5555 — 5-- -~~~~~~~~~~~~ -~~~~-~~~~- _5 - -.5 - s -55-5~~ S- -~~~~~~~~~~~~ —



S55 ~~~~ - - - - — 
2- ~~~~~~~~~~~~ 5s5 5 5 - s, —- s. .s _ss ss ,s.. 55 5W ‘

within the past two years. These are a symposium paper by Chu and S

Ohlmacher [1974] and Mahmoud ’s Ph.D. thesis [1975].

The simplest scheme discussed by Chu and Ohlmacher is of the

preclaim type. The process must specify in advance all of the f iles it

might need and these are all allocated before the process is initiated.

If all files needed are at a single site, the system there can decide

whether they are all availabl and then allocate them. If the files are

at several sites, an additional mechanism is needed. Otherwise a cir— —

cular wait may occur if (as is desirable) each site has the power to

allocate its own files independently of the other sites. This possi-

bility of circular wait is eliminated by simply numbering the sites and

always distributing requests to sites in numerical order.

As a refinement of this technique, Chu and Ohlmacher introduce

the notion of process sets, or sets of processes having requests for the

same file(s) . Thus processes in different process sets can never inter-

fere with one another, and this may simplify the allocation problem.

For example, suppose there are three processes in the system — two in

one set and one in a second . The one in the second set can not interfere

with the others; it can be initiated without preallocation of resources.

Chu and Ohlmacher also discuss a detection mechanism of the

standard graphical kind. They suggest that implementation be “accom-

plished by appainting one node of the network to monitor requests for

files and detect deadlocks.” They do not address the difficult problems

of restart/recovery in ~ network, nor do they indicate what should

happen if the monitoring node fails.

Mahmoud [1975] discusses Habermann’s avoidance technique in

some detail and briefly indicates how it may be extended to a distributed

S situation. Again , the difficulties posed by the need for some central

66

-~~~~~~~~ -——~~~~~~~ 5- ~~~~~~ - —S -S S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - S —~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



site to mon it or the allocati on s are ignored . A so—called demand—graph

mod el is also disc ussed , but the bas ic idea is the same — i.e., a

restriction of the system to “safe ” allocation states. Finally,  Mahmoud 
S

considers a deadlock detection mechanism which (like that of Chu and

Ohlmacher) does not appear particularly novel. He suggests an optimal

preemptio n scheme (but does not give detai ls) fo r “recovery” when

deadlock is detected .

Assessment of the State of the Art S

Our primary interest is the prevention of deadlocks due to

data access by concurrent processes. It is this problem that we will be

considering here. We hope , howeve r , that the reader has not forgotten

the discussion above of the SYSTEM/360 Operating System. There was an

important lesson to be learned there — that even if one has an impeccable

scheme for preventing data—related deadlocks, one must still consider

interactions between data allocation and allocation of other devices.

Complexity of avoidance. In reviewing the techniques discussed

above , we are immediately struck by the complexity of the deadlock

avoidance schemes. Even if it is possible — as Mahmoud seems to claim —

to implement such a scheme in a distributed environment, the overhead ,

both in cost and in delay, seems to be prohibitive.

Feasibility of detection and recovery. Deadlock detection

s chemes , though they also require complicated monitoring, have a much

smaller overhead and might be feasible. Indeed , Chu and Ohlmacher claim

that a standard detection mechanism is “easily implemented” in a network.

However, they ignore the problem of what should be done if the moni-

toring node fails. If deadlock is an infrequent occurrence, perhaps the

concurrent failure of the monitor is of sufficiently low probability

5 

67

~~5 - - - - S S SS -- - - - 5 5 5 5  - SS -

~~~~~~ ~~~

- 5 - 5 -..-,-

555- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ s-5.5_ — ~~~~ -55_ — — 5- __S5 —

_ _ _ _ _ _ _ _ ------5- -5—-5——--- S 5~~~~ ---- -—----5—— 55-.-- S-- --S- --

that this possibility can be tolerated. It is also possible to implement

deadlock detection with distributed control. A scheme for doing this is

discussed below .

Recovery af ter detection of a deadlock is a more serious

problem . If a process that is updating the data base is aborted , the

data may be left in an inconsistent state. King and Collmeyer ’s sche me

or some equivalent approach — in which the updates are not really applied

to the data base until af ter the process is complete — seems to be the

only feasible solution in sight. It should be possible to implement

this solution for a distributed data base, although the overhead will be

high.

Difficulties of prevention. We are therefore led to considering

the deadlock p evention mechanisms in more detail. We have already

noted that the elimination of mutual exclusion is not acceptable. And

allowing the preemption of resources brings us right back to the recovery

problem . We are left with the possibility of eliminating either the

wait—for condition or the circular—wait condition .

Consider f i rs t the circular—wait condition . The possibility

of circular wait may be eliminated by ordering all of the lockable

elements in the data base. If all processes access the elements in the

same order , then clearly a circular wait can not occur . Two problems

arise in implementing this approach. First , it may be expensive to

maintain an ordering on a very large , dynamic , distributed data base ,

particularly if the lockable units are small. If the lockable units are

whole relations (or files) — and these are added or deleted infrequently —

S then ordering is quite feasible. All o-’~e needs to do is to assign a

unique name to every resource at each host. The ordering can then be

68

L -__~~~~~~~-~~ - S ~~~ -.55-~~~~ S - -55 s 5 s ~ 5s

- - - 5 5 -55---

any natural sort order , e.g. alphabetic . The only problem is that the

system overhead to keep track of the ordering can become large in a S

dynamic environment where new names are constantly being created .

Second , there is the problem of implementing the requirement

that data units be accessed in the prescribed order. If the requirement

is implemented at the level of the user or applications program , several

difficulties occur.

1. The order of the data elements must be specifically known to

the user.

2. The programmer must take into account the data ordering in

designing an efficient program. That is, an unnatural order

may be imposed on the job, and the progra er should try to

work around this.

3. Some monitoring device will have to exist in the system to see

that the prescribed order is not violated. If the order is

violated , some action must be taken.

Everest [1974] summarizes the difficulties nicely : “It may be impossible

to establish a preordering ... such that all processes could operate

properly by requesting the files according to the preordering. In any

case , it would impose a severe, and perhaps unnecessary, discipline on

the programmer .”

To avoid these diff icult ies, the burden of allocating resources

in the proper order could be placed on the system . The ordering of the

lockable data units is then transparent to the user. But the system
5

5 then requires complete information on all the resources that may be

required by a process in order to properly order the allocation . For

example , if the process works with resources numbered 100 through 150

and then , much later , (might) access number 1, the system must know this

69 —

-
S

~~~~~~~ 5 5_5-5 . 5 5  55 5~~~~~~~~ -5 —~ 5-~~~~~~~-~~~~- -~~~~~~~



5

- - —-~~~~--55S-- 555 5--

S and beg in by attempting to allocate resource number 1. Thus the process

must essentially preclaim all the resources that it may possibly need .

The basic technique for elimination of the wa i t—for  condition

is also preclaiming. (The alternative is to require processes to release

previously held resources before requesting more — or possibly for the

system to preempt some or all of the previously held resources. This

alternative again requires recovery procedures or discipline on the part

of the user — that is , the process must be prepared to release resources

without drastic results.) We therefore see that preclaiming — in the

sense that the process must know in advance the complete set of resources

it might need and it must convey this knowledge to the system before any

allocations are made — is a necessity in any foolproof scheme for treating

deadlock without worries about recovery.

What the system then does with this perfect information is

another question. It may wait until the entire set of resources is

available and allocate them as a group before initiating the process.

It may go through an elaborate deadlock avoidance scheme , allocating

resources to processes one by one and checking that each step is “safe” .

The former ties up resources for unnecessarily long periods of time; the

latter requires enormous system overhead. As a compromise, the system

could take some intermediate approach. Allocating resources in some

fixed order is an example of this . Another example is thu and Ohlmacher ’s

use of process sets.

In summary , we quote again from Everest: “The conclusion to

be drawn is that if processes are to run concurrently, if data is a

dominant resource, and if deadlock is to be avoided, then all processes

must state their resource needs a priori. ”

70 

—— ~~~ 5 5 ~~~~ S-~~~- ~~~~~~~~~~~~~ 5 55 5 - s 5 5 s ~~~~~~~~~~ 5 5 5 5 5



—~~~~ S _ _ _ ‘~~~~~~~ 5— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,___ 55 5S S-5_5~~_-S-S5555S’~~~~~

- -

S Elimination of concurrency. We see clearly from this quotation

that there is another possible way to prevent deadlock in data management .

This way — which is foolproof — is to eliminate concurrency. That is,

we may simply not allow independent processes to access data at will.

Such a scheme may be implemented , for example, by requiring all data

access to take place through a central data manager. The data manager

would essentially act as a batch processor, being itself a single process

which handles sets of one (or more) queries which have been submitted to

it. Processes may find themselves waiting for some length of time for 
S

responses to their queries, but they are guaranteed that they will not

be blocked forever.

In spirit , this solution is much like that of eliminating

circular wait by putting the burden on the “system” to see that records

are accessed in some prescribed order. In that solution also, processes

are not allowed to act independently to get in each others’ way.

Indeed , imposition of a centralized control for each data base

may be the best solution to the deadlock problem in the database context .

Notice that it is only updating, in general , which requires mutual ex-

clusion. It may be that only updates should be batched and run by a

central process, while (whenever updating in not taking place) retrievals

can be carried Out concurrently and in interactive mode .

Even if this solution Is adopted , however, there may be other

concurrent processes which can deadlock in a network environment. If

these deadlocks are not very common, they might best be handled by

simple detection. We have, therefore, looked closely at the problem of

implementing a distributed detection scheme in a network. Our proposed

algorithm for distributed detection is presented and discussed in the

following section.

71 

- ~ - — ~~- --———-~~ 5--



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ - -

Distributed Deadlock Detection in a Network

As we discussed above, there are serious disadvantages to

setting up a central monitor to detect deadlock in a network environ-

ment . There appears to be no reason why detection can not be carried

out in a decentralized manner. We suggest the following scheme, which

is based on King and Collmeyer’s access—state—graph analysis of dead-

lock. (See the introduction above.)

Suppose that a process P
1 is blocked in attempting to claim

resource R
1. P

1
is then placed on the list of blocked processes waiting

f or R1. After some reasonable time interval has passed, the site where

P1 is lo ca ted suspect s tha t P1 is in a deadlock and initiates the

following algorithm to detect a cycle in the access state graph.

1. A resource list is initialized with R
1.

2. The name of the process holding R1
is obtained. (This

ste p — and similar steps — will in general involve querying other sites

in the network.) Call this process P2. Initialize a process list with S

P2.

3. For every process in the process list which is not already

tagged as having been checked , check to see if it is blocked. If it is,

add the resource (or resources) it is waiting for to the resource list.

In any case, tag it as having been checked. If no new resources are

added in this step, stop. P
1
is not in a deadlock cycle.

4. For every new resource added to the resource list in step

3, add the process holding it to the process list.

5. Check the process list. If P1 appears in this list , then

a deadlock exists.

6. Go to step 3.

72

S.
_ _

5

~~

55 5 5 5 5 5 5 5 5

~~~~~
__
~~~~~~

_a&~~~~~ -5S~~~ 5--5-5- -5-555-_S S ~~~~~~~~ __ -

F5 — - - - - 5 5 5 - — 5 — -5— --- —-- -_S -5 —— 5-5 __ss-5S 5 -_ 555S 5-S5-55~~~~~ 5-55-~~~5~ 5~~

Notice that this algorithm will determine whether or not P1 is

itself involved in a deadlock cycle, but will not detect the fact that

is waiti ng fo r a resource wh ic h is tied up in a deadlock not directly

involving P1. This is probably a reasonable approach. A site is likely

to want to take drastic action against (e.g., abort) a process which is

in a deadlock. But presumably a process that is merely waiting for a

deadlocked resource will shortly be able to proceed normally a f te r the

deadlock is detected and broken up. This presumption depends upon all

sit es ’ being equally alert to detecting and following up on possible

deadlock situations. A site may wish to consider the duplication of any

process P~ in the process list as evidence of a possible deadlock involving

and to either

a) initiate a deadlock check beginning with P~ , or

b) notify the site where P~ is located that it should

initiate such a check.

If each process can be waiting for no more than one resource at a time,

then each non—terminating loop through steps 3—6 will add precisely one

resource to the resource list and one process to the process list. In

this case a duplication in the process list does demonstrate the existence

of a deadlock cycle. The site then knows that P1 can not proceed until

the needed resource is released from the deadlock. Appropriate action

can then be initiated.

Notice that the algorithm may not see a deadlock which does

not actually occur (i .e . , the cycle is not completed) until af ter the

detection algorithm is initiated. Again, we assume that such a deadlock

will eventually be detected . Wh en the process which completes the

deadlock cycle becomes blocked, the algorithm will necessarily detect

the cycle.

73
S~~~~ —-5

555 5 5 5 5 5 5- 5 -
~~~~~~~~

- 5 5  5 —5-—S -5~~~~SS5- ~~~~~~~~~
S5-SS-5_ ~~~~~ k. 

5-5-
~~~~~~~~~~~~~~~~~~~ 555 ‘5-~~~~~~~.5 555 ~~~~~~S S 5 5~ 5-5~~


- -.- S w --~~~~~~~~.~~~~ --r - -~~s- ~~~~~~~~~ —-5 ~~ - ‘

It is important to consider the overhead of such a detection

scheme. Data structures must be maintained to provide the necessary S

information for the detection scheme . For example , each site might keep

a list of its processes and the resources each is waiting for and/or a

list of its resources and the processes waiting for each. (It might

also be possible to store all the necessary data at a central location,

but we will assume here that in a truly distributed detection mechanism

we would want the information on processes and resources to be distributed .

Otherwise we have problems of availability, of updating the centralized

data , etc.) In the preliminaries to the algorithm, we stated that a

list of waiting processes should be kept for each resource; this type of S

list simplifies the search required for step 4. On the other hand , if

step 3 is not to require a search of all queues for all resources at all

sites, inverted lists of the resources waited for by each process are

also needed. How much overhead is required to keep these lists will

depend upon how many — and what kind of — resources are involved in the

detection scheme. For example, the system will almost surely be keeping

track of buffer allocations anyway. But suppose that in a large data

base each record can be locked by any process. Even if keeping track of

all records locked by all processes can be made possible, the system

overhead would be enormous.

Another aspect of the algorithm which requires analysis is the

time needed to search for the deadlock cycle. The majcr contributor to

this time will be the time delays of network communications. In general,

a delay of on the order of one second will be incurred every time a site

is queried across the network. The total time for the search will then

be roughly a seconds, where s is the number of times a remote site must

be queried in following through the chain of resources. The parameter s

74 —S

S 55-~~~ 5 _ S _ - 5 S 5S_-S _~_~S__S_SS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



•~~~ ~~~~‘-S- -
~~ -r- ~~~ -r —s—-S-~~ - -

is not an easy one to estimate. In many cases, most of the resources in

the chai n wi ll be held locall y. In other cases, the resources may be

mostly remote. Even if the network has few sites, repeated querying of

a remote site may be necessary to follow the resource chain. (It should

be possib le , by in troduci ng some further complexity into the detection

pro ces s , to provide remote sites with a mechanism for following through

portions of the resource chain held locally without communicating with

the site that initiated the search on every step.) In general, we

expect s to be on the order of 2fr , where r is the average length of the

resource chain which must be searched to determine whether or not there

is a deadlock, and f is the fraction of those resources expected to be

remote. The factor of two arises because for each resource checked, the

process holding it must also be checked, and this may require going to a

second site.

In turn, the parameters f and r will depend in complicated

ways on how the resources are distributed among the sites in the network,

which resources are likely to become involved in real (or suspected)

deadlock, how many processes are running concurrently, etc. It is

probably impossible to predict the values of these parameters for a ‘5
-.

given system. Simulation studies may be of ht tp if pertinent system

characteristics may be defined closely enough so s-hat the results are

valid . On the other hand , once a simple deadlock d~~ection mechanism is

implemented for a system, it would be a simple matter to ~ather statistics

on these parameters.

By assuming that s is proportional to r, the length of the

resource chain to be searched , we have tacitly assumed that the local

site knows where the resources (and thus information on the processes

holding them) are located. This may not be true. It may be that ,

75

~~~~
__

_ _5_ 5S___ __ S _ ~~ - ~~~ --—-55--

rr ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ - - - -—r u5- _ 5 - 55 5 5 5 . ~~~~~S 55 5 ~~~~ -_ s 5 -~~~~~~~~~ - ~~ -~~~~~~

unless a resource is held locally, the detection process will have to

query each site in turn until the resource is found. In this case we

would have (if there are n+1 sites in the network), s:frn, since on the

average one would expect to have to query half of the remote sites

before finding the resource (or process). As another possibility, the

detection mechanism might have to query a directory , located remotely,

to find Out where each resource or process is. This would mean two

remote accesses for each remote resource or process, or s:4fr. What we

are getting into here is the directory problem — the development of

efficient techniques for locating resources (or processes) in a network.

This is a problem for further study. In this report, we are linu.ted to

pointing out that how the directory problem is solved can have an

important impact on deadlock detection.

Another research area that impacts on deadlock detection is

that of name space management. Process and resource names throughout

the network must be chosen from the same name—space. That is, each

process and resource must be assigned a unique name by which it is

recognized by all systems in the network. Without such unique names, it
S

would clearly be impossible to carry out the detection scheme. Furthermore,

the naming mechanism can have some effect on the efficiency of detection.

For example, if one component of a resource name is the name of the site

holding the resource, then knowing the name is tantamount to knowing its

location and there is no need to consult directories or to query sites

to find it.

In summary , it seems to be quite possible to implement a

distributed deadlock detection mechanism in a network. Such a scheme

would probably be practical for handling potential deadlocks among only

76

- -555-5-’- 5-.,_,- 5~
5 _ S-5_

~~~~~~~~~_-S- -
~~~~~~~~~~~~~~ _ -

i rather limited set of resources. For large numbers of resources

(e .g . , records in a data base) deadlock is best prevented. But if , in a

relatively few cases, prevention is not feasible , distributed detection

is definitely a viable safeguard. We leave open the question of what

action to take if a deadlock is detected . The local system may have no

choice but to abort the process with which the check began. If this

process has very high priority, however, this solution would be unde-

sirable. It should be possible to develop a scheme by which sites

involved in a deadlock may cooperate in deciding on what action to take.

A point to keep in mind in developing such a cooperating scheme is that

two sites may discover the same deadlock more or less simultaneously ,

and some safeguard may be needed to prevent them from working at cross

purposes during recovery.

Conclusions; Areas Needing Further Study

The literature on the deadlock problem is relatively extensive.

Basic techniques for handling the problem have undergone considerable

study and have been developed to a high level of sophistication. Nothing

very novei in the way of deadlock treatment is likely to appear in the

future; the tools seem to be complete and ready for use.

There are three questions which do require further study.

1. In a given situation, which technique — or combination of

techniques — should be implemented ?

2. How may the chosen technique (or techniques) be implemented

in a network (distributed) environment?

3. What action should be taken when a deadlock is detected ?

55 One can attempt to answer the first question by making qualita—

tive arguments. This is the approach we took in our assessment of

deadlock techniques. Avoidance techniques , for example , seemed

77

-- 55555 - S
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ 5 S~~_.~~_~~~_S__ 5 - _ _55- 5 - 5 -  - 55 - - 5 -  _~~~~ _ S



—55----— ~5 555 r- -----5- 5-_ 5 -~~5-_S -55- ~~555 -Sw

“obviously” to entail too high an overhead (besides requiring a central

monitor) to be practical for a large, distributed data base. After a

certain point , however , qualitative discussions no longer yield defini-

tive answers. For example, we have discussed in some detail a distri-

buted detection scheme. But is the implementation of such a scheme

really worthwhile? The answer to this question will depend upon a

careful analysis of “cost” (storage, CPU time, etc.) tradeoffs. Which S

is less expensive — letting an occasional deadlocked process tie up

resources temporarily before it is aborted for being in the system “too

long”, or maintaining a deadlock detection mechanism to abort processes

on a more rational basis? It may be impossible to provide a clearcut

answer to this question, since so many factors are involved. Indeed, a

need for the ability to detect promptly a deadlock involving a high

priority, critical process may be of such incalculable importance that

it outweighs all cost considerations and obviates careful analysis of

tradeoffs in “average” situations. Nevertheless, such an analysis would

be useful.

We have provided at least a partial answer to the second

question posed above in tJie case of deadlock detection. Further analy-

sis of our algorithm , in conjunction with some experimentation , would ,

however , help us to identify any weaknesses and test its practicali ty.

Aga in , only experimentation can demonstrate the feasibility of carrying

~~ .4ynchronization in such a way that deadlock is prevented. The

-~~ .~~ ton of the experimental distributed data management system now

-. t ,~ned at the Center for Advanced Computation will give us a 
5

S t’ sing this tool , we expect to arrive at a greatly

-~n~S Ing  of how best to treat the deadlock problem in a

S SS — . 5 — . 5- S . 55 ir~.n. :~i.ri .. . . 1 iiii. S~ 

~~~ ~~~~


5~~~~~~~~ ,5S
~~~~~~~~~~~~~~~~~~~~ s s  ~~~~~~~~ 

_5_~~~55 555S 5~~_5 5 555 5~~555555 555.55-5 5 555~~~~~~~

The third question brings up the problem of recovery . Even

if it is determined that a sophisticated scheme for preserving states of

processes or resources is neither feasible nor necessary , th ere is s t i l l
5 

the problem of deciding which process to abort . We have hinted at the

possibility of constructing a distributed scheme for making such a

- decision . It would be worthwhile to examine this possibility in detail.

- Superficially , there seems to be no barrier to mak ing this decision on a

- 

distributed basis, taking into account priority and/or policy informa-

tion provided by the various sites holding the processes. Again, this

would be an interesting problem for study in the context of the experi—

mental system.

-

~

t
79

I 
-~~~~-S — - _____________ _____________ 

.~



— 
_ 5 ~~ r55 “V —

Ref erences

Belford , C.G.; J.D. Day ; S. Sluizer ; and D.A. Wilicox
1975 “Initial Mathematical Model Report” CAC Document Number 169, JTSA

Document Number 5511; Aug . 1975.

Belford , G.G.; P.M. Schwartz; and S. Sluizer
1976 “The Effect of Backup Strategy on Data Base Availability ,” CAC Document

Number 181, CCTC—WAD Document Number 5515; Feb. 1976.

Bunch , S.R.
1975 “Automated Backup” in Preliminary Research Study Report , CAC Document

Number 162, JTSA Document Number 5509; May 1975.

Chu, W.W. and C. Ohimacher
1974 “Avoiding Deadlock in Distributed Data Bases” ACM Nat ’l Symp . 1,

Nov 1974, pp. 156—160.

Coffman , E.G., Jr; M.J. Elphick; and A. Shoshani. 51
1971 “System Deadlocks”, Computing Surveys 3 (No. 2) June 1971, pp. 67—78.

Dijkstra, E.W.
1968 “Cooperating Sequential Processes,” Programming Languag,~~~ F. Genuys , ed.

Academic Press, pp. 43—112. [First published by T.H. Eindhoven , The
Netherlands , 1965].

Ellis, C.A.
1973 “On the Probability of Deadlock in Computer Systems ,” Operating Systems

Review 7 (No. 4), pp. 88—95.

Eswaran, K.P.; J.N. Gray ; R.A. Lon e; and I.L. Traiger :1
1974 “On the Notions of Consistency and Predicate Locks in a Data Base Systew ’

to appear in CACM. Available from IBM Research as report RJ 1487;
Dec. 1974.

Everest , G.C.
1974 “Concurrent Update Control and Database Integrity” Data Base Management,

J.W. Klimbie and K.L. Koffeman , eds., North—Holland , pp. 241—270.

Frailey, D.J.
1973 “A Practical Approach to Managing Resources and Avoiding Deadlocks,”

CACM 16 (No.5) May 1973, pp. 323—329.
Grapa , E.

1975 Internal memorandum , Center for Advanced Computation , University of
Illinois at Urbana—Champaign.

Grapa , E.
1976 Internal memorandum , Center for Advanced Computation , University of

Illinois at Urbana—Champaign .

Hahermann , A.N.
1969 “Prevention of System Deadlock ,” CACM 12 (No.7), July 1969, pp.373—377 ,385.

Havender , J.W.
1968 “Avoiding Deadlock in Multitasking Systems ,” IBM Systems Journal 7

(No.2), pp. 74—84.

80

- - 5 - - ~~-5~~5-~~~~~~~~ -. -- — -- 5 5 - 5
- 5-—-- — --



___________________ -5 _~5~’V___~ _555- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~

llott , R.C.
19 72 “ Some Dead lock Properties of Computer  Systems ,” Computing SI t rv( -ys  4

(No.3) , Sept. 1972 , pp. 179—196.

John son , P.R. and M. Bee icr
1974 “Notes on Distributed Data Bases:, Draft Report , available from the

authors (Bolt Beranek , and Newman , Inc., Cambridge , Mass.)

Johnson , P.R. and R.H. Thomas
1975 “The Maintenance of Duplicate Databases ,” RFC #677 , NIC #31507 ,

Jan. 1975. (Available from ARPA Network Irif rma t ion Center , Stanford
Research Institute — Augmentation Research (;~-nter , Menlo Park , CA.)

King , P.F. and A .J. Collmeyer
1973 “Database Sharing — An efficient mechanism for supporting concurrent

processes ,” AFIPS NCC 1973, pp. 271—276.

Lamport , L.
1974 “A New Solution to Dijkstra’s Concurrent Programming Problem ,” CACM 17 ,

pp. 453—455.

McCauley , E.J. and P.A. Alsberg
1975 “Scenario Report ,” CAC Document Number 159, JTSA Document Number 5506,

May 1975.

Mahmoud , S.A.
1975 “Resource Allocation and File Access Control i.-i Distributed Information

Networks.” Ph.D. Thesis, Carleton University, Ottawa .

Murphy, J.E.
1968 “Resource Allocation with Interlock Detection in a Multi—task

System” AFIPS FJCC 1968, pp. 1169—1176.

Schuster , S.
1976 Personal communication.

Sekino, L.C.
1975 “Multiple Concurrent Updates ,” Preprint , Bell Telephone Laboratories ,

1-lolmdel, N.J.

Shemer , J.E. and A.J. Collmeyer
1972 “Database Sharing : A Study of Interference, Roadblock , and Deadlock ,”

Proc . 1972 ACM—SIGFIDET Workshop, pp. 147—163.

Shoshani , A. and A.J. Bernstein
1969 “Synchronization in a Parallel—Accessed Data Base” CACM 12 (No.11),

Nov. 1969, pp. 604—607.

81 —

S ~~5~~S • ~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~5 55 - 

S
-

~~~~~~~~~~~~ 

-
~~~~— S -~~~~~~~~~


5 S~~~S 5 S - S~ S- S~~~~~~~~ 5-5~~~~~~~~ 5SS5 S- S 5S55 55 -5~~~~~~~~~~~~~~ 5~~~~~ 5-—~~~~ . 5-5--- - . -

P’S
~~

,__ — - .

IJNCLASSIFIEI)
S

S~~C U R I TV C L A S S I F I C A T I O N OF THIS P A G E (I9~,.n Data EnV.r.d)

~~~~~~~~~ 
1 E ~

h 1
~~

t
~

k5I DA (
~E 

READ INSTRUCTIONS
i~ r~.j i~ I LP~JI..UM I~ I~~ I I~~I’ ‘- MV BEFORE COMPL ETING FORM

I REPORT NUMBER 2. GOVT ACC ESSION NO. 3. RECIPIENT ’ S  C A T A L O G  NUMBER

CAC Document Number 185
N~Tr—wAn 11c,t ’iim~~n t  Mi,mh~~~ 6503

4 T IT L E  (en d $..btill .) 5 . TYPE OF REPORT 6 PERIOD COVERED
Research in Network Data Management and Resource
Sharing — Synchronization and Deadlock Research

6. PERFORMING ORG. REPORT NUMBER
CAC #185

7. AUTHOR( s )  •- CONTRACT OR GRANT NUMBER(S)

Peter A. Alsberg et al. DCA lOO—75— C—002l

9. PERFORMING O R G A N I Z A T I O N  NAME AND ADDRES S 10. PROGRAM ELEMENT . PROJECT , TASK
AREA 6 WORK UNIT NUMBERS

Center for Advanced Computation
University of Illinois at Urbana—Champaign
~~j~ana, Illinois 6lRfll ______________________________

I I .  CON TROLLING OFFICE NAME AND ADDRESS 12. REPORT D A T E

Command and Control Technical Center March 1, 1976
WWMCCS ADP Directorate ‘~~. N U M B E RO F PA G E S

11440 Isaac Newton Sq., N., Reston, VA. 22090 85 5

14. MONITORING AGENCY NAME 6 ADORESS( Il  dilf.r.nt from Controlling O If l c .)  IS. SECURITY CLAS SS (of thIs r.porl)

UNCLASSIFIED

15a. D E C L A S S I F I C A T I O N ’ D O W N G R A D I N G
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Copies may be obtained from the
National Technical Information Service
Springfield, Virginia 22151

17. DISTRIB UTION S T A T E M E NT  (of the ab,tract entered In Block 20, if dif ferent Iro n Report)

No restriction on distribution

~6- SUP PL~~U~~N~~AR’( NOTES

None

19. K E Y  W O RDS (Continue on ,erers. aic ~, t t t i e c i a s a r y  and i d e n t if y by block number)

distributed data management
database access synchronization 

S

computer system deadlock
network protocol resiliency

20 A BS ~~R A C T  (Conti nue on ,everae aide If necessary and Id.nhify by block number)
‘
~~This document presents the results to date of a research study of the
problems of synchronization and deadlock. Particular emphasis is on
applicability of solutions to a network environment and to data base
access. In addition to providing a review and assessment of currently
available techniques, this paper presents some new ideas in the areas of
protocol resiliency, decentralized deadlock detection , and maintenance
of update order.

DD I J A N 73 1473 EDITION OF I N OV 65 IS OB SOLETE
UNCLASSTrT ’p

SECURITY C L A S S I F I C A T I O N  OF T H I S  P A G E  (PSien Dale Enl.redI

____ —~~ ~~~~~~~~~~~~~~~~~~
-
~~~~--—

- -- .—~~~.
.

~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ -- -~ ~~~~ -~~~~~~~~


- -- - --s ‘,..~r ~~~~ W-- ~~~ _

r — - -~~~~~~~~~~~~~~~

I
__ ___________________________________
BIB LIOGRA PHIC DATA 1. Repcu r Nb. 2. 3. Rec ipient ’ s Ac cessu t n No.
SHEET

-
?JIUC—CAC—DN—76—l85

4. 1 tI I. . 10.1 SuhI It Ic ~~.
~~• Report Date

Resea r ch in Network Data Management and Resource Sharing —

March 1 1976
Synchronization and Deadlock 6.

7. Aut hor ~~ 8. Performing O rg an izat i on Rc pt .

Peter A. Alsberg et al. No. CAC #185 .-~~~

‘

9. I~r-rIorming Organization Name and Address ,.- 10. Project/Task/Work Unit No.
Center for Advanced Computation ”
University of Illinois at Urbana—Champaign 11. Contract /Grant No.S Urbana, Illinois 61801

S
DCA100—75—C—002l

12. Spon~.or Ing Or~~ani zacion Name and Addres s 13. Type of Report & Period
Command and Control Technical Center Cov ered

WWMCCS ADP Directorate Research
11440 Isaac Newton Sq. , N . , Reston , Va. 22090 14.

15. Supp lementary Notes

16. Ab. ’. t r ac ts
This document presents the results to date of a research study of the

problems of synchronization and deadlock. Particular emphasis is on applicability
of solutions to a network environment and to data base access. In addition to
providing a review and assessment of currently available techniques, this paper
presents some new ideas in the areas of protocol resiliency, decentralized dead-
lock detection , and maintenance of update order.

17. Ke y Words an d Document Analysis. 17a. Descriptors

distributed data management
database access synchronization

S computer system deadlock
network protocol resiliency

17b. ld ent i f ie rs/O pen.Ended Terms

lie. (i)SATI Field/Group

18. Ava i lab i l i t y Statement . 19. Security Class (This 21. No. of Pages
No restriction on distribution Report) 85
Available from the National Technical Information ~o. Secu~ity I~i~ s s (~~~‘s 22. Price
Service, Springfield, VA 22151

u NCLASSIF IED
t~ORM ,.tTiS IS R EV . 3 .7 2) U S C OMM~ OC 14 0 5 5 . P7 5

S . S ~~~~~~~~~~~~~~
-tote.... - -~

~~S S~~ S~~5~~~~ 5-55 --

