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I. INTRODUCTION

An increasing need has recently arisen for comprehensive theoretical
work on transition energies, x-ray emission rates and Auger transition
probabilities pertaining to multiply ionized atoms. Theoretical infor-
mation on these atomic quantities is required to interpret a growing
body of data derived from ion-atom collision experiments, beam-foil

: : 1
spectroscopy, data expected to arise from astrophysical processes , and
data from experimental programs in combustion and erosion.

II. THEORY

In order to compute transition energies we have used the Xa methodz.
The Xa eigenvalues and eigenfunctions agree closely with results from
the Hartree-Fock (HF) method for closed-shell atoms and from the Hyper-

Hartree-Fock (HHF) method for open-shell atomsS. And, with its local
approximation to the exchange, the Xo method leads to computational

simplifications. The concept of the transition state4, whereby the
ionization energy, a difference in total energy is well approximated by
a single-electron eigenvalue, can be readily implemented in the Xa
theory. The transition-state concept avoids the necessity of carrying
out two high-precision calculations, one for the initial-state total
energy and one for the final-state total energy, which is usually
necessary in the HF or HHF frameworks. Instead, it is possible to
calculate directly a total energy difference. The Xa method can also
be extended to molecules and solids, whereas the HF method is in
practice only useful for isolated atoms. It can be shown that Fermi
statistics and the Hellman-Feynmann and virial theorems are inherently

satisfieds’6. The transition-state concept is finding increasing appli-

cation and has been providing results in good agreement with experiment.
So far, however, the method has not been utilized to achieve the
accuracy of which it is capable. Thus, deviations of 10 eV from experi-

mental binding energies of ~ 200 eV have been noted7. Considerable
improvement is possible, as indicated below.

T T. Bunch, L. Caroff, and Hans Mark, in Atomic Inner-Shell Processes,
edited by B. Crasemann (Academic Press, New York, 1975).

2 Slater, J.C., Advances in Quantum Chemistry, edited by P.O. Lowdin,
(Academic Press, New York, 1972).

3. Slater, J.C., Quantum Theory of Atomic Structure, Vol. 11, (McGraw-
Hill, New York, 1960).

4, Slater, J.C., J. Phys. (Paris) 33, 1 (1972), for example.

5. Slater, J.C., Quantum Theory of Molecules and Solids. The Self-
Consistent Field for Molecules and Solids, Vol. IV, (McGraw-Hill,
New York, 1974).

6. Slater, J.C., J. Chem. Phys. 57, 2389 (1973).

To Beebe, N.H.F., Chem. Phys. Lett. 19, 290 (1973).
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Generally, in an atomic (or molecular, or solid) Slater transition-
state calculation, a value of a for the neutral-atom ground-state

configuration is used8. This procedure does not achieve the potential
inherent in the method, particularly for inner shells. The problem lies
in the fact that the value of a which is appropriate for the ground
state is not appropriate for an ion with one or more inner-shell vacan-
cies. In the Xa theory, the total energy is a functional of a, and
since the virial theorem expresses a relationship between the kinetic
and potential energy of the system, one might expect different values

of a to satisfy the virial theorem for the ground and excited states.

To calculate the difference between the ground total energy Eo(uo) and

an excited-state total energy Ee(ae), it is therefore necessary to

relate the excited-state a, to the ground-state a,

The original Slater transition-state concept for the process of

ol 7 ; z 9
ionization may be derived from an expansion of the total energy” and
can be expressed by the relation

9E
Eo(ao) E Ee(ao) ¥ 35; l

= 5-1 ’ (1)

T

where € is a single-electron eigenvalue of a state with occupation

number halfway between the initial-state and final-state occupation
numbers, and n, is this occupation number, which formally need not be

integral, evaluated at the reference state indicated by the subscript r.
We expand

2 3E

Ee(ae) = Ee(ao) + Aa % (2)
where Aa stands for the difference LI Taking account of the change
in a, we therefare have

X 3E
E (@) - E (a,) = e; - Ba o= . (3)

It has been common to use Ee (ao) instead of Ee (ae), neglecting the term

Aa(9E/3a); this is reasonable for outer shells., However, for inner shells

it is often necessary to retain the additional term. In particular, this
term cannot be neglected in calculations of Auger and Coster-Kronig

8. Schwarz, K., Phys. Rev. B 5, 2466 (1972).
9. Slater, J.C., and J.H. Wood, Int. J. Quant. Chem. tr, 3 (1970).

R |




A
B
|

transitions, in which the energy of the emitted electron can be of the
order of only a few eV. If neither the initial nor the final state is
the ground state, two terms of the form Aa(3E/3a) appear on the right
hand side of Eq. (3).

III. RESULTS AND DISCUSSION

We have determined these additional terms and computed certain
transition energies for a few multiply ionized atoms in order to test
the approach. Preliminary calculations indicate that (3E/3a), while
differing for each shell of a given atom, can be reasonably well
approximated for most shells by the corresponding value calculated by

Schwarz8 for neutral atoms. The factor Aa seems, from our prelimiary
calculations, to be a nearly linear function of Z for a given shell,

behaving in much the same way as the ground-state a'58 (Figs. 1-3).

Selected nonrelativistic values of Aa(3E/da) are listed in Table I.
With these terms, relativistic binding energies were derived that agree

quite well with measurements e (Table II). As a further test of the
method, we have calculated the energies of a few selected x-ray

satellites and tentatively identified them with measured non-diagram,

or satellite lines (Table III). A satellite line occurs near a relatively
low lying energy level as a result of a rearrangement of the outer
electrons.

Recent work11 has indicated that the energy difference between the
K8’’’ satellite in aluminum, which has been attributed to a KL2 3"
)

e
2,3

(L2 3)2 transitionls, should be equal to the energy of the L2 3 satellite
b 2 ’

(L2 3) > L2 3M and have a value of 15.2 + 0.3 eV. Calculation of these

L2 3M transitionlz, and the Ko satellite, which is due to a KL

transition energies by the Xo method yields a value of 13.8 eV, which is
in good agreement with the experimentally obtained value.

10. Siegbahn, K., C. Nordling, G. Johnsson, J. Hedman, P.F. Heden,
K. Hamrin, V. Gelius, T. Bergmark, L.W. Werme, R. Manne and Y. Baer,
ESCA: Applied to Free Molecules, (North-Holland, Amsterdam, 1969).
11. Hanson, W.F. and E.T. Arkawa, Z. Physik 251, 271 (1972).
12. Neddermeyer, H. and G. Wieck, Phys. Lett. 31A, 17 (1970).
13. Horak, Z., Proc. Soc. (London) A77, 980 (1961).
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Table I. Values of Aa(9E/3a) for Selected Transitions.

Removed Aa(9E/3a) (eV)

Electron Al (] Ar
s -9.81 -10.46 -10.41
2s 7.38 11.15 12,28
2p -2.66 - 2,29 - 2.02
3s -0.93 1597 3.40
3p 0.23 - 0.74 - 0.81

Table I1. Relativistic Binding Energies in Neutral Ar (in eV).

X ) . a
Electron ei(ao) ei(ao) - Ao 6 Experiment
1s -3220.6 -3210.2 -3206.0
2s - 314.8 - 327.0 - 326.3
2p1/2 - 252.1 - 250.1 - 250.6

2% - = -
P35 250.1 248.1 248.5

Measured binding energies, from Ref. 10.
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IV. CONCLUSIONS

A consideration of the appropriate value of the exchange-correlation
parameter for each configuration leads to improved results for ionization
energies in multiply ionized atoms, when calculated by the formalism
of the X-a theory. The terms Aa vary with atomic number in a manner
similar to the variation of the ground state a values.

13
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