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~~~

This paper relates a simplicial pivot algorithm -th9 -ftuthor ~~~ o

Merrill’s algorithm, Newton ’s method, and a~~~ iIobaJ. Newton method’4re—

sented by Smale, Some computational results are given.

1. Introduction

This paper is expository in nature. The primary goal is to present

recently observed relations between a siinplicial pivot algorithm of the

authors [101 , Merrill ’s algorithm [19), Newton’s method, and a “global

Newton method” presented by Smale [25). The underlying concept in Smale’s

algorithm is the solution of an ordinary differential equation of the form

F’(x(e))±(O) = —A (e) F(x(8)), x(O) = x~ (i)

where F: R~
’ ‘ R’~ is continuously differentiable, A(O) is a real valued

function of e such that sgn X = sgn det F’(x(O)), x0 is specified in

~~~ R
n, i(O) denotes the derivative , and F’(x) is the matrix of partial

I~i_ derivatives

~~~~ 
11th1?r tt~~~_$1~pp~Irted in part 4r ONE Grant No.
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F’ (x) = • 
&~~~. ~~. . z . 

(2)

Under suitable hypotheses on F, the solution of the differential equation

will be a trajectory x ( e )  which tends to a vector (xi , x~ , ... , x*)

satisfying

*F(x)= O .  (3)

As examples, Smale shows that the method relates to the Arrow-Block.-Hurwicz

dynamics of price adjustment and Scarf’s algorithm for finding economic

equilibria.

The computation of the solution to (i) is normally achieved by

discretization of the differential equation and then solving the discretized

form by, for example, the method of continuation (see Kello~ Li, and Yorke

[lu ] or Davidenko (2 ] ,  and Meyer [20] for discussions related to this approach).
This implementation could lead to problems in convergence due to, say, cycling

or singularities of F’(x).

— In (10), we proposed a simplicial pivot algorithm that i~ a preciselimiting

sense follows points x which satisfy the equation

F(x) = tF (x0) for some t E (o , 1] ( ii)

I;
r
- ~~~~~~~~~~ - . . -— .- -. .. ---- ~~~--.
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starting from a presc ribed x0 (with t = 1 and F’(x
0) nonsingular).

This method is an improvement of a method proposed in [8] ,  We shall show

in a later sect ion th is simplic ial pivot algorithm is closely related to

Newton’s method and , in fact, may be viewed as a globalized version of it.

We shall show that the limiting sequence of points generated by this method

will contain a solution to the ordinary differential equation (1) and , hence ,

the method, in part , may ‘be viewed as a constructive procedure for finding

the solution to Smale ’s differential equation.

The present paper serves three objectives. The first is to exposit

relations between the simplicial pivot method in [10], Merrill’s algorithm,

Newton’s method, and the method of continuation. The second objective is to

exposit the relationship between the simplicial pivot method of [10] and the

global Newton method of Smale. In conJunction with this exposition an example

is presented which illustrates the power of starting at “infinity.” And the

last object ive is to show some computational results.

We are indebted to Herbert Scarf for referring us to the paper [25].

2. On the Instability of Merrill ’s Algorithm
Under a Transformat ion

We here consider an algorithm for solving F(x) = 0 which is based

upon the concept of complementary pivoting on a labeled triangulation. The

seminal work on complementary pivoting and simplicial approximation is due to

Lemke Eli), Lem~ke and Howson [18], and Scarf (23), (21~). For extensions see

the papers [3), R I ,  (5), [6), [7] , [9], [12], [13], [1)4], (16], [19], and the

numerous additional references provided therein. We shall specifically consider

an algorithm due to Merrill [19). It was shown in [1] that this algorithm generates

_ _ _ _  - . - -



in a limiting sense, the solution to t F(x) + (1 — t ) ( x  — x0) = 0,

~~ ~ ~Q , 1], x 
~ 

R~ . Equivalently, lett ing ~~ = — ~~~~ 
t) 

this equation

is written as

F(x) x (x - x0) ,  x < 0, x € . (5)

The algorithm is init iated at a point x° ~ R~ (when t = 0, or X = -

Here F: - R’~ is continuous, and X is a real variable.

Merrill’s algorithm may be used for finding zeroes of F, i.e., an

x € satisfying

F(x) = 0 .  (6)

Indeed, it is remarkable that the Leray-Schauder theorem below, which is

ordinarily proved by arguments based on degree [22], can be shown constructively

by letting F(x) = x - G(x) and x° = 0 in Merrill ’s algorithm (see [1]):

Leray-Schauder Theorem: Let C be an open bowid.ed. set in

containing the origin and G: C -‘ a continuous mapping.

If G(x) ~ Xx whenever ). > 1 and x € ~C, then G has a

fixed point .

The Brouwer Fixed Point Theorem, which states that any continuous

function from a compact convex set to itself has a fixed point , may be easily

seen to follow from the theorem above .

Although the Merrill algorithm is useful in proving classical and

central theorems in fixed point theory by this new constructive approach ,

there are serious difficulties in implementing the approach for finding

_____________ - . —.-~,=~~rw-a. ..., ._..... .~~~ A . .‘ — - .  ____________
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zeroes of F. (For example, the algorithm need not converge even for linear

systems.) An analysis of system (5) shows that the method is unstable

due to its dependence on the indexing of the components of F and the signs

of the F.. For example, consider the one-dimensional problem

F(x)=x
2
-w

2 = O  (7)

where w > 0 is a given constant. The zeros of F are x ±w. Merrill ’s
0algorithm, when started at x to the right of —w , will move towards w ,

but when started to the left of —w, will move towards negative infinity .

Replace F(x) = 0 with —F(x) = 0 and the situation is reversed: W!th ~0 < w ,

Merrill’s algorithm will move towards the solution x = —w , but with x0 > v ,

Merr ill’s algorithm diverges to infinity . Hence, convergence is affected when

both sides of the equation are multiplied by —1, and the particular root obtained

is also affected .

A way out of this difficulty is to select x° such that det F’ (x
0
) ~( 0

and then to apply Merrill ’s algorithm to the funct ion

G(x) = F’(x0) 1 F(x)  (8)

as proposed by Fisher, Gould and Tolle [7] . This Modified Merrill algorithm

finds solutions , in a limiting sense , to

t F(x) + (1 - t )F’(x0)(x - x0) = 0, t € (0, 11, X £

or , alternatively , (9)
F(x) = A F’(x °)(x - x°),  A x €

This algorithm therefore is unaffected by a re labeling or change of signs

of the components of F. Using (9) above, it is easy to see that for linear

- - - - : 
— -
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systems, F(x) = Ax + b, A nonsingular, the solution to (9) will be the

line se~ nent joining to the solution -A~~ b, for any x°. For the

problem (7), the Modified Merrill algor ithm , when applied to F(x) = 0 or

—F( x) = 0 , yields the same solution , namely the solution for

0 0(x - w ) = 2 X x ( x - x ) ,  X < O

so that for x° < 0, the method moves towards x = -w and for x° > 0, the

method moves towards x = w. Observe that the method is still dependent on

the sign of x~ . In the simple case where x° = 0 and F’(x°) = I, for any

A < 0, a point x such that x~ = 0 satisfies (9) if and only if F~ (x) = 0.

That is, the algorithm can move from an orthant where x > 0 to an ortharit where

xi < 0 only in a neighborhood of points x for which F
1(x) = 0 crosses the

plane x. = 0. Moreover, for any x satisfying (9), in the simple case with

x0 = 0 and F ’(x0) = I , F~(x) must always have a sign opposite x1, whenever

F1(x) and x . are nonzero.

It has been shown that if F’ (x*) is nonsingular, then the Modified

)~ rrill method is locally convergent. The underlying reason for the local

convergence behavior of the modified scheme is related to the fact that at

the initial point the algorithm moves in the Newton directiop.~
To verify this initial direction, let us suppose F is continuously

differentiable in an open set containing x°, with F’ (x0) nonsingular.

Then note that (9) can be written as

H(x, t )  ~ t F(x) + (1 - t)F’(x0)(x - x°) = 0

where the function H is continuously differentiable on an open set in

RI1+l containing the point x = x°, t = 0. Now we note that the derivative

of H with respect to x is

~

—-.—- - —---
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t F ’(x)  + (1 - t )F ’ (x0)

which, when evaluated at x0, equals F ’(x0) (for any t). Then, by the

assumption that F~ (x
0) is nonsingular, the Implicit Function Theorem

guarantees the existence of an open set A C R1 containing t = 0 and an

open set B C R~ containing x° such that for each t € A there is a unique

differentiable function x(t) with values in B such that H(x(t), t) = 0. Thus

t F(x(t)) + (1 - t)F’(x0)(x(t) - x°) 0, V t  € A . (10)

Now differentiating with respect to t, and using ( 9) ,

[t F ’( x ( t ) )  + Cl — t ) F ’(x 0 ) ]± ( t )  = — F ( x ( t ) )  + F ’(x °) ( x ( t )  — x°) = ~~~~F( x (t ) ) ( l 1 )

0 . 0Now set x = x and t = 0 to obtain (noting x(O) = x )

F ’(x 0)~c(O) = -F(x(O)), or *(°) = -(F’(x°)Y
1
F(x(O)) .

Since the algorithm is initiated with t increasing from 0, c(0) is the

initial tangent direction, and it is seen to be identical with the Newton

direction. However, for values of t ~ 0 the tangent directions as given by

(ii ) are not Newtonian. Without the nonsingularity assumption on F’ (x0) the

directions associated with the original Merrill algorithm applied to F (as

opposed to 0 defined by ( 8) )  are easily shown to satisfy

[t F’(x(t)) + ( 1 —  t )I]~c(t) = 
~ 
F(x(t))

and these directions are not ‘Tewtonian , even when t = 0. Thus , the

modification of Merrill’s algorithm at least initially forces the path to take

a Newton direction. 

--- --~~~-~~~~ —-- - -
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In the next section an algorithm is demonstrated with the property

that it moves in either the Newton direction or the negative of the Newton

direction at each point. The attractiveness of this property will become

clear in the sequel.

3. On a Constructive Global
Newton Procedure

Let us now turn to the simplicial pivoting method proposed in [10]

which employs a scalar labeling on a tr iangulation of R” to follow points

x which in a limiting sense satisfy

F( x ) = t F(x~) for some t € [0, i] (12)

starting from a prescribed x0 E Rn with t 1, where F: Fr
~ Rn is

continuous and F’(x0) exists and is nonsinguJ.ar. The motivation for solving

(12) can be explained briefly as follows . Consider the classical problem of

how , given an initial x° E Ri’, one might find a solution x* to F(x) = 0.

Let us assume for simplicity (just for the moment) that the preimage of the

line segment [0, F (x0)] is a path x(t), 0 ~C t < 1, such as when F is

a homeoinorphism on F~~ [0 , F(x0fl . If in addition P’(x(t)) exists and is

nonsingular for t 
~ 
[0, 1), then this pre image is a differentiable path

x(t), 0 < t < 1. (See Meyer (20 1 for a more detailed discussion). Thus

F(x(t)) = t F(x0) , 0 < t < 1

where x(t)  is differentiable . We thus obtain

F’(x (t))i(t) = F(x°) , x ( 1) = x0

or
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c ( t )  = F ’ ( x ( t ) ) 1 F(x0)

= F ’(x ( t )) 1 F(x(t )) for t > 0

This indicates that at any point x on the path , at which t is decreasing.

the algorithm moves in the Newton direction. In particular, since the

algorithm is initiated at t = 1, with t decreasing, the initial

direction of the algorithm is -(F’(x0)Y
1 
F(x

0
). This scheme is illustrated

in Figure 1, where

= x° - c(i) = x° - F ’ (x°) 1 
F(x0) . (13)

In our context, Newton’s method may therefore be viewed as an attempt to

follow the preimage of (0, F(x°)] by taking the next point x1 to be in

the direction of the tangent vector to the preimage curve at t = 1.

As is well known, a sequence of Newton iterations can be guaranteed
0 * *to converge only when x is close to x and F’(x ) is nonsingular.

Continuation methods may be used to widen the domain of convergence of

Newton’s method. This approach has been known for the last century and

has been rediscovered many times since. Essentially, the interval [0, 1]

is partitioned into subintervals

[
~
, k + 1 1  , k = O , 1, ... T - l (i~)

so that for large positive integers T, the paths x ( t )  on each subinterval

are “small enough” so that convergence is obtained when Newton’s method is

applied on each subinterval.
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One known variation [22] of the method works as follows. Consider

the values t = j
~, 

T - 1, T - 2, 
... , 0 and the associated path point s

x(l) = x°, x( T 1) = xl, x(T
_-_2) = x2, ..., x’O) = ~T 

= x~
E
. Il’ each

is on the path (12), thea

F(x1) = T - 1 F(x0), F(x2 ) = 
T ; 2 F(x0), ..., and F(xk) = T - k F(x 0)

Step 1. Start at x0. Take the first Newton step for solving

• F(x) - F(x
1
) = 0

This produces a point

y1 = x0 - F’(x°)~~ (F(x 0) - F(x1))  = x° - F’(x0)
1 
~~(x

0)÷ (1 
- T) F(x °~

Step 2. Start at y1. Take the first Newton step for solving

F(x) - F(x
2
) = O

This produces a point

y2 = - F~(y
1)’ (F(y~) - F(x2 ))  = - F’(y~)~~ (F(i]-) + (2 ~

Step T. Start at ~T1 Take the first Newton step for solving

F(x) - F(xT) = 0, or , since F(xT ) = 0, F(x) = 0

This produces a point

T T-1 , T-1 -l T-ly y  - F ( y  ) F(y ).

Thus we have the following sequence of iterates, where y0 
= x0,

7
k+l 

= 1
k 

- Ft(yk)~~ (F(Y
k) + (1 + - T) 

F(x0
))~ 

k = 0, 1, ..., T - 1 . (i~ )

As Figure 2 indicates, at any “initial point” the Newton step is the initial 

- - • _______________
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• direction of the path

F(x(t)) = (i - t)F(x~~~ ) + t F(yk), 0 < t < 1

The objection to this approach is that in order to assure convergence

to x’~, s~arting from x°, nonsingularity of the Jacob ian of F is required

at every point of the path.

The purpose of [10] was to show that the preimage of [0, F(x0) J can

be followed under less stringent conditions on F. It can be shown that:

n _ n .  • . . 0Theorem 1. If F: R -. is continuously differentiable at x

F’(x0) is non.singular, F~~ [o, F(x0) ]  is cotnpact,and F(x) = F(x0)

iff x = x°, then there is an x such that F(x) = 0.

This theorem is constructively shown in (8]. The difficult part in the proof

of the theorem above is to show that the scheme has a unique starting simplex

at t = 1. ~ it this is assured in [12 , Proposition 3.~~J which shows that for

triangulations with mesh size small enough, the continuous simplicial mapping

used to approximate F will also have a unique zero in a neighborhood of x0,

under certain “regularity” assumptions on F and the triangulation .

The scheme was improved in [10] by presenting a scalar labeling

version of the method. The computational burden was Improved to that of

order n per pivot as opposed to an order (n + 1)2 per pivot (see Table 1).

A similar comparison can be made between the Merrill algorithm [19 1 and the

scaler version introduced in [9] .

Observe that the path generated by (12) and described in [10] is a

substantial improvement to Newton ’s method in terms of global convergence .

Newton ’s method could cycle, or it could “blow up ” when the Jacobian at some

point is singular. Scheme [10) on the other hand will succeed in generating
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an approximate solution even when these cases occur, so long as the conditions

of Theorem 1 above are satisfied. In fact, the condition F(x) = F(x°) iff

x = x° is also needlessly strong, and this assumption will be dispensed with

in Theorems 7 and. 8 of the next section.

Scheme [10] has several other properties of interest. Th~ method is

Jacobian invariant and norm-reducing. The former property is desirable since

we would have convergence unaffected by,say, a relabeling of components of F.

By the latter property we mean that

I I F ( x ’~) I I  < IIF(x~
1) I I  (16)

where x’~ is the approximate solution at the k~~ iteration. This norm-

reducing property seems to be a property not shared by other simplicial

pivot procedures.

There is another possibility that is furnished by scheme [10]. If

x’~ is a point on the (n - 1)-simplex generated after k pivots, then

~ Ic — . ,, ,,the vector x - x , where k is a few iterates after k, is approximately

the Newton direction (or the negative Newton direction) . In fact

F(x
k) t Ic F(x

0)

— (17)
0F(x ) = t~~F(x

for some 0 < t k~ t~ < 1 so that if t~ ~ t Ic it can be shown that

k kt — x  - t  x
x =  (18)

• Ic

will be an approximate Newton step. Thus, without much additional work, we

can consider taking the Newton step if I IF(x) is significantly smaller

_ _  _ _ _ _



Ic Ic • -
than either of IIF(x )H or IIF(x )II , and restarting the scheme at x,

where ic is def ined by (18).

1i . Relation to Smale ‘ s Global Newton Method

In this section we relate the set of solutions to

F (x )  = tF(x°) ,  x C  R~ , t ~ R (19)

to the set of solutions to

F ’ ( x ( O ) ) k ( O )  = - X(-O) F(±(e)), x (O)  = x0 where sgn A = sgn det F t ( x ( 8 ) ) ~ 20) •

Equation (20 ) is the differential equat ion introduced by Smale in [25]. Here

A is some real ftnction of e , such as , for example, )~. = det F ’( x ( e ) ) .

Let us make a quick observation on the solution to (20). Assume the

solution is a one-dimensional curve x(~ ) ,  0 < Q < 1 where x(0 ) = x0 is some

given starting point , and x(i) = x* is a zero of F. Then starting from

the curve x( G) is such that at any regular point x in the path (i.e.,

det F’ ( x )  ~ 0) the vector k ( e ) ,  the tangent to the curve, is either the

Newton direction (if A is positive ) or the negative Newton direction (i~
A is negat ive). The change of direction occurs at points x(8) where A ( 8 )

becomes zero arid hence where the Jacobian becomes singular. Indeed , one should

note that the solution trajectory for equation (20) is a globalization of

• Newton’s method in the sense that the curve is “continued” when singularities

of the Jacobian are encountered.

Nov consider equation (19). This equation generalizes the simplicial

pivot algorithms of [8, 10) in the sense that the parameter t is no longer

restricted to the unit interval. We will show that for C2 functions F with

F’(x 0) nonsingular a piece of the solution to (19) is the solution to (20). We
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dropped the condition 0 < t < 1, which was assumed in [10], because

this enables us to better deal with the case where the preimage of’ F(x0)

is not unique, and, moreover , under appropriate conditions it allows us to

continue the paths so as possibly to obtain all zeroes of F.

Let us consider a C2 (twice continuously differentiable) function

H: R~~
1 

— R~. Given y £ R~, let

H~~ (y) = Cx e R~~~I H(x) = yl (21)

and

C = Cx £ R’~~~ rank H ’(x) < n) (22)
-- 

~H .
where H’ is the Jacobian matrix .5-_I. of H with respect to x E Rn+l .

The set C is said to be the set of crticial point s of H , and H ( C) the

set of critical values. — H(C) is the set of regular values. Sard ’s

Theorem [26 1 states that :

Theorem 2. Let H: R~~
1 -~ R~ be a C2 map. Then H(C) has

measure zero.

Thus, as a corollary , the set of regular values is dense in Rr~. Let us

henceforth throughout this paper assume that 0 is a regular value of H.

The following lemma will be used [21):

Lemma ~ r.~et H: R~~
1 

.. Rn be a map and let 0 be a regular

• value of H. Then H~~(0) is a C1 one—dimensional manifold.

H
-•--- • -- • •

~~~~~~~~~~~~~~~
•. . •~~~~~ -



Now, recall that any connected C1 one-dimensional manifold is

diffeoinorphic to a circle or an interval (open, closed, or half-open). Thus, each

(connected)component of H~~(0) can be described by a curve x ( 8)  which is diffe o—

morphic to a circle or an interval. Furthermore, for any x(~) £ H~~(0) , we

have

rank H’(x(~ ) )  = n (23)

and ~(o) is a unique nonzero vector. Consequently, we can differentiate

H ( x ( e ) )  E 0 ~4th respect to 8 to obtain

H’(x(Q)) ~c(~) = 0 . (2J1 )

For a particular ~~~, ±(8) is a vector tangent to the curve at 0 = and. spans

the kernel of H’(x(O)).

For any I = 1, 2, ... , fl + 1, let ~~~~ and H~(x(~)) denote the

ith component of k(o) and the ~th column of H’(x(~ )) , respectively, and

let ~~~~~ H
1(x(G)) be the remaining components of ~(Q) and columns of

H’ (x(9)), respectively. The following theorem for C2 maps is related to and

motivated by a theorem of Eaves and Scarf for piecewise linear maps [n]. The

proof of the theorem appears in [ii].

•

_______________________
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Theorem .~~ Let H: R~~’ — R~ be a C2 map and 0 a regular value

of H. Then for any component x( Q) of H~~(0) we have for a].l

i = 1, 2 , ..., n + 1:

sgn ~~~~~ = sgn det H1(x(Q) ) aB. 0 (25)

or 
sgu i~(o) = -sgn det Hi(x(O)) ~~~~ 

(26)

(where sguo = 0) . .

Note that the theorem holds if H is restricted to say, Rn X [0, ii. In

most applications to Rn x [o , 1] a further restriction would be required

on the boundaries Rn X 0 ~o} and R~ x {1}——namely , nonsingularity of the

n X n submatrix H(x , t )  at points (x , t )  in the boundary for which

H(x, t )  = 0. The condition assures that all loops which occur are cont ained

in H5 x (0 , 1). An interest ing corollary to Theorem 1~ is the following

monotonicity theorem.

Corollary 5. Let H: ~~~ 
-

~~ R’~ be a C2 map and 0 a regular

Ivalue of H. Suppose for some i, H Cx) is nonsingular for all

x in a particular component x(O) of H~~(0). Then, on that component

of H~~(0) ,  x1(e) is either monotone increasing or monotone de—

creasing as a funct ion of 0.

Observe that under the assumptions of Corollary 5 the distinguished component

of H~~(0) cannot be diffeomorphic to a circle.
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Let us now turn to equation (19), where F is assumed to be a

c2 map with F ’(x 0 ) nonsingu.lar . We associate with (19 ) the homotopy

H: R~~
1 

-‘ RTh defi ned by

H(x , t) = F(x) - tF(x0) , x C R5 
, t e R (27)

which is of course also C2. By Lemma 3, H~~(0) is a C’ one—dimen sional

manifold, so that the component of H~~(0) containing the initial point

(x0, 1) may be described by a curve

(x(Q), t(o)) , (x(O), t(o)) (xO, 1)

Let us visualize the complementary pivoting scheme [10] to be tracking

this curve in terms of increasing 0. Observe that equation (2k) in this special

case reduces to:

= t(Q)F(x0) = F(x(9)) (28)

if t(o) ~ 0. Thus if’ ~(o) ~ 0, it follows from Theorem ~4 that

det F’(x (8)) ~ 0 , so that

~(o) = ~~~ F’(x(9)Y~ F(x(G)) . (29)

An examination of (29) yIelds the following conclusions :

i) If t(o)~(o) > 0, then scheme [10 ] is moving in the negative

N~~~tnn dir~~etion~

ii) If t(Q)t(o) < 0, then scheme (10 ] is moving in the Newton direction.

Figure 3 below gives a graphical picture of this result.

_ _ _ _ _  

_ _ _ _  _  
_ _ _ _
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As an illustrat ion , let ( x ( 0 ) ,  t ( 0 ) )  be the curve shown in

Figure 3 where 8 is increasing in the direction of the arrow, and

(x(0), t(0)) = (x 0 , 1). Since t ( 0 )~ (o)  < 0 , we are initially moving

along the Newton direction. We continue movement along the Newton direction

until we get to a point a , where ~(0) = 0. From point a to point b ,

since ~( 8) is now positive , and t ( 8)  is still positive , we are moving

along the negative Newton direction . From b to c , with ~.( 0) negative ,

we move along the Newton direction again. At point c , where we have a

zero of F , we again reverse direction since t ( 0 )  changes sign. We again

reverse direction at point s d and e.

Thus, the direction reverses if either t(o) or ~(o) changes in

sign, but not both. The value t( o ) changes sign at a zero of F(x). It follows

from Theorem ~ that t(e) changes sign only when det F ’ ( x ( O ) )  = 0.

We now use Theorem 1~ to relate completely equations (19) and (20). In

this special case , the theorem reduces to:

z

- 1z
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t = 2

_ _ _ _ _ __ _ _ _  t = l

(x0, 1)

_ _ __ _ _  :::
Figure 3

I

_______________ 

___________________
• — —~~~———-—-.—~— • ——- - _• -•-—-
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Theorem 6. sgn ~(o) = sgn det F’(x(O)) all 0

or sgn t(o) = -sgn det F’(x(O)) all 0

Observe that the differential equation (28) corresponding to (19) is

equation (20) if sgn -sgn det F’(x(O)). To see that this equality in

fact ho1ds,~ reca11 that t(o) =1, and suppose we initially move in a direction

with t decreasing from 1 if det F ’(x0) > 0. Otherwise, if det F ’(x0) <p,

we let t initially increase from 1. (See Figure 3.) Then sgn =

-sgn det F’(x
0). If we do indeed choose this initial direction to move,

Theorem 9 tells us that sgn ~(o) = sgn det F’(x(@)) all 0. Thus sgn =

— sgn det F’(x(Q)) for all 0 where t(o) > 0 , and for such values of 0 our

scheme, equation (19),is in fact a solution to Srnale’s equation (20). This actually

proves that a piece of the solution to (19) is the solution to (20), for SmaJ.e’s

algorithm terminates the moment the first zero is encountered (t(0) = 0). In

Figure 3, the path from (x°, 1) to point c is the Smale path.

The reader should now relate the behavior of the path to the Jacobian

F’(x(O)). If det F’(x
0
) >0, then we move in the Newton direction for all

O where t(o) det F’(x(O)) >0 and in the negative Newton direction for

t(8) det F’(x(Q)) < 0. The det F’(x(Q)) changes sign as ~(o) changes. Thus

in Figure 3, det F’(x(O)) > 0 for points from (x0 , 1) to a, and from

b to d , and det F’(x(G)) < 0 for points a to b, and from d to e. Finally ,

det F’(x(8)) = 0 at points a, b and d.

In his paper [25 J Sniale presented a new and interesting convergence result. Hc

considers an open bounded set C of R~ together with its boundary ~C.

Assume that C and ~C3 are connected seGs, and tha~ ~C Is smooth. Suppose

- 2
F: C ‘ R is a given C function, and assume that F satisfies a boundary

condit ion, e.g.:
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Boundary Condi tion. For each x £ ~C, det F’(x) > 0 and F’(x)~~F(x)

intersects ~C transversally at x (i.e., F’(x) 1F(x) is not tangent

to ~C at x).

This implies that on ~C the Newton direction is “everywhere pointing

into C” oz “everywhere pointing out of C. ” Smale then gives the following theorem ,

a different proof of which is here included for the sake of completeness.

• Theorem 7. Let F: C R~ be a C2 function where F and the

open bounded C ~ R1’ satisfy the boundary condition, and where C and 3C are

0connected with ~C smooth. Then for x £ ~C such that 0 is a

regular value of H defined by (27), the(connected) component of

H~~(O) containing (x0, 1) will contain a zero of’ F.

Proof: Since F: ~ R
n we have H: ~ x R 

‘ R’~ where H(x, t) =

F(x) - tF(x0).

Let

H~~(O) ~ ((x, t) c x R: H(x, t) = 0)

Since 0 is a regular value of’ H (i.e., [H
r, 

H
~
] has rank n V (x, t) C

and since H~~(O) is closed, the component of H~~(0) containing

(x0, 1) may be described by a curve (x(Q) , t(o)), where (x(0), t (o)) =

(x0, 1) and 0 C [0, 1]. This component cannot be a loop . That is (x(1) ,

t(1)) ~ (x
°, 1). This conclusion follows from the fact that the path (x(9),

t(o)) is C1 
, ~C is smooth, and hence if the path were a loop the trans-

versality boundary condition would be violated. But if the path is not a loop

then the endpoint (x(l), t(l)) inust lie in ~(ä~~ R) . Otherwise, since 0 is

t
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a regular value of H , rank [H ( x( 1) ,  t ( l ) ) ,  Ht ( x ( l ) ,  t ( i ) ) ] = n , and

by the Implicit Function Theorem x(l), t(i) must be interior to

Thus , the point x(l) must lie in 3C. We now show that this implies

t(i) < 0 and, since t(o) = 1, there is a 0* E (0, 1) for which t(8*) = 0

and hence F(x(0*)) = t(0*) F(x
0) = 0.

To see that t(l) < 0, recall the boundary assumption det F’(x) >

O V x ~ ~C. By Theorem 6, and the convention that t is init ially negat ive

(i.e., -~(o) < 0), we have ~(e) < 0 V 0 such that x(0) E ~C. In particular,

t(i) < 0. The convention that t(O) < 0 is tantamount to assuming that the

Newton direction must point inward at each x E 3C , including , in particular,

the point x(l). This means that at 0 = 1 the tangent ~(0) is in the

negative Newton direction. This implies , by the remarks following (29), that :

> 0

Since ~(i) < 0 it must also be true that t(J.) < 0. N

Let us drop the condition that det F’ (x) > 0 for all x C ~C , and

then add the regularity condition that:

F’(x) is nonsingular for each x C F~~(0) . (30)

Note that (30) guarantees the finiteness of zeroes of F in C. In

fact we can show the parity of the number of zeroes of F in the component

of H~~(O) containing (x°, 1).

I 
_ _ _ _ _  _ _ _ _ _ _ _ _ _ _  

-
—.-—•- — • • - - — • —-- - r-4 ._
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Trieorem c.~ Let F : C R~ be smooth where C ~ Rn is open and

bounded , C and ~C are connected . Then for x0 
£ ~C such that F(x0) ~

0 and 0 is a regular value of H defined by (27) , the connected

componen t (x(0) ,  t(o)), 0 < 0 < 1 of H’
~~(0) with (x ( 0 ) ,  t(o))

(x , 1) will contain an odd ( even) number of zeroes of F if and

only if t ( l)  < 0  C> a) .

-l . . 0Proof: If the component of H (0) containing (x , 1) is the

singleton (x0, 1), the theorem holds trivially. Otherwise, as in

the case of the last theorem , the component is a curve (x(0) ,  t(o))

with (x(O), t(o)) = (x0 , 1), x (0) £ C, 0 < 0 < 1, and x(1) £

where here we allow the possibility of a loop, i .e.,  (x(0) ,  t(o)) =

(x0, 1) = (x(l), t(l)). Now let 0 <~~ < 1 be such that F(x(~ ) )  = 0

(so that t(~) = 0). Since F’(x(9)) is nonsingular by assumption (30),

it follows from Theorem 6 that t(~ ) ~ 0. Hence there is an £ > 0

such that t(ë - a) . t(~ ÷ a) <0 for 0 <a < C . Thus t(o) changes

sign on some interval if a.nd only if a zero of F is encountered on

the interval. Hence, if t(l)  < 0 , since t (o) > 0, the sign of

t(o) must have changed signs an odd number of times implying an odd

number of zeroes of F on the curve. Otherwise, if t(l) > 0 , the

sign of t(o) changed signs an even (possibly zero) number of times

implying an even number of zeroes of F on the curve .

- . 1  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — • •- — _•_ _ ••______ - . -~~,. • —•
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5. Examples

Example 1: Comparison of Global Newton and Modified Merrill

We recall that scheme [10] requires o(n) arithmetic operations per

pivot while the Modified Merrill vector labeling algorithm requires o(n + 1) 2

operat ions per pivot . Furthermore , the two schemes follow quite different path s

but initially start in the same direction. An example is shown in Figure ~4- .

Here the Modified Merrill diverges to infinity while scheme [10] converges to

a solution. Observe the dependence of the former algorithm on the sign of x.,.

In fact a hyperplane x~ = 0 cannot be crossed by the limiting path of the

Modified Merrill algorithm except at a point on the hyperplane where F
1

(x )  = 0

also. The scheme [10] requires t E [0, 1] so that the solution is bounded by

the intersection of sets 0 < F.(x) < F
1

(x 0) and is not dependent on the signs

of x .. Observe too that the solution to the more general equation

F(x) = tF(x0), t real

is a loop that connects all preimages of F(O) and all zeros, so that , if

the algorithm is started at the origin , it will find all zeros of F.

Example 2: Start ing at Inf inity

Figure 5 raises the interesting possibility that for cert ain types

— of tunctiQns convergence of G
2 may be assured by starting sufficiently

far away from a zero. Concerning this figure, we make the following observations :

( 1 ) G2 fails when initiated from w (a loop is generated).

(ii) G2 succeeds when in it iated far away , e.g., from x°, and

moreover aU. zeros are found.
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4

(iii) The set C with the curly border satisfies the hypotheses

of Smale (Theorem 7 ) .  In particular det F ’(x )  > 0 for

all x E ~C and the Newton direction points into C at

each x E ~C.

6. ~npirical Comparisons

We have compared the Modified Merr ill vector labeling method with

G2, the scalar labeling method from [10], on three nonlinear.problems. All

tests were done on an HP 2000 Time—Sharing Basic .

The first example is to solve :

F1(~~ , x2) x ~~— x 1 — l ,OOO O

F2(~~ , x2) x ~~— x 2 — 1 ,OOO O

An approximate solution to the problem is x1 
= x2 

= 10.0333 with I IF(x) I
1.29 X lO~~~. Here Merrill ’s algorithm (without modification ) did not converge

using a mesh size of one unit and starting point x = (20 , 20) (after 351

iterations, the method generated the point ~ = (—66, ~~~~ 
and the simplicial

path is diverging to infinity) . Both the Modi fied Merrill and scheme [101 traverse

the line segment joining the starting point and the solution .

TABLE 2 (Number of Pivot s)

Starting point x0 (20, 20)

Mesh size .01 .1 1 [ 
~Mcdif~ed :.!e~~ill ~ 

i.,J~5l* 699 69 13

Scheme [10) 3,985 397 37 ( 5

~The Modified Merrill was stopped after the
ind icated numbe r of sthpllcia.1 ptvot~ without reachingthe terminal simplex.

4’
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The result of the test is shown in Table 2. In every case ,

scheme [101 took fewer pivots than the Modified Merrill to reach the

terminal simplex. This is explained by the fact that Modified Merrill

operates in Rn+l while G2 operates in flfl • Moreover , the M2 path

(projected onto R~ ) will generally differ from the G2 path, as Example 1 shows.

This also will cause the two algorithms to generate different numbers of

total pivots. Due to the significant difference in the computational

burden of the Modified Merrill (o(n + 1)
2 

operations per pivot) over scheme

(10], (o(n) operations per pivot), the total computational work in the

latter scheme, given approximately the same number of pivots, is significantly

less than the former scheme .

It is ~pteresting to note that for mesh size e~~al to E , scheme t 10]

takes about ~ 
20 - 10.03 

pivots to reach the ternina]. sin~lex , ~thich is

roughly the number of pivots recuired to reach the term.ina.i sin~2..ex in the

quickest way (see Figure 6).

Li - • • • —--- --~~ •~~~~~~ 

___
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N
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We ran both schemes on the same problem but using as initial point

x = (20, 3 0 ) .  The result of  the test is exhibited in Tabie 3

TABLE 3 (Number of Pivots) 
-

Starting point x0 = (20, 30)

Mesh size 1 .1 1 5 10

Modified Merrill 1,099 1 109 21 10

Scheme [10] 597 51 9

The second problem tested is:

F1(x1, x2) 2 x 1 + sin x1— x 2 — l O l = O

F2
(x1, x2) = ~~2 

+ ~~~~~ X
2 

L
1 

— 102 = 0

It was shown in [10) that in a 5-dimensional problem of this form

both NewtozYs method and the continuation method diverged. An approximate
-ç

solution to this problem is x = (lco .899 , 101.157) with IIF(x ) !I~ = 2.~4 x  1 0 .

Again, as shown in Table ~I , scheme ~10 J is superior to the Modif ied Merrill in

this examnie.

I
I



314

TABLE 14 (Number of Pivots)

Starting point x0 = (20, 20)

Mesh size ~ 1 5 ( 10

Modified Merrill ~ 69 115 59

Scheme [10] ~23 5]. 33

The third and last problem tested is:

F~(x) = 4 - Z x .  - 1,000 = 0 = 1, 2 , . . .,  n
j~ i ~

We ran both schemes or. the above for r. = 5, 10 and x? = 20 a].]. i.

The results are shown in Tables 5 and 6.

TABLE 5 (Number of Pivots)

n = 5 Starting point x~ = 20 1 = 1, 2 , ... , 5

Mesh size 1 5 10

Modified Merrill l~9~ 96 li.6

Scheme [10 ) 369 73 2~

TABLE 6 (Number of Pivots)

n — 10 Starting point 4 = 20 a].]. I

!~!esh size 10

ModifIed MerrIll - 5~1 266

Scheme [10] - 1~~3
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