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ABSTRACT

The issue of control structures has had a heated history in pro-
gramming. To put this issue on a solid footing, this paper reviews
numerous theoretical results on control structures and explores their
practical implications.

The classic result of Bohm and Jacopini on the theoretical
completeness of if-then-else and while-do is discussed. Several recent
ideas on control structures are then explored. These include a review
of various other control structures, results on time/space limitatioms,
and theorems relating the relative power of control structures under
several notions of equivalence.

In conclusion, a case is made against the recent arguments of
Knuth [K2] on the utility of the GOTO statement.
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I. INTRODUCTION

In the last decade we have seen the rapidly growing interest in the
areas of structured programming and software quality. Although the major
attention has been placed on top-down programming techniques and control
structures, the concern over the quality of software has also included the
definition, modularity, clarity, changeability, and documentation of programs.

This paper focuses on the issue of control strucures. While it may well
be argued that the control structure issue has been entirely overworked, the
debates and polarized opinions remain. At one extreme we have the views of
Mills [Ml], who has religiously advocated the use of the if-then-else and
while-do control structures. At the other extreme, we have the views of
Knuth [K2], who has recently given vigorous arguments on the utility of the
goto.

Over the years, a number of theoretical results have been presented
on the limitations of various control structures. Notabie are the
works of Bohm and Jacopini [Bl, Ml], Knuth and Floyd [K3], Bruno and
Steiglitz [B2], Peterson, Kasami and Tokura [P1l], and importantly, Kosarju
[K4]. These results have placed the control structure issue on a firm
foundation. In this paper I present a framework for reviewing these results
and discuss their practical implicatioms.

The programming language PASCAL is used here as communication language.

Unfortunately, PASCAL omits several constructs that I consider important in

contemporary languages. To remedy this situation, I have made a number of extengions,

as required by the examples. I believe that these extensions will pose little

problem for the reader.
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II. CLASSES OF CONTROL STRUCTURES

This section presents various classes of control structures. Aside
from minor variants, these classes embrace the control structures found in
most algorithmic languages. Readers who are familiar with these control
structures may need only a quick reading of this section to become familiar
with the terminology given here.

(a) D-structures. We begin with the definition of "D-structures',

D for Dijkstra, as in [B2]. A D-structure (see Figure 1) is any

program constructed only from the following 1-in, l-out primitive structures

(1) basic actions (e.g., assignment statements, procedure
calls, input/output statements),

(ii) compositions " of two D-structures,

5138,
(111) conditional constructs of the form "if p then s. else s,"

based on a predicate p (having no side effects) and two

D-structures s1 and 52, and

(iv) loops of the form "while p do s", where p is a predicate
(having no side-effects) and s is a D-structure.

D-structures also include conventional for loop structures. These can be
readily defined via basic actions and while-do loops.

D-structures have received prominent attention in the literature. Bruno
and Steiglitz [B2], Ashcroft and Manna [Al], and Knuth and Floyd [K3] have
explored the reduction of arbitrarily structured programs into D-structure
form. Mills [M1] and Dijkstra [D2] have explored programming with these
structures, and numerous other researchers [F1,H1,L1,W3] have considered
these structures in various ways.

(b) D'-structures. The class of D-structures gives rise to several natural

extensions. One class of control structures, here called D'-structures,
is shown in Figure 2. This class comprises the class of D-structures, with

the addition of the following 1-in, l-out structures: single branching

1f statements, n-way branching case statements, and repeat-until loops.

{
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Aside from the goto, D'-structures comprise the set of PASCAL control structures.
I next turn to some substantive generalizations of the previous control
structures. These generalizations stem from the notions of procedure return

statements, loop exits arising from exceptional conditions, and repeated loop

invocations from within loops.
(c) BJ -Structures P
" £
B
First consider a definition of BJn-structures (due to Bohm and Jacopini [Bl}), :
-
where n 2 1. A BJn—structure is composed of basic actions, compositions, if-then- ¢
-
else structures, and l-in, l-out control structures Ak’ where k < n. An k-structurg‘
L}
(see Figure 3) contains k successive predicates and actions with k exits, one for -
each of the k predicates. An &k-structure is equivalent to the following ¥
program schema. E
do if p; exit; .
sl; B
if p, exit; 3
Sy3
if Py exit,
Sk;
cycle
end
If an Qk-structure is viewed as a procedure, the exit escapes above would be
analogous to PL/I-like return statements. Note that oy is a while-do structure.

BJn-structures are similar to that propcsed by Zahn [Z1].

(d) RE , REC , DRE , and DREC Structures.
R4y I pes 184

Next consider the definition of REn—structures.and their variants. An REn—
structuyre is composed of basic actions, compositions, if-then-else structures, exit
commands of the form exit(i), where 1 is a positive integer constant such that

1+ i < n, and repeat-end constructs of the form

repeat
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where the s; are other REn—structures (see Figure 4). On execution, the

commands within ¢ repeat-end block are to be repeated indefinitely until an

exit command is encountered. The execution of an exit(i) command causes termination = |

of i enclosing repeat-end loops. In the case where there are fewer than i
enclosing loops, all enclosing loops are terminated. REn-structures are similar 1]
to D-structures, except thet loops may be exited at arbitrary points within the loop.
REn—structures have been developed from the control structures used in BLISS[W4].

An RECn—structure (see Figure 5) is similar to an REn—structure, with the

inclusion of additional commands of the form cycle(i). The execution of a .
cycle(i) command is similar to an exit(i) command, except that the i-th enclosing T

repeat-end loop is re-executed.
A DREn-structure is defined as a REn—structure with the possible inclusion

of while-do structures. The execution of an exit(i) command causes termination

-

s i L il

of the i-th enclosing repeat-end loop, ignoring any enclosing while-do loops. s
A DRECn-structure is defined as a DREn—structure with the addition of cycle(i) command
REn-structures and their variants conform to conventional programs for which

transfers of control are restricted to the ends or beginning of enclosing control loo 5.

(e) Pn—SCructures and L-Structures

Finally, a Pn—structure is defined as any well-formed structure stch that all
1-in, l-out sub-structures have at most n predicates. An L-structure is
defined as any well-formed structure, i.e., any structure with no restrictions on
the number or configuration of predicates, actions, and transfers of control. An
L-structure corresponds to & program with free use of labels and goto statements.
The above control structures embrace most of the explicit control

structures found in conventional languages. It is important to note

that these control structures do not take into account various "scope"

rules often associated with these control structures. In PASCAL for

example, the value of a for-loop control variable upon exit is -
undefined. Such issues arising from the value of internal variables when control :
is transferred into or out of a control loop are not treated in this paper. }
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ITI. THE NOTIONS OF REDUCIBILITY AND EQUIVALENCE

Numerous results on the relative power of control
structures are presented in the next section. In an attempt to present
these results in a rigorous but conceptually simple framework, we first
define five sets of conversion rules for converting a control structure
into another form, and then introduce the notions of "reducability"
and "equivalence" of classes of control structures under these conversion

rules. These notions are motivated by Kosaraju [K&4].

3.1 Conversion rules

In defining the various notions of conversion of a structure Sl to a

structure Sz, the following five properties are singled out:

(P1) For every input S, computes the same function
as Sl' (5 G 82 performs the same computation
as Sl')

(P2) The primitive actions and predicates in 82 are
precisely those of Sl'

(P3) For every input, the sequence of primitive actions and
predicates executed in 82 is identical to that in Sl.

(P4) S, can be obtained from S, by ''mode splitting". (Basically,
node splitting allows one to eliminate structures with mul-
tiple inputs by making multiple copies of the paths through
the structures [see P1],)

(P5) Each occurrence of a primitive action or predicate in

S, is used at most once in S,. (i.e., multiple copies of
predicates and actions in S1 are not allowed.)

The conversion rules can now be easily stated as follows:

(a) Very Strong Conversion. A structure §, is said to be "'very strongly"
convertible to a structure 52 iff properties (P1l) through (P5) are
satisfied.

"Very strong conversion" is indeed very strong. Basically, the only

allowed rewriting rule in converting S1 to 82 is a reconfiguration of the

v i el . sl A il i i e M i i e o s Moot =
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.
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existing predicates and actions in Sl. From a programmer's viewpoint,

there is one important consideration, namely that S. and S, differ only

) 2
in notational convenience.

(b) Node-Splitting Conversion: A structure S, 1s said to be "node-

splitting' convertible to S2 iff properties (P1) through (P4) are

satisfied.
Node-splitting conversion is still quite strong. Basically, 52 must be
derivable from S1 by well-defined rewriting rules (node-splitting).
(¢) Strong Conversion. A structure S, is said to be "strongly" convertible

1
to a structure S, iff properties (Pl) through (P3) are satisfied.

Strong conversion is clearly not as strong as node-splitting conversion

for a restructuring of the primitive actions and predicates in S1 is

allowed in Sz. Nevertheless, the reduction is still strong in the sense
that the computation sequences in S1 and 52 must still be identical.

(d) Semantic Conversion. A structure S1 is said to be "semantically"

convertible to 52 iff properties (P1l) and (P2) hold.
Semantic conversion implies a significantly less restrictive condition
than the above notions of conversion, for the only restriction on the
conversion of Sl to S2 is the prohibition of '"new semantics", i.e.,

new actions, predicates, or variables.

(e) Computational Conversion. A structure Sy is said to be "computationally"
convertible to Sy iff property (Pl) is satisfied.
Computational conversion is indeed weak. For the reduction of 81 to 52

we only require that the two structures compute the same function. The

introduction of new predicates, actions, or variables are all allowed.




3.2 The Notions of Reducibility and Equivalence

The issue of '"relative power'" of various classes of control
structures can now be precisely stated. Given a set of conversion
rules, a class of structures C1 is said to be
(a) reducible to a class C, (notationally C

in C1 can be converted to a structure i
vice versa.

C2) if every structure

<
% C2, but not necessarily

(b) strictly reducible to a class C3 (notationally C, < C2) if every

structure in C, can be converted to a structure iIn C2’ but not
vice versa.

(c) equivalent to a class C, (notationally C, = C,) if every structure
in C1 can be converted to a structure in C2 and vice versa.

Given a set of conversion rules from C1 to C2

that C1 is "less powerful" than Cy» strict reduction implies that C1 is

, reduction intuitively implies

"strictly less powerful" than C2, and equivalence implies that C, and C, are

1 2
"equally powerful."

Given the notiomns of:

(a) very strong conversion

(b) node splitting conversion

(c) strong conversion

(d) semantic conversion

(e) computational conversion

we shall denote the '"reduction'", "strict reduction'", or "equivalence"

two classes of structures by

ER) v Bo n (4 2
and 5
Vs vs’ vs
< < =
(b) i fin? and s
(> b < =
( ) S' s’ and _8
d Y a =
(a) sem’ sem’ fd sem

(e) $ 5 z and H
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‘ IV RESULTS ON CONTROL STRUCTURES

- This section reviews several major results on control structures
and discusses their practical significance. These results fall into

two main categories:

(1) The classic result of Bohm and Jacopini [Bl] on the theoretical
completeness of D-structures.

(2) The results of Kosaraju [K4], which place all of the control
structures given earlier into a hierarchy under semantic
conversion.

4.1 The Bohm and Jacopini Result °

The classic result of Bohm and Jacopini on the theoretical completeness of D-structures
was perhaps the first major (albeit initially little recognized) result in
structured programming. This result is well-described in a paper by Mills [Ml1].
Briefly stated, the Bohm and Jacopini paper [Bl] makes the following points:
(a) D * L, i.e., any L-structure (including those permitting arbitraty
transfer of control) can be converted to a computationally equivalent
D-structure.
(b) In the computational conversion of an L-gtructure to a D-structure,
boolean control variables may be introduced, but the values may be

stored in a stack and only the value of the top element in the
stack need be known at any given point in the program.

The importance of result (a) was the establishment that the "goto"
statement 1is, at least theoretically, not needed to perform computations, and
that three simple but familiar control structures: sequential composition, if-

then-else, and while-do, are in fact theoretically complete control structures.
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12 if Afi} < x
then if L[i] = 0
then L[i] :=m
else begin L : = L[i];
goto 1
end
else if R[i] = O
then R[i] :=m
else begin i := R[1]
goto 1
end;
Alm] := x

Figure (6a) A control structure not reducible to a D-structure

without new variables or predicates

v := false;
while v do
if A[i] - x

then if L[1] = O
then begin L[i] := m;
vV := true
end v
else 1 := L[i] '
else if R[1i] = 0
then pegin R[1] := m;
VvV = true
end

else := R[1i];

A[m] := x

Figure (6b) _Use of a new variable to reduce the control structure
of (6a) to a D-structure
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An example of the conversion of an L-structure into a D-structure is given
in Figure (6). This example comes from a tree searching and insertion program
of Knuth [K2]. The index m denotes the array location into which a variable x
is to be inserted. The arrays L and R denote the left and right branches of a
tree organization that is superimposed on an array A. Figure (6a) depicts a
program that contains two transfers of control back to the structure entry point.
Figure (6b) shows a computationally equivalent D-structure. The conversion
employs an intermediate boolean variable whose value is checked at the end of
a while-do structure. Two comments are in order here. First, the D-structure
of Figure (6b) is not necessarily less understandable than the L-structure
of Figure (6a). Second, as we shall discuss later, the L-structure of Figure
(6a) can be nicely expressed without goto's using an REC, -control structure.
semantically
The question arises, under what conditions is a control sttucture’konvertible
to a D-structure, i.e. without introducing new boolean variables or changing the
particular semantics of a program. The answer [K4] lies in the detection of
two loops with two or more distinct exits. In general, an L-structure is
convertible to a D-structure under semantic conversion if and onl& if the

structure does not contain a traceable loop with two distinct exits. If a

structure contains only loops with one exit, the structure is:'convertible to a

For example, consider the program schema of Figure (7), taken from a
program in Gross and Brainerd [Gl]. This is a typical structure that cannot be
converted to a D-structure without new variables or actions. Here we have a
loop consisting of the sequence a3p1p2a4p3as with two exits, one through a, and

one through ag. Note that the branch to 8¢ is not an exit from this loop since

the flow of control must return to g Similar arguments hold for the structure

D-structure.
of Figure (6a).
i o i i it
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Figure (7) A "typical" structure that is not .conv
without new variables or new actions
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4.2 Kosaraju's Hierarchy of Control Structures

There have been numerous attempts to discover the limitations of D-structures
as well as to explore the expressive power of other control structures. Knuth
and Floyd [K3] have shown that D Svs L and given some intuitive ideas that
D < L. Bruno and Steiglitz [B2] have formally proved that D <g L. Kosaraju [K&4]
and Peterson et al [P1] have proved that D <seln L. These results point to the
fact that there are indeed fully labeled programs that cannot be converted to
D-structure form without changing the length, execution time, or primitives
of a given program. Peterson et al have also shown similar results for REn
structures, i.e. RE1 S and RE, Spg L.

These results fail to answer one important question, namely how do the
structures given earlier relate to each other. The results of Koraraju [K4]
resolve this question.

The basic results of Koraraju are outlined in Figure (8), [ref [K4] and
private communication]. An upwards solid line connecting one class of struc-
tures C1 to another class 02 means that C1 is strictly reducible to C2 under

the notion of semantic conversion, i.e., G < An upwards dotted line

sem g
means that C1 o, C2. The main results defined in Figure 9 are summarized as

follows. Under the notion of semantic conversion,

(1) for m<n, there exist BJ -structures which cannot be converted to BJ -struc-
tures. In particular, without the introduction of new predicates or actioms,
BJ,-structures are''more powerful''than BJ,-structures, which are identical to

D-structures.
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(2) RE -structures are“more power ful'than BJ -structures or D-structuees.

(3) It is believed that RE -structures are equivalent to REC -structures (as
yet, this is an unproven conjecture). Somewhat surprisgngly it is
believed the addition of the cycle(i) command does not add th;oretical
Power to the repeat-exit control structure under semantic conversion.

hd

(8) DRE -structures are more powerful than RE -structures. Again somewhat
surprisingly, the addition of a while-do Bontrol structure does in fact

add theoretical power to the REn-control structure.
(5) Finally, if no a priori bound is placed on the index n, any fully labelled

atructure is semantically convertible to an REj, RECn, or DRE, structure
Other results not shown in Figure (8) are given in [R4].

As an example illustrating this hierarchy, consider the structure of
Figure (9 a), which is based on the control structure recently proposed by
Zghn [Z1, K2]. This control structure represents a computation where a
computation sequence is to be repeated until one of a number of "events"
occurs. Upon realization of one of the events, the repeated loop is exited.
Termination of the loop then invokes a specific computation determined by
the event that has actually occurred. This control situation is a fairly
natural one, and is quite close to a BJn-utructure.

Noting that D&gep BJy, the conversion of this structure to a D-structure

requires a new variable, as shown by the program in Figure (9b). On the other,

hand, noting that BJ, €gon RE;, this structure, can be nicely converted to

an RBl-structure, which is given in Figure (9¢).

As another example of the utility of REl-structure, consider the tree
searching and insertion of the program of Figure 6. This program can be
readily converted to an REl--ttﬁcture. as shown in Figure (10).

From a programmer's viewpoint, the results given ghove suggest that there
is some question over the practical utility of programming with only D or

D'-structures. Aside from questions of efficiency, the examples also suggest

that the use of stronger control structures like RE-structures and their variants
may obviate the need for goto'l. In the next section I present a key example

that, in fact, presents evidence counter to these suggestions.
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v := false
while 7 v do

begir

v i= true;
a
e,
then begin by;
event :=1;

end
else begin

i

?ﬁegz begin bz;
event := 1,

end
else
g >
begin

end ;

case (event) of

X cl;

28 Cys

n: c¢
n

end

Figure ( 9b) Zahn's Control Structure ressed as a D-structure (under
com'g'utatioml convcrsioni Py
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repeat a_;
ii Py then begin bj;
event := 1i_;
exit (1)
end;

i
2’
3f p2 then begin b2;
event := iz;

exit (1)
end;

a ;
m
if p, then begin bm;

event := 1m;
exit (1)

end;

end

case (event) of
: Cl H

: C2;

O3 oeee N M

(¢]

end

Figure (9c) Zahn's Control Structure expressed as an RE; -structure

b e
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repeat
if A[1] < x
then 1f L[1] = 0
then begin L[1] := m;
exit (1)

end
else {1 := L[1i]

else if R[1i] = 0
then begin R[1] := m;
exit (1)
end
else 1 := R[1i]

end;

Alm) := x

Figure (10) Tree-search program of Figure (6) as an REl—Structure




V. AN EXAMPLE

When all is said and done, the practicing programmer is primarily interested

in solving problems using some glven set of control structures. Theorems and re-

sults on the conversion of one program or flowchart into another form may be of

some interest, but certainly not the basic issue. This section presents an example

directed at resolving this important issue. In particular, are there problems
for which D or D'-structures do not provide as clear a solution as RECn-structures.
More precisely, are there problems for which there is a solution S) € REC,
and for any reasonable solution Sy eD, 51 = ¢Sy and S, is significantly clear
than S;?
I must admit, the problem presented here was originally proposed with the hope
of supporting a positive answer to the above question. The problem appeared to have the
right set of ingredients, i.e. the need for cyvcling back to a loop entrv from with-
in a 1loop and the need for an escape exit nested withir multiple loops.
This problem is called the '"qualified name' nrohblem. Basicaily, the problem
is to write a program segment to set the value of a variable LEGAL_NAME to true or
false according to whether a given PL/I qualified name is a legal or illegal reference.

In PL/I, one can declare 'structures'" with nested components, e.g.

DFCLARE 1 A DECLARE 1 ¥,
2B 2B
’
3 C CHAR(5), 3
3 D FIXED; 3

C FLOAT,
L FLOAT ;

A "reference' to a structure is considered legal if and only if the reference re-

fers to one and only one declared structure component. Using the above declaratiors,

A, A.B, A.B.C, and B.E are legal references, whereas B and B.C are illegal,

To solve this problem, a number of primitives are assumed:

(a) A linked 1list of entries call QUALIFIED_NAME, which represents the
in“ormation about a qualified name.

i (b) A function BASE_ENTRY, which when applied to a qualified name
yields the base entry in the list. e.g. the base entry in the qualified
name A.B.C is the entry for C.
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A linked list of entries called SYMBOL_TABLE, which contains entries

(¢)
for each identifier declared in a program.

Y

(d) A function NEXT, which when applied to a null symbol table entry gives
the first entry, and which when applied to a non-null symbol table
entry gives the next entry in the symbol table (assuming some pre-
determined order).

(e) A function FATHER, which when applied to a qualified nameentry or symbol
tahle entry, yields the next higher-order entry in the corresponding
qualified name or symbol table, or the null entry if there is no father
entry. For example, iu the linked list for A.B.C, the father of the
entry for C is the entry for B, and the father of the entry for A is
the null entry.

(§) A function NAME, which when applied to a qualified name entry or a

symbol table entry yields the identifier for that entry.

A solution to this problem using REC,-structures is given in Fjgure (La). Here,
the PASCAL case statement is extended to allow for multiple case conditions. This
solution is quite clear and makes liberal use of cycles and exits. The conver-
sion of this solution to a D or D'-structure under restricted conditions (e.a., eny
of the properties P2 through P5) is highly tedious exercise, resulting in a much
longer and less efficient solution. Nevertheless, a new (computationally equiva-
lent) solution using [-structurescan be devised, as given in Figure (llt).

This solution compares quite favorably with the solution using RECj-structures.

It is important to comment here that, in addition to the formal results presented
earlier, that there have been numerous other papers |F1,L1,P1,W4,Z1] suggesting the
limitations of D or D-structures. As far as I can perceive, most of these papers

only compare the conversion of abstracted program schemas or flowcharts into D or

D'-structure form. Not once have 1 seen a problem that really shows the limita-

tions on clarity with D or D'-structures. The classic case of the abmormal exit

from some deeply rested procedure just does not hold weight, for the notion of

-y
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passing control to a procedure that does not return control to the calling pro-
gram segment is counter to the very notion of 1-in, l-out control structures.

I have long supported the view that D and D'structures are not sufficient
for the practicing programmer. Recently I have tried to support this opinion with

example problems far too numerous to mention here. Frankly, I have not found such

an example problem.




QN_ENTRY

BASE_ID

ST_ENTRY
DIRECT_HIT
NUM_PARTIAL HITS

repeat
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i= BASE_ENTRY (QUALIFIED_! NAHE)

1= NAME(QN ENTRY) ;

:= NULL;
1= false
= ' Oy

ST_ENTRY := NEXT(ST_ENTRY);

case (ST_ENTRY=NULL, NAME (ST_ENTRY)=BASE_ID) of

(T,F):
(F,F):
(T,T):

(F,T):

end {case}

end;

exit (1)

cycle (1)

{cannot occur}

begin

LOCAL_QN_ENTRY := FATHER(QN_ENTRY);
LOCAL ST ENTRY := FATHER(ST ENTRY),
= falge;

SKIP

repeat

case (LOCAL_QN_ENTRY=NULL, LOCAL ST_ENTRY=NULL) of

(T,T):

(T,F):
(F,T):

(F,F):

end {casel,

cycle(2)

end {repeat}

end

if DIRECT_HIT v (NUM_PARTIAL HITS=1)
then LEGAL_NAME := true
else LEGAL NAME := false

Figure (1la) A Solution to the Qualified Name Problem as an REC,-Structure

1f SKIP
then NUM ] PARTTAL HITS := = NUM_PARTIAL HITS + 1
else begin DIRECT HIT := true,
exit(2)
end
NUM_PARTTAL HITS := NUM_PARTIAL_HITS + 1

{no operation}

begin
if NAME (LOCAL_QN_1 ENTRY)=NAME (LOCAL_ST_ENTRY)

then LOCAL QN ENTRY := FATHER(LOCAL QN_ENTRY
else SKIP := true;
LOCAL | ST ENTRY := FATHER(LOCAL_ST_ENTRY);

cxcle(l)
end
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QN_ENTRY i= BASE_ENTRY (QUALIFIED_ NAME) ;
BASE_ID = NAME(QN_ENTRY) ;

ST_ENTRY = NEXT(NULL)

DIRECT_HIT i= false;

NUM_PARTIAL HITS := O0;

while (ST_ENTRY # NULL) A ( DIRECT HIT) do
begin

if NAME (ST_ENTRY) = BASE_ID

then begin

LOCAL QN_ENTRY:= FATHER (QN ENTRY) ;
LOCAL ST ENTRY:= FATHER (ST _ENTRY);
SKIP ~:= false;

while (LOCAL_QN_ENTRY # NULL) A (LOCAL_ST ENTRY # NULL) do
begin
1f NAME(LOCAL_QN_ENTRY) := NAME(LOCAL_ST_ENTRY)
then LOCAL_QN_ENTRY:= FATHER(LOCAL_gN_ENTRY)

else SKIP ‘= true;
LOCAL_ST_ENTRY := FATHER(LOCAL_ST ENTRY) ;
end;
case (LOCAL_QN ENTRY = NULL, LOCAL ST ENTRY = NULL) of

(T,T): 1f SKIP
then NUM_PARTIAL_HITS := NUM_PARTIAL_HITS + 1
else DIRECT HIT := true

(T,F): NUM_PARTIAL HITS := NUM_PARTIAL_HITS + 1

(F,T): {no operation}

(F,F): {cannot occur}

end {casel

end {begin};

ST_ENTRY := NEXT (ST_ENTRY)

&

i

La]

DIRECT_HIT v (NUM_PARTIAL HITS =1)
then LEGAL , NAME := true i
else LEGAL_NAME := false I‘

Figure (11b) A Solution to the Qualified Name Problem as a D'-Structure ‘!1
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VI. CONCLUSIONS

There are three basic conclusions of this paper.
(1) From a programmer's viewpoint, results relating to the conversion of
one program form to another form under restricted conversion rules
are mainly of theoretical interesst only.

(2) The utility of the goto, as well as other higher (non D or D') control
structures, is seriously questioned,

(3) The utility of D and D'-structures is supported,

My first conclusion may be difficult to accept, for there have been
numerous formal results (presented here and elsewhere) on the limitations f
of control structures under various notions of conversion. It is
tempting to conclude from thesc results that the practicing programmer
would be unduly limited with the control structures that did not hold up
well under conversion. As mentioned earlier, the practicing programmer is
hardly ever concerned with converting programs from ome form into another.
My contention is that formal results on conversion provide 1/ttle real sup-
port for the practical use of any particular control structure.

My second conclusion agrees with the views of Mills [M1l] and others.
I have found no evidence for retaining the goto statement. The recent work
of Knuth [K2] surveys many opinions on the use of various control structures, ;
including the goto, However, I strongly believe the arguments that he advances f
in favor of the goto, clarity and efficiency, are not supported. ]

The argument from clarity is exemplified by "Sometimes it is necessary
to exit from several levels ... and the most graceful way to do this 1s a

direct approach via the goto or its equivalent." [K2, p. 18] Knuth discusses

eight example problems and points out the virtues of several solutions that
use the goto. In my opinion, not one of these solutions is clearer than the
solutions without the goto statements. Consider, for example, the programs

in Figures (6a) and (6b) which were derived from the "tree searching' examples
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of Knuth. The solution using the goto statement (6a) is not obviously clearer

than the D-structure one in (6b). Furthermore, changing the name of the 1
boolean variable "v" to a more descriptive one, e.g. "empty space found",
makes the debate almost vacuous. Clarity is, bf course, a highly subjective
quality, but I believe that a thoughtful reading of these examples will
support my contention.

The argument from efficiency, that the goto is less time consuming
than alternative control structures, is frequently made. Knuth, for example,
says "Sooner or later people are going to find that their beautifully
structured programs are running at only half speed...[K2, p. 3] He does
present several example programs where a solution with goto statements is
indeed more efficient than solutions with alterunative control structures
(though a factor of two is never obtained). Nevertheless, it is my basic
contention that all such example programs would be just as efficient if
processed by a good optimizing compiler. Certainly, no optimizing compiler
can be expected to perform "macro-efficient" optimizations like the conver-
sion of a linear search into a binary one. On the other hand, redundant
tests and repeated actions are typical of the "micro-efficient" conditions
that can be eliminated by good optimizing compilers, rare though they may
be. This latter type of optimization should not be the responsibility of
the typical programmer, who should be primarily interested in developing

clear, macro-efficient programs.

Similarly, the same clarity and efficiency arguments do not support to any "

great degree the multiple-exit control structures, like that proposed by

Zahn [21, K2]. Furthermore, these structures do not appear to provide a

more "natural" way of thinking about the problem. |4
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My third conclusion relates to the utility of D'-structures over

D-structures. Feaders may have observed the use of case, if-then, and

repeat-until structures (all of which are DLstructures) in the solution

to the qualified name problem. From the results presented earlier, the

only real differences between D and D'-structures is notational convenience.
For example, the use of case structures can often prevent the need for
multiple nested if-then-else structures, and the use of repeat-until
structures can often prevent the use of somewhat artificial while-do
structures. Since D'-structures preserve the important l-in, l-out property
of D-structures, the notational convenience provided by D'-structures is
strongly recommended.

In parting, I must admit that any recommendation for a good set of
control structures is indeed subjective. However, I must conclude from this
examination that considerable new and definitive evidence is needed before
we suggest that D or D' control structures, with all their clarity and sim-

plicity, are not sufficient for the practicing programmer.
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