
086 MASSACHUSETTS UNIV AMHERST DEPT OF COMPUTER AND INF——ET C F/G 9/2 N

A GENEALOGY Of’ CONTROL STRUCTURES. (U)
NOV 7’s H F LEDGARD DAHC04—7ls—G~ O139

UNCLASSIFIeD ARO—122’56. I—EL ML

a

IO L OD I~~ 2.5
I. L~~~~~

_ _ _ _

~~~ ~ 3 2

~ :~ g

• IIIII~U~l’ 
.25 f~f ~~~~~~~~~~

MICROCO PY RESOLUTION TEST CHART
NAT IO NAl BUREAU OF STA T !)All[) S 196. I



_____________________________________________________________ - 
~~~~~~~~~~~ 

- _________________

_ _ _

/

fThIsTBIBUT1~~ ~rAi’r~i.inriY~~~1

I Appxoved fox public ~e1aQgs~
Distribut~oa Unb~~~~d

I
I
I

1(T ~~~r’~
p~P

I

I Computer and Information Science

F

— - __________________________

~~~~~~~~~~~ 1 (_~YAppwved for public rcleas~
_____ 

t
~~~~t;c ’n Unlimited

I
A GENEALOGY OF CONTROL STRUCTURES

by

•
I Henry F . Ledgard /

Computer and Information Science Department
University of !4~ssuchusettsAmherst, Mass 01002

--

• u r~1~ 1~~~ii
L~~1TU ~~LL~

ABSTRACT A —
~~~~

The issue of control structures has had a heated history in pro—
granmiing. To put this issue on a solid footing, this paper reviews
numerous theoretical results on control structures and explores their
practical implications.

The classic result of Bohm and Jacopini on the theoretical
completeness of if—then—else and while—do is discussed. Severa’ recent
ideas on control structures are then explored. These include a review
of various other control structures, results on time/space limitations,
and theorems relating the relative power of control structures under
several notions of equivalence.

In conclusion, a case is ~nade against the recent arguments of
Knuth [1(2] on the utility of the GOTO statement.

Work reported herein was supported by the U.S. Army Research Office

and the National Bureau of Standards.

- • Revised version November 1974

K~ywords: Structured Programming, Control Structures , COTO Statements,
Language Design , PASCAL

C.R. Categories : 4.2, 5.24 74A—3I 
-~~ ~~~~~~— • -~ •~~~~~~~_ • -~~~~~ -~~~•-—-- --- —I ~ • ~~~ ~~~~~~~~~~~~~ 

—~ 
-

~~ ~~~~~~~~~~~~~
—— — • •~~~~~~~~

•.



-~ - -. 
, ~~~ ~~~~~

Un cJ.assif’iecl
SECURITY CLASSIFICATION OF THIS PAGE (Wb.n Da’. Ent.r.d~~~~~~~~~ __________________________________

REPORT DOCUMENTATION PAG E BEFOR ~
’
~~~~~~ ETING FORM

1.~~REPORT .~jLU4.a.ER~.__..~~ g 2. GOVT ACCESSION NO. 3. RECIPi ENT’S CATALOG NUMBER

~~~ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

_ _ _ _ _ _ _ _ _

TITLE (wd SubtItM) L~~ XPE OF REPORT & PER~~3D COVERED

• —

1~~
’
~ ENEALOGY OF CONTROL STRUCTURES~ ~~~~~~~~~~~~ ~~~~~~~~~~

• ~~
“ — - — — s. ,nu iuee~~o. USER

7. AUT HOR(a) S. CONT CT OR GRANT NUMBI*(I)

~~~~DA -7l~-G-~ 139

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMEN T, PROJECT . TASK
AREA S WORK UNIT NUMBERS

University of Massachusetts
Amherst , Massachusetts 01002

II. CONTROLLING OFFICE NAME AND ADDRESS 12. 5EPORT DATE

U. S. Army Research Office ~~~~~~
Box CM. Duke Station 13. ~~~~~~~~ ~jr

Durhani . North ~~~~~~~~~~~~~~~ 277rh’; ._ _..i ‘a
• 14. MONITORING ~GFNCY NAME & A ODRESS(I(dl f f. r.ni from Cont rofllnQ Offi c•) IS. SECURITY CLA U~ a r.po,t)

Unclassified
IS.. DECLASSIFICATION/DOWNGRADING —

SCHEDULE

IL DISTRIBUTION STATEMENT (of fbi. R.port) -Th

• Approved for public release; distribution ‘unlimited.

*7. QISTRIBUTION STATEMENT (of lb. abatracl .nt. ,.d in Block 20, Ii diIf.,int tract R.porf)

is . SUPPLEMENTARY NOT ES ~~

The findings in this report are not to be construed as an o ~~ L~L1
Department of the Arn~r position unless so designated by

• authorized documents. ~~~~~~~~

•
•

II. KEY WORDS (Confinu. on rev.,,. .id. if n.c..a y ond id niSfy by block nt, ,b.r)

• ç Control Structures , Programming, Struc tural Programming , Language Design

20. A BSTRACT (Cons Snu• on r.v•ra. .ld. ii n.c...a.~ ond i d.nelfr by block nac,b.r)

The issue of control structures has had a heated history in programming. To
put this issue on a solid footing, this paper revi ews numerous theoretical
results on control structures and explores their practical implications . The
classic result of Bohm and Jacopini on the theoretical completeness of If—then.
else and while—do Is discussed . Several recent ideas on control structures ,
results on time/space limitations, and theorems relating the relative power
of control structures under several notions of equivalence. In conclusion, a
case Is made against the recent a.r~uments of Knuth ~b~) on the utility of t)t~~

DD ~2 ’~ia 1473 EDiTION OF I NOV 95 IS OBSOL ETE Unclassified
GOTO statement .

• S(CU~ lTY CLAU IFICATION OF THIS PAGE (Whon D.fa X&.’.d)

-~~~ _ _ _

‘-~~~.-- , r
~~

—‘——
~~

‘_,

~~~~ 

• — -‘V ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~
“

~~~
•

~~~ 
.‘
~~~~~ —,•-. ‘W’!~iI~J5JIIIIIIIII ~~~

1
- 1-

,

~~~~~~~~~~~~

I. INTRODUCTION

In the last decade we have seen the rapidly growing interest in the

areas of structured programming and aoftware quality. Although the major

attention has been placed on top—down programming techniques and control

structures, the concern over the quality of software has also included the

definition, modularity, clarity, changeability, and documentation of programs.

This paper focuses on the issue of control strucures. While it may well

be argued that the control structure issue has been entirely overworked, the

• debates and polarized opinions remain. At one extreme we have the views of

Mills [Ml], who has religiously advocated the use of the if—then—else and

• while—do control structures. At the other extreme, we have the views of

Knuth [K2], who has recently given vigorous arguments on the utility of the

goto.

Over the years , a number of theoretical results have been presented

on the limitations of variou3 control structures. Notable are the

works of Bohm and Jacopini [Bl , Ml], Knuth and Floyd [1(3], Bruno and

Steiglitz (B2], Peterson, Kasami and Tokura (P1], and importantly, Kosarju

[1(4]. These results have placed the control structure issue on a firm

foundation. In this paper I present a framework for reviewing these results

and discuss their practical implications.

The programming language PASCAL is used here as communication language.

Unfortunately, PASCAL omits several constructs that I consider important in

contemporary languages. To remedy this situation, I have made a number of exten~ions,

as required by the examples. I believe that these extensions will pose little

problem for the reader. ç—~-~!!~ ~i~~
’I1

~~~~~~ i 
_ _ _-—~~~~~ ---~~~~-— ~~~~~~~~~~~~~ • ••~~~~~~~~ •~~~~~~~~~~~~~~~

~•“
• -•~v.’---

~~

‘ ‘
-
~~~

• 
~~~~ 

— —
•

~~~

-

~ 
- I ‘- —I.—,

— 2 —

I I .  CLASSES OF CONT ROL STRUCTURE S

This section presents various classes of control structures. Aside 
*

from minor var iants , these classes embrace the control structures found in

most algorithmic languages. Readers who are familiar with these control 
-
~~~

structures may need only a quick reading of this section to become familiar

with the terminology given here.

(a) D—structures. We begin with the definit ion of “D—structures ” ,

D for Dijkstr a , as in [82] . A D—structure (see Figure 1) is any

program constructed only from the following 1—in , 1—out primitive struc tures

(i) basic actions (e.g., assignment statements, procedure
calls , input/output statements) ,

(ii) compositions “
~ 1~~ 2” of two D—structures ,

(iii) conditional constructs of the form “if p then else s2
1’

based on a predicate p (having no side effects) and two
D—structures s

~
and

~2’ and

(iv) loops of the form “while p do a”, where p is a predicate
(having no side—effects) and a is a D—structure .

D— structures also includ e conventional for loop structures. These can be

readily defined via basic actions and while—do loops.

D—structures have received prominent attention in the literature. Bruno

and Steiglitz [B2], Ashcroft and Manna (Al], and Knuth and Floyd [(3] have

explored the reduction of arbitrarily structured programs into D—structure

form . Mills (Ml] and Dijkstr a (D 2] have explored programming with these

structures , and numerous other researchers (Fl ,14l ,Ll ,W3J have considered

these structures in various ways.

(b) D ’—structures. The class of D—structures gives rise to several natural

extensions. One class of control structures, here called D ’—structures ,

is shown in Figure 2. This class comprises the class of D—structures, with

the addition of the following 1—in , 1—out structures: single branching

if statements, n—way branching case statements, and repeat—until loops.

- • ~~~~~~ •-~~~~-—— - ~ t~~~~ - - - - - —__ ‘-~~~~___ _____.--- —S••_ ~~~~S—• ~~~~~~~ •••‘~ ••.~
I

:1
‘ — —

/
-

(la) actions

r
(ib)

~~~~~~~~~~~~~ compositions

_ _  _ _ _  

H
(ic)  — 

~.3 
If - t h e n - e l s e  stmS

F f ~~~~
[

~~
}

(id) 

~~~~~~~~~~~~~~~ 
~‘hiie-do loop~

;

1~i ~,ur (1) D~f{nition of D—Structurea

(2~) any D—structure, plus

(2h)

_____ i f — t h e n ~~tII1S

(2c) ~~~~~~~~~~~~~ ~~~~~

• _(2~i) ~~~~~~~~~~ ~i
-

~~~~

-

~~

-

~~~~~~ , ~~. ~~~~~~~~~

l~~ i~~~ n

~~ ~-NA1L~2U~ CO1~1Fic’ur~ (2) Definition of D’—structures
-

~
I

-

.
~

.
~~~~

-._ ... 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - —  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :‘ - • - -

S.

- 4 -

Aside from the ~~ to , D’ —structures comprise the set of PASCAL control structures.

I next turn to some substantive generalizations of the previous control

structures. These generalizations stem from the notions of procedure return

statements, loop exits arising from exceptional conditions, and repeated loop 
r

invocations from within loops.

(c) BJ —Structures

First consider a definition of BJ —structures (due to Bohm and Jacopini [BiD,

where n � 1. A BJ —structure is composed of basic actions , compositions , if-then-

else structures, and 1—in, 1—out control structures k’ where k n. An 
k

strt1ctu
~~~W

(see Figure 3) contains k successive predicates and actions with k exits , one for

each of the k predicates. An ~t~—structure is equivalent to the following

program schema.
do if p1 exit;

if p 2 exit ;

S2 , P1

exit ,

:~cycle
end

If an
~k

—structul
~

is viewed as a procedure, the exit escapes above would be

analogous to FL/I—like return statements. Note that is a while—do structure.

BJ — structur e s are similar to that proposed by Zahn [Z l] .

(d) RE ~ REC , DRE , and DREC Structures.
11 II it

Next consider the definition of RE —structures.and their variants. An RE —

n n

structure is composed of basic actions , compositions, if—then—else structures , exit

commands of the form exit(i), where I is a positive integer constant such that

1 1 ~ n, and repeat—end constructS of the form

repeat

S
2~

A -

~~

—--

~~~

-- -.-

~~~~~

—- ——
~

-- -

~~~

• —- ~~~~~~~~~ - ~~~~~ 



— ~~~ -

~~~~~~~~~~~~~~~~ 

- -
__

1 --~~--

~
Tj~

~T Y ~~ ’ ~j 1~ . . •-v::P,~1\----1 ‘IC

L. - .

Figure (3~i Definition of
~k

tures

C

DECT
~ [J~ IiVtt I Lh~.J U-

—‘-‘a--.-- - ____________ I••55 -

—

— 6 —

where the s
1 are othe r RED—structures (see Figure 4). On execution, the

commands within repeat—end block are to be repeated indefinitely until an

exit command is encountered . The execution of an exit(i) command causes termination

of I enclosing repeat—end loops. In the case where there are fewer than i

enclosing loops, all enclosing loops are terminated . RE —structures are similar

to D—structures , except that loops m a y be exited at arbitrary points within the loop.

RE —structures have been developed from the control structures used in BLISS[W4].

An REC —structure (see Figure 5) is similar to an RE~_structure~ with the

inclusion of additional commands of the form cycle(i). The execution of a

cycle(i) command is similar to an exit(i) command , except that the i—th enclosing

repeat—end loop is re—executed .

A DRE —structure is defined as a RE —structure with the possible inclusionn n

of while—do structures. The execution of an exit(i) command causes termination

of the i—th enclosing repeat—end loop, ignoring any enclosing while—do loops.

A DREC
n
_strueture is defined as a DRE —structure with the addition of cycle(i) command

,•
~~~~~

RE —structures and their variants conform to conventional programs for which

transfers of control are restricted to the ends or beginning of enclosing control loo ;.

(e) P —Structures and L—Structures

Finally , a P —structure is defined as any well—formed structure stch that all

1—in , 1—out sub—structures have at most n predicates. An L— s t r u c t u r e  is

defined as any well—formed structure, i.e., any structure with no restrictions on

the number or configuration of predicates , actions , and transfers’ of control . Arm

L—structure corresponds to ~ program with free use of labels and g~~~ statements.

The above control structures embrace most of the explicit control

structures found in conventional languages. It is important to note

that these control structures do not take into account various “scope”

rules often associated with these control structures. In PASCAL for 
•

example, the value of a for—loop control variable upon exit is

undefined . Such issues arising from the value of interna l variables when control

is transferred into or out of a control loop are not treated in this paper.

- • I—-~- ~~~~~~~~~~~~ ~~~~~~ I —

k —
~ 

—



I 
~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ t~ ’~~~

‘I
_ __

_ FT.~ .T ~• .)repeat -

__________ L
end

Figure (4) Repeat—exit Structures

r
~~~~~~~~~~~~~~~ 

~
—i

Figure (5) Repeat—exit—cycle_ Structures

- 
- - . 

- 
•_ — ~~- ——



~~ I • - - • .  .•-.---“~ --— 
~~~~~~~

— 8 —

III. THE NOTIONS OF REDUCIBILITY AND EQUIVALENCE

Numerous results on the relative power of control

structures are presented in the next section . In an attempt to present

these results in a rigorous but conceptually simple framework , we first

define five sets of conversion rules for converting a control structure

into another form, and then introduce the notions of “reducability ”

and “equivalence” of classes of control structures under these conversion

rules. These notions are motivated by Kosaraju [K4] .

3.1 Conversion rules

In defining the various notions of conversion of a s t ructure S1 to a

structure S2. the following five properties are singled out:

(P1) For every input S2 computes the same functionas S
1. (i.e., S2 performs the same computationas S1.)

(P2) The primitive actions and predicates in S
2 areprecisely those of S

1.

(P3) For every input, the sequence of primitive actions and
predicates executed in S

2
is identical to that in S

1
.

(P4) S
2 can be obtained from S1 by “node splitting”. (Basically,

node splitting allows one to eliminate structurt~s with mu l-
tiple inputs by making multiple copies of the paths through
the structures (see P1].)

(PS) Each occurrence of a primitive action or predicate In
S
1 is used at most once in S2. (i.e., multiple copies of

predicates and actions in S
1
are not allowed.)

The conversion rules can now be easily stated as follows :

(a) Very Strong Conversion. A structure S
1 is said to be “very strongly”

convertible to a structure S2 1ff properties (P1) through (P5) are

satisfied.

“Very strong conversion” is Indeed very strong . Basically, the only

allowed rewriting rule in converting S~ to S2 is a reconfiguration of the

L. ~~~~II - - - - ~~~~~~~~~~~~~~~~~~~ .•- . I~~~~~~~~~~~~~~~~~~~~~~ • I•

I ~~~~~~~~~~~~~~~~~~~~~~~~ I S__~~ _.~S_~ ••__ I ~~~~~~~~~~~~~~~~~~ I ~

I
I
~~~~~

I
II

•
~~ W~~~~~

I
~~~~

_
~

- I~
__,. I~•~

_ I~ I~ I~~I I ~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~
•~~~~ I 5 1 1 ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ - I

— 9 —

existing predicates and actions in S1. From a programmer’s viewpoint,

there is one important consideration, namely that S~ and
~2

dif f e r only

in notational convenience.

(b) Node—Splitting Conversion: A structure S
1
is said to be “node—

splitting” convertible to S2 1ff properties (P1) through (P4) are

satisfied.

Node—splitting conversion Is still quite strong. Basically, S2 must be

derivable from S
1 by well—defined rewriting rules (node—splitting).

(c) Strong Conversion. A structure S
1
is said to be “strongly” convertible

to a structure S2 1ff properties (P1) through (P3) are satisfied .

Strong conversion is clearly not as strong as node—splitting conversion

for a restructuring of the primitive actions and predicates in S1 is

allowed in S
2. Nevertheless, the reduction is still strong in the sense

that the computation sequences in S~ and S2 must still be identical.

(d) Semantic Conversion. A structure S1 is said to be
“semantically”

convertible to S2 1ff properties (P1) and (P2) hold.

Semantic conversion implies a significantly lass restrictive condition

than the above notions of conversion,f or the only restriction on the

conversion of S1 to S2 is the prohibition of “new semantics”, i.e.,

new actions, predica tes , or variables.

(e) Computational Conversion. A structure S1 is said to be
“computationally”

convertible to S2 1ff property (P1) is satisfied .

Computationa l conversion is indeed weak. For the reduction of S1 to S2

we only require that the two structures compute the same function . The

introduction of new predicates , actions, or variables are all allowed.

L. I I I _ • I ~~~I~~~~~~~ • II I I~~~~I II .~~~~~~I 1 I ~~~~~I I II, I;l •I•_~~~I

• ~~~~ I I I I I II I • ~~~ , ~~~~~~ I I I I 1 I~5’I
~~~~~~~~~~~

F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 
- I 

- - -

— 10 —

3.2 The Notions of Reducibility and EQuivalence

The issue of “relative power” of various classes of control

structures can now be precisely stated . Given a set of conversion

rules, a class of structures C1 is said to be

(a) reducible to a class C
2 (notationally C1 

� C
2

) if every structure
in C1 can be converted to a structure in C2, but not necessarily
vice versa.

(b) strictly reducible to a class C (notationally C < C~) if every
structure in C1 can be converted to a structure ~n C2, hut not
vice versa.

(c) equivalent to a class C,, (notationally C1 C2) if every structurein C1 can be converted to a structure in C2 and vice versa.

Given a set of conversion rules from C
1 
to C2, reduction intuitively Implies

that C1 is “less powerful
” than C~ , strict reduction implies that C1 

is

“strictly less powerful” than C2, and equivalence implies that C1 and C2 are

“equally powerful.”

Given the notions of

(a) very strong conversion
(b) node splitting conversion
(c) strong conversion
(d) semantic conversion
(e) computational conversion

we shall denote the “reduction”, “strict reduction”, or “equivalence”

two classes of structures by

(a) 
~~~ 

<

~~~~~~
‘ and 

~vs

(b ) ~~~~~ 
~~~~~~~~

, and

C c) , , and5 S S

(u ’ � , , and

L

sen sen Bern

(c) - , , and i
c C

-
C

0 1 1 1 1 1 ~~~~~~~~~ , - ~~~~~~~~~~ ~~~~~~~~~ *~~~~~~ & I I I II I IIIII I I I I I : I II O I

—--.5—I- I — I ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~ - •~ I5_~~ ~ I•

-11 -

IV RESULTS ON CONTROL STRUCTURES

This section reviews several major results on control structures

and discusses their practical significance. These results fall into

two main categories:

(1) The classic result of Bohm and Jacopini (Bl] on the theoretical
completeness of D—structures.

(2) The results of Kosaraju [K4], which place all of the control
structures given earlier into a hierarchy under semantic
conversion.

4.1 The Bohm and Jacopini Result

The classic result of Bohm and Jacopini on the theoretical completeness of D—structures

was perhaps the first major (albeit initially little recognized) result in

structured programming. This result is well—described in a paper by Mills (Mi.].

Briefly stated , the Bohm and Jacopini paper (Bl] makes the following points:

(a) D L, i.e., ~~~ L—structura (including those permitting arbitraty
transfer of control) can be converted to a computationally equivalent
D—struc ture.

(b) In the computational conversion of an L—structure to a D—structure ,
boolean control variables may be introduced , bu t the values may be
stored in a stack and only the value of the top element in the
stack need be known at any given point in the program.

The importance of result (a) was the establishment that the “goto”

statement is, at least theoretically, not needed to perform computations , and

that three simple but familiar control structures: sequential composition, if—

then—else, and while—do , are in fact theoretically complete control structures.

1 1 1 1 I ~~~~~~~~~~~~~~~~~~

I
I~~~~~~~~~~~ III~ ~~~~~~~~~~~~ I~

— 12 —

1: if Ali] < x
then if L[i] = 0

then L[i] := m
else begin L : L[i];

gpto l
end

else if R[i] = 0
then R[i] := m
else begin i := R h]

goto l
end;

A [m] : x

Figure (6a) A control structure not reducible to a D—structure
without new variables or predicates

v := false;

while ,v do
if A[i] .- x

then if L[i] = 0

~~~~ fl begin L [i] :=
v:= true

end 
-

elsei:= L[i]

else if R [i] 0
then begin R h ]  := m;

V := true
end

else I := R [IJ;

A[mJ : x

Figure (6b) Use of a new variable to reduce the control structure
of (6a) to a D—structure

I I _5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •— ~~~~~~~~~~ — ~~~~~~~~~~~~~~~ 
__I_ , ,



I~~~~
I I I I~~~~~~~~~~~~~~~~~~~ 55 - I _

~~~~~~m O ~~~~~ 7 ~~~~~~~~~~~~~~~~ ~~~~~~~ I I~~~~~~~~~~
11 55~~

• ~•~ •_ I• _~__ _~

-13 -

An example of the conversion of an L—structure into a 13—structure is given

in Figure (6). This example comes from a tree searching and insertion program

of Knuth (K2]. The index m denotes the array location into which a variable x

is to be inserted . The arrays L and R denote the left and right branches of a

tree organization that is superimposed on an array A. Figure (6a) depicts a

program that contains two transfers of control back to the structure entry point.

Figure (6b) shows a computationally equivalent 13—structure. The conversion

employs an intermediate boolean variable whose value is checked at the end of

a while—do structure. Two comments are in order here. First , the 13—structure

of Figure (6b) is not necessarily less understandable than the L—atructure

of Figure (6a). Second , as we shall discuss later , the L—structure of Figure

(6a) can be nicely expressed without goto ’s using an REC
1—control structure.

II semantically
The question arises, under what conditions is a control structure (convertible

to a D—structure, i.e. without introducing ne” boolean variables or changing the

particular semantics of a program. The answer (1(4) lies in the detection of

two loops with two or more distinct exits. In general, an L—structure is

convertible to a 13—structure under semantic conversion if and only if the

structure does not contain a traceable loop with two distinct exits. If a

structure contains only loops with one exit, the structure ie~convertib1e to a

D—structure.

For example, consider the program schema of FIgure (7), taken from a

program in Gross and Brainerd [Cl]. This is a typical structure that cannot be

converted to a 13—structure without new variables or actions. Here we have a

loop consisting of the sequence a
3
p1

p
2a4p3

a5 with two exits, one through 87
and

one through a8. Note that the branch to 86 Is not an exit from this loop since

the flow of control must return to 83. Similar arguments hold for the structure

of Figure (6a).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I II ~~I I • I~~II~_  I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I



— ~~~~~~~~~~~~~~~~~~ -

—14—

— -5.-.

I

_ _  

L~J
I i i

I Ill S ~~ i1

rc, :j 
~~~~~~~~~~ 

a7 ft -j

_ _I ~~~~~~~~~~~ I
.

~~~

---H ±

Figure (7) A “typical” structure that is not .convertihje t~ a D—a ~~r iw t i i r r .

without new variables or new actions

~~~~~~~ AIj A .~~~~~ . ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ - ----_ A ~~~~~~~~~~~~~~~ . I I - - - ~--I--I_
O0 a_ I

-S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~

-

-15 -

4.2 Kosaralu’s Hierarchy of Control Structures

There have been numerous attempts to discover the limitations of D—structures

as well as to explore the expressive power of other control structures. Knuth

and Floyd (1(3] have shown that D .< L and given some intuitive ideas that

13 L. Bruno and Steiglitz [B2] have formally proved that D L. Kosaraju (1(4]

and Peterson et al [P11 have prove~t that D <
sein L. These results point to the

fact that there are indeed fully labeled programs that cannot be converted to

13—structure form without changing the length, execution time, or primitives

of a given program. Peterson et al have also shown similar results for REn

structures, i.e. 
~~~~~~~ 

<~~ L, and RE~ E~~~~~ L.

These results fail to answer one important question, namely how do the

structures given earlier relate to each other. The results of Koraraju [1(41

resolve this question.

The basic results of Koraraju are outlined in Figure (8). [ref [1(4] and

private communication]. An upwards solid line connecting one class of struc-

tures C
1 to another class C2 means that C1 is strictly reducible to C2 under

the notion of semantic conversion, i.e.,
~

< sea C2. An upwards dotted line

means that C � C . The main results defined in Figure 9 are summarized as1 sea 2

follows. Under the notion of semantic conversion,

Cl) for m<n, there exist BJ~—atructures which cannot be converted to BJm
struc

tures. In particular, without the introduction of new predicates or actions,
3J2—structures are

”more powerful”than BJ1—structures, which are identical to
D—structures.

I , I ~~~~~~r,ro~,fl.IIr.. I I I ~

~
_

~~
I I •.__=~~~~I_ :I v I:II~~~~

I . _
~

-5 I - 5~~ - ~~~ -
I-S - — — _

— II ~~~~~~~~~~~~~
I I - ~~5S55S51~~~~~~~~~~

_ I_ ~~~~ I~-

—16—

RE REC. DflEC E I

DRE E DREG
fl I

I-.
-

A.- I

RE E REC
n rt

I I I

DRE D1~EC
~~~ 2 1I —

.—~
— I

.- I

~~2 
REC

2 
-

— — 
DP~E1 Dr~Ec1 

- 

... 
1

RE1 I

•

B.J
3 

- 

~V~\~~- I~-tt [O?~
( 

I

’

-

. 

I.

BJ
2

D ! 13’ : BJ
1
: p

1

Figure (8) Kosaraju ’s Hicrar chy of Control Structures under
“Semantic” conversion.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I I~~~ I I I~ II I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _


-~~ ~~ I • - I~~~~~~_~ ~
_ :I.______I

15_ •

~
-S_ -

~

_ I I

I 1 1~~~~~~~ I~~~~~~~~~_ I~~~~~~~ I 1 1 . 5 I - -

—3.7—

(2) RE.d—structures are’~ ore poverful”than BJ —structures or D—structuees.n
(3) It is believed that RE —structures are equivalent to REC —structures (asyet , this is an unprovLi conjecture). Somewhat surprisingly, it isbelieved the addition of the cycle(i) command does not add theoreticalpower to the repeat—exit control structure under ae~~~tic conversion.I,

(1) DRE —structures are more powerful than RE —structures. Again somewhatsurprisingly, the addition of a while—do ~ontrol structure does in fac tadd theoretical power to the RE —contr~T structure.n
(5) Finally, if no a priori bound is placed on the index a, any fully labelled

Other results not shown in Figure (8) are given in [~4].
I

structure is semantically convertible to an R.E~, REC~ , O~il5REn structure

As an example illustrating this hierarchy, consider the structure of

Figure (9 a), which is based on the control structure recently proposed by

Zahn (Zl, K2J. This control structure represents a computation where a

computation sequence is to be repeated until one of a number of “events”

occurs. Upon realization of one of the events, the repeated loop is exited.

Termination of the loop then invokes a specific computation determined by

the event that has actually occurred. This control situation is a fairly

natural one , and is quite close to a BJ~=structure.
- - -I I

Noting that D sam BJ~ , the conversion of this structure to a fl—structure

requires a new variable , as shown by the program in Figure (9b) . On the other,
U

hand, noting that 8
~n~~sem RE1, this structure, can be nicely converted to

an RE1—structure, which is given in Figure (9c).

As another example of the utility of RE1—structure,
consider the tree

searching and insertion of the program of Figure 6. This program can be

readily converted to an RE
1
—structure, as shown in Figure (10).

From a programmer’s viewpoint, the results given above suggest tha t there

is some question over the practical utility of programming with only 13 or

D’ -structures. Aside from questions of efficiency , the examples also suggest

that the use of stronger control structures like RE—structures and their variants

may obviate the need for
~~~~ In the next section I present a key example

that, in fact , presents evidence counter to these sug~gsstions.

L ~ I I _ I~~~~~~~~~~_ _ _ _ _



-~~ ~~~~~~~~~~ ~~~~~~~~ 
“

~~~~ ~~~~~~~~~~~~~~~~~~~

_

-18-

__ I

~ b~~~ event

a
2 I

-L b2J event

~~ ~~~~~(event)of~-

_ _ _

~~~~~~~~

t : iJ  j

I a ~+l 1

Figure ( ~a) The Control Structure p~roposed by Zahn
1 - ~ i ,i , ... ,i n1 2  a

I - -  I~~~~~~~~~ II



___________________ ____ I I I  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ - I I I-S

I
-19-

v : false
whi1e~~~V d obe&ir 

-

V ; true;
ci

then~~~&~~~bi;event :—

else begin
~

I a

then begin b2;
event :

end
else

begin

Pm

event —
end

else ~~~~
~~IT
v ~—
end

end

case (event) of
1: c

1
;

2: C
2
;

n: c
n

end

Figure C 9b) Zahn’s Control Structure expressed as a fl—structure (under
computational conversion)

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ I
~~~~~~~j



— 
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~

—20—

repeat a 1 ;

~i
p1 then begin b1;

event :—
exit (1)

a2;

~L then begin b2;
event :—
exit (1)

a ;

~~ ~m
bel&in b ;

event := i
exit (1) a

end;
a,,~ 1

end

case (event) of
1:

2: C
2
;

n: Cn
end

Figure (9 c) Zahn’s Control Structure expressed as an RE1 —structure

-I
I

I ~~


~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-21-

!!peat
if A (iJ < x

then if L(i] — 0
then begin L[i] :— a;

exit (1)
end

else I :— L(i]

else if R[i] — 0
then begin R(i] :— a;

exit (1)
end

else i :— R(i]

end;

Ajs] :— x

Figure (J o) Tree—search prOgram of Figure (6) as an RE1—Structur e

- — —. -~~~~~ - -— ~~~~~~
— ~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ I• I_~~~~~~~I~~~~~~ ~~~~~~~~ II_

I ~~~~~~~~~~~~~~~~~~~~ I ~~~~~~~~~~~~~~~~~~~~~~~~ I I~~~’~~I~I ~~~I I I I ~~~~~~~~~~~~~~~~~~~~~5~~~~~~ II 1 f ~~~ ~~~~~~~~~~~~~~~~~~~~~~

—22--

V. AN EXAMPLE

When all is said and done, the practicing programmer is primarily interested
in solving problems using some given set of control structures. Theorems and re—

sui te on the conversion of one program or flowchart into another form may be of

some interest, but certainly not the basic issue. This section presents an example
thrected at resolving this important issue. In particular , are there problems

for which D or D’—structures do not provide as clear a solution as REC~—structures.

More precisely, are there problams for which there is a solution S2 C REC 2
and for any reasonable solution S1 £ D, S1 c~ 2 and S2 is significantly clear

tha n S1?

I must admit , the problem presented here was originally proposed with the hope

of supporting a positive answer to the above question. The problem appeared to have the

right set of ingredients , i.e. the need for cycling back to a loop entry from ~-ith—

in a loop and the need for an escape exit nested wi thir tnultip]e loops.

This problem is called the “qualified nane’ nrohlein . Basically , the problem

is to write a program segment to set the value of a variable LEGAL NAME to true or

false according to whether a given PL/I qualified name is a legal or illegal reference.

1r PL/I, one can declare “structures” with nested components, e.g.

DFCLARE 1 A •
DECLARE 1 X ,

2 B 2 B ,
3 ’C HAR(5) 3 C FLOAT ,

- 3 0 FIXED ; ‘ 3 E FLOAT :

A ‘reference ’ to a structure is considered legal if and only if the reference re-

fers to one and only one declared structure component. Using the above declaratiors ,

A , A .B, A .B.C, and B.E are legal references, whereas B and B.C are Illegal.

To solve this problem , a number of primitives are assumed :

(a) A linked list of entries call QUALIFIED_NAME, which represents the
-tn ortnatlon about a qualified name.

(b) A function BASE ENTRY, which when applied to a qualified name
yields the base entry in the list. e.g. the base entry in the qualified
name A . B . C Is the entry for C.

~~~~~~ I . A .  _I~~~~~~~~~ _~~~ _I S~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ II



7 1~~~~~~~ I~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
•I’ ”~•~~~~ ~~~~ I - -

- I

—23—

(C)  A lInked liet of entries called SYMBOL_TABLE , which contains entries

for each identifier declared in a program.

(d) ~ function NEXT, which when applied to a null symbol table entry gives
the first entry, and which when applied to a non—null symbol table
entry gives the next entry in the symbol table (assuming some pre-
determined order).

(e) A function FATHER, which when applied to a qualified name entry or symbol
t&~le entry, yields the next higher—order entry in the corresponding
qualified name or symbol table, or the null entry if there is no father
entry.  For example , iti the linked list for A.B.C, the father of the
entry for C is the entry for B , and the father of the entry fo r A is
the null entry.

(~) A function NAME, which when applied to a qualified name entry or a
symbol table entry yields the identifier for that entry .

A solution to this problem using REC9—structures is given in Yjgure (h a). h ere , 
-

the PASCAL case statement is extended to allow for multiple case conditions. This

solution is quite clear and makes liberal use of cycle, and exits. The conver—

‘ion of this solution to a 13 or D’—structure under re~,trIcted condItions (5~~ eiry

of the properties P2 through P5) is highly tedious exercise, resulting in a much

longer and le~~ efficient solution. Nevertheless, a new (computationallv equiva-

lent) solution using ij—structur~~can be devised , as given in Figure ~Il~~).

This solution compares quite favorably with the solution using REC2—structures.

It is important to comment here that , in addition to the formal results presented

earlier, that there have been numerous other papers LF1,Ll,Pl,W4 ,Z1] suggesting the

limitations of D or Th.Lstructures. As far as I can perceive, most of these papers

only compare the conversion of abstracted program schemas or flowcharts into D or

D’—structure form. Not once have I seen a problem that really shows the limita—

tions on clarity with D or D’—structures. The classic case of the abaormal exit

from some deeply res ted procedure just does not hold weight, for the notion of

I I I II~~ III I I~~~~~~ I II II~~~~~~~~~ I~~~~~~~~II~~~~ II~~~ I~~ ~~~~~~~~~~~~~~~~~~~~~ 
I
~~~~ I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~


I ~~~~~~~ ~~ I_~~_~~ — ~~ I

—24— .

-

passing control to a procedure that does not return control to the calling pro—

gram segment is counter to the very notion of 1—in, 1—out control structures -.

I have long supported the view that D and D’structures are not sufficient - .

for the practicing programmer. Recently I have tried to support this opinion with -

example problems far too numerous to mention here. Frankly, I have not found such

an example problem.

I
I
:1

1


~~~~~~~~ I I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I l I l l 
~~~~~~~~~~ 

I I I~I
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~I I 

—— I~ I I - - I ~~-•_~~ I~~~~~ I_ - - I

—2 5—

QN ENTRY — BASE_ENTRY (QUALIFIED_NA)~ );
BASE_ID - NAME (QN ENTRY);
ST ENTRY :— NULL;
DIRECT HIT :— false

I - NUM_PARTIAL_HITS :— 0;

repea t

ST ENTRY : NEXT (ST_ENTRY) ;

case (ST_ENTRY NULL, NANE(ST_ENTRY)”EASE_ID) of

(T ,F): exit (1)

(F,F): cycle (1)

(T,T): {cannot occur)

(F,T): begin

LOCAL QN ENTRY : - FATHF.R(QN_ENTRY);
LOCAL_ST ENTRY : - FATHER (ST_ENTRY) ;
SKIP :— false;

repeat

I

I

I case (LOCAL_QN_ENTRY NULL, LOCAL_ST_ENTRY—NULL) of

(T T) : if SKIP
— 

then NUM_PARTIAL_HITS :- NUN_PARTIAL_HITS + 1
else begin DIRECT_HIT :— true;

exit (2)
end

(T ,F): NUM_PARTIIt_HITS :— NUN_PARTIAL_HITS 4 1.

(F,T): {no operation}

(F,F): begin
if NAME (LOCAL QN ENTRY)-NAME(LOCAL_ST_ENTRY)
— 

then LOCAL_QN_ENTRY : FATHER (LOCAL_QN_ENTRY)
else SKIP : true;

LOCAL_ST_ENTRY : FATHER (LOCAL_ST_ENTRY ) ;
cycle(l)

end
end {cas e} ;

çycle(2)_  -

~~~ {repe~t}
end

end {case}

if DIRECT HIT v (NUM_PART IAL_HITS”l)
—

then LEGAL NAME : true
else LEGAL_NAME : — false

Figure (lIa) A Solution to the qualified Name ProblelD as an REC2—Structure

~I

- — ~~~
I -

—26— :1
QN ENTRY : - BASE ENTRY (QUALIFIED NAME); . -

~

BASE_ID :~ NAME (QN_ENTRY) ;
ST_ENTRY : - NEXT(NULL) I

DIRECT_HIT :— false;
NUN PARTIAL HITS :— 0;

while (ST_ENTRY ~ NULL) A (DIRECT_HIT) do
I

begin -

if NAME (ST_ENTRY) = BASE_ID -

then begin

LOCAL_QN_ENTRY : — FATHER (QN ENTRY);
LOCAL_ST_ENTRY: — FATHER (ST_ENTRY) ;
SKIP : false;

while (LOCAL QN ENTRY ~~ NULL) A (LOCAL ST_ENTRY # NULL) do I
begin

if NANE (LOCAL QN ENTRY) :- NANE(LOCAL_ST~ENTRY)
then LOCAL_QN ENTRY: - FATHER(LOCALJ?~_ENTRY)
else SKIP := true; I

LOCAL_ST_ENTRY : — FATHER (LOCAL_ST_ENTRY) ;
end;

case (LOCAL_QN_ENTRY — NULL , LOCAL_ST_ENTRY - NULL) 2L
(T,T): if SKIP -

then NUN PARTIAL_HITS :- NUN_PARTIAL HITS + 1
else DIRECT HIT := true

(T,F): NUN_PARTIAL_HITS :— NUN_PARTIAL_HIT S + 1 1
(F,T): {no operation)

(F,F): {cannot occur) j
end (case) -

sad {begin} ,~
I

ET_ENTRY :- NEXT (ST_ENTRY).

if DIRECT_HIT V (NUM_PARTIAL HITS —1)
then LEGAL NAME :— true
else LEGAL_NAME : false

- I
Figure (lIb) A Solution to the Qualif ied Name Prob !em as a D’—Structure 11

_ _ _ _ _ _ _ _ I I~~~~~~~~~~~~


~~~~~~~~~~~~~~~~~~~ I I I II~~~~~~ I~~~~~~~ I~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~II I~~~I I~ ~I II~~~

—2 7—

VI. CONCLUSIONS

There are three basic conclusions of this paper.

— (1) From a prograimner’s viewpoint, results relating to the conversion of
one program form to another form under restricted conversion rules
are mainly of theoretical interest only.

(2) The utility of the goto, as well as other higher (non D or 13’) control
structures, is seriously ~ueettnneA .

(3) The utility of D and D’—structures is supported.

My first conclusion may be difficult to accept, for there have been

numerous formal results (presented here and elsewhere) on the limitations

of control structures under various notions of conversion. It is

tempting to conclude from tho~ r~ results that the practicing programmer

would be unduly limited with the control structures that did not hold up

well under conversion. As mentioned earlier, the practicing programmer is

hardly ever concerned with converting program. from one form into another.

My contention is that formal results on .~onversion provide little real sup-

port for the practical use of any particular control structure.

My second conclusion agrees with the views of Mills [Ml] and others.

I have found no evidence for retaining the goto statement. The recent work

of Knuth [1(2] surveys many opinions on the use of various control structures,

F 
including the goto. However, I strongly believe the arguments that he advances

in favor of the goto, clarity and efficiency , are not supported .

The argument from clarity is exemplified by “Sometimes it is necessary

to exit from several level. ... and the moat graceful way to do this is a
direct approach via the goto or its equivalent.” [1(2, p. 18] Knuth discusses

eight example problems and point, out the virtues of severa l solutions that

use the goto. In my opinion, not one of these solutions is cleater than the

solutions without the g
~~~ 

statements. Consid.r, for example, the programs

In Figures (6a) and (6b) which were derived from the “tree searching” examrles

hII IILk __..__A _~I_~_I _ • _ _ _ ~~~~ I__ __I~ __~ _ 1 111 ~~~~~~~~~~~~~~ I I_ - —~ ~~~_ _ • I~I~•___ ~~~_ I_ — - I I —

I ~I ~~~ I1~

,

—28—

of Knuth. The solution using the goto statement (6a) is not obviously clearer

than the D—structure one in (6b). Furthermore, changing the name of the

boolean variable “v” to a more descriptive one, e.g. “empty space found”,

makes the debate almost vacuous. Clarity is, of course, a highly subjective

~II quality , but I believe that a thoughtful reading of these example. will

support my contention.

The argument from efficiency, that the goto is less time consuming

than alternative control structures , is frequently made. Knuth, for example ,

says “Sooner or later people are going to f ind that their beautifully

structured programs are running at only half a peed . .. [K2 , p. 3] He does

present several example programs whets a solution with goto statements is

indeed more efficient than solutions with alternative control structures

(though a factor of two is never obtained). Nevertheless , it is my basic

contention that all such example programs would be just as efficient if

processed by a good optimizing compiler. Certainly , no optimizing compiler

can be expected to perform “macro—efficient” optimizations like the conver-

sion of a linear search into a binary one. On the other hand, redundant

tests and repeated actions are typical of the “micro—efficient” conditions

that can be eliminated by good optimizing compilers, rare though they may

be. This latter type of optimization should not be the responsibility of

the typical programmer, who should be primarily interested in developing

clear, macro—efficient programs.

Siatlarly, the same clarity and efficiency arguments do not support to any

great degree the imiltiple—exit control structures , like that proposed by

Zahn (El. , 1(2]. Furthermore , these structures do not appear to provide a

more “natural ” way of thinking about the problem .

LA
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - ~
__I~ I:~~I I I _ __ ~~~_~~ I

_ I  
~~~~~~~~~~~ ,. I 

~~~ -_ __ •_ - I~~_ •~~~~ I

—2 9—

My third conclusion relates to the utility of D’—structurea over

13—structures. Peaders may have observed the use of case, if—then , and

repeat—until structures (all of which are D!~structures) in the solution

to the qualified name problem. From the results presented earlier , the

only real difference s between D and D ’—s tructurea is notational convenience.

For example , the use of case structures can often prevent the need for

multiple nested if—then—else structures , and the use of repeat—until

structures can often prevent the use of somewhat artificial while—do

structures. Since D’—structures preserve the important 1—in , 1—out property

of D—structures, the notational convenience provided by D ’—structures is

strongly recommended .

In parting, I must admit that any recommendation for a good set of

control structures is indeed subjective . However , I must conclude from this

examination that considerable new and definitive evidence is needed before

we suggest that D or D’ control structures , with all their clarity and sini—

plicity, are not sufficient for the practicing programmer.

Acknowledgements

I am very grateful to Rao Kosaraju , whose mastery of the theoretical results

in structured programming is impeccable , and to Michael Marco tty , who contribute d

many new insights to this paper and who suggested the PL/I qualified name problem

as a challenge to D
1 —structureS.

LAI I I II I~I I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -——--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-, _~~•I _ - -

-

1~

REFERENCES

Al. E. Ashcroft and Z. Manna
The Translation of ‘GOTO’ Proirams to ‘WHILE’Programg
Report No.STAN—CS—71—l88, Computer Science Dept, Stanford University 1971.

Bi. C. Bohm and G. Jacopini
“Flow Diagrams , Turing Machines and Languages with ~Uy l~.,oFormation Ru les”
Communications of the ACM Vol.9, No.3, May 1966.

B2. J. Bruno and K. Steiglitz
“The Express ion of Algorithms by Charts”
Journal of the ACM, Vol.19, No.3, 1972

Dl. E.W. Dijkstra
“Notes on Structured Programming”
in Structured Programming, Dahl, Dijkstra, and Hoare,
Academic Press, New York 1972.

Fl. D. Friedman and S. Shapiro
“A Case for the While — Until”
SIGPLA1I Notices , July 1974.

Gi. J.L. 
- 
Cross and W.S. Brainerd
Fundamental Programming Concepts
Harper and Row, New York 1972.

Hi. P. Henderson and R. Snowdown
“An Experiment 4n Structured Programming”
BiT 12, 38—53,- 1972

H2. C.A.R. Hoare and N. Witth
An Axiomatic Def inition of the Programming Language PASCAL
Proc. Symposium on Theoretical Pro~ranuning, Novosibersk, August 1972

Ki. B.W. Kernigh’~n and P.J. Plauger
The Elements of Programming Style
McGraw—Hill Book Company, New York 1974

K2. i.E. Knuth
“Structured Programming with GOTO Statements”
Computing Surveys, December 1974.

1(3. D.E. Knuth and R.W. Floyd
Notes on Avoiding GO TO Statements
Report No.CS—148, Computer Science Dept. Stanford University, 1970.

1(4. I~~. Kosaraju
“
~ na1ysis of Structured Programs”
Journal of Computer acta Systems Science , January 1975.

— I - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I~~~~~~~~~~~~~~~~ _ _ I II —~~~-~~~~~~~ - _ -I



~ — I -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ -~
- 

I —-

I

Li. B .M. Leavenworth
“Programming vith(out) the GOTO”
Proceedings of the ACM Annual Conference, Boston, August 1972.

L2. H.F. Ledgard
Prograimning Proverbs
Hayden Publishing Co. Rochel].e Park , N.J., January, 1975.

Ml. M .D. Mills
Mathematical Foundations for Structured Prograa.ning
FSC 72—6012 Federal Sys tem Division , IBM Corp., Gaithersburg , )~~. 1972.

P1. W.W. Peterson, T. Kasami, and N. Tokura
“On the Capabilities of While, Repeat , and Exit Statements”
Communications of the ACM , August 1973.

P2. Proceedings of an AcM Conference on Proving Assertions about Programs
SIGPLAN Notices,~~.Tan. 1972. and SIGACT Newa, Jan. j y f ~~.

Wi. G.M. Wethhe~g
The 1’~ vcholog~~ of Co~ p ut t I r  Prc~rammitt~
Van I-1o~~ rac.4 Reinhold . ompany , New York, 1971.

W2. N. WIrtli
This Pr~~ramming~_Lan~~iare_PASCAL (revised rop~rt)
E~d~ in~;~siche Techninch Hoshschula, Zurich , Noveribet , 1972.

W3. N. Wirth
“ Frogcmn Devel-!pment by St~~w1~ e Reftnei~ent.”
(:ouniun1c~ta.oru~ of the ~tM, April, 1971.

1~74. W.A. Wul.f, L.B. Rucsell, and A .N. Habermnnn
“BLI~3S: A Language for ~~stc:rs Programming”
Cou1mu’.icat~.on9 of_th~ AC~, Dec., 1971.

W5. W.A. ~u1f and M. Shaw
“Global Variable Considered ‘larinful”
SIGPLAN Notices, Volume 8, Number 2, Pe5ruary l~.73.

21. C.T. Z&j1~
“A Control Statement for IJ4 t ral ¶op_down Structured Pro~r~nmu.n6’

or Prograt~~~
pg Lanq u~g~~~ Paris, 1971.

- 
I ¶1 

-

I 
~~~~~~~~~~~~~~~~~~~~~~~~~~


