
r AWlS 051 ILLINOIS UNIV AT URBANA CHAMPAIGN CENTER FOR ADVANCED——ETC FIG 012
RESEARCH IN NFTWORK DATA MANAGEMENT RESOURCE SHARING. NULTI—COP——ETC (U)
MAY 16 P A ALSBERG . G 6 PELFORD, 3 D DAY DCAtOO—75 C—0fl21

UNCLASSIFIED UIUC CAC DN 16 2O2 CCTC—WAD—650 5 NL

_ _ _ _

rir•~
!r~~9 ii

I

A

CAC Document Number 202
CCTC - WAD Document Number 6505

Research In
Network Data Management

Resource Shoring

Multi - Copy R.sili.ncy T.chnlqu.s

May 31, 1976

-.r~ ~~~~~~~J: I
T1

~~~~~~~~~

( 
~~CAC Document Number 2

CCTCo~ X~]Documei,t Number 65 5

Research in Network Data Management ,
1

Resource Sharing,
-
~~~ Multi—Copy Resiliency

_Techniqu~~~ J

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ rep~~JGeneva G./Belfor~
John D./DayL Enrique/Grapa

Prepared for the
Command and Control Tecjmnjcal Center

WW MCCS AD? Directorate

Agency __

~~~

j /
w •~t ~

;,~t;~fl
~~

.
~
fl B~~~ SO~~flfl U

€- .,f’ -
~ 0

Center for Advanced Computation

(
~~
r

University of Illinois at Urbana—Champaign
Urbana , Illinois 61801

-

Approved for relea

’

~~~~~~~~i? A~.. &kAL.~i_ ip,.
Peter A. Alsberg, ~~~~~~~~~~~~~~~~~~~~

l~~
i
~

~



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Table of Contents

Page

Executive Summary 1

Distributed Resource Sharing 1

Resiliency 1

Feasibility 3

Conclus ions 6

Introduction 8

Resiliency 9

Examples 10

Related Work in Distributed Systems 11

Techniques for a Resilient Service 13

The Chained Model 14

A Broadcast Model 23

n—Host Resiliency for n > 2 25

Adequacy of Two—Host Resiliency 27

Resilient Service Down Time 27

Removing the Two—Host Resiliency Criterion 31

Failure Detection and Recovery 33

Overhead Due to Resiliency 39

Comparison of the Models 41

Alternative Resource Sharing Strategies 44

Range of Application 46

Synchronization Primitives 46

Directories and Data Access 47

Load Sharing 47

References 48

hIIFIt~.L_~A -- -,- . . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


~~~ ~~~~~~ 
W

___  ~~~______ ~~~~~~~~~~~~ ——r
Executive Suintnary

Distributed Resource Sharing

Current intercomputer networks like the ARPANET, PWIN, CYCLADES,

and others provide the basic communications facilities necessary to

permit access to remote resources. These communication networks and

their existing protocols are a necessary component of a distributed re-

source sharing system. However, by themselves, the communications

networks are not sufficient to permit the automated distributed sharing

of resources. High level protocols must be developed to permit cooperation

in other than an ad hoc manner and techniques must be developed to

provide resilient service to a user community. Network technology at

the present time might better be characterized as resource access technology

than as a technology which facilitates automated resource sharing.

In this paper we consider an environment which requires the

sharing of resources dispersed over a large geographic area on a large

number of possibly heterogeneous host computers. Since the hosts in

this environment are separated by large distances, there is a significant

and unavoidable message delay between hosts. Hence, a major consideration

when choosing a resource sharing strategy is to minimize the message

delays required to support sharing.

Resiliency

The current protocols on the ARPANET (and similarly in its

“copy” PWIN) operate under basic assumpt~ons that arc at best questionable

in a production networking environmeni . It is assumed that all hosts

correctly obey protocol. It is assumed that no host is malicious. It is

assumed that messages are not lost in the network. It is assumed that

when a host fails, it will fail at a “convenient” point in the execution

1

- ~~~~~~~~~~~~~~~~~~~ ~~~~~ -~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~



- ~~—‘——~~~~~~~~~~-‘--‘——-—.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,~~~~~~~~~ .— . 
- -~- -~~~~~~~

of a protocol sequence. In fact, all of these assumptions are commonly

violated every day in the ARPANET environment. What is required for

production networking are resource sharing strategies which are as

resilient as possible to protocol violations, malicious attack, com-

munication failures, and host failures.

In this paper we describe resiliency ter~hniques to support

extreme reliability and serviceability. The type of resilient service

addressed has four major attributes.

1. It is is able to detect and recover from a given maximum

number of errors.

2. It is reliable to a sufficiently high degree that a user of

the resilient service can ignore the possibility of service

failure.

3. If the service provides perfect detection and recovery from n

errors the (n+l)st error is not catastrophic. A “best ef.~.~rt”

is made to continue service.

4. The abuse of the service by a single user should have a

negligible effect on other users of the service.

These four points are a careful way of saying that the user of

a resilient service should not have to consider the failure of the

service in his design. He should be able to assume that the system will

make a “best effort” to continue service in the event that perfect

service cannot be supported. Finally, the system will not fall apart

when he does something he is not supposed to.

Resiliency cannot be perfect in the large network environments

we are considering. It is, for instance, possible but not likely that

all of the hosts on a large computer network will simultaneously fail

~~~~~~~~~~ ~~~
. .

- -~~~~~~
,—

~
-.

~~
-

~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
.-.- ~~~.- ~~w,.w_w- 

~~~~~~~~~ 
-w-—— —~~~

miii ~~i ~~ - - . -

and all services will be disrupted. Thus, it is important to establish

criteria for acceptable resiliency in this environment. We introduce

the concept of n—host resiliency. In order for service to be disrupted ,

n hosts must simultaneously fail in a critical phase of service. It may

be possible for n or more hosts to fail outside of such a critical phase

without disrputing service.

Feasibility

Techniques are described for supporting services that are two—

host resilient to commur’ication system and host failure. Furthermore,

it is shown that greater than two—host resiliency is unnecessary. A

two—host resiliency criterion is sufficient to achieve failure intervals

measured in centuries. Furthermore, if implemented as described in this

paper, this basic failure interval can be increased by many orders of

magnitude.

The resiliency criterion is a question of service integrity.

If the criterion is met, the service will almost certainly be functioning

correctly. Unfortunately, large service hosts are down for substantial

periods of time during the day for both scheduled maintenance and un-

scheduled failures. In order to guarantee that a service is available,

a possibly large number of service sites may be required simply to have

a reasonable expectation that at any time at least two of them will be

up. This raises an important issue related to resiliency — the availability

of resilient service.

Figure 7 and Tables 1 and 2 in this paper show the expected

service down time under a wide range of possible host down times and

number of service hosts. For example, a typical down time pe day for

large service hosts like those found on the PWIN tends to be in the

range of two to four hours due to all causes (both scheduled and unscheduled

3

L -
~~~ - - --—-~~—-- .- - -~~~~~~~~~~ - ~~~~~~—-



-.—;
_

_~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~ 

-

down time). If the down time averages four hours per day then a three

host service would have interruptions averaging slightly more than 1½

hours per day. A four host service would have interruptions averaging

slightly less than ½ hour per day. If the average server down time were

a more optimistic two hours per day, then the resilient service would be

down approximately ½ hour per day if three server hosts were involved

and only three minutes per day if four server hosts were supported. In

crisis situations it is possible temporarily to reduce the average host

down time. For example, all but essential preventive maintenance can be

eliminated. Also, qualified repair personnel can be stationed in the

computer room around the clock for the duration of the crisis. It is

conceivable that average down time per host may be reduced to one hour

per day. Under those conditions a two host resilient service would

still have almost two hours of interruption per day — clearly unaccept-

able in many crisis situations. However, three host resilient service

would only be interrupted approximately seven minutes per day. A four

host resilient service, however, would have an average interruption rate

of slightly less than ½ minute per day.

When resilient service must be supported in a WWMCCS—like

network, it appears that on the order of three or four service hosts

must be supplied. This will support a service availability in an accept-

able range during non—crisis periods. In a crisis situation, by judicious

management of down time parameters, the same three or four service hosts

should be capable of providing significantly improved availability for

the duration of the crisis.

In some applications it m ay be desirable to maintain a two—

host resilient strategy whenever two or more hosts are available.

L - - .. -



—
~
-- ~~~~~~~~ -~~~r ~~~~~ ~~~~~~~ _‘~~

‘
~~~~ ~~~~~~~~~~~~~~~~~~~~~ 

-

r~~~
- -~ ~~~~~~~~~~~~~~

-

-a

However, if only one service host is available, it would be possible to

discard the resiliency scheme and to operate with only the single host.

A note of caution is important here: Two—host resiliency is a question

of service integrity. The requirement for a large number of service

hosts is imposed not so much by the two—host resiliency criterion as it

is by the desired availability of service. Thus, if one di8cards the

two—host resiliency criterion, service availability increases at the

expense of service integrity.

In a single host environment it is possible to have undetected

errors creep into distributed resources like data bases. This situation

has been analyzed (see Table 3). The probability of service errors is

greatly dependent on the frequency of the errors that would normally be

detected by the resiliency scheme. If, for example, these normally

detected errors occurred at the rate of one every one to four hours (a

reasonable assumption based upon ARPANET experience) then a two host

service which was permitted to operate in degraded one host mode would

experience undetected errors at the rate of one every day or two. If

three service hosts were permitted to degrade to single host service,

then the errors could occur every three to nine days. If four service

hosts were permitted to degrade to single host service, then undetected

service errors would occur approximately every month. Note that the

reduction of the service error rate to a multi—day period requires three

or four service hosts. However, this is the number of hosts that already

gives acceptable two—host resilient service without concern for service

errors. Hence application of a single host degradation strategy currently

appears limited to those two host services (for example, a master copy

of a data base at one host and a single backup at a second host) where

higher probabilities of service errors are acceptable .

5 H

_______ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
- , - - ~

.-- -
~~ ~~

— -
~~~~~~~ ~~~

- -  - -
~~~~~~~~~~

- —
~~~~

- 
~

-
~~~~~~~~~~~~~

——-———-
~~-

- “ -

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 

- - -
~~

-
~~
-
~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 1

The resiliency techniques described are more complex to implement

than alternative strategies that would be allowable in a non—resilient

service. However, little or no additional overhead is incurred due to

the resiliency scheme. For example, the number of messages required by

a resilient scheme is identical to that required by non—resilient

schemes. However, the flow of messages is dramatically different and,

in fact, there are fewer bottlenecks in the resilient than in a non—

resilient scheme. In the case of storage and processing costs, the

resilient scheme imposes a trivial additional burden to maintain some

space for status tables and to periodically update those tables.

Conclusions

The most obvious itninediate application for the results described

in this paper is in WWMCCS data base problems. Here several questions

have to ~e addressed before the analysis is complete. First, is single

s1~ ce acceptable or are backups required? If single site service

uie then there is no need for a backup or resilient service.

If backups are required then the backup scheme should be made

resilient. There is an initial one—time cost to properly program the

resilient scheme. However, once programmed , the resilient scheme eliminates

the concern for errors caused by network failures or host failures in

any of the data base copies. At the same time, the resilient scheme

does not increase network traffic, host storage requirements, or host

processing requirements. Thus, once it has been dec ided to backup

a data base, a two—host resilient scheme to maintain the primary and

backup copies should be employed.

There is a special case if it is critical to maximize the

availability of the primary and backup data base and if only one backup

is permitted and if a high probability of daily errors creeping into the

6

— - - - --
~~~~~~~~~-——


.— ,- -,

master or backup data base is acceptable. Then the availability of the

data base can be significantly improved by permitting a single host to

continue service when its partner host is down without regard to the

two—host resiliency scheme.

If the integrity of a data base is an important issue and if

data base availability must be high, then on the order of three or four

service hosts (i.e., a primary and two or three backups) are required to

support that service. Under normal conditions, a three or four host

scheme can expect anywhere from several minutes to one hour or more of

service interruption in a day. The variability depends upon the average

down time per host per day. In a crisis situation it appears possible

to temporarily reduce the down time per host for a multi—day period.

Then the data base will be available on the same three or four hosts all

but a few minutes or less per day.

7

A - -
-

~~~~~~~~~~~~~
- -- -

~~~~~~~~~~
—--— -

~~~~~~~~~~~~
-——



—~~~~~~~~
,- ~~--,w_~~~~~

_______ ~~~< ~~~~~~ -
.--,.w.-, - - ~~~~~~~~ ~~~~~~~~~~ 

-
~~
;-

~~~~~~
_
~

__ _
~~~~~~~~~~

- -

Introduction

The development of large packet switched networks servicing

wide geographic areas has generated a great deal of interest in distri-

buted resource sharing. A communications network is a necessary but , by

itself, is not a sufficient basis to make automated distributed resource

sharing facilities generally available. High—level protocols must be

- 
provided to allow cooperation in other than an ad hoc manner and tech—

niques must be developed to provide resilient service to the user. This

paper discusses one means by which icoilient service may be provided to

the user for a wide variety of situations, e.g., synchronization, data

base access , and load sharing.

For our purposes we will consider a distributed resource

sharing environment which requires the sharing of resources dispersed

over a large number of possibly heterogeneous host computers. Large

packet switched computer networks like the ARPANET, CYCLADES, and EIN

represent examples of this environment. Since the hosts in this environ-

ment may be separated by very large distances, there is a significant

and unavoidable message delay between hosts. Hence, a major considera-

tion when choosing a resource sharing strategy is to reduce, as much as

possible, the number of message delays required to effect the sharing of

resources.

In these networks, some of the resources to be shared will be

identical (e.g. duplicate copies of data bases may be maintained for

reliability). Others will be completely dissimilar (e.g., weather data

may be stored on the ARPANET datacomputer and processed on the ILLIAC

IV). Between these two extremes lie the resource sharing concerns of

interest to most users. 

~~~ -.-~~~~- -~ -~~~~~~~~~~~~~~~~~ 


-w
‘~~~~ ~~~~~~ ~~ ~~ ,--w.-w- ‘

~~~ ~~ ~~~~~~

The user expects a tolerable, as well as tolerant, resource

sharing environment . The user we are interested in wants a maximum

degree of automation and transparency in his resource sharing. He

wishes the resource sharing to be resilient to host failures and, when

catastrophic failures occur, he would like a “best effort” recovery to

be automatically initiated by the resource sharing system.

Resiliency

The concept of resiliency applies to the use of a resource as

a service. A resilient service has four major attributes.

1. It is able to detect and recover from a giv~~. maximum number

of errors.

2. It is reliable to a sufficiently high degree that a user of

the resilient service can ignore the possibility of service

failure.

3. If the service provides perfect detection and recovery from n

errors, the (n+l)st error is not catastrophic. A “best

effort” is made to continue service.

4. The abuse of the service by a single user should have negli-

gible effect on other users of the service.

What we are trying to describe here are concepts of extreme reliability

and serviceability. The user of a resilient service should not have to

consider the failure of the service in his design. He should be able to

assume that the system will make a “best—effort” to continue service in

the event that perfect service cannot be supported ; and that the system

will not fall apart when he does something he is not supposed to.

In this paper we discuss a technique for providing resilient

services. This technique is resilient to communication system and host

9

--

~

-- -

~

-—- ~— -— ~ -~ ---- 



r’T ~~~~~~~~~

— .-—- _
~~~~

_
~~
,— --~~ y— -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

—_.‘~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—

~~~~~~~~~ 
- 

.--

~~ ~~~~~~~~~~ ~~~~~~~~~ 

.- . - 

~

- -

~ 

-

failures. Host failures include not only complete failure (e.g., a

major hardware failure, but also partial failure (e.g., a malf unctioning

host operating system). Resiliency cannot be perfect in the large network

environments we are considering. It is, for instance, possible but not

likely that all 50 of the hosts on a large computer network will simul-

taneously fail and all services will be disrupted. What is of interest

is the establishment of criteria for acceptable resiliency in this

environment. To this end, we introduce the concept of n—host resiliency.

In order for service to be disrupted, n hosts must simultaneously fail

in a critical phase of service. We point out that it may be possible

for n or more hosts to fail outside of such a critical phase without

disrupting service. The resiliency techniques discussed in this paper

assume a two—host resiliency criterion . Expansion of the techniques to

treat three—host or greater resiliency is straightforward. ~ two—host

resiliency criterion has been used because it appears sufficient to

provide an adequate level of service in most situations and to illus-

trate the principle.

Examples

Examples of the kind of resilient services we envision are

network synchronization primitives or a network virtual file system.

The techniques discussed below can support synchronization primitives

like P and V, lock and unlock, and block and wakeup in a resilient

fashion on a network. Network virtual file systems which provide

directory services and data access services can also be provided in an

automated and resilient fashion. The network virtual file system would

appear to be a single file system to the user, but would in fact be

dispersed over a large number of possibly heterogeneous hosts on a

packet switched network. 

~~- - -~-- - -- ---- -~~~~ 



Related Work in Distributed Systems

There are two main problems that are addressed by the tech-

nique we are presenting here: synchronization of the users of the

service and the resiliency of the service. Other researchers have

proposed techniques to achieve the synchronization but haven’t treated

the resiliency issue carefully.

Perhaps the first work in this area was by Johnson [1974).

This work concerned the updating of data bases simultaneously maintained

at several ARPANET hosts. Johnson proposed that updates to an accounting

data base be timestamped by the host which generates the update. The

updates are then broadcast to the copies of the data base. The data

base managers at each host apply the updates in chronological, order, as

determined by timestamps. (Ties are broken by an arbitrary ordering of

the hosts.) Johnson’s model introduces the problem that during some

time interval the copies may be mutually inconsistent due to - ssage

• delays, etc. Since this system is intended for an accounting file, sharp

restrictions in the number and kind of operations can be made. For

example, updates are restricted to increments and decrements of single

fields. The support of arbitrary operations on multiple fields is not

addressed. From the resiliency standpoint, it is di ficult to ensure

that an n—host criterion has been met or that all copies of the data

base will eventually receive all of the updates.

Bunch [1975] attempted to avoid some of the difficulties of

Johnson’s scheme by introducing a central name (sequence number) genera-

tor. This approach has the problem of introducing a potential bottle-

neck. Grapa [1975] was able to partially avoid this problem in his

“reservation center” model. Grapa’s model is somewhat more general than

either the Bunch or Johnson model and in a sense includes them as

limiting cases.

11

- —--- ---- ----—-- .- -- —- - -.--— -~~---~~----- -- - - -  — ,--- -•-- ------ -- .. .— •--



__________________________________________ - —‘.~~~w— - ‘‘ ‘  ‘ - •—..—————‘-—— —.— -••—
~.—.—~ ~ ____________ ~~~~~~~~~~~~~~~~~~~~ 

— - -

Despite the fact that none of these models treat the resiliency

issues (they were never really intended to), there are also several

problems that might be encountered in more general data base environments.

We have already mentioned the problem that for some t ime interval the

data base may be inconsistent. This may cause problems for some applica—

tions. Also, an update operation on one field may use values of other

fields to compute the new value (in an irreversible manner). In this

case , the Johnson and Grapa models must include a time delay before

applying t~ iø updates to guarantee that there are no delayed updates with

earlier timestamps than those already received. Similarly, it is diffi—

cult for these models to provide a quick response time for updates that

modify multiple fields. The technique we describe here avoids these

problems and provides the minimum response time allowed by the n—host

resiliency criterion while requiring a somewhat more complex mechanism.

12

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


— ~~
.—

~~~~~~~
--—— — - ---— 

~~~
— —~~ -

Techniques for a Resilient Service

M was indicated above, we are interested in a method by which

we can provide resilient support for some distributed resource sharing

activity. For purposes of illustration, assume some sort of data base

(in the general sense) which is being read and modified by a group of

network users. (Examples of network data bases would include data bases

as small as a single integer variable used for sequencing network—wide

operations to a queue of jobs for an automated load sharing service to a

multi—million byte JOPS data base being simultaneously shared by several

connnands in a crisis.) Consider, at least for purposes of description,

that there is a set of server hosts which do nothing but perform updates

and mediate the synchronization of updates generated by user processes.

(This may appear to be somewhat excessive for the practical case; but if

one is really concerned about having a reliable service, it Is unwise to

make it susceptible to the kind of environment found in the typical

application host. However, there is nothing about this scheme that

requires that the synchronizing function be in a devoted host.) One of

the hosts of this set is designated as the primary and the rest are

backups. The backups are ordered in a linear fashion. We will discuss

recovery schemes in a subsequent section. For ‘iow, let us consider the

resilient message flow when the set of server hosts are functioning

correctly.

Update operations may be sent to the primary or to any backup.

The user process then blocks. It waits for either a response from the

• service or a timeout indicating that the message has been lost and

should be retransmitted.

For the purposes of this discussion we will ignore, to some

extent, the details of the end—to—end transmission. Some of the ACK ’s

_ _

~~~~~~~~~~~~~~~~~~~~~~~~~ • • •
_
~~‘~~ ~~~~~~~~~~ ‘~~~~~~~~~~ ‘~~ ~~~~~~~~

• and timeouts mentioned below may be provided by an end—to—end protocol

such as those described in Cerf and Kahn [1974] and Cerf et al. [1975].

F In addition, the communication between the user and the service could be

a single message connection to the service. Such a connection would

take more than one message to convince both sides that no messages have

been lost or duplicated [Eelsnes, 1975]. However, for our purposes we

are mainly interested in the delays incurred. Although multiple parallel

• messages may be generated, the number of sequential message delays will

be inherent to any system performing this service.

The Chained Model

Dedicated servers. Figure 1 shows the message flow for an

update operation which has been transmitted to thr~ primary server host

of a data base. The first network message delay is incurred in figure

la. The application host transmits the update to the primary server

host .

The second network message delay is incurred in figure lb.

The primary server host requests cooperation in executing the update

operation from the first backup server host. The first backup

server host will perform the same update. The backup host will be

expected to issue the update ACK message to the application host.

In figure lc the third network message delay is incurred.

Three messages are transmitted by the first backup server host. In

terms of network delay, these messages are essentially sioultaneously

transmitted . Small improvements in resiliency can be achieved by

issuing them in the designated order . First, the backup server host

passes a backup update message to the next backup server host. At this

time only two server hosts, the primary and the first backup, have

14

— -~~--~~~~—---—~~~~--~~ •



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
‘

~~ 

-

~~--

- . -•---- ••• —.-- ——--•-- .-• •-- - - . — — —  — —  ,—

L

update
• request .

applic.
host

la: Application host transmits update request to primary server host.

cooper~ e

~~~~~~~~~~~~~~~~~~~~

Ib: Primary server host requests cooperation from the first
backup in executing the update request.

Figure 1

Update request sent to a primary server host

15

-- --- — - — -- -— — - - - - - •~~~~~~

~~~~~~~
-
~~~~~~~~~~~~

—
~~~~

-- — -•-- -
~~
- • .,- -••--

~~~~~~
-- . -- - - - - •----- -—-

~~
---- --

~~~~~~~ 
-



~~~-T’~~~.~~rr 

—

~~~

I

3: coo perate I: bockup
• ACK 

request

server server server serverhost host 1 host 2 host 3

applic•
host

I
1C: First backup issues three messages in the following order :

1. A backup for an update request is sent to the next backup host.• 2. An acknowledgement message is sent to the application host.3. An acknowledgement of the cooperate message is sent to
the primary server host.

• Figure 1 (continued)

Update request sent to a primary server host

16

- ~~~-
-- - ~~--— 

-



• 

—-
~~

--—•—•----- —

~

•,.—•,—-••———-•—-• 
~~~~~~~~~~~~~~ E - ~~~~~~~~~~~~~~~ .‘. 

• — • .•!
~~

positive knowledge of the existence of the update operation. Should the

backup message be successfully received at the second backup server

host, a third server host would also be aware of the update operation.

The third host would be able to assist in recovery should the first

backup server host or network fail to transmit the next two messages.

The second “simultaneous” message would be the update ACK message to the

application host. The third “simultaneous” message would be transmitted

back to the primary server host to acknowledge that the cooperation

• request on an update operation has been received.

Once the primary server host has received the cooperation

acknowledgement, it is certain that the two—host resiliency criterion

has been met. The primary may now apply the update to his copy of the

data base. Similarly, once the application host has received the update

ACK message it is also certain that the two—host resiliency criterion

has been met. Should the primary server host fail to receive the

• cooperation acknowledgement, appropriate retry and recovery techniques

• will be initiated .

Let us consider what happens If the user ’s request is not sent

to the primary.

Figure 2 shows the message flow for an update operation which

has been transmitted to a backup server host. The first network message

delay is incurred in figure 2a. The application host transmits the

update to a backup server host.

The second network delay is incurred in figure 2b. The backup

server host forwards the update operation to the primary server host.

The application hosts have no knowledge of the ordering of server hosts.

However, each of the server hosts is assumed to have explicit knowledge

17

- • j ~~~~~~~~~ -
•
~~~~~~~~~~~~~~~~~~~~~~~

. 



- 
- •

____ ____ ~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~

~ •.:•~::

2a: Application host transmits up date request to a backup server.

forward

~~~~~~

2b: Backup host forwards update request to the primary host .

Figure 2

Update request sent to a backup server host

18

-.
~
•—- -—- — — •

~~.—,--- —•—•‘-
~— — -••—---— —--•- — —

~~
‘
~
—--‘-~~

-—— •-——- —•--—•-—-•-— -
~~

—

‘ ‘ ‘ ‘
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

••

~~
- - . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•

3: forward
ACK

server request server server
host0 host 1 host 2 k~1~ost~,,,

) ‘

applic.
host

2c: Primary host issues three messages in the following order:

1. A backup for an update request is sent to the first backup host.
2. An acknowledgement message is sent to the application host.
3. An acknowledgement of the forwarding message is sent to the

forwarding backup host.

Figure 2 (continued)

Update request sent to a backup server host

19

-
- — — - - -

~-— --•-
~~~~

•
~~~~


• ~~~~~~~~~ — - .•-. ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

~~
• -

~~~~~~~~
-

I ~~~~~~I >4- 1I i~~ U) I
~ • O L

U)

0 . 4-

U 3 S C.)
I..

>4-
I~~~U)

(f l .C

-~~ .—

0. 9-
3 3 (.)
~~~~~~~~~~~ .~~~~~4
o
.0

U
.-~ ,-~ c~~

s o-
0. 4- 0. ~~3 ~ 3 ,., 0
•g 0 .

~~ 4
U U O
o 0 o4

(fl .C

E 0 ~~~~
a~~~~

4
r•..

U

20

L1. - — -• —~~~—-——--~ -•-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~



- --.- -..---. • ~~~-.- • - —. -- ‘. - --—
~~~~ ~~~~~~~~~~~~~~~~ •_ ‘ _ _ -

~~ ~~~~~~~~~~~~~~~~~ -
:- ~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

of the ordering. The backup server host performs no updates on the data

base. All updates must be initiated by the primary server host. However ,

the backup now has knowledge of the existence of the update request from

the application host. It will not discard this request until a backup

message referring to that same update operation ripples down the backup

chain and through it.

In figure 2c the third network message delay is incurred.

Three messages are transmitted by the primary server host. As was the

case previously , these messages are essentially simultaneous but a

specific ordering can provide some small improvements in resiliency.

First, a backup message is sent to the first backup server host. Second,

an update ACK message is transmitted to the application host since the

two—host criteria has now been met. Third, a forward message acknow—

ledginent is transmitted to the forwarding backup host. The message flow

for the chained scheme is summarized in figure 3.

Participating servers. In a service environment where there

is no special set of hosts dedicated to the service, updates from a user

on one of the hosts participating in the service will only experience

two network delays as opposed to the three found in the dedicated host

case. Figure 4 shows that the first delay is generated when the host in

which the update was generated sends the update to the primary as a

forward request. (Note that since members of the service will most

likely maintain the necessary connections among each other, many of the

single message connection difficulties can be avoided In this case.)

The second delay Is incurred when the primary responds with a forward

ACK message to the originating backup host. The primary also sends the

backup request to the f irst backup server. From this point on, the

procedure is identical to the dedicated server scheme.

21

LA~ - ~~

- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~
—
~~~~

:• ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

forward

— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4a: An update request generated by the third host journalizes the request
and sends a forward request message to the primary .

forward

~~~~~~~~ver~~~~~~~~~~~~~ r w ~~~~

4b: The primary records the update. The two host criteria has now
been fulfilled. The primary sends two messages:

1. a forward acknowledgement back to the third host.
2. a backup request to next backup host.

backup

request
server server server server server
host0 

backup 
host1 host2 host3 host4

ACK

4c: The next backup host records the update and sends a backup request
to next server and acknowledges the one he received . 4

Figure 4

Application of the Resiliency Scheme for Undedicated Hosts

22 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ - — ---


- •-.—‘-•-_ ~~~~~~~~~~~~~~~~~~~~~~~~ - - ,* —,_—,-,- —--—-• —----
- ~~~~~~~~~~~~~~

— - -

— •
-

A Broadcast Model

In this model the organization of the hosts is much the same

except that instead of letting the updates ripple down the chain they

are broadcast to all backups at once.

A user host is a site which is capable of receiving queries

and updates from the external world . The primary and backups are the

only hosts with a copy of the data base. An explicit linear ordering of

• these hosts is assumed, with the primary as the first node and the

backups following any arbitrary preestablished order.

Communication with the user host takes place just as in the

chained model above. The user host sends its updates or queries to any

site with a copy of the data base. The receiving copy will try to

answer all queries Itself. However, all updates will be shared with

another server host in order to ensure that the two—host resiliency

requirement is met. If the site receiving the request is not the

primary, then it will send its updates to the primary. The primary will

acknowledge to the user the satisfaction of the two—host criterion. If

the site receiving the request is the primary, it will send the update - I
to one of the backups (probably the next one in the linear order) asking

it to cooperate and send the acknowledgment to the user.

In either of these cases, the primary ends up with the update.

Then a second stage of the update is initiated : its actual app lication

to all data base copies .

Update application starts with the primary assigning a number

to the update and journalizing it locally. The primary then will broad—

cast the update (see figure 5a) (with a sequence number attached) to all

existing backups . When a backup receives an update it will verify that

t-i

23 H

i—---
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~

—

~~

-- - - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 

- -

~~~~~~~~~~~~~~~~



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - 

~~~~~~~~~~~~ - - - - 

-~~~~--~~ — ---

• -fi ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

update

~~~~~~~~~~~~~~~~reques~~~~~~~~~~~~
req ~~~~~~~~~~~~~~~~

update
request

update
request

server server server server 
• 

Server
host0 host1 host 2 host3 hostN

; c~~
~~

• 5a: The primary broadcasts the update to all the backupsopplic .
host

backup 
- - 

- — -

~~~~~~~~~applic. 5b: The f i r s t backup star ts propaga t Ing the acknowledgmen t down the

0
to the user

and also acknowledges the receipt of the update

backup -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ckup
• 

Ever Ever v~~~~~~fr~~~~T~~~ 
~~~~~~~~~~~~

5c: The last backup then acknowledges to the primary that everyone
applic. has received the update.
host

Figure 5. The Broadcast Model

24

• - —— — ---- - -

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ‘W~~ - -~~~~ ~ -..~~. w ’-—- .r ‘~~‘

the update number is sequentially correct. If this is the case it will

initiate the local application.

Upon receipt of an update, the first backup in the linear order

is expected to send an acknowledgment (which includes the update’s

number) to the host that follows it in the given “linear” order. (See

figure Sb) All other backups enter a passive state until the acknow—

ledgment gets to them. At that time they will simply pass the acknow-

ledgment to the next backup. The last backup sends an acknowledgement

to the primary. This last acknowledgment indicates that the update has

been received at all copies of the data base and the operation is complete

(figure 5c).

n—Host Resiliency for n > 2

Consider n—host resiliency for arbitrary n. In this case

backup n—2 will be respGnsible for sending the acknowledgment to the

user if one user request was forwarded to the primary by backup n—i or

greater . Otherwise , backup n—i will send the user acknowledgment .

There are two properties of these schemes that should be

noted. First, n nearly simultaneous host failures during a small

critical interval are required to disrupt the scheme. Second, regard-

less of where the user process sends the update request in an n—host

resilient system, he will get a response in n+l message delay times.

If th~ synchronizing scheme is moved into the application hosts, this

delay can be cut to n message times. (For large n, there are m—way

branching strategies that can reduce the delay to the order of log mn.

This issue is of no practical importance since, as will be shown, n—2

is sufficient for extraordinarily high resiliency!)

25

A - ~~~~~~~~~~~~~~~ •~~~~~~~~~ -
_. — ----•• —--- - ---- - -—--—

-
—---- -

~~~~
-

~~ — —— -
~~ 

-
~~

- — - —
~
—-—— — —



-~~~ 
- -.-•,-

~ 
-••- - -,~~~‘--• ~~

- 

~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ _~.7-w~~-•, - - • -

backup ACK

backup request
backup
request

serv er backup server backup serv er backup server
hosl 0 request host 1 ACK host 2 ACK host 3

applic.
host

Figure 6. Summary of the message flow for the
broadcast resiliency scheme.

26 

~~~~~~~—--~~~--~~~~~ -


- ‘ T’L~~ ~~~~~~~~~~~

-

Adequacy of Two—Host Resiliency

The two—host criterion does not, of course, guarantee resiliency

if two critical hosts fail more or less simultaneously. Suppose, for

- example, that a user request is sent to the primary, which sends it to

- - the first backup. Then, after the acknowledgment to the user Is sent,

but before the second backup successfully receives the message, both

primary and first backup fail. The probability that this will happen Is

very small. To quantify this, suppose tha t host failures are random

with mean time between failures F. Then, if one site fails at a criti—

—

cal time, the probability that the second site will also fail within the

- next t seconds is

Pf
= 1 — exp(—t/F) ,

- where F must also be expressed in seconds. Thus, if F is 24 hours and t

- is 1 second, Pf
= lO~~, and if the primary fails, say, only once a day

at a critical time, such double failures will occur only about every 1O~

days, or about 300 years. Another point must be noted. To destroy

resiliency, not only must both sites fail, but because of the message

ordering (figures 1 and 2) the message to the second backup must also

• be lost. It is clear that the likelihood of these nearly simultaneous,

multiple failures is essentially negligible. Thus three—host or greater

resiliencies are not required for any realistic applications. The main

problem in maintaining the two—host resiliency scheme is that of pro-

viding a sufficient number of server hosts in the scheme so that the

user has a good chance of finding at least two in service.

Resilient Service Down Time

In order to get some idea of how many server hosts may be

required to achieve a given degree of reliability, let us consider the

L
two—host resiliency case In more detail.

27

•
- A •- - ~~~~~~~~~ —•— — ~~

~~

------•— -‘•-—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•
~~

-
~~~

-——.—- ---• --
~
•.•-- •-..•——

~~~
- - • • --—-—-- •—•.—- —•-.—- .-—- --—

~
.—- •—----• - • -• -- -- -- — •~



—-

~~~~~~ 
__ ‘7_____ .-,-

• • -
•

In this scheme, at least two server hosts must be up when the

user request is entered into the system. We wish to estimate the proba-

bility that the scheme fails because two hosts are not available.

Suppose that host failures occur independently ~.nd randomly . Let a

denote the availability of any one server host . (Availability is the

fraction of t ime that the host is available ; alternatively, it can be

considered as the probability that a user request finds the host up.)

If there are N server hosts , the probability that none are up is

P
0 = (l _ a)N,

The probability that exactly one is up is

P
1

= Na(l - a)~~
1
.

Therefore the probability that the scheme fails because the requisite -- - - •

two hosts are not available Is

P = P + P1 = (l_a) N
~~~(l_a + Na) .

A family of service availability curves is plotted in figure 7.

• Individual host availability is plotted on the x—axis as hours of down

• time per day (l— (hours down/24) = a). P is plotted on the y—axis as

a~rvice downtime per day (24xP = hours down per day, 24x60xP = minutes

down per day, etc.). Average host downtime can be read as resilient

service down time by using the lines plotted for the number of server

hosts (N=2 to 10). For example, if the average down time per host per

day is two hours, then table 1 shows resilient service down time as a

function of N.

28

.~~~~~~• •  — —--~~~-~-•~~ -. --~~



• ~~-~~~~~~~~~~~
••

.• -‘~~ -~~ --
~~~~~~~~ 

-
~~~~~~~~~~~

-—- -
~
-

~~~~ 
-
~~.. . . — ~~~~~~~~

-
—~~~~~~~~~~~~~~~~~~~~~~ ----- - •--•• • —. •• •.—~~ --~- •--•-- • __________——- • -

lhr —

~~~~~~~~~~~~~~~~~~~

/

~~8 min 7

~:imin /7 ////~~
• 1 /  _ _ _

1 sec 
2 3 4 5 6

• Average Down Time per Host (hours/day)

Figure 7
Service Down Time vs. Host Down Time and Number of Hosts

_ _ _  - •  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~ ~
n_ •.



- 1
~~~~~~

• --
~~~~~~~~~~~~~~~~~~~~~~~~~~

— 
Number of Service Hosts Service Down Time

2 3.8 hours/day

3 28 minutes/day

4 3 minutes/day

5 19 seconds/day

6 2 seconds/day

7 6 seconds/month *

8 7 seconds/year *

9 1 minute/century *

10 6 seconds/century *

* not plotted on figure 7

• Table l

Service down time when average host down time is

two hours per day.

At least three and perhaps as many as six service hosts may be

required for acceptable service during a crisis. During non—crisis

periods, three or four service hosts would usually provide acceptable

service availability. During crisis periods, it may be feasible to

reduce the host down time by the elimination or reduction of preventive

maintenance periods, placing repair engineers in the machine room for

the duration of the crisis, and other temporary expedients. Table 2

shows the service down time that might be expected if host down time

could be reduced to one hour per day during a crisis.

30

• . -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



• • - ~~- — •~~~~~ • - - -• -~~~~~~---~~ • • • • ~~~~~~~~— . -~~~~~~,—---~~~~~ 

~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

Number of Server Hosts Service Down Time

2 2 hours/day
3 7 minutes/day
4 24 seconds/day

5 1 second/day

6 23 seconds/year *

• 7 1 second/year *

8 5 seconds/century *

9 2 seconds/ thousand years *

10 1 second/ten thousand years *

* Not plotted in figure 7

Table 2

Service down time when average host down time is one hour per day

Using tables 1 and 2, it appears that three or four service hosts could

provide both acceptable non—crisis performance and good crisis perfor-

mance for those applications which require resiliency. Judicious

management of deferable down time Is required during a crisis to reduce

the need for servers.

Removing the Two—Host Resiliency Criterion

Note that the probabilities computed above do not necessarily

reflect total system reliability. The system may be kept working (but

without the safeguard of the 2—host resiliency criterion) when only one

server site is up. To get some feel for how often an undetected error

is really likely to occur , the rate of occurrence of errors must then be

taken into account as well as the expected down time of the resiliency

scheme. For example, suppose that the resiliency safeguard is inoperative

for one T—minute period per day. P1, the probability that exactly one

host is up, is used to compute T. Assume that the errors that would

~

.- - .-

—~--—--‘ •--•-- •., - - -
~
-.—-,. ‘- •~~

-—• •____
~~
__-..,- -~~~~ - -

— - —-- -
~

•
__ _‘ _ ~~~~~ _ • • •--v-~~~~

• - , • - • -•-• - - -.
~
-- • •

~

—- ~~ -

normally be detected by the resiliency scheme occur randomly. (Thus the

occurrence of errors forms a Poisson process. See CAC Document Number

• 181, CCTC—WAD Document Number 6501 for further discussion and references

on Poisson processes.) Let the mean time between these errors be m.

Then the probability
~e

that an error occurs during the downtime is

= 1 — exp(—T/m).

Table 3 shows 1’e for m values of 15 mm ., 1 hr., 4 hrs., 1 day, 1 week,

and 1 month between errors. At present we do not have a good idea of

what is an appropriate value for m . Hence we have tabulated a broad

• range of conceivable values.

Number of
service
hosts m = 15 mm 1 hr 4 hrs 1 day 1 wk 1 mo

2 1.0 .97 .60 .14 .02 .0007

3 .84 .36 .11 .02 .003 .000 09

4 .18 .05 .01 .002 .0003 .000 01

5 .02 .005 .001 .000 2 .000 03 .000 001

6 .002 .000 5 .000 1 .000 02 .000 003 .

— 7 .0002 .000 05 .000 01 .000 002
8 .000 02 .000 005 .000 001 .

9 .000 002 . . .
10

Table 3

for average host down time of two hours per day and six values of m

Note in table 3 that if m is one hour and there are only two hosts, it is

virtually certain that an error occurs on any given day. This corresponds

to a single master and single backup strategy. If two backups are pro-

vided (N—3), an error occurs about once every three days. If undetected

32

~~~-• ••— -- - -—~~ 
• • ••



____  — -~~~~ ~~~ 
~~~~~~~~ w~

’-
~~~~ ~~

--
~~~~~~ 
—

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

I

errors are acceptable on the order of once a year (about the reliability

of ARPANET communications technology), then four (m = 1 day) , five (m = 1

to 4 hrs) , or six (m = 15 miii) service hosts must be supplied. As a

rough rule of thumb, for any fixed value of m and host down time, each

server host added decreases the rate of occurrence of undetected errors

by a factor 10. (Note: experience with production use of the ARPANET

indicates that m < 1 day is a reasonable assumption. Lost messages and

hung connections, for example, have been frequently observed at several

per day. These errors at least bound the value of m from above. Improve-

ments in the resiliency of end—to—end protocols (a host problem — not a

subnet problem) in ARPA-like networks are needed. These could signif i—

cantly reduce the contribution of lost message and similar errors to m.)

Failure Detection and Recovery

Resiliency is achieved in these schemes by a combination of

techniques. The basic organization of the scheme provides the skeleton

on which to construct the resilient service. The additional mechanisms

used for a particular application will depend heavily on the degree of

resiliency required . This additional resiliency is gained by applying a

combination of sequence numbering schemes and ACIC and time—out mechanisms.

For instance, to get two—host resiliency for updates being propagated in

the chained model , a “Backup forwarded ACK” is used in the following

way:

When a backup server host receives the “backup ACK” corresponding

to the backup message sent to its right—hand neighbor (see figure 3), it

sends a “backup forwarded AC1C” to its left—hand neighbor . This assures

that neighbor that the update has progressed to at least the second

backup beyond itself. - — - 

— -

33

4 •-• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



• T_J ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-~~-‘~~~~~~~~~~~~~~ r’~~ 
-

Lost and duplicate message detection. For most applications,

one sequence number scheme can be applied to the messages to detect lost

or duplicate messages. A second sequence number scheme can be applied

to the requests themselves. This allows proper recovery in the event of

failures. It also defines the order in which requests will be applied

to the data base.

As an example, considet how the sequence numbers can be used to

detect lost messages in the broadcast model. Upon arrival of message m

at a backup, the backup will first check whether all prior messages have

been successfully received. If this is not the case, then the backup

may assume that a message has been lost and ask for the retransmission

of missing messages (probably by the primary). In the meantime, update

m is stored in a “wait list” until the problem can be cleared up. If,

on the other hand, all prior messages have been received, then the

backup can proceed with the application of update m and is ready for the

acknowledgment propagation. If the backup is the first host in the

linear list, then it initiates this process by sending the acknowledg-

ment shown in figure Sb. Otherwise a waiting period (controlled by a

timeout) is started.

When an acknowledgment with sequence number m reaches a

backup, it first checks to see if the acknowledgment corresponds to a

known , processed message. If so, it simply adds its own acknowledgment

by propagating the acknowledgment to the next host in the linear list.

However , if the acknowledgment corresponds to an unknown message, the

backup can assume that message m is lost and ask for the retransmission

of that message (from the primary or probably from any of the backups

upstream in the list if the backups journalize messages). In this case

• 34 

-



— — -—- ~~~~~~~~~~ ~~~~~~ - -~~~~~ r -~~~~~~-~- _ _ _

-_ • 
• 

- 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~ --~~~~-~-~~~~-- —-
~~

the propagation of the acknowledgment should be suspended , but a first—

to—acknowledge flag should be set to indicate to the backup that it

should restart the propagation of the acknowledgment as soon as message

m arrives. A similar action is taken when an acknowledgment for a known

but unprocessed message arrives (i.e. one waiting in the waitlist for

the intermediate updates). In this case the backup will also set the

first—to—acknowledge flag and suspend the propagation of the acknow—

• iedgment until the update can be extracted from the waitlist.

Multiple failures could occur; for example, a message asking

for the retransmission of a lost message could be lost. Therefore, a

pair of timeouts are also included. Whenever the retransmission of an

update is solicited , retransmission timeout is set. Most likely the

action that should be taken when retransmission timeout expires is to

repeat the appeal for retransmission.

As mentioned before, acknowledgment timeout is set to wait for

the acknowledgment of an accepted (correct sequence) message. All but

the first backup in the list will have a similar acknowledgment timeout

mechanism. However, the length of the timeout could be larger for

backups further from the primary. When an acknowledgment timeout expires,

a search for the acknowledgment will be started by sending an “ACK

• SEARCH” message to the next backup in the linear order. Reception of an

“ACK SEARCH” message for an unknown update will also help to detect lost

messages. Reception of an ACK SEARCH for the known message will produce

one of the following responses: - -

1) the retransmission of the acknowledgment if the acknowledg—

ment was sent and lost in transmission,

2) propagation of the “ACK SEARCH” message in the direction

contrary to that of the propagation of adknowledgments, or
-

-
~~~~~ 

- - - 

35

— --~~~~ -——-— -- -p. ~~~~~~~~~~ - - - -  
— A



— -~~~~~ ~ - — r w’ ’Y”~~ 
W

3) no action because the corresponding message is either in the

wait list or was lost and is already going to be retransmitted .

The detection of failures may be accomplished in a variety of

ways. Clearly, the same timeouts that were discussed above to detect

lost messages may be used to detect a host failure during the course of

performing a request. There may be relatively long idle periods between -
•

requests. As a result, long delays may be incurred by a request which

discovers a failure and must wait for recovery to be initiated and

completed. For some applications, it may be useful to have a low level

“are you alive” protocol among the members of the chain. Otherwise, the

failure will not be detected until the next request is sent.

Host failure recovery. Although some applications may require

slight variations, the basic mechanism for recovering from host failures

is quite simple. Most of the variations will center around how a host

determines that another host has failed and the degree of resiliency

desired. Let us assume that one of the backup hosts has determined that

one of his neighbors has failed. What needs to be done? Clearly, the

dead host must be removed from the set of server hosts by notifying the

rest of the server hosts of the change. Note that this notification is

identicai~to updating a data base using the participating host scheme.

Only ~n this case the data base being operated on contains the state of

the system as a whole.

Therefore , the host who detects the failure formulates an

update request and forwards it to the primary. The sequence of events

is then identical to that f or the participating servers (as shown in

figure 4) with one exception. When the update indicating the change in

structure ripples down to the host who initiated the update, it will

36

• • -—- — • • ~~~_-_s •• -
__ — ••— - • —— •s_ —~~~~~~~~~~~~~~~~~~~~~~~ —— —  — . 

~~~~

~~~~~~~



- -.-- ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~ —~~~

_ _ _ _  -

attempt to establish communication with the next active host in the

chain, and then forward the update on. (If desired, the host could

attempt to establish communication while it was waiting for the update

to ripple down.)

When a host comes up after a crash it will send an “initializa-

tion request” to some host in the service. If that host is not the

primary, it will forward the request on to the primary . The primary

will add the new host to its tables and pass a message down the chain

indicating that the other hosts in the service should add the new host

to their tables. The primary will also assign one host (possibly the

last one in the chain) to bring the newcomer up to date. How the new

host is brought up to date depends on the application. It may be done

by transferring to that host the journal of all updates since the host

went down. It may require transferring the entire data base.

Recovery from apparent network partition. Operation during a

network partition is difficult to handle. For a majority of applications

it will probably consist of providing very degraded service. To give

the reader an idea of the complexity of providing service across parti—

tions, let us consider the case where as close to full service as possible

is provided. First, each side must organize itself into a resilient

system with a primary. When the partition is repaired , each side must

have a way to rectify the existence of the two primaries. It must be

possible to restore the data base to the state it was just before the

partition and to journalize all updates made during the partition . When

the partition is repaired , the update journals of both sides must be

merged according to the chronological order in which the updates were

generated. If the same event has been observed and entered by groups on

37

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - - •-



______ •. ‘r—~ -———— --~ -~~~~~~~ 
— 

~F ‘~~~~~ ? ~~~~~~~~~~~

-l

both sides of the partition, the journals may contain duplicate entries.

Duplicates must be recognized and all but one discarded. It should be

further noted that answers to queries submitted to a partitioned subset

may be inconsistent with answers given queries after the partition has

been repaired. Since network partitions are so difficult to handle, it

is highly desirable that they be very infrequent.

It may appear on the surface that this problem is easily

solved by proper network topology. To a degree this is the case. But

the solution is also highly dependent on how much information the subnet

returns about failures. Suppose the communications subnet only indicated

whether or not it could deliver a message. Then every apparent failure

would have to be treated as a possible partition, and the rather expen-

sive partitioned mode of operation would have to be initiated. However,

if the subnet distinguishes between “I was unable to deliver the message”

and “I got the message to the destination node, but the host is not

servicing the interface”; it would be possible to classify many of the

failures as host failures and take a less expensive recovery procedure.

There would still be a small group of failures that would have to be

treated as partitions until communications were rec~.ored and it was

determined whether or not a partition had actually occurred .

Let us now consider the problem of an apparent network parti—

• tion. In this case the subnet has notified the host that it could not

deliver ~ message. For some reason the message did not get as far as

the destination node. Perhaps, after some number of retries, this host

has a reasonable suspicion that the network has partitioned . It will

then broadcast “are you alive” messages to everyone in the service.

After some time period , it will assume that all responses that can

arrive have arrived. It will then modify its structure tables according

- ~~-~~~~~
•
~~~~~~~~~~ -— - • .~~~~~~~~ —~~~

-- ‘—
~~
- -• -- .

~~~
.•,- —. - -

~~~
•
~~~~~

--
~~



_____ 
- • -

to the responses , and send messages to the other members with which it

can communicate to do the same. If this fragment of the partition has

the old primary in it, the primary will coordinate partitioned mode

operation. If not, a new primary may be chosen by an appropriate

algorithm, depending on the level of partitioned service that is desired.

The service then enters partitioned operation mode. As mentioned above ,

what the service does in this case will depend heavily on the application,

the degree of resiliency desired, and the frequency of partition. In

the general case, two or more partitions can produce incompatible states

that cannot be joined later. Thus, the operation of a service, while

• the network is partitioned, can easily become quite complicated and

expensive.

Let us consider what kinds of partitioned serviced can be pro-

vided without requiring the considerable overhead of re—joining the data

bases after a partition has been repaired. If the application is not

• very critical, then the simplest solution is to not allow any updates to

be processed at all. A less severe scheme would be to allow the side of

the partition with a majority (possibly weighted) of the servers to

continue operation, and the minority, in essence, to be dormant. It

• would be possible to allow the minority side to continue processing

queries with the warning that the data may not be current.

Numerous variations on these kinds of schemes can easily be

generated to provide almost any level of service commensurate with the

constraints of cost and reliability.

Overhead Due to Resiliency

Resiliency adds negligible overhead to a distributed backup

• scheme in terms of network traff ic, storage costs, and host processing.

39

___ 4•_ •_ _ ____L_•~_,Q ..... ..s aa.i .ad .~~~~ a.. - !p- .& ... . 1 a  ~~.a. ....aisiisssiajusi iásiiissa~~~~~~~~ii ii siiisáiiiiiissiasii ~~~~~



- -~~~ -— ~—~-~~~~~~~—~~~~~ -‘-- -- -. 
~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~ ~~~

- •. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.
~

Network t raff ic . In order to estimate the t ra f f ic overhead of

resIliency, we will compare a multiple backup scheme without resiliency

to one with resiliency. Assume that N server hosts are involved and

that one is a known primary which receives all queries. The absolute

minimum traffic required is N + 1 messages. The user will send an

update message to the primary and will receive a result message (two

messages). The primary could just blindly broadcast the update to the

N— i. backups without acknowledgment (N—i messages). A no—acknowledgment

strategy is strongly contraindicated . Without an acknowledgment,

frequently occurring situations may cause complete failure to the backup

system without notice. For example, the service program which supports

the backup may no~ have been initiated in the backup host. The service

program may have been temporarily preempted. The operating system may

have jumbled the data (an observed GCOS phenomenon). The service

program may have exhausted its jounnalization space. The network may

have dropped the message. There are many other examples. Thus, it

appears that a production service should always require acknowledgments

to assure that the backup system is functioning. If acknowledgments are -•

Included then the total number of messages required is 2N. The message

t ra f f ic !n the resilient broadcast scheme (figure 6) is also 2N.

Resiliency is obtained by restructuring the message flow. (A side

benefit: the resilient message flow scheme reduces the traffic at the

primary host.) Hence there is no traffic burden added to a production

system by the resiliency scheme.

Storage costs. It is obvious that the service induced storage

required by a non—resilient scheme is the same as f or a resilient scheme.

If , for example, the non—resilient backup scheme stores a data base of f—

l ine and only j ournalizes updates , the same could be done in a resilient

A

______ — — ~~~~w ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~

—

- W - - . I~ UL~ - • : ~~~~~~~~ - • - .- •.•• .-• • - -~~ • - • •- -•~

scheme. The only additional data needed by the resilient scheme are a

few state tables which monitor the status of the service hosts. These

tables should have negligible storage Impact .

Processing costs. Like storage costs, the processing costs

associated with handling an update message are identical whether the

system is resilient or not. Some additional processing is required to

update state tables , to maintain t imeouts , and to check sequence num-

bers. This processing is negligible compared to the cost of update

processing. The major resiliency cost is increased complexity of the

processing algorithm rather than increased use of the processor.

Comparison of the Models

The nature of the differences in the chained and broadcast

models are such that no clear cut choice between them can be made with-

out first considering the application and the service requirements on

that application. In this section we describe the trade—offs and how

they affect the service.

• Complexity. Although the chained model is probably the simpler

-
•

of the two, the increased complexity of the broadcast model (primarily

in fault situations) is not severe. However, the number of messages

• exchanged to complete the same operation is 50% less in the broadcast

• model. This is because this model uses one acknowledgment while the

chained scheme uses two (the backup ACK and the backup forwarded ACK).

However, if the implementation of the chained model used the message

acknowledgments of an end—to—end protocol as the backup ACK’s then the

chained model would be in line with the broadcast model.

Time l iness. In general , the backups in the broadcast model

will be more up to date. Broadcasting the updates means that all back-

ups are updated with the same delay experienced by the first backup

41

,.—— --- -

• -—
~~~r - ~~~~ -~~~~~~~~~~~~

--
~~ 

- -
~~~~~~~-~~~~~~ •- - •

- - -

in the chained model. However , this advantage is small. The update

message propagation time down even a long chain in an ARPA—like network

is only a few seconds.

Lost update detection. When an update is lost in the chained

model, there are three ways to detect it: 1) the arrival of the next

update causes the recipient to notice a missing sequence number , or 2)

• and 3) the sender times out after it has not received a backup ACK or a

backup forwarded ACK within some time limit. When an update is lost in

the broadcast model, there are also three ways to detect it: 1) a

missing sequence number will be discovered , 2) an ACK timeout will occur

or 3) the arrival of an acknowledgment propagating down the list may

cause a backup to notice a lost update. One of these schemes may be

— more resilient in some environments than the other one . Further inves-

tigation is necessary to determine the pros and cons of these two

techniques .

Primary recovery. Recovery of the primary is simpler in the

chained model, primarily because the re—organization is somewhat implied

by the structure of the backups. The broadcast model must include some

information about the latest updates received , to prevent duplicate

assignment of sequence numbers. In the chained model it is only neces—

sary to verify the updates of the f i r s t backup to find out what sequence

number should be considered by the new primary as the last issued . In

the broadcast model the last sequence number that should be considered

by the new primary is not a function of the f i rs t backup only ; it might

— ~~ll be that some other backup has gotten the broadcast of a message

that the f irst backup did not.

Journaling. It is clear that updates should be journalized

until an update has been recorded at a particular number of hosts. This

42

~~~~~~~~ — • • ——- - — • • - -—— — —- —- ~———~~~~~~~~
——~— 



-

~~~~~~

“-

~~~~~~~~~~
• -

~

— ----  -

~

--•--

~

•-

~

--• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~ .—-—----

ai’1s in recovery and insures that no messages are lost. However, it is 
- - 

• — —

not so clear when it is safe to strip back the journal., — -I-n th~ chained

model , the obvious point is u~on -rece1i,t of the backup forwarded ACK.

This meatts_-t-hat a host may delete entries from the journal when it is

sure the update has propagated one host beyond itself. In the broadcast

scheme, it is less obvious. The only “back traffic” is the ACK from the

last backup to the primary. The broadcast model has one advantage over

the chained model in that the primary does know when an update has

propagated all the way down and it is safe to delete entries in the

journal. All one would have to add to the broadcast model is a message

that was sent down the list of hosts indicating how much of the journal

could be deleted. If the same effect was desired in the chained model,

this message and one to indicate to the primary that the update had made

it to all back--ips would have to be added . There are still several

unanswered questions about the maintenance of these journals, especially

when hosts are dead or during network partitions. These need to be

studied in more detail and will perhaps be dependent on the nature of

the application.

Queries. Up to now we have emphasized the manipulation of

updates. We will now say a few words about queries. Queries are

expected to be sent to an arbitrary copy of the data base for processing.

This copy can be either the primary or any of the backups. In some

circumstances it is necessary that the query be answered af ter  a given

update has been processed. For applications of this nature, it is

probably advisable to qualif y the query by a given update that must be

processed before it is answered. In general, the broadcast model will

keep the backups slightly more up to date as we mentioned above . 

~~~-— —- - • —•— •~~~~-- •~~~~~~~~~~ - • ~~~~~~—-~~~~ — -~~~~~~~ • --.— •• --—- - ~~~~~-—-~ -~~~~~~~~~~~~~ - --


- _ , ‘
~~
‘
~~=

—..-—-—.--

~~~~~
‘
~
“ - 

~~~~
-

.Jr ~~~~
- -- •

~
—

Alternative Resource Sharing Strategies

We have proposed the use of a single primary with multiple

backups to support resilient resource sharing. The alternative to this

approach is to share primary duties among several members of the resource

set . This can take the form of designating all members of the resource

set as primary or some subset as the group of primaries and apother

subset as the group of backups. In the case of two— host resiliency, it

has been shown that the single primary, multiple backup strategy produces

the theoretically minimum message delay that ensures the resiliency

criteria have been met.

Let us consider the case where there is more than one primary.

In the general case, the primary which receives a service request must

synchronize the execution of that service request with all other primaries.

Otherwise, the system cannot guarantee that service requests are executed

in the same order at all resource sites. (This requirement is essential

— in the general case. There may be specific applicatons where the nature

of the service permits the out of order processing of requests. An

example is an inventory system where only increments and decrements to

data fields are permitted and where instantaneous consistency of the

data base is not a requirement.) The synchronization of multiple processes

reduces to the execution of an algorithm in each of the processes that

will result in distinguishing one process. The distinguished process

then establishes, for example , the order in which operations will be

performed, notifies the other primaries of its decision and then relinquishes

its distinguished role .

In the single primary case the distinguished resource is

designated a priori. Hence , any additional message t r a f f i c , processing

load , or protocol complexity to distinguish a primary is avoided .

44

L • • - -------- ~- . - -- •- -—-— — - —-- • -~~~~ - --~-— - • - —-- -“~
- —---~‘--—- - — -U- -

- ___

• ~~

::::: ;::~~~

5i5 is placed on electing a new primary should the original

• An alternative strategy may require all members of a resource

set to be primary or only some of those members to be primary . However,

- the requirement for synchronization tends to increase processing load at

- each host, messa~’e traffic in the communications subnet, and the corn—

plexity of the service protocols. At the same t ime, there is no increase

in resiliency or decrease in delay. Thus a multiple primary strategy

can never be superior , in the general case , to a single primary strategy .

Hence, the single primary, multiple backup strategy, is, in a sense,

fundamental to resilient , distributed resource sharing.

1

•

~

• I

I -
• 45

I ~~~
- . -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



• ~~~~~ ~~~~~~~~ • ~~~~~~~~~~~~~~~~~~ 
- 

- 
~~~~~~~~~~~~ ~~~~~~~~ -- ~- - T~~~~~~~~—~- -~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - • - -

Range of Application

The resilient resource sharing strategies discussed above can

be applied to a wide range of distributed system services. In particular,

the authors have studied the questions of resilient network synchroni-

zation, resource directories, data access and load sharing. In all

cases the resiliency technique seems to provide a convenient framework

to support automated distributed resource sharing.

Synchronization Primitives

The application of the resiliency technique to the support of

synchronization primitives is straightforward . Service requests are

transmitted to the synchronization service host exactly as shown in

figures 1 and 2. The synchronization primitives can be traditional

P and V, block and wakeup, lock and unlock, and similar primitives.

When a process requests synchronization service (e.g., a P, a lock, or a

block) it transmits this primitive request to one of the synchronization

service hosts. The acknowledgment returned by a synchronization host

will be either a block or proceed message. This tells the requesting

process whether it is forbidden to or permitted to enter its critical

section. If the process blocks , it may choose to exercise a local

• system primitive to block its further progress. Alternatively the

application process can go blocked waiting for a read on the communi—

cations network. In this latter case the read will not be satisfied

until a proceed message is received from one of the synchronization

service hosts. This proceed message is generated by a synchronization

host following the execution of a V , unlock, or wakeup primitive by

another process .

-

~~~~~~~~~~ ~~~~~~~~~~~~ -~~~~~~
— --- —~

— —-- _- -— ____._a~~~~~~~~ — -- -- -~~~ — •~~~~~~—- — - ~~~~~~~~~~~~~~

- -~~~~-~~~~• . - - . - . - - - • -~,- ---—- • - • - • - •- - ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ •-- -,—-.-—~.
-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~~~

_
~~~~

- ~~~~~~~~~~~~~~~~~~~ ‘ :~~:- - ~~~~~~~~~~ 
-
~~~~~~~~~~~~~~~~~

- - -~~~~~ —S----..~-- •-—-——-- -

Directories and Data Access

In a distributed environment the problem of accessing and

updating network virtual file systems and their associated directories

is difficult. For example , consider the problem of a single network—

wide tree—structured file directory scheme. Each host on the network

must be able to determine, in some reasonably transparent fashion, where

- I individual files are stored. If each site in a large network is required

to keep the entire directory structure, the cost for updates and synchroni-

zation of access to all of those directories (whenever they are updated)

woul? clearly be prohibitive. It is relatively straightforward to use a

scheme where the very highest levels of the directory structure are

fixed and replicated on all hosts. Alterable directories and files are

at lover levels of the tree. A list of potential service hosts is

stored at the point where the hierarchy becomes variable. These service

hosts are coordinated via the resiliency technique to provide access to

files below that point. This approach has the advantage of partitioning

the hierarchy in such a way as to minimize the number of hosts required

to cooperate in an update.

Load Sharing

~ Automated load sharing requires that multiple processors be

controlled in a resilient and transparent fashion to provide processing

services to requesting hosts. The resiliency technique can be applied

in a straightforward way to coordinate the offering of that service.

Any potential service site can receive a request for service and pass it

on to the primary for determination of an optimum processor for the

work. Once the task has been successfully forwarded to the primary it

would not matter if one of the service hosts involved in the task were

to die . Adequate information would be maintained to support the auto—

matic recovery of the service host.

47

___~~~~._s — p _- •~~~ •_ ~ ~~~~~~~~~~~~~ __•_•~~
__

~~ ~~~~~~~ -• ~~~~—~~ ~~~~~~~~~~~~~~~~~~~~~~

•-•-•,
~ --,. •

~~~~~~~~~~~~~~~~~~~~~~~~~

References

Alsberg, P.A. and Day, J.D. - •

“A Principle of Resilient Sharing of Distributed Resources”,
submitted to the 2nd International Conference on Sof tware
Engineering, October 1976.

Beisnes , Dag
“Single—Message Communication”, IEEE Transactions on Communication,
Vol. Com—24, No. 2, Feb 1976.

Bunch, Steve
“Automated Backup” in Preliminary Research Study Report, CAC
Document 162, May 1975.

Cerf , V.G. and Kahn, R.E.
“A Protocol for Packet Network Intercommunication”, IEEE Transactions
on Communication, Vol. Com—22 , No. 5, May 1974.

Cerf , V., McKenzie, A., Scantlebury, R., and Zimmerman , H.
“A Proposal for an Internetwork End to End Protocol”, INWC Note 96,
Jul 1975.

Grapa, Enrique
“Thinking Aloud about a Distributed Data Base Model”, CAC Dileptus
Project Internal Modeling Memo #5 , Nov 1975.

Johnson, P.R. and Beeler, M.
“Notes on Distributed Data Bases”, Draf t, Aug 1974.

Johnson, P.R. and Thomas, R.H.
“The Maintenance of Duplicate Data Bases”, RFC 677 , Jan 1975.

48



7- •1~~ 
7- 

- - —

~~~ JI-~~~~-- -_ -~~~~~~~
5 . _

~~~_ - - _ 
-~~~~~~~~~~~m- 

-i- 
-

BIBL IOGRAPHIC DATA 1. Report No. 2. 3. Reci p ient ’s Acces s ion No.
SHEET UIUC—CAC—DN—76—202 

_______________________

4. Title and Subtitle 5. Report Dat e

Multi—Copy Resiliency Techniques May 31. 1976
6.

7. Author (s)  8. Performing Organization Rept .

Peter A. Alsberg et al. 
No. 

CAC #202
9. Performing Organiza t ion Name and Address 10. Project/Task/Work Unit No.

Center for Advanced Computation 
_______________________

University of Illinois at Urbana—Champaign 11. Contra ct/Grant No.

Urbana , Illinois 61801 DCA 100—75—C—002l

12. Sponsor ing Organization Name and Address 13. Type of Report & Period
Covered

Command and Control Technical Center Research
WWMCCS ADP Directora te 14.
11440 Isaac Newton Sq.,  N . ,  Reston , VA 22090

IS. Supplementary Notes

16. Abstracts
In this paper , we describe a strategy which allows resources to be shared in a
resilient manner while minimizing user delay. The strategy described supports
two—host resiliency. That is, at least two of the cooperating hosts must
simultaneously malfunction while in the process of cooperation , and the mal—
function must be of a very restricted form in order for undetectable or
unrecoverable failure to occur. Extension to n—host resiliency is also
discussed.

17. Key Words and Document Analysi s . lie. Descriptors

network protocol resiliency
distributed data management
resource sharing

lib. Identifiers/Open-Ended Terms

lie.. COSATI Fie ld /Group

18. Avail ab i l ity St atement - 19. Security Class (This 21. No. of Pages
• No Restriction on Distribution Report ) 52

Available from the National Technical Information 20. Securi ty  C lass ~Tk~s 22. Price
Service , Springfield , Virginia 22151 

~9~NCLASS 1F1ED
rOAM N1I5-35 ,qt v .  3.721 — USCOMM OC %*535 P75

— — — — _.______-~~sS_. — ~~~~~~~~~ -~~~~~~ —~~~~~~~~~~ —~- — — -~~ —--7- ~~
.— —--.--.

~~



- 

‘— ----5- _-5
~
,.— •-

~~
-
~~
-

~~~
---5—~~~~~~~~~~~ -

- - . — -

NCLPSSIFI~DSECURITY CLASSIF ICATION OF THIS PAGE (W~,.n Data Xn~.red)

~E~
(’
~~ ‘~~‘ E ” ~ -’ D A~~ E R EAD INSTR UCTIONS

i~ r ’n~ I ~u~.vm i~ U ~~ U U~~~I’ r
~~~ BEFOR E COMPLE TIN G FORM

I. REPORT NUMBER — ‘ j 2. GOVT ACCESSION NO. 3. R E C I P I E N T ’ S  C A T A L O G  NUMBER
CAC Document Number 202
CCTC—WAD Document Number65O5 _______________________________

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED —

Multi—Copy Resiliency Techniques Research

6- PERFORMING ORG. REPORT NUMB ER

- CAC #202
7. AUTHOR(s ) I. CONTRACT OR GRANT NUMBER(S)

Peter A. Alsberg et al. ~, - •

- DCA100—75—C—002l

9- PERFORMING O R G A N I Z A T I O N  NAM E AND ADDRESS 10 PROGRAM ELEMENT , PROJECT , TASK

Center for Advanced Computation
University of Illinois at Urbana—Champaign
Urbana , Illinois 61801

It . CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Command and Control Technical Center May 31, 1976
.WWMC.C.S Aflp_DJ.xgc~,~rate 13. N U M B E RO F PAG ES -•

11440 Isaac Newton Sq., N., Resf~n~
7-VA 22O9O 52

14 MONITORING AGENCY NAME & ADDRESS(II diii •r.nt from Controlling Office) IS. SECURITY  CCAS ~ (otTh~a repor t ) 
• •

UNCLASSIFIED
IS.. DEC L A S S I F I C A T I O N/ O O W N G RA D I N G

SCHEOUI.. E

16. D ISTRIBUTION STATEMENT (of this Report)

Cppies may be obtained from the
National Technical Information Service
Springfield, Virginia 22151

17. DISTRIB UTION S T A T E M E N T  (OS the ab,tract entered In Blcck 20 , if dlff .r.n t from Report)

No restriction on distribution

‘a. SUPPL EMENTARY NOTES

None

19. K EY WORDS (Continue on rever s e aid. ii neceaeary and identify by block number)

network protocol resiliency

distributed data management

resource sharing
20 S PACT (Continue on revere, aid. if neces sary and identify by block numb.r )

In ~ his paper~~~~~ describeS a strategy which allows resources to be shared in a
resTlient mann~F’while minimizing user delay. The strategy described supports
two—host resiliency. That is, at least two of the cooperating hosts must
simultaneously malfunction while in the process of cooperation, and the mal-
function must be of a very restricted form in order for undetectable or
unrecoverable failure to occur. Extension to n—host resiliency is also

— 

discussed.

DD , 
~~~~~~~ 

1473 EDITION OF I NOV 65 IS OBSOLETE
UN CLASSIFIED

SECURITY C L A S ~ T~ ’ICr’ ION OF THIS P A G E (When Data Enler•d)

_ _ —~~~~~~~~~~~~~~ ~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •


