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Velocity-Space Methods for Reactor Plasmas

INTRODUCTION

The Fokker-Planck FEquation is one of a number of specialized tools that can
give you a handle on the dynamics of reactor plasmas. Like any tool, it is more useful in
some cases than in others. The emphasis here is on providing the potential user with the
orientation he needs to determine the usefulness of these methods for him.

This paper presents a brief review of the analytic and numerical development of
the Fokker-Planck equation, and an introduction to recent work, much of which is
presently unpublished. SI units are used throughout. The presentation is reasonably self-
contained, but no attempt is made to present the details of derivations or applications.
References are provided for those who wish to examine these details. The succeeding sec-
tions are organized by discipline, so that the reader with particular interests may quickly
find that part of the material which interests him most. The section on physics also pro-
vides motivation for the present development of these methods, and the reactor section indi-
cates the needs for future development.

The physics section emphasizes the difference between the gaseous and plasma state.
It explains why velocity-space methods are necessary for plasma reactors. It depicts several
practical physical problems, and explains how they are represented in the Fokker-Planck
Equation.

The mathematics section shows how the Fokker-Planck Equation is derived, and
what assumptions are made. It presents the general form of the equation, and described the
initial and boundary values needed. Some analytic methods for solving it are presented.

The numerics section describes several ways to reduce the computational complexity of
the general Fokker-Planck Equation. Numerical stability is discussed. Direct and transform
methods of solution are presented. The speed gains available on vector computers are il-
lustrated

The applications section presents methods for adapting the Fokker-Planck Equation to
experiments. Mirror and pinch systems are described. Tokamak systems are discussed,
and the difficulties peculiar to toroidal systems are explored.

The reactor section describes the differences between the present-day environment and
future reactor systems. It presents some of the problems associated with heating by energetic
reaction products. It suggests some areas for future development.

PHYSICS

In reactor systems, the nuclear reaction rate depends on an integral
R =1V =V]e (qV =V|) 1, (V) £, (V) VPV,

whose main  contributions are from opposite ends of the distribution functions /,. /,
of the reacting species a,b. This is because the thermal velocities of a and b, and thus the
main bulk of their distributions, are normally at energies far below the peak of the nuclear
react:on cross-section. The distribution functions /, and f, are rapidly changing at these
energies, and the integral R is very sensitive to such variations. Thus it is necessary to calcu-
late /, and /, quitle accurately.

Manuscript submitted March 24, 1977 |




This situation is quite different from that of conventional fluid mechanics.
There only the first few moments of the distribution functions (mass, momentum, energy)
are needed. and they may be calculated directly. The critical hypothesis from which fluid
cquations are derived is an assumption about the shape of the distribution function, usual-
Iv that it is nearly Maxwellian. This, in turn, depends on the presence of some colli-
sional process that drives the distribution function toward this state. In conventional fluids.
this assumption is quite reasonable.

In the physics of hot plasmas, this assumption is not reasonable. Collisions become
relatively infrequent. In fact, a material is considered to change from its gaseous state to its
plasma state when its plasma frequency exceeds its collision frequency, namely,
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where m, g, n and T are the mass, charge, number density and temperature, respectively,
of the material, k is Boltzmann’'s constant, and In \ is a dimensionless variable of order
10 [see Eq. (11)]. One cannot assume that the shape of the distribution function is
known in a plasma. Fortunately, one can assume that its evolution is slow, since the col-
lisions are infrequent. When a charged particle finds itself in a plasma, the other charged par-
ticles around it "shield" it from electrostatic encounters. An immediate consequence of this is
that collisional changes in a particle trajectory take place in many small steps, rather than a
few large ones.

These facts suggest that the evolution of the distribution is a diffusion process. The
general form of this diffusion equation is

9/q ] g 0 > a1,
m, v gk av fo (E =V x5 B) = v | Ty | I 12 (2)

where E and B are the electric and magnetic fields present in the plasma, and K and L are
the diffusion and drag terms. Several specific properties of this diffusion process distinguish it
from more conventional cases, like heat flow.

For example, K and L depend on all the species present in the plasma, and may be
anisotropic. Two instances of this anisotropy are illustrated schematically in Figure 1,
where two hot species of dissimilar mass are injected into a colder background. For a
light species (e.g. electrons), colliding with a colder, hcavy species (eg. hydrogen), the dom-
inant process is pitch-angle scattering.  Conversely when a heavy species (eg. uranium)
cools due to collisions with a lighter species, the dominant process is loss of energy. Fig-
ure | shows how these two cases result in different time evolutions for /.

Two examples of another physical phenomenon are depicted in Figure 2. Here
velocity-space is divided into 3 regions, labeled E, C and T. Region E contains escaping
particles (as in a mirror machine or pinch), C contains confined particles, and T contains
trapped particles (as in a tokamak). Boundaries such as these are present in the velocity
space of many systems of interest in reactor studies. Such boundaries are also usually in
different locations in V|| ,ll space for cach species.
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Fig | — Velocity-space diffusion of light (E = electron) and heavy (U = uranium) ions under the influence of colli-

stons with a cold background (H = hydrogen)

The concentric contours represent successive stages of evolution of
number density contours
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Fig 2 — Velocity-space regions and boundaries. The figure shows typical escape regions (E) and toroidal trapping (T)
regions, with the remainder occupied by confined (C) matter
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Finally, observe that Equation 2 is in conservative form. Energy losses, such as radia-
tion, appear as "convection” terms (in L), since they conserve the number of particles. On
the other hand, particles may be added or removed by nuclear reactions, or injection or loss
processes. Such features are treated by including source and sink terms in the equation.

In brief, this is the physics the Fokker-Planck Equation can be used to study. It
concentrates on the velocity-space dynamics of the various species in a plasma. it follows
the evolution of the distribution function of each species. It can represent the loss cones
of mirror machines and the trapped particles of tokamaks. Injection, losses, and nuclear
reactions can be included. How these things are done is described in the following sections

MATHEMATICS

The evolution of the distribution function under the influence of collisions is a
Markov process. That is, it is a random process in which each step depends only on the
result of the immediately preceding step. Thus fis a random variable of the coordinates
(V,t) which satisfies the evolution equation !

fvi) = [ £V — AV, 1 = A0 p(V ~ AV,1; AV) d* AV 3)
where pis a probability distribution satisfying
fpviav)adav =1 (@)
for all (V).

To make use of Equation 3, we expand itin a Taylor series,

( ’ : a2
)/ a/p ] o°fp e .
= ~ A5 p — AV - 25 4 — AV AV @ AV (S)
; r l"/, ar # gV 2 ke oV oV ‘

where we have taken Arand AV sufficiently small that we can neglect higher order terms in
the expansion.

Since / and the differential operators are independent of V| the integrals can be carried

out, vielding
B . A
or oV
where Eq. (4) has been used, and P and Q remain to be determined.

s FP (6)

In an clegant but tedious calculation, the properties of Coulomb collisions are used to
P 4 ’ . . . »
obtain P and Q.“ It is important to note that this calculation assumes both a minimum and a
maximum range for the Coulomb interaction, to obtain the frequently used "Coulomb loga-
" j
rithm” In \.

Before writing down general expressions for P and Q, it is useful to recall that the sys-
tems we are concerned with are multispecies plasmas. It is thus appropriate to rewrite kq.
(6) in a form which includes the collisions of each species with all others, including self-
colhisions. It can be written

5l P
L LT B A Fhap .
di = T ab 12 gV av e §v av !

av Te v
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BV =[5 V)|V =-v]|dV, (8)

nt, ==y
h, (V) =——— | fL,(V)/|V =V | BV, 9)
Y ey f b /| [

a2 af n A,
e .,L’, ab (10)
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VIO ot m, . -

Ay, =22 —ina}?T,7"), — 7, < 10° K < T, (1)
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The "Rosenbluth potentials” g and A are integrals over the distribution functions which
in principle (see next section) need to be calculated once for each species, then summed in
various ways to determine the effects of collisions.

The basic Fokker-Planck equation (7) is parabolic. Thus Dirichlet or Neumann condi-
tons on a closed boundary, plus initial conditions within the boundary, constitute a well-
posed 1. This 1s what is normaily solved in cases of physical interest.

ral operators in g and A cause sufficient difficulty in dealing with these

mnalytic solutions of the system (7-10) have been attempted only for special

such case assumes each species is Maxwellian, with boundary conditions f =0

al v = A more realistic model s obtained by expanding the distribution function and

integrals in Legendre polynomials [Egs. (18-20)] and retaining only the n =0 and n =1

terms. This model has yielded important advances in the transport properties of plasmas.*>
In less special cases, numerical assistance i1s usually required.

NUMERICS

T'here are two basically different numerical algorithms needed to soive the Fokker-
Planck Equation. One is the relatively conventional solution of the diffusion equation [Eq.
(7)]. The other is the calculation of the collision integrals [Egs. (89)]. A cursory examina-
von of Egs. (7-9) in finite-difference form suggests that most of the work is involved in
calculating the integrals. Let us see how that work can be reduced.”

First, itis not necessary to calculate both integrals, since they are related by

0 o 2'"/7
A SR L (12)
av  gv m, +m, 9

a
Thus. once g 1s calculated, h can be obtained by differencing it. Alternatively, if /1 is calculat-
ed. gis the solution of a Poisson equation. In fact, if a method for solving a Poisson equation
is readily available, it can also be used 1o obtain A, since the Laplacian of Eq. (9) can be
written

i 9 i bl

= — 4 —

% Sut ™ :
aV gy b my, i

(13)

Betore choosing between computing the integrals and solving the Poisson equations, it is
necessary o select the coordinate system to be used in velocity space.

The required coordinate system creates much of the trouble. The spherical sym-
metry of the Coulomb interaction, and of the most common solutions (Maxwellian), strongly
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suggests the use of spherical coordinates. Most of the problems of physical interest have
axial symmetry, with the magnetic and electric fields (if any) in the axial direction. Note
that most of the complexity of what follows is due to this choice of spherical coordinates

Let us represent our velocity space in a spherical coordinate system (rf,60) with
: : ) af :
metric @I =dr® + rPan? + rPsin?0 dh? . We shall assume that ——;f = 0. Then indivi-

)
dual elements of /(r,#) represent toroids in velocity space, and the integrals (8,9) can be ex-
pressed in terms of complete elliptic integrals

g (Vo) = [uKw) £, (V.0 (V) 2sin 0" dV' do’ (14)
and
hy (V,0) = i"‘ii—ﬁ'ﬁ f E(W) f,(V,8") (V)2sin 6 dV' &', (15)
where
U=4V2+ (V)2 =2 VV (cos #cos® —sin8sine’)!?2 (16)
W =16 VV'sin#sinb'/ U (17)

If /is represented on an Ny x N, grid, then the kernel of these integrals, e.g.

K, (V.0, V',8') = UK(W) V'sin ¢/,
is an \,’ x /\',f table of values for cach pair of species, requiring an N x N, dot product for
each point and pair of species.

There is an alternative which appears to reduce the work involved in computing these
mlcgruls‘z'7 It is based on methods which have been developed for the Poisson equation. Sup-
pose we expand the distribution function in Legendre polynomials,

f,(v,8) =3 f, (Vn) P, (cos @) (18)
n =(
Then the radial and azimuthal integrals are separable, and the azimuthal integrals have a
direct quadrature, giving

| 1
Bedr el v P
g, (V) =—-~9,-’f—-~f (vy) V2 |— g a5 (19)
an” =1 ‘g V. 3 (Vs
n+
2
X /,, (Vi) (V)2av'
4 . i % n4+ =
" , m < A ) ;
() S V' 2 e S5 . V2 dv
hop (Vin) PFY ! Vv l"» fy (Vi) (V)4 d (20)
where
V.o =min (V, V) (21)
V., =max (V, V') (22)

In this way, the calculation of g and /4 has been reduced from complete Ny x N, integrals
to one Ny integral for each azimuthal mode, and the kernels of the integrals are (frac-
tional) polynomials, rather than elliptic functions. Incidentally, the n=0 equations for g
and h are the one-dimensional (radial) integrals for the Fokker-Planck Equation.

7
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I'he Legendre expansion is a great improvement if only a few azimuthal modes are
needed to describe the distribution of interest. However, if localized distributions occur, for
example when intense beam injectors are present, a number of modes N~ N, may be re-
quired. Then the work can be comparable to direct integration (elliptic integrals are easy
to calculate)

There is no consensus on this choice. Some workers solve Egs. (14-17) while others
solve Egs. (19-22). The choice is to sume extent dependent on the physical problem being
addressed. At the present time, the direct solution appears to have an advantage for computa-
tonal reasons. It 1s a very highly ordered operation on a lot of data, and as such its computa-
tional cost is reduced up to two orders of magnitude on a vector computer. (See Table [.) In
any case, calculating these integrals is only half of the problem.

The other part of the Fokker-Planck quadrature is solving the diffusion equation [Eq.
(7)]. In spherical coordinates, expansion of the operations in Eq. (7) is tedious, but
straightforward. If Eq. (7) s transformed into the Legendre representation of /, the
differential operators in # are replaced by coupling terms between the various modes.

Since both fand the integrals g and A have azimuthal dependences, the spectrum of
the operator on the right-hand side of Eq. (7) is not closed; that is, if / contains modes only
up to N, Equation (7) can vyield modes in df/dr with n> N Some computational
method must then be prescribed to truncate the spectrum of the operators. That is, the
part of / which is "lost" to higher modes must be returned to the lower modes, in a way
which conserves mass, etc. as far as possible. This is another problem with the Legendre
representation.  Because of these difficulties, the following remarks will be restricted to
the difference formulation of Eq. (7).

Equation (7) contains both a convective and a diffusive part, so several numerical sta-
bility criteria must be satisfied by any explicit algorithm for solving it. In terms of the Qand P
ol Eq. (6), they are approximately

(23)

and

St < min|——,——— (24)
Pyy Pon

pus some obscure and nasty ones on the off-diagonal terms. The usual case is that the
last term, b2a62/p,, is the most restrictive, in the cells near the origin of the coordinate
system. As is typical in computational fluid dynamics, the stability considerations for an
algorithm are dominated by a region in which very little interesting physics is going on. In
most cases of physical interest, the orrequired for explicit stability is too small to be prac-
tcai, and an imphcit algorithm must be used.

It 1s clear from these considerations that the grid should not contain  a cell at V =0.
IThe most natural choice of finite-difference cells uses the origin and the axis as cell
boundaries. Then the axial boundary conditions take care of themselves: no flux flows
through these boundanies

When the differential operators in Eq. (7) are written out in components, a lot of terms
appear.” Reduction to difference form requires a lot of algebra, but is otherwise straightfor-
ward. The speed ol present-day computers makes practical what was prohibitive a few

8




years ago. Replacing the operator on the right-hand side of Eq. (7) by centered differences
results in a 9-point spatial difference operator (5-point if second-order accuracy is not re-
tained)

Y LGidm) f G+ 1+ m) =R, ) (25)
1.0.1
" 101

: " ; x y 2 -
Advancing fin tme then requires solving a (N, x N, )< sparse matrix equation. Typical grid
resolution is Ny =50, N, =20, so in principle a 1000x1000 matrix inversion is involved
In fact, methods are now available for solving such banded r.atrix equations by rapidly con-

. . . . 4
vergent |lcr;n|0ns.“. or cyclic reduction.’

Table I illustrates the gains available with such methods. It presents speeds obtained on
the NRL (2-pipe) Texas Instruments "Advanced Scientific Computer.” The two most expensive
clements of the Fokker-Planck solution are the integral of Eq. (8) and the solution of the
matrix equation [Eq. (25)]. Table I presents the scalar time, vector time, the ratio of thesc
nimes. and the vector speed in millions of floating-point operations per 2cond (MFLOPS) for
these tasks. To put this speed in perspective, performing the integrals of Eq. (8) for each
point of a 20x50 grid requires 2 million operations, and takes 40 n.lliseconds, about the
time 1t takes to write one word on a disk (disk rotation time).

Iniual and (exterior) boundary conditions are usually fairly simple. The initial condi-
tions usually rapidly disappear behind the dynamics of the diffusion. There are no wave-
like solutions for them to excite. They are typically Maxwellian distributions, possibly
with some delta-function beams.

Boundary conditions require more care. At large velociues, collisions become
less frequent, so particles which get there, can stay there. In partcular, if an electric field 1s
present. there s a velocity (for each species) above which a particle "runs away.” This
means that the final state of such a calculation 1s one in which all particles have run away,
but for practical problems, the time it takes this to happen is long compared to experimen-
tal times. Specific values may be prescribed at the (exterior) boundary, or it may be taken
impermeable. Whatever choice 1s made, the parameters of the calculation can usually be
chosen so the results of interest are insensitive to them.

Finally, 1t should be mentioned that there are many "collisional” processes that are
not sitmple Coulomb processes. For example, the particles may be scattered by electros-
tatic plasma waves. Such coherent processes are not described by the Coulomb integrals
[Fgs (89)], but the diffusion and drag resulting from them can readily be included in the
Fokker-Planck formalism.

APPLICATIONS

Shight modifications of the Fokker-Planck Equation are often needed to apply it to
specific experimental configurations. This section indicates what changes are required to study
typical mirror, pinch, tokamak, or laser-plasma problems. These applications are il-
lustrative of  the adaptability of velocity-space methods, and show how details of an ex-
periment can be represented.

The dominant feature of a mirror machine is the presence of loss cones in velocity
space.”  This means that particles in a region such as E of Figure 1 leave the machine in a
very short time. Thus the boundary condition f =0 should be applied on the surface

9




Table |
Table 1 presents measured performance data for the most expensive computational elements of
the Fokker-Planck calculation. Equation (8) is readily vectorizable, while Eq. (25), which in-
volves recursive calculations, 1s not  The “scalar” and “vector” speeds were measured on a
2-pipe Texas Instruments ASC, and are expressed in terms of "millions of floating-point opera-

tions per second.”

SCALAR VECTOR . VECTOR
SEC/FLOP SEC/FLOP RATIO MFLOP/SEC

INTEGRATE 5176 0.0206 280 49
Eq. (8)

INVERT 2.09 0.112 19 9
Eq. (25)

between regions C and E. What is unlike other fluid problems is that the boundary sur-
face C-E 15 different for cach g/m. For example, a "square well" magnetic mirror with mir-

ror ratio B, /B, and maximum potential & has loss cones

B |, , 240

(26)
Bmm mb?2

. Y
sin - # =
which are different for each particle ¢/m.

The methods used to solve these boundary value problems are those of conventional
fluid mechanics, there are just more boundaries than usual. The boundaries may be treated
properly, solving Eq. (7) [that is, Eq. (25)] subject to them. A quick and dirty alternative is to
solve the problem with boundary conditions at V' = = (or some ¥, . ). and then set / =0in
region E at each time step.  For a diffusive problem, this will not result in an instability,
just a first-order error in o but it an implicit method is in use which s first order in  or.
such terms are already present. Typical computational results include the loss-rate of
ions, and the potential & necessary to obtain charge neutrality.

A pinch  experiment is characterized by a rapid change of the magnetic field B in
time.'"" The appropriate Fokker-Planck Equation is obtained by replacing the left-hand side
of Eq. (7) by the left-hand side of Eq. (2). The change with time of B produces a convection
of / in the perpendicular direction. (Recall that Bis aligned along the axis of our coordinate
system.) A fluid element convects at a rate

av 1 Y aB

@ 2 B e

The factor of 172 is present because there are two components of Vin the perpendicular
direction. The physical process involved is constancy of the magnetic moment. In typical
pinch experiments, this compression heats the ions, The Fokker-Planck Equation is used to
obtain the resulting shape of /. This determines the hot ion lifetimes and their rate of isotrop-
ization; i.e.. the rate at which the ions acquire parallel velocity and are lost from the pinch.

10
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Tokamaks have four features which are important to a velocity-space model. First,
an electric field 1s present, parallel to the magnetic field; the plasma carries a net current.
Second. there are magnetic mirrors within each magnetic surface, and they can trap some
particles. Third, there is a significant variation of plasma conditions with spatial posi-
tion. velocity-space modelling of a tokamak is viable because individual magnetic surfaces are
fairly well isolated from each other, and conditions on each magnetic surface are fairly uni-
form. Fourth, there is a relatively high level of impurities in most tokamaks. Various work-
ers have examined one or more of these features. They have not yet all been treated together.

I'he electric field results in distortion of the distribution function, and rapid
convection along the axis. This can produce difficulties for the algorithm which soives Eq.
(25). particularly around the origin. Physical problems of interest are the distortion of / and
the resultant resistivity: the ratio of the current it carries 1o E.'"' The calculation of the
resistivity has been explored thoroughly when no toroidal effects are present. Present work
thus involves inclusion of some of the other effects as well.

Trapped particle effects can be included by treating separately the trapped and un-
trapped particles. (Regions T and C respectively of Figure 1) The particles in  C satis-
fy a conventional Fokker-Planck Equation, while those in T satisfy Fokker-Planck equa-
uon with no electric field. since they are not free to accelerate in that neld, and the encrgy
gain in one bounce is negligible compared to their average energy. This can be most simoly
modeled by making £ a tunction “of V -which is the tokamak value in C,and zero in T. Cal-
culations with this model vield the toroidal corrections to the resistivity. 12

I'he magnetic surfaces are really not independent, since ion orbits (e.g., banana or-
bits) extend over different surfaces. Convection and loss mechanisms also couple surfaces
Solutions of a coupled radial transport equation plus a Fokker-Planck equation on several sur-
faces have been attempted,'’  however a large number of approximations are required. This
is sull a very difficult problem.

Finally, impurities  introduce two important effects. First, they greatly ‘increase
pitch-angle scattering ol trapped particles, beams, etc. Second, if they have high atomic
numbers, they radiate, resulting in an electron energy loss. The first effect is important
when studying beam injection. The second is important in overall energy balance

As a last apphcation, the Fokker-Planck Egquation has several interesting areas of
the laser-plasma interaction to investigate. In the absorption region, where the laser elec-
tric field is largest, the electron distribution function is swept back and forth in velocity space
From the point of view of the ions, the electron  distribution function  acquires an  ellipti-
cal distortion.  The Fokker-Planck  Equation can be used to quantitatively calculate the
heating rate due to this process.

Both in the tokamak and laser plasma environments, beams are formed in one region
and transported to (injected into) another. The Fokker-Planck Equation can calculate the in-
teraction between these beams and the background through which they are propagating.
The beams are simply sources in the equation.




These apphications indicate both the versatility of the Fokker-Planck equation, and the
amount ¢f effort which s required to solve such problems. The computational cost of these
sofutions 1s rapidly decreasing, and more examples of such applications are appearing. Will
vours be the next?

REACTORS

I' may appear from the previous section that nuclear reactions have been neglected
inthis velocity-space work. That is not so. The applications section showed how velocity-
space methods are adaptable to the physical characteristics of various devices. In most of
the experiments described above, reactor studies have been carried out with the resulting
model The nuclear reaction calculation is usually the most conventional part of such calcu-
lations It uses the calculated distribution functions to compute reaction rates from

the appropridte cross-sections.

Once the heating and loss processes of the experiment are modeled. it i1s easy to inject
the reacting species. and calculate their dynamics. One part of that dynamics is the nu-
Clear reactions they undergo.  The reaction integral determines two things: the rate of pro-
duction of nuclear energy. and the reaction constituent sources and sinks in velocity space.

At this pomnt, you may take your choice and pay vour money. There is no argu-
ment about the neutrons. They give their energy to the external environment. The fate of
the reaction products s something else The tnexpensive choice is to deposit the energy of
the charged reaction products where it will probably go first: namely. into the electrons.

The expensive choice is to follow the velocity-space behavior of these products. It
15 expensive for two reasons. First, the velocities with which the reaction products are born
is very large  compared to the onginal  plasma velocities. Thus the required velocity-
coordinate  space  becomes larger. and finer gridding is required. Second. coliision in-
tegrals are required for cach pair of species, so much more work is needed for each addition-
al reaction product which s treated

But it is the expensive choice that will be needed in the coming vears. In practice. all
the proposed plasma reactors have loss regions. and it is important to know how much en-
ergy s returned to the reactor plasma betore products are either lost, or slow down. This will
also allow a4 guanutative assessment of nuclear reactions in which the participants
themselves participate. Such calculations are now on the drawing-boards, waiting their turn.

This is presently a wide-open arca of research. and even a factor of two improvement
in yield for some experimental design would be important news. Designs such as the
‘two-component torus” are presently on the edge of scientific breakeven, and looking for
any available help

This survey has indicated what kinds of problems can be addressed by velocity-space
methods. and how they are modeled The basic conclusion is that all of the major plas-
ma reactor designs are amenable to such treatment. and each has had some important as-
pect analyzed n this way. It s also clear that much remains to be done. The cost of
velocity-space computatons has been large in the past, but is now coming down. Scientists
who have an acquaintance with distribution-function methods should find a friend in the
Fokker-Planck Fquation
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