
FL:— N
AD—A043 028 NAVAL HOSPITAL JACKSONVILLE FLA. F/s c/a

USC OF AN IOF—(.IKE OUCRY LANIIJAS€ BY NON—PROgRAMMERS. CU)
FEB 75 J P OLLD I R N ASCIER NOOOL~e72..C_O*I9

UNCLASSIFIED RC—5279 Pt

U__ _ _

_UNUW W

a

f
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~ Research USE OF AN IQF —L IKE QUERY LANGUAGE
BY NON-.PROGRAMMERS 1

Johr~ 0. Gould/Robert NI . A scher

February 20, 1975)
RC 5279

(

--

~

—

‘-~‘ ~

D

This research was supported in part by the Engineering ~‘sycholo gy
Programs, Office of Naval Research, Contract Number N00014-72-C-0419,
Work Unit Number NR-1 97-020.

>,. Reproduction in whole or in part is permitted for any purpose of
~~~~.. the United States Government.

I

~~ 

Approved for public release; distribution unlimited .

—I

Yorktow ,, Heighr~ New York

San Jose , Ca lifor nia

Zurict,, SwItze rlanc~

~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _


r
5ECU~~I1~Y C L A S S I F I CA T I O N C)~ THIS PAGE (~~hen L)o~~ &~f ~ r..1J

—
~~~~~~~~~~~ ~~ I~~~ A ~~~~~~ D A ~ R E A D  I N~ TRUCT!ONSr~Lrur~ I ~~U~~~U~~i ...I’I I ‘~ I ILJI’i ~~~~~~ BEFORE COMPLETING FORM

REPORT NUMBER 2. GOVT ACCES SION No. 3. RE CIP IENT ’S  C A T A L O G  NUMBEI4

IA
~~t RC5279~

4 TITLE (en d Subtltl.~) — 
5. ~~~~~~~~~~~~~~~~~~ £ PERIOD CQVE R~~O

/ Use of an IQF-Like Query Language by / ~ In terim ~echnica1 Repe~ t
Non—programmers~ ,. .. ~~~~~. . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ s. PERFORMING ORG. REPORT NUMBER

AUTHOR(S) ~~-.—~~
-- • - - - - B. CONTRACT OR G R A N T NUMB ER~ s)

Robert N/Ascher / ~ N000i 4-72-C-0141 9 ~

9. PER FORMING ORGANIZAT ION NAME AND A DDRESS ~0. PROGRAM ELEMENT , PROJE CT . TASK
AR EA & WORK UNj T NUMBERS

_

-.

1. CONTROLLING OFFICE NAME AND ADDRESS ~2. REPORT OATB -

International Business Machines ‘ ~ JEBL.~.._._ I 1~~~~75
T. J. Watson Research Center’, P.O. Box 218 ~ 3. NUMB ER OF PAGES

Yorktown Heights, ~ew York 10598 30
14. M ONITORING AGENCY N A M E & AOORESS(It dIfferent from Contro l l ing Of f i c e) 15. SECURITY CLASS. (of thu r.pott)

Office of Naval Research
Code L~55
Arlington, Virginia l5a• DECLASSI FICATI ON/ DOWNGRADING

SCHEDULE

IS. DI STRIBUTION STATEMENT (of this Report)

pproved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of th, abstract entered In Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continu, on reverse side if nec.a.aly and Id.ntlfy by block number)

query language man-computer question-asking IQF programming
human factors

20. ABSTRAC4’Conrrnu . on r.ver,. aide If nece...ry and Identify by block number)

~BSTRACT: This exploratory experiment attempts to examine separately
:he formulation , planning, and coding of queries. College students
m d file clerks required about ten hours to learn a query language
ihich was somewhat similar to IBM ’s IQF query language, but con-
tam ed more function. They were then given 15 test problems that
,aried in complexity and how well they were expressed . Subjects were
required to formulate, then to plan (writing each in their own words) ,
and finally to code each problem. Results provide some suggestions ‘.

~

DD ~~~~ 1473 EDITION OF I NOV 55 IS OBSOLETE

S E C U R I T Y CLASSIFICATION OF T HIS P A G E (When Date Entered) fr
~: ‘.1 .

~

~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~
111~

r
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -

~~out which problem variables affected which 
4’stages ” in writing

queries. For example, whether or not a problem was well expressed
seemed to affect problem formulation time , but had no affect upon
problem planning or problem coding times. Specific language con-
structions (additionso IQF), such as contextual referencing and a
new method to handle limited disjunctive problems, were shown to be
useful. The types of coding errors that subjects made were identifie
and discussed . .. -  . - 

— .:
_

~~~~~
‘

SECURITY C L A S S I F ICA T I O N OF THIS PAGE(Wh.r , Caf e Entered)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . — ~~~~--~~~‘~~. - -  ~~~~~~~~~~~~~~~~~ .—- .- - . - -—-- -----~~,



~

RC 5 2 7 9  USE OF AN IQF-LIKE QUERY LANGUAGE BY NON-PROGRAMME RS1

(#23 163)
2 / 2 0 / 7 5  ~John D. Gould and Robert N. Aschar
Psychology Behavioral Sciences Group

Computer Sciences Department
IBM Thomas J. Watson Research Center
Yo rktown Heights , New York 10598

Typed by Linda Callahan on MTST

ABSTRACT: This exploratory experiment attempts to examine
separa tely the formulation, planning , and coding of queries .
College students and file clerks required about ten hours to
learn a query language which was somewhat similar to IBM’s
IQF query language , but contained more function. They were
then given 13 test problems that varied in complexity and how
well they were expressed . Subjects were required to forinu—
late, then to plan (writing each in their own words) , and

( finally to code each problem. Results provide some suggest-
ions about which problem variables affected which “stages” in
writing queries. For example , whether or not a problem was
well expressed seemed to affect problem formu~ation time , but
had no affect upon problem planning or problem coding times .
Specific language constructions (additions to IQF) , such as
contextual referencing and a new method to handle limited
disjunctive problems , were shown to be useful . The types .-~f
coding errors that subjects made were identified and di~ cu~ -
sed.

~~~ ~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~ 
.... _.

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication elsewhere and
has been issued as a Research Report for early dissemination
of its contents. As a courtesy to the intended publisher , it
should not be widely disti’ibuted until after the date of outside
publication.

a

Copies may be requested from:
IBM ThomasJ. Watson Research Center
Post Office Box 218
Yorktown Heights , New York 10598

. ..-• - - - -- -- --.--- -—---.--.

1

This is an exploratory experiment on how people with no experience using

computers write queries. It was undertaken for two reasons: to collect

some data on how people formulate, plan , and code queries; and to understand

better how people learn and use a query language.

Query languages let people ask questions about data stored in a compu-

ter. For example, a person might want to inquire about census data , perfor-

mance of particular stocks , personnel files , sales forecasting , geological

findings , or course enrollments • The importance of query languages is

expected to increase during the next decade because of the huge predicted

expansion of data base applications (of. Datamation, 1973) .

Formulating appropriate queries involves problem-solving skills. Most

experimental work on so-called problem-solving tasks has been limited to

studying games , such as chess (deGroot, 1965), or mental puzzles such as

cryptarit2~unetic (Newell and Simon , 1972), Tower of Hanoi (Newell and Simon ,

1972), and Eiobbits and Orcs (Thomas , 1974) . These tasks generally require

a person to formulate the problem, to plan a strategy or algorithm to solve

the problem , and f inally to try out, or implement, this plan. In the case of

instructing a computer , this last component or “stage” requires a person to

code the problem. The present experiment attempts to study these stages in

a gross way by requiring subjects first to write a formulation of the pro-

• . blem , than to write a plan to solve the problem , and finally to code the

problem in a formal query language (described below). Previous work on how

people write computer programs (Boies and Gould , 1974; Miller 1974; Youngs ,

1969; of. also Weinberg, 1971) and debug computer programs (Gould and

Drongowski, 1974; Gould, 1975) studied only this last stage. What we

r -
~~

2

operationally define as “formulation” , “ planning” , and “coding ” are not , of

course , independent , mutually exclusive stages in problem-solving. Our

attempt is to isolate some significant portion of each process as it relates

to the use of computer languages. Of specific interest were how these

stages are affected by the complexity of the problem and by how well the

problem is initially defined .

IBM ’s Interactive Query Facility language (1972), called IQF , was used

as a prototype language for the query language actually used here. IQF was

designed to be relatively easy for non—programmers to learn and to be appro-

priate for simple queries. IQF differs in many important respects from the

language used in this experiment, however. First, the experiment was not run

interactively on a computer , but instead subjects w~ote their queries on

pieces of paper . Second , there were several specific language features not —
-

in IQF that we wanted to examine. Subjects were allowed to select and operate

upon more than one subset of records , whereas in IQF they can only query one

subset at a time. An assignment statement capability was introduced so that

this aspect of procedure specification could be explored in a language that

did not require a user to specify transfer of control. The use of contextual

references, through a demonstrative pronoun, was allowed because people

of ten use this construction in specifying procedures in their own words

(Miller and Becker, 1975). A new method designed to aid people in coding

limited disjunctive problems was invented and used. People have difficulty

in procedurally specifying disjunctive (“or”) concepts , even when they have

just demonstrated they can follow the same disjunctive rule (Miller, 1975).

~~~~~~~~~~~~~~~~ ~~
• ‘ •

~~~ ~~- :~ - - .- 

—

-

-. . ,
-

3

METHOD

Subjects. Seven female liberal arts college students and ten female

• middle— age file clerks (high school graduates of about 25 years ago) were

paid to be subjects. Four file clerks did not complete the experiment. All

subjects had no experience using computers.

Query Language. Besides the major differences mentioned above, several

minor syntactic features of IQF were modified for ease of use, based upon

informal pre—experimental testing. In using the language , a subject first

See page 24 for Table 1

selected a file, then selected one or more subsets of records within the

file, and finally operated upon these records. In Table 1., line (1.) selects

the file. Lines (2) to (4) and lines (10) to (12) select the subsets of

records of interest. The remainder of the lines operate upon the records.

The language consists of commands, attributes, values, operators, and

variables. For illustration, the command portion of each instruction in

Table 1 is capitalized. The FROM FILE command selects one file. The

FOR commands and the AND FOR commands select records of interest. The

LET BE CALLED_____ command is the assignment statement. A variable

could be used in the first blank of the assignment statement, as in line

(6); or a contextual reference referring to the result of the previous line

could be used, as in line (14). Variables are intermediate data structures

that a subject has created. More than one variable, separated by operators ,

could also be used in the first blank, as in line (17). The ALSO command ,

H
as in line (9) , separated different sets of records . The COUNT and TOTAL

commands do what their names imply .

Besides the commands shown in Table 1, there was a COUNT BY____

command , a TOTAL BY_____ command , and a SORT BY_____ command. These involve

the concept of operating on an entire set of records at once , e . g . , Sort By

Department.

The operators used in this study were “or less” , “or more” , “+“ , “— “ ,

~ *~,
, and 1/ ~~

Training. Based upon pre—experimental work and experiences of colleagues

teaching laboratory programming languages to non—programmers , a 10-page

trainincy -~rogram was developed. Each subject wrote about ten pr.lctice

quer experimenter was always in the room, provided feedback on the

ac ~. her queries, helped her , and answered all questl.ons . (Conse-

quently, the exact training that each subject received varied somewhat.)

Following this, a subject coded six test problems. If she was correct on

four of them , she proceded to the formal experiment. Otherwise, some

re—training occurred and then she did the six problems over until she was

correct on four of them.

Problems. The 15 test problems were worded in various ways , but they

all required subjects to write queries that would select from a personnel

file sets of records , or employees , having specified characteristics. For

each set , subjects sometimes had simply to list the records , sometimes

count the records (e.g., as in line (5) of Table 1) , sometimes total , for

example, the number of dependents of the selected employees, and sometimes

compute an average, e.g., as in lines (5) , (6) , (7) , (8) , and (17) in

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ± • . ~~~~~~~~~~~~



S

Table 1. The problems varied systematically in two ways. Each required

the selection of one, two, or three sets of records. The problem in Table 1

requires two sets. Secondly , each set had 1, 3, or 5 modifiers or qualifiers.

The problem in Table 1 has 3 modifiers for each set. For example, lines (10)

to (12) select engineers over 50 years of age working in St. Louis.

There were nine so—called “standard” problems, one for each combination

of sets and modifiers. These standard problems served as control problems

for the other six problems. Of these six, one was similar to the 2—set,

5—modifiers—per-set standard problem and was used to check the reliability

of results for problems of different wording. Three others were so-called

“temporary data” problems. Two temporary data problems required subjects

to create and save temporary data and to use these results later in their

query to compute averages (i.e., average salaries or average numbers of

dependents). The third required , in addition, that subjects compire two

averages that they had calculated earlier in their query . The remaining

two problems were so—called “poorly expressed” because one contained irrele—

vancies and the other was vague .

Procedure . Each subject was given the fifteen problems in a random

order , usually in 2 or 3 sessions . After reading a problem, a subject was —

required to write a sentence beginning with “I want to know.. .“, and

ending with the information she needed to solve the problem. As explained

to her, this was to be a measure of problem formulation. Second , she was

• required to write a plan, which was to consist of a series of steps to solve

that problem . She again used her own words to write this plan , and she used

her own judgment about how detailed to make the plan , an outcome of some



•-
~~~~~~

6

interest in itself. Finally , she was required to code the problem, numbering

each line of code in the order she wrote it. ~o erasing was allowed . This

provided a complete record of all insertions and line changes .

Subjects had a chart in front of them that contained thirteen columns,

each witlt a different heading or attrihute, e.g., name , age, sex, year hired.

This chart represented the personnel file used for all problems . Under each

attribute was a list of all permissible words , or values. Subjects were

required to use these exact attributes and values , including their exact

spellings, in selecting records; other.~i-ise , their code was considered erron-

eous. Table 1 illustrates the use of attributes (underlined words) and

values (words beginning with lower case letters). (In practice, hcwever ,

subjects were not required to underline, and the case of letters was

irrelevant.)

Subjects wrote on paper placed on a large brass plate , which was attached

to an IBM System/7 computer2. The writing pencil was also connected to the

computer, and when a subject touched the brass plate with i t , she completed

a circuit that controlled a clock in the computer. A subject touched the

plate at the start of problem formulation and again when she .completed writing

her formulation. This gave a measure of formulation time. In problem plan-

ning, a subject touched the brass plate after writing each planning step ,

which provided a time for each step. Similarly , in problem coding , a subject
•

touched the plate after writing each line of code. The results reported are

based upon the first attempt at writing each query .

Error Analysis. Following data collection , accuracy of code was analy-

zed manually in several ways by one experimenter going through the data

&~~~~~~ _ _ ~~~~~~_ • • • ~~~~~~ - - — - ~~ •~~-

_________________________ ____ - --—- — ------ • - —

several times. Each successive manual pass led to slightly different

results and sometimes required arbitrary decisions . Consequently , these

error analyses are approximate only .

One error classification characterized errors in relation to the com-

mands in which they occurred. If a necessary command was omitted , and not

replaced by another (wrongly chosen) conui~and, an “omission” error for that

missing command was recorded. If a wrongly chosen command was present, it

was classified as “inappropriate” (and no omission error was recorded). If

a command was appropriate , but contained an error , this error was classified

in terms of the erroneous element in that command , e .g . , heading (attribute)

value, operator, or the command itself.

A second, independent error analysis attempted to chara~.:erize each

error as clerical, syntactic, or conceptual. This proved impossible t~ do.

A third error analysis , related to the second, attempted to classify

the general accuracy characteristics of each entire query , rather than

individual errors within it. If the query was “correct ” , this was recorded .

If it was incorrect, the errors were examined to see if the query could best

be characterized as containing “clerical—syntactic” errors. A clerical

error included misspellings , mis—transcription of a heading or value from

the data structure chart, or obvious typographical mistakes. A syntactic

error was a violation of the rules of the language relating to an individual

statement. If the errors could not be best desuribed as clerical-syntactic ,

they were then examined to see if the query could be described as belonging

to a “conceptual/language” error category . An incorrect query was thus

classified if it was judged that the errors , which would otherwise be

r
•

8

• j udged as “conceptual” , were the result of a systematic misunderstanding of

the rules of the language. Finally , an incorrect query was classified as

due to a “conceptual” error. It was thus classified if the errors primarily

reflected misunderstandings of the problem rather than of the language , e.g.,

if the query was syntactically correct but caused an incorrect result.

Subjects ’ formulations and plans were sometimes valuable in making judgments

about these last two categories.

A fourth error analysis attempted to determine which stage (formulation ,

plan, code) was initially responsible for a coding error. Although we were

hopeful of learning where coding errors first arise, this proved unsuccessful,

primarily because of ambiguities in subjects’ wordings of their formulations

and plans, and because of inter-subject variations in the detail of their

formulations and plans. For example, if a formulation or plan was detailed

it was easier to attribute a coding error to it than if it were ambiguous .

Fifth, some general characteristics of the formulations and plans were

noted.

RESULTS

Training. Mean training time was longer than we had initially expected ,

being 8.4 hours for college students (range 4 to 13.5 hours) and 14.7 hours

for the file clerks (range = 7.5 to 24.5 hours). Among the concepts that

subjects required much time to learn were (a) how to parse an instruction ,

e.g., how to parse line (4) of Table 1 into command , attribute , and value;

(b) how to use data structure , i.e . , attributes and values ; Cc) th~. necessity

to pay attention to details , such as exact spellings; (d) mapping the

Ir& ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~
- •

9

problem statement into the query language by determining, for example, which

attributes were necessary and which ones were net necessary to mention.

Subjects ’ training times correlated positively with their subsequent coding

times Cr — .66 ; 2 < .02) , but were not related to their formulation times ,

their planning times , or their accuracy on test problems.

General Formulation Results. Subjects ’ formulations were typically

re-statements of the problam , and contained about the same number of words

(about 10—60) as did the problem statemcnt . Mean formulation time per pro-

blem was about 1.5 minutes (which is twice as long as these subjects required

• to write the same amount of memorized material) .

General Planning Results. In general , subjects ’ plans contained details

relevant to using the data structure, and they resembled , both syntactically

and semantically , the query language itself. Mean plar . ~g time per problem

was 3.3 minutes , again roughly twice the subjects ’ writing rates for meaning-

ful material. Subjects had nearly (78%) as many statements or steps in

their plans as in their code. Subjects varied considerably in the style of

their plans . Some subjects were relatively general and specified several

characteristics in a step, e.g. , all the modifiers in a set ,~f records. This

• would often be followed in the next step by the action to be applied to that

set , e.g., count, total, or average . Other subjects had sixnoler steps ,

specifying , for example , only one modifier in a step . It appeared to us that

much of the thinking and problem-solving occurred in the planning stage. For

example, while coding a problem some subjects put one finger on one step in

their plan, wrote the code for that step , moved their finger to the next step

in their plan , coded it, and continued this for each successive step in the

L~. ~~~

10

plan. Some subjects used transitive verbs like “ obtain ” , “make ” , “go to” ,

“get ” , “check” , “find” in their plans , whereas other subjects used personal

pronoun constructions like “I need” , “we have”. Plans were rarely modified ,

and insertions we’ s also rare. . -

General Coding Results. Once a subject began coding, she usually wrote

10 to 20 successive lines of code , rarely inserting or deleting a line.

Presumably , the fact that she had first written a plan contributed to this

• surprisingly organized effort. Mean coding time was 4 minutes per problem ,

and subjects wrote 37% of their queries correctly .

Group Differences • No difference could be found in the accuracy or

kinds of errors made by each group. College subjects were faster than file

clerks in formulating, in planning, and in coding at least 12 of the 15

problems. All three of these differences were statistically significant by

a one—tailed binomial test (all ~ < .01), but were not significant when

tested with analyses of variance.

Standard Problems. Figure 1 shows that the total time to formulate ,

to plan , and to ~~de problems increased about linearly with the number of

required sets in a problem (F(2 ,24)—77.1l;
~

< .001) and with the number of

modifiers per set in a problem (F(2 ,24)—67.79;
~

< .001). Figure 2 shows

See page 27 for Fi gure 1
See page 28 for Figure 2

that, when considered separately , formulation times, planning times, and

ceding times each increased about linearly with the number of required sets

in a problem (F(2,24) 90.36, 25.37, and 83.41, respectively; all
~

< .001)

— —-- ._
.j

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _ _



• ~~~~~~~~~~~~~~~~~~~~~~~~~~

11

and with the number of modifiers per set in a problem (F(2,24)~ 83.96, 22.94,

71.48 , respectively , all a < .001) . Both planning time per step and coding

• time per statement were generally about 20 seconds, regardless of problem

complexity . The form of the Set x Modifier interaction is consistent with

this (for formulation time , F(4 ,48)~~17.73; 
~ 

< .001, for plan time ,

F(4 ,4$)*3 .40; 
~ 

‘C .05 , and for code time F(4 ,48) 14.80; 
~ 

< .001) .

There were very high correlations between time to formulate a problem

and time to plan a problem Cr .97; a < .001), between time to formulate a

problem and time to cede a problem Cr = .98 ; 
~ 

‘C .001),  and between time to

plan a problem and time to code a problem Cr .98; a ‘C .001).

More complex problems required more writing in each stage. This was

corrected by subtracting, from each of the 195 time scores at each stage , the

• ( product of the rate with which subjects wrote memorized material (.5 words

per second) times an estimate of the number of words written at each stage

(based upon sampling about 20% of the 195 queries). Figure 3 shows that

formulation times , planning times , and coding times still all increased with

See page 29 for Figure 3

the number of sets in a problem (F (2 ,24)~~~9.0 l, 4.55 , and 32.64 , respectively;

all, 
~ 

‘C .05) and with the number of modifiers per set in a problem

(F(2,24)—33 .66, 5.08, and 29.63 , respectively; all ~ < .05). These remaining

times can be thought of as “thinking” times , and this result indicates that

additional thinking was required as the problems became more complex.

See page 25 for Table 2



12

Subjects wrote fewer correct queries for problems with more sets and

also for problems with more modifiers per set (line a, Table 2 ) .  The

simplest problem was coded correctly by 10 of 13 subjects , whereas the most

complex problem was coded correctly by only one subject. With the exception

of the center cell of Table 2 , the probability of an error in a line of code

was .1 to .2 , regardless of problem complexity.

Performance on the non-standard 2-set 5—modifiers-per-set problem was

about the same as performance on the comparable one that differed in wording

and the exact sets and modifiers that were required .

Temporary Data Problems. Requiring subjects to create, save , and later

use temporary variables in calculating averages lqd to longer times to complete

these three problems than to complete three standard problems with the same

number of sets and modifiers, (means 432 seconds for standard problems

versus 761 seconds for temporary data problems , F(1,l2) 28.19; 
~ 

‘C .001).

This difference of 329 seconds was due to a difference of 139 seconds in plan

times ana 186 seconds in code times. Some of this additional plan time and

code time probably reflected additional time for thinking, whereas some of it

was due to writing more statements. The left panel in Figure 4 shows that,

when corrected for the amount of writing involved , the times actually spent

thinking in both planning and coding were significantly longer on the temporary

data problems than art the comparable standard problems (F(l.l2)=l9 .05 and

4.82, respectively, ~~ , 
< .0]. and ~ ‘C .05, respectively). Formulation times

were the same for the two types of problems , however.

See page 30 for Figure 4



13

An average of 4 .3  queries was correctly written on the temporary data

problems, compared with an average of 5.3 on the comparable standard problems .

Conceptual errors accounted for seven of the incorrectly written temporary

data queries but for only one of the incorrectly written “control ” queries.

Poorly Expressed Problems. Total time to formulate, plan, and code the

two poorly expressed problems exceeded that for the comparable standard pro-

blems (means a 533 and 430 seconds, respectively; F(l,12) a 4.46; 
~ ‘C .10) .

Of the difference of 103 seconds , 52 seconds was due to a difference in

formulation times , 20.5 seconds to a difference in plan times , and 30.5

seconds to a difference in code times. The right panel in Figure 4 shows

that , after correction for amount of writing , formulation times were still

greater on poorly expressed problems than on the comparable standard problems

(F(1,l2) a 27 .86 ; 
~ 

< .001) , but planning times and codin g times were the

same on the two types of problems (both F c 1.0) . Thus , a problem that was

poorly expressed affected formulation time only , whereas the requirement to

create temporary data variables affected planning time and coding time.

Seven queries were written correctly for the poorly expressed problem

that contained irrelevant information . Subjects ’ written formulations shcwed

that these irrelevancies were usually stripped away during the formulation

stage . No queries were written correctly on the other poorly expressed pro-

blent, which was a tricky cite requiring subjects to seek information that would

settle an argument between two men . All 13 subjects selected information that

evaluated only one of the men ’ s views .

Ccding Error Analyses. Of the 195 queries written , 127 were incorrect.

Ten of these were syntactically correct but would not get all the data

•I1L~ -
~~~~~~~~~~~~~~~~~~~~~ :•:~~~~~~~~~

-
~~~~ 4



14

required to solve the problem . These 10 and 18 others , including a few

that indicated confusion in calculating an average, were judged to be due to

conceptual errors. Sixty—four erroneous queries were judged to be due to

conceptual/language errors and 35 to syntactic-clerical errors.

Table 3 indicates the coum~ands in which coding errors occurred in the

115 queries that contained such errors (excluding two that were simply rife

with errors) . Subjects made about the same number of errors in using record-~

selection commands (182 errors; probability of an error ~ .12) as in using

record—operation commands (156 errors ; probability of an error .17) .

See page 26 ?or Table 3

The main reason for errors in record selection was that subjects used

wrong values (102 of the 182 errors). Thirty—five of these 102 err9rs were

due to difficulties subjects had in (a) converting problem statements such

as “over 50 years old” or “over $8000” into the appropriate values and

operators ( i .e. ,  into “51 or more ” or “8001 or more”); or (b) in transforming

a problem statement such as “have worked for us for more than 5 years ” into

the appropriate attribute and value (i.e., “year hired 1969”). Another

30 of these 102 errors were due to the way subj ects were required to use the

“Highest Degree” attribute. This was the only attribute with which they

were not allowed to use the “or more ” or “or less ” operators. Instead of

merely writing “IfS or more” if they wanted people with a high school degree,

they had to write out all higher values as well, e.g., Ifs, JC, 35, MS, PhD.

This approach caused many errors , and should not be used in query systems.

Another 20 of the 102 errors were clerical errors such as misspellings , use

4
~

_ 
“

. ~~~~~~~ . - - -

— 
‘
~ — --- -

~~~~ .--- ,—. ~ —‘~~~-
4 — —

~~~ 
—



15

of synonyms , and inappropriate insertion of dollar signs.

Besides these 102 value errors, another main type of data selection

error was the apparently inadvertent omission of a modifier , or FOR or AND

FOR command (24 errors). This almost always occurred in problems involving

marty modifiers, and would of course be a dangerous error in real—life.

Another 19 errors were due to subjects either using the wrong operator

(e.g., ‘or more ’ instead of ‘or less ’) or in omitting a required operator.

The 156 errors in record operation commands were spread across all of

these commands , as shown in Table 3. One—third (52 of 156) of the errors

were due to inappropriate uses of the commands, a type of error that did

not occur much during record selection. Most of these 52 errors were due to

confusing the COVNT consr.and (which counts items, as the number of bills in

one ’s wallet) and the TOTAL command (which, for example , produces the total

amount of money in one ’s wallet) , misplacing a statemen t in a proce~dura1

sequence, or using superfluous statements. Most (40 to 52) occurred in pro-

grains classified as containing conceptual/language errors.

Another forty—eight of the record operation errors were due to erroneous

use of attributes, or headings. Mainly subjects used incorrect headings,

omitted headings, or misspelled headings. Another 37 record operation

errors were due to subjects omitting required commands (one subject committed

15 of these) . -

Additional Language Features. Several specific language features ,

additions to the real IQF , were examined. First, the ALSO command for

handling the limited disjunctions required for selecting multiple sets of

records was successful. It was used 165 times and only one error occurred .

& ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~



16

Second , subjects rarely used the COUNT B? and TOTAL BY commands , which indi-

cates that they preferred to think about and manipulate data across only one

dimension at a time. Of course, this “preference” result is dependent upon

the stress in training given to these commands , which was not much and

probably variable. Third, the assignment statement (LET command) was not

especially difficult for subjects to use (cf. Table 3). Fourth, when a

variable in the LET command referred to the result of a calculation in the

immediately preceding statement, subjects were allowed a choice of using

an “absolute” reference (e.g., as in line (6) of Table 1) or a “contextual”

reference (i.e. through the demonstrative pronoun, “this” , as in line (8)

of Table 1). Nine subjects always used contextual referencing when possible,

three subjects never did and one subject sometimes did. This was essentially

a matter of preference, as no difference in accuracy occurred between these

two constructions.

Individual Differences. Subjects’ mean times varied , from the briefest

to the longest, by a factor of 6 in training (4 to 24.5 hours), a factor of

2 in the formulation stage (60 to 133 sec. per problem), a factor of S in

the planning stage (69 to 334 sec . per problem) , and a factor of 3 in the

coding stage (138 to 337 sec. per problem). The most accurate subject

wrote 9 of 13 queries correctly , whereas the least accurate subject wrote

only cite query correctly . With the exception of value errors in the AND FOR

command, individual subjects differed considerably in the errors they made.

Subjects who were fast at problem formulation were also fast at problem

planning (r~.87; ~ < .01) and at problem coding (r .62; 
~ 

< .05). Thus,

formulation time is a moderately good predictor of coding time . The

• ~~.•.4-. - • -
- - -.•‘-

~
.
~~ ‘~~k~ -~~



-~ - -  — - - — - - — - - •-- -- - —---- -
~~

—-—- - -- - - --- -

~~

• -

17

correlation between subjects’ plan times ~nd code times was .56 
~E 

c .05).

There was no relation between subjects’ coding times and accuracies (r— . 32;

> .101 . Incidently, although subjects were generally encouraged to write

a single query about a problem, they could have broken up a complex problem

and written a series of simple queries about it. They never did this though ,

which may merely reflect a powerful experimental demand to write a single

query.

Practice. The number of correctly written queries increased from an

average of 2.7 (out of 131 on the first three problems to an average of 6

on the last three problems ; the number of errors decreased from about 3 per

query on the first three problems to about 1 per query on the last 3 problems.

DISCUSSION AND CONCLUSIONS

It is perhaps again appropriate to point out that this is an exploratory

study. Three methodological aspects should be mentioned in this regard. The

first has to do with lack of control over subjects during training and

testing. During testing , an experimenter corrected each query immediately

after each subject wrote it and discussed any errors and answered any

questions before she went on to the next test problem. While this was

valuable in understanding subjects ’ difficulties and was a sensible pedago-

gical tool, it did result in “non—standard” test conditions and probably

led to the practice effect just mentioned.

Second , the wording of each standard problem differed in ways other

than those defined by the two independent variables studied . This lack of

control was intentional so that a greater domain of potential difficulties

-
~~~~

. .
, - • -

—-

- ~~~~~~~~~
- -
~~~~~ -~~~~~~~ ~~~~~~



18

in using query languages might be identified . Some problems required subjects

to transform the exact wording of a problem statement into different words

required by the data base and some problems required subjects to select

records based upon people over a certain age or with certain types of educa—

tionaJ. degrees. These requirements, which led to more errors than use of

other modifiers, were more often associated with the more complex problems

than with simpler problems. Thus, the apparent systematic effects of the

number of sets and the number of modifiers per set on formulating, planning,

and coding queries cannot be strictly accounted for by these two variables.

Third , this was a crude, knowingly over-simplified , beginning attempt

to study separately the processes of formulating, planning, and coding a

problem. Ort the ‘3ositjv~ side , a number of interesting results were found -~

about the locus of query and programming variables on people ’s performance. —

The ni.unber of Sets and the number of modifiers per set in a probleni led to

approximately linear increases in formulation times, in planning times,

and in coding times. ~ncreases in problem complexity required subjects to do

more of the same thing rather than do different things , however.) Poorly

formulated problems affected only the formulation stage, whereas the require-

ment to create temporary data variables affected the planning and coding

stages . This agrees with intuition. About twice as much thinking time was

needed for planning and for coding problems that required creating intermediate

data structures as for planning and coding prOblems that did not. Subjects

stripped away the irrelevancies in a poorly stated problem when they formula—

t ed it, although their formulations were not always correct. Formulation

times were a moderately good predictor of coding times.

• ~~~~.



19

On the negative side, we could not determine which stage was initially

responsible for a coding error. This problem of identifying the reasons

for conceptual coding errors is important, and may be studied more success-

fully by assessing independently a person ’s understanding of the problem ,

of the language, and the mapping of the two. Most significant is the unknown

relation of the actual cognitive processes involved in formulating , planning,

and coding to the three stages so-named here. Even though subjects rarely

modified an earlier stage while working in a later stage , formulating , planning ,

and coding are not ordinarily independent processes when one works on more

complex problems.

Requiring subjects to formulate and plan a problem prior to coding it

may have created an artificial situation, but arguments can be made that this

either increased overall time and errors or that it decreased them. Determining

the value of a formal planning exercise prior to coding a problem is an impor-

tant future research question . Incidently , opinions of professional program-

mers differ on the value of their f~rmal1y planning (e.g., with a flowchart)

a program prior to coding it. Because of its simplicity our methodology can

be useful in the future. For example, one might compare how different query

or programming languages affect different stages . The ratios of formulation

time to coding time for various languages would be an interesting and useful

statistic, and the contents of the formulations would indicate the degree and

manner which individual languages affect  how people think about ~ problem.

Compared with, college students, file clerks were about 25 years older ,

had less education, had no contact with formal education for about 25 years ,

probably had lower IQ’s, and seemed to find it difficult to consider



~~~~
_
~~~. - _~~~- -

20

imaginary situations. These several differences and the fact that the groups

were so small make it imposs ible to identify the bases of why the fi le clerks

required more time in training and on the test problems . The fact that four

file clerks failed to finish training suggests additional difficulties if

this population should be required to use a language such as this .

This study was not intended to be an evaluation of the IQF language

itself. Rather it was an exploratory attempt to identify the ~ifficulties

non-programmers have in writing queries , and IQF served as a prototype query

language. Training times would have been considerably shorter if only the

IQF concepts were taught. Subjects , both college students and file clerks ,

coded about half thair queries correctly on the problems that IQF itself is

designed for (problems requiring only one set of records) , which is somewhat

less than the accuracies recently found for newer and more powerful query —

languages (Reisner , 1974; Thomas and Gould , 1974) .

The general clerical errors of misspellings, the apparent inadvertent

omission of required attributes or headings (which will produce an incorrect

set of records) , confusion of operators like TOTAL and COUNT , and difficulties

with theta operators like “or more ” and “ or less ” were all found by Thomas

and Gould (1974) to occur with Zloof’ s (1974) Query By Example language also.

Some of these errors could be reduced or eliminated by an interactive

system providing various types of feedback. For examp le , the dangerous

inadvertent omission of an intended tnodifer (24 errors) might be caught if

the system re—stated the user ’s query, perhaps in English , prior to executing

it. The accuracy of queries involving logical constructions that are difficult

for casual users could perhaps be improved through feedback that provides



r -

~~

--

~~~~

-

~~~~~ ~~~~~~~~~~~~~~ 
- 

-

21

examples to illustrate the subtle (to the user ) differences between the answer

to his query and answers to related ones that he might potentially have asked .

The idea for examining contextual referencing came from data that showed

people frequently use this when generating procedures in their own words

(Miller and Becker, 1974) . The present experiment suggests that subjects might

prefer to use contextual referencing with formal languages also , since most

subjects used , when possibl~~, a contextual reference to a previous calculation

rather than an absolute reference. This is merely suggestive , as the experi-

mental demand for using either one was not carefully controlled.

Some problems required subjects to select more than one set of records

or specify more than one value for a particular attribute. Two techniques

were used to help subjects do this, and both of them involved the elimination

of the word “or ” front the query language . First , when more than one value

was required for a particular attribute, subjects wrote these valueth ,

separated by coumtas , and did not use the word “or ” . Second , the ALSO command

was invented for separating the code for separate sets of records 3 . This

worked well , as the ALS’) command was used 165 times , and only one error

resulted. (The English problem statements of standard and temporary data

problems were clear , usually because of punctuation, in demarcating the

separate sets of records required.) Thus , because of the ambiguous way “or ”

and “ and” are used in English , with the semantics of the situation often

over-riding conventional rules of logic , elimination of the word “or ” in

formal query languages may be a good idea .



-- -~~~~~~~ -~~~~~~~~~~~~-- -

22

REFERENCES

Boies , S. J. and Gould , 3. D., Syntactic Errors in Computer Programming.

Human Factors, 1974, 16, 253—257.

Datamation, November , 1973, 126.

deGroot, A. D. Thought and Choice in Chess. The Hauge: Mouton , 1965.

Gould, 3. ID. Some Psychological Evidence on How People Debug Computer

Programs, International Journal of Man-Machine Studies, 1975 (in press).

Gould , 3. D. and Drongowski, P. An Exploratory Study of Computer Program

Debugging. Human Factors, 1974, 16, 258-276.

IBM Interactive Query Facility , Terminal User’s Reference Guide , GH2O-1223,

1972.

Miller , L. A. Programming By Non-Programmers . International Journal of

Man—Machine Studies, 1974 , 6 , 237—260 .

Miller , I.. A . ,  1975 , in preparation. -,

Miller, L. A. and Becker, C. A. Programming in Natural English. IBM Research

Report RC-5137 , 1974.

Newell, A. and Simon, H. A. Human Problem Solving. Englewood Cliffs, New

Jersey : Prentice—Hall, 1972.

Reisner, P. Human Factors Evaluation of Two Data Base Query Languages :

Square and Sequel. IBM Research Report, PJ-l478, 1974.

Thomas , 3. C. An Analysis of Behavior in the Hobbits-Orcs Problem.

Cognitive Psychology, 1974 , 6 , 257—269.

Thomas , 3. C. and Gould , 3. D. A Psychological Study of Query By Example .

IBM Research Report , RC—5124 , 1974.

Weinberg , G. M. The Psychology of Computer Programming, New York : Van

Nostrand Reinhold , 1971.

?oungs, S. A. Error-proneness in Programming . Unpublished Ph.D. thesis,

University of North Carolina, 1969.

Zloof, M. Query by Example. IBM Research Report, RC-4917, 1974.



• -- • --‘-—--. _- •-— .-- - - — - - -  --—--•-,-- •-- 

23

FOOTNOTES

1. We thank John Thomas for many helpful suggestions, and him and K. William

Sholz for helpful comments on an earlier version of this manuscript.

2. We thank Stephen Boies for helping us program this.

3. This was done jointly with Clayton Lewis.

-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ •_ i _ _

•

_ _ _ _ _ _ _

24

TA~L E 1

Program for the problem “List the average salary of employees who were in
Chicago, have at least a Bachelor ’s degree, and are married ; and the average
salary of engineers over 50 years of age working in St. Louis”. For
illustrative purposes , conunands are in all upper case letters , a~~ ributes

• are underlined , values are in all lower case letters , and variables begin
with an upper-case character.

(1) FROM Personnel FILE

•
- (2) FOR chicago Location

(3) AND FOR Highest Degree bs, ms. ph.d.

• (4) AND FOR married Marital Status

(5) COUN T

(6) LET Count SE CALLED Count 1.

~(7) IOTAL Salary

• (8) LET This BE CALLED Total 1

(9) ALSO

(10) FOR ~~~ 51 or more

(11) AND FOR engineer Jobtype

(12) AND FOR st. louis Location

(13) COUNT

(14) LET This BE CALLED Count 2

(15) TOTAL Salary

(16) LET This BE CALLED Total 2

(17) LET Total 1/ Coun t 1 BE CALLED Avg 1

(18) LET Total 2/ Count 2 BE CALLED Avg 2

(19) LIST Avg 1, Avg 2

_ i ~~~~ ~~~~
‘
.~~~~.

-

~, -

- • --~~~~~~

25

TABLE 2

Performance of the 13 Subjects on the Nine Standard Problems

Number of Sets

• 1 2 3 Means

(a) 10 9 6 8.7
(b) 1 0 0 .3

1 (c) 2 4 2 2.7
(d) 0 0 5 1.7
(a) 6 12 12 10.0

(a) 6 1. .5 4.0
Number of (b) 1 3 1 1.7
Modifiers 3 (c) 5 7 4 5 .3
Per Set (d) 1 2 3 2.0

• C (a) 14 48 22 28.0

(a) 3 4 1. 2.7
(b) 0 0 0 . 0.0

H
(c) 6 7 8 7.0

H (d) 4 2 4 3.3
• (a) 13 22 47

•
27.3

(a) 6.3 4 , 7 4.0
(b) 0.7 1.0 .3
Cc) 4.3 6,0 4.7
(d) 1.7 1.3 4.0
(e) 11.0 27.3 27.0

(a) — Number of correct programs
(b) — Number of “conceptual error ” programs
(c) Number of “conceptual/language error ” programs
(d) — Number of “clerical/syntactic error ” programs
(e) — Total number of errors

-
-- -

~~~~~~~~~~
-• p:. .



—

26

TABLE 3

Programming/Query Language Statements in Which Errors Occurred

Number of Actual
Errors Total Errors Occurrences

Non—Existent Command 3- 3
File Selection 1 195
Data Selection 182

FOR Command (27 ) 365
Inappropriately used S
Omitted 1
Heading (Attribute) 9
Value 12

AND FOR Command (154) 754
Inappropriately used 12
Omitted 23
Command 2
Heading (Attribute) B
Value 90
Operator 79

ALSO Command (1) - 165
Omitted 1

Data Operation 156 264
Count Command (26 )

Inappropriately used 16
Omitt ed 6
Command 4

Count By Command (4) 17
Inappropriately used 2
Command I
Heading (Attribute) 1

Total Command (24 )  94
Inappropriately used 10
Heading (Attribute) 14

Total By Command (0) • 0
List Command (44 ) 207

Inappropriately used 12
Omitted 4
Command 5
Heading (Attribute) 23

Let Command (48) 363
Inappropriately used 9
Omitted 20 -

Command 3
Heading (Attribute) 10
Operator 6

Sort By Command (10) 10
Inappropriately used 3
Om~.tt ed 7

342 2437

h .  ~~i 
~~~~~~~~~~~~~~~~~~ ~~~~•.- -. .-_ - 

-_ . —_- ~~~~_ •

r ____________________________________

27

N)NE STANDARD PRO8L~MS

MN. NO. CORRECT MN. NO. CORRECT

6.3 4.7 4.0 • 8.7 4.0 2.7

7O0~
- -

~
600 : : :

•

~~~4O0 / :: /
200 - -

z
-

I-
I _I I I

2 3 3 5

NO. “SET S” NO. “MODIFIERS”

Figure 1. Average time for subjects to complete each of the nine standard

problems. Accuracy is based upon the mean number of the 13

subjects that coded each problem correctly .

- .



28

350

C

~ 
300 C -  -

Ui(I,

U - - -

-J
C p P

- 

N - - C
0~ E.
Ui
~~- 150 - - -
U

_ _  

F C

z I00_ - - 
F

~ so~
j  

_ _

NO. “SETS” N0. ” M0DIF~ERS ”

Figure 2. Average time for subjects to formulate , to plan, and to code

the nine standard problems.

-J
I

~~~~~~~~~~~~~~~~~~~~~~~


r~~
w • • —

29

NINE STANDARD PROBLEMS

MN. NO. CORRECT MN. NO. CORRECT
6. 3 4. 7 4. o 8.7 4.0 2.7

~~~20O - -

C

~ 50-  ~~~~~~~~~~
. -

C F J
~~~Io0~~

• c Fi~1~~~~~~~~~~~
NO. “SETS ” NO. “MODIFIERS ’

• Figure 3. Average time, when corrected for the amount of writing involved ,

for subjects to formulate, to plan, and to code the nine standard

problems.

S
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . 

~~~~~~~~~~~~~~~~ - - - - - - -


30

“TEMPORARY DATA” PROBLEMS “POORLY EXPRESSED ” PROBLEMS

“TD” PROBLEMS - - - “PE”PROBLEMS~~~ -

“ST” PROBLEMS ~“ST”PROBLEMS

~~~2OO - - - -

~~~ 160 - - - -

~~~~ 120 - - - -

z -

9 ::i : :1 rE
FORMULATION CODE FORMULATION CODE

PLAN PLAN

“STAGES” “STAGES”

Figure 4. Average time , when corrected for the amount of writing , for

subjects to formulate, to plan, and to code three temporary data

problems and comparable standard problems (left panel) and the

two poorly expressed problems and comparable standard problems

(right panel).

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - —--

~~~~~~~~~~
---.-- - - .--- -- ---- --------- - — --- —--



-~~ -.- ~~~••-~~~~~ - - -~~~~~~~~~~ -- - - - - - -~~~~~~ -- -- •• - S . —~~~~~--~~~~~~ -.-~~~~~~~~~~~~~~ 

TECHNICAL REPORTS DISTRIBUTION LIST

CODE 455

Director , Engineer ing Psychology (5 cys) Office of Naval Research
Programs , Code 455 Operations Research Program, Code 434

Office of Naval Research 800 North Quincy Street
800 North Quincy Street Arlington, Virginia 22217
Arlington , Virginia 22217

Off ice  of Naval Research
Defe nse Documentation Center (12 cys) Naval Analysis Programs , Code 431
Cameron Station . 800 North Quincy Street
Alexandr ia , Virginia 22314 Arlington , Virginia 22217

Director , ONR Branch Office Office of Naval. Research
ATTN : Dr. J. Lester ATTN: Dr. K. T. Wallenius, Code 436
495 Summer Street • 800 North Quincy Street
Boston , Massachusetts 02210 Arlington , Virginia 22217

Di rector , ONR Branch Office Office of the Chief of Naval
ATTN: Dr. M. Bertin Operations , Op— 987E
536 S. Clark Street Department of the Navy
Chicago , Illinois 60605 Washington , D. C. 20350

Di rector , ONR Branch Office CDR H. J. Connery
ATTN: Dr. E. Gloye Office of the Chief of Naval Operations ,
1030 East Green Street Op 987M4
Pasadena , California 91106 Department of the Navy

Wash ington , D. C. 20350
Director , ONR Branch Office
ATTN: Mr. R . Lawson Dr. A. L. Slafkosky
1030 East Green Street Scientific Advisor
Pasadena , California 91106 Conm~andant of the Marine Corps

Code AX
Dir . ,  Naval Research Laboratory (6 cys) Washington , D. C. 20380
Technical Information Division
Code 2027 Dr. Heber G. Moore
Washington , D. C. 20375 Hqs . Naval Material Command

Code 0331
Di r . ,  Naval Research Laboratory (6 cys) Department of the Navy
ATTN: Library, Code 2029 (ONRL) Washington , D. C 20360
Washington , D. C. 20375

Mr.  Arnold Rubinstein
Mr. John Hill Naval Material Co~ nand , NAVMAT 03424
Naval Research Laboratory Depa rtment of the Navy
Code 5634 Washington , D . C. 20360
Washington , D. C. 20375

Commander , Naval Electronics S

Off ice  of Naval R esearch Systems Command
Info rmation Sys t ems Program , Code 437 Command and Control Div .,  Code 530
800 North Quincy Street Washington , D. C. 20360
Arlington, Virginia 22217

~~~~~~~~ . - •~~~~~~~~~~~~~~~~~~~~~


—2—

Naval Electronics Systems Command Dr. George Moeller
Human Factors Engineering Branch Head , Human Factors Engineering Branch
Code 4701 Submarine Medical Research Laboratory
Washington~, D. C. 20360 Naval Submarine Base

Groton , Connecticut 06340
Bureau of Medicine and Surgery
Hum an Effectiveness Branch , Code 713 Lt . Col . Austin W. Kibler
Depart ment of the Navy Director , Human Resources Off ice
Washington, D. C. 20372 Advanced Research Proj ects Agency

1400 Wilson Blvd .
CDR Robe rt Wherry Arlington , Virg inia 22 209
Human Factors Engineering Branch
Crew Systems Department U.S. Air Force Office of Scientific
Naval Ai r Development Center Research
Johnsville Life Sciences Directorate , NL
War min ster , Pennsy lvania 18974 1400 Wilson Blvd .

Arlington , Virginia 22209
LCDR Robert Kennedy
Human Far.tors Engineering B r . , Code 5342 Dr. .J . M. Cris tensen
U.S. Naval Missile Center Chief, Hur~an Engineering Division
P3iflt Nugu , California 93042 Aerospace Medical Research Laboratory

Wright—Pat terson AFB , OH 4 54 33
Lt . Ccl. , Hen ry L . Taylor , USAF
OAD*E&LS) ODDR&E Dr. J. E. Uhlaner
Pentagon , Rm. 3D129 Di r . , U .S . Army Research Ins t i tute
Washington , D. C. 20301 for the Social & Behavioral Sciences

1300 Wilso n Blvd .
Mr. Richard Coburn Arlington , Virginia 22209
Head , Human Factors Division
Naval Electronics Laboratory Center Chief of Research and Development
San Diego , California 92152 Human Factors Branch

Behavioral Science Division
Dean of Resea rch Administration Department of the Army
Naval Postgraduate School ATTN: Mr. J. Barber
Monte rey , California 93940 Washington , U. C. 20310

Navy Personnel Research and Dr. Joseph Zeidner
Development Center (Code 10) (5 cys) Dir . , Organization and Systems

San Diego, California 92152 Research Laboratory
U.S. Army Research Inst i tute for

Mr. James L. Long the Behavioral & Social Sciences
Weapon s Systems Research (N—332) 1300 Wilson Blvd.
Naval Education and Training Command Arlington , Virginia 22209
Naval Air Station
Pensacola , Florida 32408 Dr. Stanley Deutsch

Chi ef , Man—S ystems Integration
Human Factors Dept . , Code N2 15 OART , Hqs. , NASA
Naval Training Equipment Center 600 Independence Avenue
Orlando, Florida 32813 Washington , D. C. 20546

~~~~~~~~~~~~~~~~~ : - ~~~~~~~ ~~~~~~~- - —- -—-~~ “- ~L_~__~~~ --~_- -~

—

-3-

Dr. Jesse Orlansky Mr. Wes Woodson
Institute for Defense Analyses Man Factors, Inc.
400 Army—Navy Drive 4433 Convoy Street, Suite D
Arlington , Virginia 22202 San Diego , California 92111

Dr. Edgar M. Johnson Dr. C. H. Baker
Organizations & Systems Research Lab . Director, Human Factors Wing
U.S. Army Research Institute for the Defense & Civil Institute of

Behavioral and Social Sciences Environmen tal Medicine
1300 Wilson Blvd. P. 0. Box 2000
Arlington, Virginia 22209 Downsville , Toronto, Ontario

Canada
Dr. James Parker
BioTechnology, Inc. Journal Supplement Abstract Service
3027 Rosemary Lane American Psychological Association
Falls Church, Virginia 22042 1200 17th Street, N.W.

Washington, D. C. 20036
Dr. Edwin A. Fleishman
Foxhall Square Dr. Bruce M. Ross
3301 New Mexico Avenue, ~~~.W . Department of Psychology
Washington, D. C. 20016 Catholic University

Washington, D. C. 20017
American Institutes for Research Library
135 N. Belief ield Avenue Mr. Harry Chipman
Pittsburgh, Pennsylvania 15213 WR Systems, Inc.

2531 S. Jefferson Davis Highway
Psychological Abstracts Arlington, Virginia 22202
American Psychological Association
1200 17th Street, N.W. Dr. David Meister
Washington , D. C. 20036 U.S. Army Research Institute

1300 Wilson Blvd.
Dr. A. I. Siegal Arlington, Virginia 22209
Applied Psychological Services
404 E . Lancaster Street Mr. George Graine
Wayne, Pennsylvania 19087 Naval Ship Systems Command

(SHIPS 047 C12)
Dr. Joseph Wulfeck Department of the Navy
Dunlap and Associates , Inc. Washington, D. C. 20362
115 South Oak Street
Inglewood , California 90301

Dr. Robert R. Mackie
Human Factors Research, Inc.
Santa Barbara Research Park
6780 Cortona Drive
Goleta , California 93017

-
___:,

~~ ~~~~~~~~~~~~~~~~~~~~~ ~: - ----—
~~~~-—~~~~~-~~-- - 

-



~ 

-4-

Lt. Col. John F. Ahlborn Col. Robert 0. Viterna
Headquarters, AYSC-DLSE D~/OcBD
Andrews AFB Headquarters, Dept. of the Army
Washington, D. C. 20334 DARD—ARS—B

Washington, C. C. 20310
Dr. H. B. Wolff
Technical Director (Code N—2)
Naval Training Equipment Center Dr. Anthony Debons
Orlando, Florida 32813 IDIS

University of Pittsburgh
Dr. Donald A. Topeiller 135 N. Belief ield Avenue
Chief, Systems Effect. Branch Pittsburgh, Pennsylvania 15260
Human Engineering Division, USAF
Wright Patterson APE, Ohio 45433 Dr. Alfred F. Smode

Training Analysis & Evaluation Group
Code N-OOT
Orlando, Florida 32813

-

~ 

~~~~
‘
~~‘~~~ _ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

____ - _______ _________

